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The computation of the winning set for Biichi objectives li@@ating games on graphs is a central problem in computer
aided verification with a large number of applications. Téregl standing best known upper bound for solving the problem
is 5(n -m), wheren is the number of vertices and is the number of edges in the graph. We are the first to break the
O(n -m) boundary by presenting a new technique that reduces théngutime toO(n?2). This bound also leads 8 (n?2)-

time algorithms for computing the set of almost-sure wignuertices for Biichi objectives (1) in alternating gameghwi
probabilistic transitions (improving an earlier boundé(n -m)), (2) in concurrent graph games with constant actions
(improving an earlier bound @ (n?)), and (3) in Markov decision processes (improvingsior> n*/3 an earlier bound of
O(m - y/m)). We then show how to maintain the winning set for Biichi ofijes in alternating games under a sequence of
edge insertions or a sequence of edge deletiond%(im) amortized time per operation. Our algorithms are the firsedyic
algorithms for this problem. We then consider another coaply theoretic problem in verification of probabilistic ®rss,
namely computing the maximal end-component decompositfangraph. We present two improved static algorithms for
the maximal end-component decomposition problem. Ourdlggtrithm is anO (m - v/m)-time algorithm, and our second
algorithm is anO(n2)-time algorithm which is obtained using the same techniquiaalternating Buichi games. Thus we
obtain anO(min{m - /m, n?})-time algorithm improving the long-standir@(n - m) time bound. Finally, we show how

to maintain the maximal end-component decomposition obplyunder a sequence of edge insertions or a sequence of edge
deletions inO(n) amortized time per edge deletion, a@dm) worst case time per edge insertion. Again, our algorithms
are the first dynamic algorithms for this problem.
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1. INTRODUCTION

We consider two fundamental algorithmic problems that ighie core of many applications in

formal verification and analysis of systems. The two proldere alternating games with Biichi
objectives, and maximal end-component decomposition akbMadecision processes (MDPs). We
will present graph theoretic description of both the praideln this work we present faster static
algorithms for both the problems improving the long-stagdiipper bounds, and the first dynamic
algorithms for both problems.

Alternating Buchi games. Consider a finite directed gragli, F) with a partition(V7, 52) of V
and a sef3 C V of Buchivertices. This graph is calledgame graphLetn = |V| andm = |E]|.
Two players play the followinglternating gameon the graph that forms an infinite path. They
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start by placing a token on an initial vertex and then takagundefinitely in moving the token:
At a vertexv € V; player 1 moves the token along one of the outedges at a vertexu € V5
player 2 moves the token along one of the outedges. & first question to ask is given a start
vertexz € V can player 1 guarantee that the infinite path visits a veriek iat least onceno
matter what choices player 2 makes. If so player 1warfrom x andx belongs to thevinning set
of player 1 The question of computing the set of vertices from whiclygial can win (called the
winning se} is called thgalternating) reachability game problerfihe problem is PTIME-complete
and the winning set of player 1 can be computed in time lineahe size of the graph [Beeri
1980; Immerman 1981]. A second, more central question ighvenglayer 1 can guarantee that
the infinite path visits a vertex if8 infinitely often no matter what choices player 2 makes. The
computation of the winning set of player 1 for this setting#dled the(alternating) Bichi game
problem The best known algorithms for this problem are algorithhat tepeatedly compute the
alternating reachability game solution on the graph after removal of specific vertices. Their

running time isO(n - m), where we denote b@(f) = O(f/1og(f)) (i.e., to omitlog-factors). We
present in this paper a new algorithmic technique for theriadtting Buichi game problem which is
inspired by dynamic graph algorithms and reduces the rgtivime toO(n?).

Buchi games: applications and significancelwo-player games on graphs played by player 1 and
the adversary player 2 are central in many problems in coenpseience, specially in verification
and synthesis of systems such as the synthesis of systemsecifications and synthesis of reac-
tive systems [Church 1962; Pnueli and Rosner 1989; Ramautyj@/anham 1987], verification of
open systems [Alur et al. 2002], checking interface conhylési [de Alfaro and Henzinger 2001],
well-formedness of specifications [Dill 1989], and manyesth Besides their application in verifi-
cation, they have also been studied in artifical intelligeas AND-OR graphs [Mahanti and Bagchi
1985], and in the context of alternating Turing machinesgi@ira et al. 1981]. The class of Biichi or
repeated reachability objectives was introduced in tharsgnworks of Biichi [Blichi 1960; 1962;
Buchi and Landweber 1969] in the context of automata oviamite words. The alternating Bichi
game problem has many applications in relation to synthesigfication and automata theory. For
example, (a) the solution of the synthesis problem for deit@stic Bliichi automata is achieved
through solving the alternating Biichi game problem (segpfiirman and Vardi 2005] for the im-
portance of deterministic Buchi automata); and (b) théfication of open systems with liveness
and weak fairness conditions (two key specifications usatiification) is again solved through
the alternating Buichi game problem [Alur et al. 2002]. \igx@rdi 2007b; 2007a] discusses further
applications of the alternating Biichi game problem andhiigortance. We mention a few appli-
cations of alternating Blichi games, and its relation tad@nd automata theory to highlight its
significance.

(1) (Protocol synthesis)n verification, after safety and reachability conditiotieg most widely
used condition is liveness (or weak-fairness) that cooedp to Biichi objectives. For example,
the progress condition in mutual exclusion protocols (8p&cifies that it should always hold
that if there is a request to the criticial section by a prec#sen the process eventually enters
the critical section) is a liveness condition. The synthesimutual exclusion protocols reduces
to solving alternating Biichi games [Chatterjee and Hegeir2007a]. Moreover, recent works
for synthesis of fair non-repudiation protocols (a classexurity protocols) also only requires
liveness objectives and are synthesized through solufiaiternating Biichi games [Chatterjee
and Raman 2012].

(2) (Automata and LTL synthesidjhough deterministic Buichi word automata (DBW) are aet
regular complete, there are several results of wide inteststed to the importance of properties
in verification expressed as a DBW. In particular, DBW canregp many important and most
practically relevant fragments of linear-time temporaito(LTL), the de-facto logic to specify
properties in verification [Kupferman and Vardi 2005; 198Rir and Torre 2004; Krishnan et al.
1994]. We mention a few of them below:



(a) Itwas shown in [Kupferman and Vardi 2005] that a transtatrom LTL to DBW whenever
possible is much simpler than using complicated deterratitn of w-regular automata.
Thus the fragment of LTL that can be translated to DBW candmeslated efficiently. More-
over, it was shown in [Kupferman and Vardi 1998] that an intaotr fragment of linear-time
u-calculus (a formalism to specify properties in verificates fix-point formulas), namely,
linear-time AFMC (alternation freg-calculus) exactly corresponds to DBW.

(b) There are many other relevant fragments of LTL that aegl uis practice and can be trans-
lated to DBW. For example, four subclasses of LTL (with aleraypd eventually operators)
were introduced in [Alur and Torre 2004] and it was shown #ikf them can be translated
to DBW. Another fragment of LTL that can be translated to DB\&svpresented in [Krish-
nan et al. 1994]. It was shown in all these works that the frexgproposed cover a large
set of properties that are actually used in verification.

(c) Finally, currently the popular fragment of LTL that isagsin specifying properties for syn-
thesis is called the GR(1) (generalized reactivity (1)pfment [Piterman et al. 2006]. A
huge fragment of GR(1) properties for synthesis reducesrfuaction of Buichi objectives.
GR(1) properties consist of a conjunction of assumptiomsanonjunction of guarantees.
If the guarantees are safety properties only (or the assongpare safety properties only),
then GR(1) synthesis reduces to solving alternating gantbscanjunction of Biichi objec-
tives. Morevoer, in several practical examples of synthdst properties used satisfy that
the guarantees are safety properties. The most prominanig of synthesis of GR(1)
properties used in industrial example is the synthesis oBAM\HB protocol [Bloem et al.
2007; Godhal et al. 2011]. In the specifications for AMBA AHBabter and AMBA AHB
Slave the guarantees are either safety properties, oy safigt next or until upto 3 steps
(all of which are safety properties) [Godhal et al. 2011]e Blynthesis problem for all these
properties are reduced to alternating games with conjomcti Biichi objectives; and alter-
nating games wit vertices,m edges, and conjunction &f Biichi objectives reduces to
solving alternating Biichi games with- n vertices and: - m edges.

In summary, many important properties in verification, nsictically relevant subclasses of stan-
dard logics (such as LTL angd-calculus) can be translated to DBW, and practical examples

specifications used in synthesis are Buchi objectivessHiiernating Buchi games are of wide
interest and significance to the verification, synthesistamporal logic community.

Buchi games: previous resultsThe alternating Biichi game problem is one of the core proble
in verification and synthesis (as highlighted in the aboweuksion). The classical algorithm for
alternating Buchi games follows from the results of [Ene@rand Jutla 1991; McNaughton 1993;
Zielonka 1998], its complexity i®©)(n - m). The algorithm was improved in the special case of
game graphs witln = O(n) to O(n?/logn) time in [Chatterjee et al. 2003]. A generalization of
the algorithm from [Chatterjee et al. 2003] was presentd€hmatterjee et al. 2006], and the new
algorithm require®)((n - m - log A)/logn) time, whereA is the maximum outdegree. Thus the

long standing best known upper bound for solving the altérgd@iichi game problem ié(n -m).

Motivation for dynamic algorithms. In the design and verification of open systems it is natul th
the systems under verification are developed incremeriglgdding choices or removing choices
for the system, which is represented by player 1. Howeveathersary, modeled by player 2, is
the environment, and the system design has no control ogegrthironment actions. Hence there
is a clear motivation to obtain dynamic algorithms for thiemdating Buichi game problem, when
edges leaving player-1 vertices are inserted or deleteitk etiges leaving player-2 vertices remain
unchanged.

Maximal end-component decomposition problemThe standard mathematical model in the anal-
ysis of probabilistic systems are callsthrkov decision processes (MDP#)at exhibit both non-
deterministic and probabilistic behavior [Howard 1960u@mubetis and Yannakakis 1995]. We
first present a graph problem that lies at the core of manyrisiigos in the analysis of MDPs and



probabilistic verification. Given a directed graph= (V, E) with a finite setV of vertices, a set
E C V x V of directed edges, and a partitioh;, V) of V, anend-componenly C V is a set
of vertices such that (a) the grapti, E N U x U) is strongly connected; (b) forall € U N Vp
and all(u,v) € E we havev € U; and (c) eithefU| > 2, orU = {v} and there is a self-loop at
v (i.e., (v,v) € E). Note that ifU; andU; are end-components witth, N Uz # (), thenU; U Uy

is an end-component. Aaximal end-component (mds)an end-component that is maximal un-
der set inclusion. Every vertex &f belongs taat mostone maximal end-component. Theximal
end-component (mec) decompositimmsists of all the maximal end-componentd/oand all ver-
tices ofV that do not belong tanymaximal end-component. Maximal end-components generaliz
strongly connected componehfsr directed graphs (with’> = () and closed recurrent sets for
Markov chains (withl; = ().

MDPs: applications and previous results.In probabilistic verification, systems are frequently
modeled as Markov decision processes. As described bel®Rd\are a generalization of graphs.
The generalization is needed to model two different kindoaftfaviors” at vertices [Howard 1960].
More specifically there are two types of vertices, namelywergices inV;, that are regular vertices
in graph algorithmic setting, i.e., where the algorithm chnose which outedge to follow, and the
vertices inVp, that are vertices where the outedge is chosen randomlydingdo a given distribu-
tion §. The former vertices are callgdayer-1 verticesthe latter are callecthndom verticesand the
probability distribution is callegrobabilistic transition functionThe probabilistic transition func-
tion is a distribution over all out-neighbors of a vefend can be different for different random
vertices. More formally, Markov decision process (MD®) = ((V, E), (V4,Vp), d) consists of a
directedMDP graph(V, E), a partition(V7,Vp) of thefinite setV” of vertices, and a probabilistic
transition functions: Vo — D(V'), whereD(V') denotes the set of probability distributions over
the vertex se¥’. Note that (a) a directed graph is a special case of an MDP With= () and (b)

a Markov chain is a special case of an MDP with = (). MDPs are used to model and solve
control problems in systems such as stochastic systenss fild Vrieze 1997], concurrent prob-
abilistic systems [Courcoubetis and Yannakakis 1995habdistic systems operating in open en-
vironments [Segala 1995], and under-specified probabikgstems [Bianco and de Alfaro 1995].
For instance, MDPs are the formal model to analyze systerttsnandomized embedded sched-
ulers [de Alfaro et al. 2005], or analyze correctness of canided distributed algorithms (see, e.g.,
[Pogosyants et al. 2000; Kwiatkowska et al. 2000; Stoeli2@@2]). Thus MDPs withu-regular
specifications (that can express all commonly used pragseiti verification) are at the heart of
most problems in probabilistic verification. The maximaldeomponent decomposition problem is
the graph algorithmic problem required to solve MDPs withegular specifications [Courcoubetis
and Yannakakis 1995; de Alfaro 1997]. In addition, sevelgdathms for analysis of MDPs with
quantitative objectives such &sn sup andlim inf objectives [Chatterjee and Henzinger 2007b],
and combination of mean-payoff and parity objectives [@h@e et al. 2010], or multi-objective
optimization in MDPs [Etessami et al. 2008; Brazdil et @12] rely crucially on the maximal
end-component decomposition problem. The previous bestiibound to compute the maximal
end-component decomposition of MDP€Jén -m) [Courcoubetis and Yannakakis 1995; de Alfaro
1997].

Motivation for dynamic algorithms. As in the case of open systems, in the design and analysis of
probabilistic systems it is natural that the systems undgfivation are developed incrementally by
adding choices or removing choices for player 1. Hence tiserelear motivation to obtain dynamic
algorithms for the maximal end-component decompositiabl@am for MDPs that achieve a better
running time than recomputation from scratch when edges) with « € V; are inserted or deleted.

LIn this paper we ussccor strongly connected componet a maximal strongly connected component
2More formally we require that for ath € Vi and allv € V we have(u,v) € Eiff §(u)(v) > 0.



Our contributions. In this work we present improved static and the first dynangorthms for
the alternating Buichi game problem and the maximal endpmorant decomposition problem using
graph algorithmic techniques. Our main results are asviallo
(1) Alternating Bichi gamesOur results for alternating Buchi games are as follows:

(@) Improved static algorithmwWe present a9 (n?) time algorithm for the alternating Buichi

game problem, and thus break the long standing barri€?(af - m) for the problem. It
follows that along with the)(n?/ logn) algorithm form = O(n) [Chatterjee et al. 2003],
theO(n - m) barrier is now broken for all cases.

(b) First dynamic algorithmsWe present the first incremental and decremental algoritbms
the alternating Biichi game problem for insertion and dabedf player-1 edges. Our al-
gorithm is based on the progress measure algorithm of [ihekiZ22000] and generalizes
the Even-Shiloach algorithm for decremental reachabitityndirected graphs [Even and
Shiloach 1981]. The total time for all operationsin - m), i.e., the amortized time per
operation iSD(n). Our correctness proof is an elegant fix-point based argtrard to the
best of our knowledge such fix-point based arguments forectmess have not been used
for dynamic graph algorithms.

(2) Maximal end-component decompositi@ur results for maximal end-component decomposi-
tion are as follows:

(a) Improved static algorithm&Ve present two improved static algorithms for the problenr. O
firstimproved algorithm require®(m - \/m) time. Using our technique to solve alternating
Buichi games, we also present@n?)-time algorithm for the problem in MDPs. Thus we
obtain anO(min{m - /m, n?})-time algorithm for the problem, and hence the problem can
be solved inO(m - n?/?) time, improving theO(m - n) bound from 1995 [Courcoubetis
and Yannakakis 1995; de Alfaro 1997]. This is the first aldpon that breaks th&(m - n)
barrier for the problem.

(b) First dynamic algorithmswWe show how to maintain the maximal end-component decompo-
sition after an edge insertion or deletion in time lineahia size of the graph. For the decre-
mental case the running time bound is amortized (amortied per operation), whereas
for the incremental case we give a worst case bound (worst2@s) per operation). Note
that the problem of maintaining a maximal end-componentdgosition generalizes the
problem of maintaining a scc decomposition, and our resa#tch the best known bounds
for incremental and decremental scc decomposition.

Our main results are shown in Table I. Our results for alt@éngaBuchi games and maximal end-

decomposition improve the bounds for additional problemas we list next.

(1) The problem of computing the set of almost-sure (or pbdlig 1) winning vertices in alter-
nating games with probabilistic transitions (aka simpleckastic games [Condon 1992]) and

Buichi objectives can be solved i(n?) time improving the previous know®(n - m) bound:
this follows from the linear reduction of [Chatterjee et2004] from simple stochastic games to
alternating Buchi games for almost-sure winning and ouchs games algorithm.

(2) The problem of computing the set of almost-sure (prdighii) and limit-sure (probability
arbitrarily close to 1) winning vertices in concurrent gnagames (aka games with simultaneous
interaction) with constant actions with Biichi objectives be solved i) (n?) time: this follows
from the linear reduction from concurrent games to altengaBiichi games [Jurdzihski et al.
2002] and our Biichi games algorithm. The best known bounddocurrent graph games with
constant actions with Blichi objectives wé@gn - |6]), where|d| is the number of transitions
WhiCBh isO(n?) in the worst case. Thus, in the worst case the previous bestrkbound was
O(n?).

(3) As a consequence of oX(n?) algorithm for Biichi games and the linear reduction of [Chat
terjee et al. 2004], we also obtain &fn?) algorithm for computing almost-sure winning states
for MDPs with Buichi objectives. The best known bound fostbioblem wa® (m - /m) [Chat-



Table I. Running time analysis: Our results are in bold font.

\ | Previous Algorithm | Our Algorithm | Incremental | Decremental|
Alt. Buchi games O(m-n) O(n?) O(n) O(n)
O(%) (Amortized) | (Amortized)
A is max-degree
Max. end-component O(m-n) O(min{m - v/m, n?}) O(m) O(n)
(Worst-case)| (Amortized)

terjee et al. 2003]. Thus we obtain &(min{m - /m,n?})-time (henceO(m - n?/3)-time)

algorithm for the problem. Thus, our algorithm is fastenttize previous result famn > n*/3.

(4) We showed in [Chatterjee and Henzinger 2011] that the@straure winning vertices in MDPs
with parity objectives (a canonical form to expresswaltegular objectives) can be computed
usinglog(d) calls to a maximal end-component decomposition algorithch@ne call to com-
pute almost-sure winning vertices for reachability ohijexs (which can be treated a special
case of Blichi objectives), whetkis the number of priorities (or parities) of the parity objec
tive. Thus it follows from our results that MDPs with paritpjectives can be solved in time
O(log(d) - min{m - \/m,n?}).

Our main technical contributions for alternating Buchirgss are as follows: (1) The classical al-
gorithm for alternating Buichi games repeatedly remaw@s-winningvertices from the game graph
and then recomputes the player-1 winning set for the altexgaeachability game problem. Simi-
lar to the classical algorithm our algorithm repeatedlyoges non-winning vertices from the game
graph. However, it finds these vertices more efficiently gisirhierarchical graph decomposition
technique. This technique was used first by Henzinger etHanfinger et al. 1999] for process-
ing repeated edge deletions in undirected graphs. We shawifis technique can be extended to
work for vertex deletions in (directed) game graphs. As altese achieve faster algorithms for
the alternating Buichi game problem and for computing th&imal end-component decomposi-
tion. Moreover, even in sparse graphs, our technique carséflulf m = ¢ - n andc is a large
constant, then our hiercharical decomposition can be ugdavemall number of levels, such 2s
or 3, to speed up the algorithm in practice. (2) Even and Shil¢gekn and Shiloach 1981] gave
a deletions-only algorithm for maintaining reachabilityundirected graphs. We show how to ex-
tend this algorithm to edge deletions in directed game grafipurely graph-theoretic proof of the
correctness of the new algorithm would be lengthy. Howdwgrising an elegant argument based
on fix-points we give a simple proof of the correctness andreatyais of the running time of the
new algorithm. The new algorithm is simple and, like the alfpon in [Even and Shiloach 1981],
does not need any sophisticated data structures. We useaH fidtpoint argument to construct an
incremental algorithm for alternating Buichi games.

Our main technical contributions for maximal end-compdragtompositions are as follows:
(1) A bottom sca” is a scc that has no edge leavifigOur first algorithm for mec decomposition
repeatedly finds bottom scc’s using the scc decompositgorighm of [Tarjan 1972] and we show
that by lock-step search from a specially chosen set of wtatices we can achieve@(m - /m)
bound. Our second improved static algorithm uses the saenarbhical graph decomposition tech-
nique as our algorithm for Buichi games. (2) Our result fanaiyic algorithms is obtained by com-
bining results for dynamic algorithms for scc decompositiad the analysis of the previous known
static maximal end-component decomposition algorithm.

The paper is organized as follows: In Section 2 we preseithaltesults for alternating Buchi
games and in Section 3 we present the results for maximatengbonent decomposition.

2. ALGORITHMS FOR B UCHI GAMES

In this section we will present improved static and the figgtamic algorithms for alternating Biichi
games. We start with the basic definitions and preliminaggsired.



2.1. Definitions

We considenrlternating graph gameglayed by two-players with Biichi (liveness or repeatediea
ability) and the complementary coBuchi objectives for ghayers, respectively. We define game
graphs, plays, strategies, objectives and the notion afivwigbelow.

Alternating game graphs. An (alternating) game grapli = ((V, E), (V1, V2)) consists of a di-
rected graphV, E') with a setV of n vertices and a se' of m edges, and a partitiofi/;, 12)

of V into two sets. The vertices ifr; areplayer 1 verticeswhere player 1 chooses the outgo-
ing edges, and the vertices i areplayer 2 verticeswhere player 2 (the adversary to player 1)
chooses the outgoing edges. Intuitively alternating garaplts are the same as AND-OR graphs.
For a vertexu € V, we write OQut(u) = {v € V | (u,v) € E} for the set of successor ver-
tices ofu andln(u) = {v € V | (v,u) € E} for the set of incoming edges af We denote by
outdeg(u) = |Out(u)| the number of outgoing edges framand byindeg(u) = |In(u)| the num-
ber of incoming edges. We assume that every vertex has ablea®utgoing edge. i.eQut(u) is
non-empty for all vertices € V.

Plays.A game is played by two players: player 1 and player 2, who fanrinfinite path in the game
graph by moving a token along edges. They start by placintptten on an initial vertex, and then
they take moves indefinitely in the following way. If the tokis on a vertex in/;, then player 1
moves the token along one of the edges going out of the vdftthe token is on a vertex ifir;,
then player 2 does likewise. The result is an infinite patthengame graph, callgulays Formally,
aplayis an infinite sequencgy, v1, v2, . . .) Of vertices such thdty,, vip41) € E forall k > 0. We
write €2 for the set of all plays.

Strategies.A strategy for a player is a rule that specifies how to exteagiplFormally, strategy

o for player 1 is a functiow: V* - V; — V that, given a finite sequence of vertices (representing
the history of the play so far) which ends in a player 1 vertégoses the next vertex. The strategy
must choose only available successors, i.e., fopail V* andv € V; we haveo (w - v) € Out(v).
The strategies for player 2 are defined analogously. A giydtamemoryles¥ it is independent of
the history and only depends on the current vertex. Forreltyemoryless strategy for player 1 is a
functiono: V4 — V suchthat (v) € Out(v) forall v € V4, and analogously for player 2 strategies.
We write: andll for the sets of all strategies for player 1 and player 2, rethgely. Given a starting
vertexv € V, a strategy € X for player 1, and a strategy € II for player 2, there is a unique
play, denoted(v, o, ) = (v, v1, v2,...), which is defined as followsi, = v and for allk > 0, if

vg € V1, theno({(vo, v1, ..., 05)) = vgt1, and ifvg, € Vi, thenm({(vo, v1, ..., %)) = Vk41.

Objectives. An objective® C () is a subset of plays, i.e., objectives describe the set ofivmin
plays. We consider game graphs with a Biichi objective faygl 1 and the complementary coBuchi
objective for player 2. For a play = (vg,v1,v9,...) € Q, we definelnf(w) = {v € V |

v, = v for infinitely manyk > 0} to be the set of vertices that occur infinitely ofteninWe also
define reachability and safety objectives as they will béulse the analysis of the algorithms.

(1) Reachability and safety objectiveSiven a sefl” C V' of vertices, the reachability objective
Reach(T") requires that some vertex ifi be visited, and dually, the safety objectiSefe(F")
requires that only vertices iff be visited. Formally, the sets of winning plays &each(T) =
{{vo,v1,v2,...) € Q| Ik > 0. v € T} andSafe(F) = {(vy,v1,v2,...) € Q|Vk > 0. vy, €
F'}. The reachability and safety objectives are dual in thees#reReach(7') = Q\Safe(V\T).

(2) Buchi and coBichi objectivesGiven a setB C V' of vertices, the Biichi objectivBuchi(B)
requires that some vertex iB be visited infinitely often, and dually, the coBlichi objeet
coBuchi(C) requires that only vertices ifi be visited infinitely often. Thus, the sets of winning
plays areBuchi(B) = {w € Q | Inf(w) N B # 0} andcoBuchi(C) = {w € Q | Inf(w) C C}.
The Buchi and coBuichi objectives are dual in the senseBhaiti(B) = Q \ coBuchi(V \ B).
Observe that Biichi and coBiichi objectivestaie(or prefix-independentbjectives, i.e., a play
satisfies the objective if and only if the play obtained byiaddr deleting a finite prefix also
satisfies the objective.



Winning strategies and setSiven an objectived C 2 for player 1, a strategy € X is awinning
strategyfor player 1 from a vertex if for all player 2 strategies € II the playw(v, o, 7) is winning,
i.e.,w(v,o,m) € ®. The winning strategies for player 2 are defined analogdmsiswitching the
role of player 1 and player 2 in the above definition. A vertex V' is winning for player 1 with
respect to the objectivé if player 1 has a winning strategy from Formally, the set oWinning
vertices for player lwith respect to the objectivé is W1 (®) = {v € V | 3o € X. V1 €

IT. w(v,0,7) € ®} the set of all winning vertices. Analogously, the set of alhming vertices for
player 2 with respect to an objectide C Q isWy(V) ={v e V |In € Il. Vo € E. w(v,0,m) €

U}

THEOREM2.1 (CLASSICAL MEMORYLESS DETERMINACY [EMERSON AND JUTLA 1991)).
For all game graphsz = ((V, E), (V1, V»)), all Biichi objectivesb for player 1, and the comple-
mentary coBichi objectivel = Q \ @ for player 2, we havéV; (®) = V' \ W (). There exists a
memoryless winning strategyfor player 1 for all vertices il (®) for the objectived; and there
exists a memoryless winning strategjor player 2 for all vertices iV, () for the objectivel.

Thus the theorem shows that every verteXotither belongs to the winning set of Biichi objec-
tives of player 1 or to the winning set of coBuchi objectifesplayer 2. Since we only consider
this setting we simply say in the rest of the paper that everiex either isvinning for player lor
winning for player 2 Observe that for Biichi objective and the coBluchi objectivé = Q \ ® by
definition we haved/ \ Wy (¥) = {v € V |Vr € II. o € . w(v,0,7) € }. Theorem 2.1 states
thatV \ Wo(¥) = {v e V| 3o € . Vr € I. w(v,0,7) € ®}, i.e., the order of the universal and
the existential quantifiers can be exchanged. In other wdrits every strategyr of player 2 there
exists a strategy for player 1 that wins from vertex, then there exists a (general) strategfor
player 1 that wins againstverystrategyr of player 2. For all objectives considered in the paper if
there exists a winning strategyith memonyor a player at a vertey, then there exists a memoryless
winning strategy for the player at Thus for simplicity we will only consider the simpler clas
memoryless strategies.

The algorithmic question. The algorithmic question in alternating graph games witict3 objec-
tive @ is to compute the sé¥/; (). In the sequel of this section we consider algorithms foctBl
games, and when we mention winning vertices or strategiea&an winning for Biichi objectives,
unless explicitly mentioned otherwise.

2.2. Classical algorithm

In this section we present the classical iterative algoritbr Biichi games to compute the winning
sets. We then present our new algorithm. We start with theonatf closed setsattractors and
alternating reachabilitywhich are key notions for the analysis of all the algorithnes pvesent.
We present the graph theoretic definitions, and then preselttknown facts that establish the
connection of the graph definitions and strategies in altérg game graphs.

Closed setsA setU C V of vertices is aclosed sefor player 1 if the following two conditions
hold: (a) For all vertices € (UN V1), we haveOut(u) C U, i.e., all successors of player 1 vertices

in U are again in/; and (b) for allu € (U N V3), we haveOut(u) N U # 0, i.e., every player 2
vertex inU has a successor iti. The closed sets for player 2 are defined analogously as above
by exchanging the roles of player 1 and player 2 (exchan@ingnd V). Every closed set/ for
player/ € {1,2}, induces a sub-game graph, denated U. The following proposition establishes
connection of closed sets and winning for safety, reaciwldhd coBuchi objectives. The proof of
the proposition is stratight-forward and we present it fikesof completeness.

PROPOSITION 2.2. Consider a game grapty, and a closed sdV/ for player 1. Then the fol-
lowing assertions hold:

(1) Player 2 has a winning strategy for the objectiefe(U) for all vertices inU, i.e., player 2 can
ensure that if the play starts iti, then the play never leaves the &&t



(2) Forall T C V' \ U, we haveV; (Reach(T")) N U = 0, i.e., for any sef” of vertices outsidé&,
player 1 does not have a strategy from vertice#ito ensure to react’.

(3) IfUN B = 0 (i.e., there is no Bechi vertex inl7), then every vertex i is winning for player 2
for the coRichi objective.

PROOFE We first present the proof of the first item, then show the fiesh implies the second
item (we will also remark that the second item also impliesfitst item, i.e., they are equivalent).
We will then argue that the third item is an easy consequence.

(1) We present a witness memoryless stratedyr player 2 to ensure the objecti$afe(U) for
all vertices inU. For a vertexu € U NV, the strategyr(u) = v € U chooses a successor
v in U (such a successor exists since by definition of closed setlfer € U N V> we have
Out(u) NU # 0). Consider an arbitrary strategyfor player 1 and a vertex € U, and the play
w(v,o,m) = (vg, v1, V2, .. .) With vg = v. We haveyy € U. Fori > 0, (i) if v; € V; is a player-1
vertex andv; € U, then sincdJ is closed (i.e., all successors@falso lie inU) we have that
v;4+1 also belong td/; and (i) if v; € V5 is a player-2 vertex and, € U, then by definition ofr,
we havev; 1 € U. It follows that the play only visits vertices iri and thus satisfy the objective
Safe(U). Thus the strategy is a winning strategy for player 2 for the objectivefe(U) for all
vertices inU.

(2) Since player 2 can ensure that from all verticed/ithe objectiveSafe(U) is satisfied (i.e.,
vertices outsidé@/ is never visited) (by the first item), it follows that for &1 C V' \ U we have
Wi (Reach(T)) NU = (). This shows that the first item implies the second item. We @dmark
that if we consider the second item with= V" \ U, it implies that for all vertices i/ player 2
must ensur8afe(U). In other words, the first and second item are equivalent.

(3) Thethird itemis an easy consequence of the first itemeaseafety objective implies the coBuchi
objective (i.e.Safe(U) C coBuchi(U)). In other words, ifB is never visited, then clearly the
Buchi objective to visitB infinitely often is violated.

The desired result follows. [ |

Attractors. Given a game graplty, a setU C V of target vertices, and a playére {1,2}, the
setAttr,(U, G) (calledattractor) is the set of vertices from which playéhas a strategy to reach
a vertex inU against all strategies of the other player; thatdg;r, (U, G) = Wy(Reach(U)). The
setAttr (U, G) can be defined inductively as follows: |B) = U; and for alli > 0 let

Rit1 =R U{ve Vi |Out(v)NR; #0}U{ve Va|Out(v) C R;}.

ThenAttr, (U, G) = ;> Ri. The fact thatdttr, (U, G) = Wi (Reach(U)) is standard, for exam-

ple see [Zielonka 1998; Thomas 1997] for details. The ingadtefinition of Attro (U, G) is analo-
gous withV; replaced by; and vice-versa. For all verticesc Attry (U, G), definerank(v,U) = i

if v e R; \ Ri—1, thatis,rank(v,U) denotes the least> 0 such tha is included inR;. Define a
memoryless attractor strategy< X for player 1 as follows: for each vertexc (Atir, (U, G)NV;)
with rank(v,U) = ¢, choose a successofv) € (R;,—1 N Out(v)) (such a successor exists by the
inductive definition). It follows that for all vertex € Attr, (U, G) and all strategies € II for
player 2, the play(v, o, w) reached/ in at most| At¢r, (U, G)| steps. The definition of memory-
less attractor strategy for player 2 fdtir, (U, G) is similar. Observe that fof € {1, 2}, we have

U C Attry(U, G), i.e., the seU always belongs to the attractor.

Alternating reachability. For?¢ € {1, 2}, for a vertexu € Attr,(U, G) we say that, canalt,-reach
the setU. In other words, ajtreach denotes that playéras a strategy to reach the target set,
irrespective of the strategy of the other player.

Fact. For all game graph&, all players? € {1,2}, and all setd/ C V of vertices, the following
holds:



Algorithm 1 Classical algorithm for Blichi Games
Input : A game graptG = ((V, E), (V4,V2)) andB C V.
Output: W C V.
1.GO =G VY :=V;2.Wy:=0;3.57:=0
4.repeat
4.1W; 1, := AvoidSetClassical(G/, BN V)
A2VITL = VI\ W, G =G 1 VITY j =5 4 1;

until W; =0
5. W = Uizl Wh;
6.return W.

ProcedureAvoidSetClassical
Input: Game grapl&’ andB’ C V7,
Output: setW,; C V7.
1. R7 = Attry(B7,G9); 2. Trl == VI \ RY; 3. W,y := Attro(Tr?, GY)

(1) The set \ Attr,(U, G) is a closed set for playét i.e., no player vertex inV \ Attr (U, G)
has an edge td ¢tr,(U, G) and every vertex of the other playerin\ Attr,(U, G) has an edge
in V' \ Attr (U, G).

(2) The setdttry(U, G) can be computed in im@(| >_,c 44, (1, In(v)]) [Beeri 1980; Immer-
man 1981].

COROLLARY 2.3. Every vertex in the sét \ Attr1(B,G) is winning for player 2 and is not
winning for player 1.

We now start with an informal description of the classicgloaithm.

Informal description of classical algorithm. The classical algorithm(Algorithm 1) repeatedly
removes vertices from the graph. We describe an itergtioithe algorithm: the set of vertices at
iterationj is denoted byl’7, the game graph bg“ and the set of Biichi verticeB N V7 by B7.
At iteration j, the algorithm first finds the set of vertic& from which player 1 can altreach the
setB7, i.e., computesittr, (B’, G7). The rest of the vertice§r’ = V7 \ R’ is a closed subset
for player 1, andTr’ N BY = (). Thus the setTr’ is winning for player 2 (by Corollary 2.3).
Then the set of verticeld’; 1, from which player 2 can altreach the sef’”, i.e., Attro( Tr’, G7)

is computed. The sdt/;; is winning for player 2, andot for player 1 inG7 and also inG.
Thus, it is removed from the vertex set to obtain game g@pht. The algorithm then iterates
on the reduced game graph, i.e., proceeds to itergtienl on G7*1. In every iteration a linear-
time attractor computation is performed with the currentBi"vertices as target to find the set of
vertices which can altreach the Biichi set. Each iteration tak&sn) time and the algorithm runs
for at mostO(n) iterations, giving a total time aD(n - m). The algorithm is formally described as
Algorithm 1. The correctness proof of the algorithm shovet thhen the algorithm terminates, all
the remaining vertices are winning for player 1 [McNaught®93; Thomas 1997].

THEOREM2.4 (CORRECTNESS AND RUNNING TIMEB. Given a game graphG =
((V,E), (V1,V,)) and B C V the following assertions hold:

(1) W = Wa(coBuchi(V '\ B)) andV \ W = W;(Buchi(B)), whereW is the output of Algo-
rithm 1; and
(2) the running time of Algorithm 1 i®©(n - m).



We also remark that the analysis of the classical algorithaptimal, i.e., there exists a family of
game graphs where the classical algorithm reqi(ire m) time (for example see [Chatterjee et al.
2006]).

2.3. New algorithm

In this section we present our new algorithm for computirglinning set for game graphs with
Buichi objectives in time) (n?).

Notations. Given an alternating game graph= ((V, E), (V4, V2)) and a sef3 of Buichi vertices,
we label the Biichi vertices as priority O vertices, and #td/5\ B as priority 1 vertices. For every
vertexv the inedges have fixed order such that all edges from priority 1 player-2 verticeme
before all other edges. In other words, we assign priorityddgesu, v) such that € (V'\ B)NV;
(player-2 vertices that are not Buchi vertices), and asgigprity O to all other edges, and priority 1

edges come before prlorlty 0 edges in the fixed order of thesad@tG (V E) be a sub-graph
of Gwith V C V,andE C EN (V X V), such that each vertex has at least one outgoing edge. We
definelog n sub-graphss; of G such thatz; = (V, E;). The setE; contains all edge&:, v) where

(1) |Out(u) N E| < 2 (i.e., the outdegree of in E is at most?), or
(2) the edgdu, v) belongs to the firs2? inedges of vertex in E.

Note thatE;_; C E; since the order of the inedges is fixed. We color every playesrtexv in G;
blueif outdeg(v) > 2 in E. We color every player-2 vertexin G; red if outdeg(v) > 2% in E.
All other vertices have color white. For every vertethat is white inG;, all its outedge®ut(v)
are contained irFs;. There are up t@’ - n such edges td;. Additionally the first up t@’ inedges
of every vertex belong t&;, and again there are up 2- n such edges t&;. Thus|E;| < 211 n.
Note thatG = Gz, and thus all vertices i, ,, are white.

The new algorithm NEwWBUCHIALGO. The new algorithm consists of two nested loops, an outer
loop with loop countej and an inner loop with loop countérThe algorithm will iteratively delete
vertices from the graph, and we denote/Dythe set of vertices deleted in iteratignand byl the
set of vertices deleted in all iterations upto the curreraition (initially U is empty). Forj > 1, we
will denote byG’ the game graph after removal of the &eof vertices at the beginning of iteration
j. We denote the vertex set in iteratigras V7, the edge set a&”, and the Buchi set aB’ (i.e.,

B’ := VJ N B). We denote byz’ = (V7, E/) the sub-graph ofi’ = (V/, E7) as defined above
(i.e., we treatz’ asG and obtairGj andG; ;). For clarification we have the following properties for
G?: E! contains all edgegu, v) where (i)|Out(u) N E7| < 2¢ or (ii) the edge(u, v) belongs to
the first2’ inedges of vertex in E7; (iii) EJ e EJ (iv) every player-1 vertex in GJ is blueif
outdeg(v) > 2¢in E7; (v) every player-2 vertex in G7 is redif outdeg(v) > 2¢in E7; and (vi) all
other vertices have color white. Note i@} is G; (the initial graphs). Also note that since vertices
are removed over iterations, the grap]?rfé can include edges that were not includeddf. The
intuitive description of the new algorithm is as followsa8ing from: = 0 the algorithm searches
in each iteratiory in each grathj for a special player-1 closed s€f with no Buchi vertex and
stops at the smallestat which such a closed set exists. Siisgen B/ = (), Proposition 2.2 implies
that all the vertices irb; are winning for player 2. Thus, by the same arguments as éocléssical
algorithm the pIayer 2 attractofrttrg(SJ G7) are winning for player 2 mj}J and, as our correctness
proofshows, also winning i&'. Thus they are removed from the vertex setand the algoritmates
on the reduced game graph. Computfigtakes timeO(2* - n) and, due to the fact that no such
set was found iG7_, we can show tha$; contains at leas?’~' vertices. Thus, using amortized
analysis we chargé(n) to each of the~! vertices inS; that are removed, giving a total running
time of O(n?). The details of MwWBUCHIALGO follow.



(1) Letj =0;Y = Att’l"l(B, G), Xo:=V \ YQ; Dy = Att’l"g(X7 G)
(2) Remove the vertices dP; to obtain graplG’; j := j + 1; andU := U U Dy;
3) i:=1;
E4g repeat
(a) Construct grapﬁ}{. Let Zz.j be the vertices oF/ that are (i) either reevith no outedgem
G or (ji) blue inG?.
(b) Y/ := Attr (B U Z), GY);
(©) Sj:=VI\Y/;
(d)i:=di+1,;
(5) until S; is non-empty ot = logn
(6) if S; # 0, thenD; := Attro(S;, G?) and go to Step 2, else the whole algorithm terminates and
outputsV \ U.

Note that in Step 2 the vertex s&}; is removed to obtain the gragh’, but we do not immedi-
ately construct all sub-grapltg]. Instead we construei’ in the inner loop, i.e., the grapf is
constructed only it/7 \ Y/, is empty in iteration — 1 of the inner loop.

Correctness analysisLet U* be the set of vertices removed from the graph over all itenatand
Y* = V' \ U* be the output of the algorithm. We first show that C W, (®), where® is the Buichi
objective, i.e..Y™* is winning for player 1. Then we show th&t* N W (®) = § (i.e., U* is not
winning for player 1). Together with Theorem 2.1 this shohaty™ = 1, (®) estabilishing the
correctness of the algorithm. Finally we analyze the rugtime of the algorithm. We first present
Lemma 2.5 and Lemma 2.7 and the proofs of these two lemmataimikar (but not identical
as our algorithm and the classical algorithm removes diffesets in respective iterations) to the
correctness proof for the classical algorithm.

LEMMA 2.5. Let Y* be the output oNEWBUCHIALGO, and letG* and B* be the game
graph and the Bchi set on termination, respectively (i.€" is the graph induced by * and B* is
B NY?*). The following assertions hold:

(1) Y* = Attr1(B*,G*), i.e., player 1 can altreach the seB* in G* fromY™*.
(2) Y*is aplayer-2 closed set in the original game gra@h
(3) Y* C Wy(®), whered is the Bichi objective.

PROOFE We prove the three parts below.

(1) Consider the last iteratigjt of the outer loop of the algorithm. Since it is the last itemat the
setS;- must be empty. It follows that must have beetogn in the last iteration of the repeat

loop, i.e., the last iteration of the repeat loop conside}’é:(gn = G*. Leti = logn. Note that
all vertices are white i67*, i.e., Z/~ was empty. Hence we ha¥e’ = Attr(B*UZ! ,G*) =
Attr1(B*,G*). Note thatY™* = YZ?*. Hence the fact that,;- was empty at the end of the

iteration implies tha/7™ \ Yf was empty, i.e., all vertices @& belong toAttry (B*, G*).
HenceY™ = Attr,(B*, G*).

(2) Whenever a set of vertices is deleted in any iteratida g@h player-2 attractor. Hence if a vertex
u € Y* NV, would have an edge to a vertexc U*, thenu would have been included iti*
(whereU* = V' \ Y*). Similarly for a player 1 vertex € Y* N V; it must have an edge iri*,
as we assume that it has at least one outedge and if all itdgeggointed t&/* it would have
been included i/ *. It follows thatY ™ is a player-2 closed set i.

(3) The result is obtained from the previous two items. Caeisa memoryless attractor strategy
in G* for player-1 that ensures that for all verticesiri the setB* is reached withinY™*| steps
against all strategies of player-2. Moreover the stratedy chooses successor ‘. SinceY ™
is a player-2 closed set, it follows that against all strete@f player-2 the sét™ is never left,
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Fig. 1. Pictorial depiction ol/;_; and.S;.

thus it is ensured thaB* is visited infinitely often. Hence the strategyensures that for all
verticesv € Y* and all strategies we havew(v, o, ) € . It follows thatY™ C W;(®).

The desired result follows. [ |

To complete the correctness proof we need to show tliat = V' \ Y*, thenU* N Wy (®) = 0,
where® is the Buchi objective. We will show the result by induction the number of iterations.
Let us denote by/; the set of vertices removed till iteratign The base case is trivial as initially
U = (. By inductive hypothesis, we assume for 1 we havel/;_; N W;(®) = 0, and then show
thatU; N W, (@) = (. Let G be the alternating game graph obtained after removal ofethé;s
of vertices. We will show the following proposition.

PROPOSITION 2.6. In G/, let S; be the non-empty set identified in iteratigh then
Attry(B7,G7)n S; = 0.

In the following lemma we first show how with Proposition 2.6 establish the correctness of our
algorithm and finally prove Proposition 2.6 to complete tbeectness proof.

We first depict the situation with the aid of a figure that waouddp in understanding the following
lemma. The situation is shown in Figure 1 wherelenote player-1 vertices areldenote player-2
vertices. In the figuré/;_; denotes the vertices already removed, and since playéretatrs are
removed it follows that player-2 edgesi_, are not possible from the remaining vertices. Since
S; is a closed set for player 1, for all player-1 verticesireither the edges point #d;_; orto .S},
but not to vertices outsid&;_; U S;, and all player-2 vertices if; have at least one edge 3.
Also note that the vertex sé?’ of the remaining Biichi vertices (after removalléf_;) does not
intersect withS;. With this pictorial view we now prove the following lemma.

LEMMA 2.7. The inductive hypothesis th&t_; N W7 (®) = 0 and Proposition 2.6 implies
thatUj N Wl((I)) = 0.

PROOF We first show a claim, and then use it to establish the lemma.
Claim. The inductive hypothesis thaf;_; N W1 (®) = () and Proposition 2.6 implies that; N
Wy (@) =0.

We first prove the claim. By Proposition 2.6 we havgr, (B7,G7) N S; = 0, and it follows that
if player 1 follows a strategy from any vertex i} such that the sét’ = V \ U;_; of vertices is

never left, then no Biichi vertex is ever reached, as it ipossible to react’ from a vertex ofS
in the subgrapld’. If the setV/7 is left after a finite number of steps, then the Bgt ; is reached,



and by inductive hypothesis;,_; N W1 (®) = 0, i.e., player 2 can ensure froffy_; that the set of
Buchi vertices is visited finitely often. Since the Biichjective is independent of finite prefixes, it
follows that if V7 is left andU;_, is reached, then player 2 ensures that the Biichi objectiveti
satisfied. It follows that; N W, (®) = (). Thus we have the desired claim.

We now prove the lemma using the above claim. Observeithat/,_ is a player 2 attractor to
S;, and hence player 2 can ensure from\ U;_, thatS) is reached in finite number of steps. Since
Biichi objectives are independent of finite prefixes, by @ive hypothesid/;_; N W1 (@) = 0,
and by the above claim we hage N W1 (®) = 0, it follows thatU; N W1 (@) = 0. |

Hence to complete the proof we need to establish Propogt®nSuppose a non-empty subset
S; is identified at iteratiory and letS; be identified at iteration of the inner loop. Observe that

we haveS; = V7 \ Attry (B U Z?,G7) and thusS; N Attry(Bi U Z7,G7) = {. This implies
thatS; N Attr(B7,G7) = (. However to establish Proposition 2.6 we need to show $hat
Attri(B7,G7) = () (which does not follow fronss; N Attr,(B7,G?) = () asG’ may have more
edges thaﬁ;{). While the proofs of Lemma 2.5 and Lemma 2.7 are similar éodbrrectness proof
of the classical algorithm, establishing Proposition Zhél ¢he running time analysis is the heart

of our proof. The proofs require the notion of a separating separating cuts and the following
lemmata of the section are the crux of the proof.

Separating cut. We say a sefb of vertices induces aeparating cutn a graphG; or G if (a) the
only edges fromb' to V' \ S come from player-2 vertices ifi, (b) every player-2 vertex i§ has an
edge to another vertex ifi, (c) every player-1 vertex if§ is white, and (d)B N S = (. ThusS'is a
player-1 closed set where every player-1 vertex is whitevamdh does not contain a vertex is.

We will now present some lemmata that will establish Prajpmsi2.6 and will also be used in
the running time analysis.

LEMMA 2.8. LetG = ((V,E), (V1,V2)) be a game graph where every vertex has at least
outdegree 1, and”’ = ((V, E’), (V1, V2)) be a sub-graph of7 with E’ C E. LetVyy be the set of
vertices that are colored white such that for all vertiees Vi we haveOut(v)NE = Out(v)NE".
LetZ C V' \ Viy be a set of blue player-1 and red player-2 verticeg:66uch that all red vertices
in Z have outdegree 0 i6”. If S induces a separating cut i’, thenS N Attr(BU Z,G) = 0.

PrRoOOF We first show that every vertex fihas an edge to another vertexdiin G’. For player-

2 vertices this follows from condition (b) of a separating. ¢tor player-1 vertices this follows since
they have outdegree 1 @, are white inG’, and cannot have an edge to a verteXiy S.

Note thatSN (B U Z) = () sinceS contains no blue vertex, every red vertexsitnas outdegree at
least 1 and3 N S = ) by condition (d) of a separating cut. By condition (a) of aa@ging cut for
all player-1 vertices irf all outgoing edges afi’ are inS. It follows thatS is a player-1 closed set
in G'. By condition (c) of a separating cut all player-1 verticessimust be white (i.e.S C Vi),
and for white vertices iy the set of outedges ii” andG coincide. It follows thatS is a player-1
closed set irG. SinceS is a player-1 closed set ifi andS N (B U Z) = (), the result follows from
Proposition 2.2 (second item). [ ]

LEMMA 2.9. LetS; be the non-emptyset computedMywWBUCHIALGO in iteration j. Then
(1) S; is a separating cut irG7; and (2) S; N Attri(B?,G7) = 0.

PROOF We establish both the items of the result.
(1) We establish all the conditions of a separating cutsforwheresS; is obtained in iteration* of

the inner loop for iteratio. .
(a) Condition (a).By construction no player-1 vertex i, has an edge t&7 \ .S;, otherwise

it would b(_elong to the player-1 attractor &/ U Zf Since all pIayer—1 vertices ifi; are
white inGY., the outedges of the player-1 verticesSinare the same it). and inE?. Thus
condition (a) of a separating cut holdsd# .



(b) Condition (b).Every player-2 vertex in S; must have an edge LEf to a vertex inS;,
otherwise all its edges iEf; would go to vertices i’/ \ S; and thus it would belong to
Attry(B7 U Z1.,G1.). SinceEl. C E7, it follows that every player-2 vertexin S; must
have an edge ift’ to a vertex inS;. Hence condition (b) of a separating cut hold€#n

(c) Condition (c).All vertices are white irGi . Thus condition (c) holds trivially.
(d) Condition (d).The condition (d),S; N B’ = () holds, since otherwise a vertex 8f would

belong toB’ and, thus, todttr (B7 U Z7., G2.).
ThusS; induces a separating cutd¥. The desired result follows.
(2) Letwv be a vertex inS;. By constructiony cannot alt-reachB’ U Z7. in G7., wherei* was the

last value ofi in the repeat loop of iteration We will show thatv cannot alt-reachB? in G7.
As we showed in the first item of the lemmisy, induces a separating cut@y; and thus we can

apply Lemma 2.8 witl; = G7, G’ = Gﬂ Z =0, andS = S, to obtain the result of the second
item.
The desired result follows. [ |

Lemma 2.9 proves Proposition 2.6 and this completes thecimess proof, and gives the fol-
lowing lemma.

LEMMA 2.10. LetY™ be the output oNEWBUCHIALGO. Then we hav&™ = W;(®), where
& is the Bichi objective.

Running time analysis.We now analyze the running time of the algorithm.

LEMMA 2.11. Let G{ be the game graph in iterationof the outer loop and iteration of the
inner loop. IfS induces a separating cut i@/, thenS C S;.

3

PROOF. Let Z/ be the set of blue and degree-0 red vertice&'pfas defined in iterationi of
the outer loop and of the inner loop of the algorithm. We invoke Lemma 2.8 with= G’ = G{
B = B’/ andZ = Z/, and obtain that none of the verticesdrean ali-reachB’ U Z/ in GZ. Hence
we haveS C V7 \ Attr (B U Z!,G?). ThusS C S;. m

LEMMA 2.12. Consider an iterationj of the outer loop oNEWBUCHIALGO such that the
algorithm stops the inner loop at valdend identifies a non-empty sgf. ThensS; is a separating
cutinGy.

ProoF. Consider the non-empty séf obtained in the grapﬁ}{. First, note that all player-1
vertices inS; are white, sinceZ/ contains all blue player-1 verticesBf andS; = V7\ Attr, (B7U
ZJ,G7). Also note that all red player-2 vertices without an outealge belong taZ?. Sinces; is a
complement of a player-1 attractord}‘{ it follows thatS; is a player-1 closed set. Moreover as the

target setB’ U Z/ contain all Biichi vertices, there is no Biichi vertexdn ThussS, is a player-1
closed set where every player-1 vertex is white, &adloes not contain a Biichi vertex. Thus,

induces a separating cutds . [ ]

Note thatG’ has possibly more edges tha&H and separating cuts are not preserved if we con-
sider more edges (condition (a) maybe violated) or lesse@igmdition (b) maybe violated). Thus
Lemma 2.12 is neither a consequence of nor implies Lemmat2r (). By Lemma 2.12 we have
that.S; is a separating cut i6}. Lemma 2.11 shows that every separating.gun G? is a subset
of S;. It follows that.S; is the largest (under set inclusion) separating cut. Refeatlfor the run-
ning time analysis we need to show that computigtakes timeO(2° - n) and, due to the fact

that no such set was found @ _, we can show tha$; it contains at least’~* vertices. Using



Lemma 2.11 we show thatBNVBUCHIALGO identifies a separating cut @Z for the smallest,

and also identifies the largest separating cutin Thus Lemma 2.11 is key to the running time
analysis, which we present in Lemma 2.13. Before the datéilemma 2.13 we describe the data
structure to ensure that in every iteratiprihe construction of the gragh’/ can be achieved in time
O(n - 2.

Graph constructionWe maintain with each vertex (i) the list of its outedges) {fiie list of its
inedges sorted according to the fixed order of inedges édges from priority 1 player-2 vertices
or priority 1 edges come before all other edges); (iii) litpointers to the element of the list of
outedges and inedges of other vertices it belongs to. Whentexvis removed in an iteration, then
using the list of pointers we update the list of inedges ariddges of the other vertices. Hence over
all iterations the data structures are maintained wWit?) work. Given the list of outedges and

inedges in sorted order, the graﬁ@i is constructed in timé(n - 2¢) as for every vertex we traverse
the list of inedges and outedges upto the fifstlements.

LEMMA 2.13. The total time spent bNEWBUCHIALGO is O(n?).

PROOF We present th&(n?) running time analysis and we consider two cases. Recall that
vertices inV" \ B are refered as priority-1 vertices.

All other than the last iteration of the outer loopssume in iteratiorj the algorithm stops the
repeat until loop at value¢and this is not the last iteration of the algorithm. Thgnis not empty.

By Lemma 2.12 we have that, induces a separating cutd . Consider the sef; in G7_,. There
are 2 cases to consider:

(1) Case 1:S; contains a player-1 vertexthat is blue inG{_l. Thusz has outdegree at leat !

in G7 and none of these edges go to vertice¥'in\ S; in G7. Thus,S; contains at least’
vertices. _ _ _

(2) Case 2:All player-1 vertices inS; are white inG;_, . Thus, their outedges i@/ andG?_, are
identical. _
Consider a player-2 vertexin S;. Thus there exists an edge, v) € E} with v € S;. There
are two possibilities.

— Case 2afFor all player-2 vertices € S; there exists a vertex € S; with (u,v) € E/_.

But thenS; would be a separating cut '@i{fl. By Lemma 2.11 it follows that a non-empty
subsetS with S; C S would be non-empty in iteratioin- 1 and thus the repeat loop would
have stopped after iteratian- 1. This is not the case and thus the condition of Case 2a does
not hold. _

— Case 2b:There exists a player-2 vertexc S; that has an edg@:,v) € E; to a vertex

v € S; but this edge is not contained Etffl. This can only happen if has at leasg’~!

other inedges i[Ef;l. Note thatu is a priority-1 player-2 vertex, and hence the edge)
has priority 1 and recall that by the fixed inorder of edgemrity-1 edges come before all

priority O edges. Hence it follows that since the edgev) is notinG7_,, all inedges ob
that are irG{_1 must have priority 1 by the fixed order of inedges, i.e., @litredges of in
G{fl are from priority-1 player-2 vertices. We now argue that nonity-1 player-2 vertex
inY? = V7 \ S, has an edge to a verte in GZ: (i) all priority 1 player-2 vertices iz’
are red (and hence have no outgoing edg@“ij and (ii) sinceY; = Attr,(B/ U Z7,GY)
we have that for all player-2 vertices (i \ (B’ U Z7)) all its outgoing edges it must
be contained ilYf. Thus no priority-1 player-2 vertex ii’ \ S; has an edge to a vertex of
S;in GJ. SinceE!_, C E!, no priority-1 player-2 vertex v/ \ S; has an edge to a vertex
in S; in GJ_,. It follows that none of the inedges ofin G7_, are fromV7 \ S; and, since



v has at leas2’~! inedges from priority-1 player-2 vertices, the $etmust contain at least
2¢=1 player-2 vertices.

Thus in either cas§; contains at least’~! vertices and all these vertices are deleted. The time
spent for all the executions of the repeat loop in this iteradf the outer loop is the time spent in
all graphsG1, Ga, ..., G-, which sums to0 (2! - n) (for the graph construction and the attractor
computation). We charg@(n) work to each deleted vertex. This accounts for all but theitesa-
tion of the outer loop. As the algorithm deletes at mosertices the total time spent over the whole
algorithm other than the last iterationGgn?).

The last iteration of the outer loopn the last iterationj* of the outer loop, when no vertex is
deleted, the algorithm works on adlg n graphs, spending tim@(n - 2¢) in grath{*. Since each
grath{* has at most - 2¢*! edges and there aleg n graphs, the total number of edges worked
in the last iteration is

logn logn

Zn-2i+1:4-n-Z2i_1:4-n-(21°g"—1)=4-n-(n—1):O(n2).
i=1 i=1

Hence the total time required in the last iteratiorig2?). An identical argument also shows that
the time to build all the graph&? is at mostO(n?). Hence the desired result follows. ]

THEOREM 2.14. Given an alternating game grapf with n vertices, and an Bchi objective
®, algorithmNEWBUCHIALGO correctly computes the winning séf; (®) in time O(n?).

2.4. Decremental and incremental algorithms

In this section we present the decremental and incremelgialitams for computing the winning
set in game graphs with Biichi objectives. We will show thatdmall progress measuedgorithm

of [Jurdzifhski 2000] works in total timé&(n - m) for a sequence of player-1 edge deletions or
insertions, and hence the amortized time per operatioris.

Motivation. In verification and synthesis of open systems, the systemsrwerification are devel-
oped incrementally by adding choices (or decrementallydogaving choices) for the system till
the objective is satisfied. The system choices are repeddyt player 1, whereas the adversary,
modeled by player 2, is the adversarial environment, andybhem design has no control over the
environment choices. Hence dynamic algorithms with pldyedge deletions or insertions are the
relevant decremental and incremental algorithms reqdimeBuchi games, and we will only study
these kind of update operations. Moreover, since Buclgaljes generalize reachability objectives,
and alternating game graphs generalize directed graphalgarithm is a significant generalization
of the Even-Shiloach algorithm [Even and Shiloach 1981]decremental reachability in graphs.
However our proof is very different, based on a fix-point angmt, and is much simpler. In other
words, the second motivation is to present decrementalraardmental algorithms for alternating
games (that subsume graphs) with simple fix-point base@cioress proof.

Summary of previous results.Our decremental and incremental algorithms will be basethen
small progress measure algorithm of [Jurdzihski 2000jctviiakesO(n - m) time for alternating
Buichi and coBiichi gamesin our decremental algorithm we will use the small progresssare
algorithm for alternating games witBiichi objectives; and in our incremental algorithm we will
use the small progress measure algorithm for alternatingegavithcoBlichi objectives. The small
progress measure algorithm for Biichi games maintains @gen (calledprogress measujeor
every vertex and updates it using a monotdificoperation based on the successor vertices, un-
til a fix-point is reached. We will show how to adapt the pragreneasure algorithm to present
decremental and incremental algorithms for alternatingtBgames.

3We will specialize the small progress measure algorithmJafdzinski 2000] (that also works for parity objectivesy f
Buchi and coBlichi objectives.



2.4.1. Decremental algorithm for Buichi games. In this section we present the decremental algorithm,
and we consider only deletion of player-1 edges, as disdusgbe motivation.

Previous results on progress measure [Jurdaiski 2000].Our decremental algorithm is based on
the notion of progress measure. We start with the notion abgness measure and valid progress
measure.

Progress measuréiven a game graph with vertices, a progress measure is a funcpanV —
[n] U T, where[n] = {0,1,2,...,n}, that assigns to every vertex either a number ffdio »,
or thetop elementr. We will follow the conventions that: (a) for ajl € [n] we havej < T;
B)n+1=T;()T+1=T;(d)T > T. Intuitively, T will be assigned to a vertex if it does not
belong to the winning set. Given a game graph with asef Blichi vertices, a progress measyre
is avalid progress measure if the following conditions hold foraé V:

> min(v,w)EE p(w) +1 veW \Ba
> maXy,w)ekE p(w) +1 vel, \Ba

p(v) {_ T wveVinB,forall (v,w) € E we havep(w) = T;
=0 v e VinB,thereexistgv,w) € E such thap(w) # T;
=T wv e Von B,there existgv, w) € E such thap(w) = T;
{:0 v e Van B, forall (v,w) € E we havep(w) # T;

We define the comparison operaters> on progress measures with theintwisecomparison, i.e.,
for e {<, >} and progress measurgs and p2, we write p; <1 po iff for all v € V we have
p1(v) 1 pa(v).

Lift operation on progress measur€iven a game graply, the functionLift® takes as input a
progress measure and returns a progress measure. Forwllpiqgress measures the output
progress measuré = Lift“(p) is defined as follows: for alb € V, (i) for v € V4 N B, we have
p'(v) = Tifforall (v,w) € E we havep(w) = T, and 0 otherwise; (ii) for € V2 N B, we have
p'(v) = T if there exist§v, w) € E with p(w) = T, and 0 otherwise; (iii) for € V; \ B, we have
p'(v) = ming, ,yep p(w) + 1; and (iv) forv € V2 \ B, we havep'(v) = max(, wyep p(w) + 1.
A function f operating on progress measures (that takes as input a psageasure and returns a
progress measure) is calletbnotonidf for all progress measurgs < ps we havef(p1) < f(p2).

LEMMA 2.15. For all game graphs, the functiorLift® is monotonic.

PrROOFE Consider progress measurgs p, such thatp; < p,. For a non-Blchi vertex €
(V'\ B) we have

Lif G _ min(v,w)EE P1 (’LU) +1< min(v,w)EE PQ(U’) +1= LIftG(pQ)(’U) veW \ B?
it (p1)(v) = _1i6G )
max(y, wyep P1(w) + 1 < max, wyep p2(w) + 1 = Lift 7" (p2)(v) veVa\ B;

where E is the set of edges if. It follows that for allv € (V' \ B) we haveLift®(p;,)(v) <
Lift“ (p2)(v). Note that for vertices inB, progress measures are either OTarForv € B we
have the following cases: (i) € Vi N B: if Lift“(p)(v) = T, then for all(v,w) € E we have
p1(w) = T, and hence for allv,w) € E we havepy(w) = T; thusLift®(ps)(v) = T; and
(i) v € Vo N B: if Lift%(p1)(v) = T, then there existév, w) € E with p;(w) = T, and hence
we havep,(w) = T; thusLift%(ps)(v) = T. It follows that we havetift®(p;) < Lift“(ps). The
desired result follows. ]

SinceLift® is a monotonic function on a finite lattice, by the Tarski-Kteax Theorem [Kechris
1995] it has a least fix-point. Given a player-1 attracietr, (U, G), theminimal alternating dis-
tanceof a vertexv € Attr1 (U, G) is the rankrank(v, U) of the vertexv (in other words it is the



alternating shortest distance towhere player-1 minimizes the distance and player-2 maxdmiz
the distance td/) (recall the definition of rank from Section 2.1). The resfl{Jurdzihski 2000]
established that for all game grapfis(i) there is auniqueleast fix-pointp* of Lift”, (ii) the least
fix-point p* is a valid progress measure, (iii) the least fix-pgihfulfills the following conditions:
(a) for all verticesv in the complement of the winning set we hayvdv) = T; (b) for all Buchi
verticesv in the winning set we havg*(v) = 0; and (c) for all non-Buchi verticesin the winning
set we have*(v) = rank(v, B*), whereB* is the set of Buchi vertices in the winning set (i.e.,
in the winning set the progress measure equals the minitteathating distance to the set of Buchi
vertices in the winning set). The result of [Jurdzifski @DBolds actually for the more general case
of parity objectives, and the specialization to Buchi alijess yields the above properties.

THEOREM2.16 ([JURDzINSKI 2000]). For all game graphs, let p* be the least fix-point of

Lift®, and let||p*|| = {v € V | p(v) € [n]} denote the set of vertices that are not assigned the top
element. Thefjp*|| = W1 (®), where® is the Bichi objective.

Decremental algorithm.We now present our decremental algorithm. Our algorithiiaiy com-
putes the least fix-point progress measpiteof the graph and then maintains it after each edge
deletion by repeatedly applying the lift operator to thegdoint p* storedbeforethe edge deletion.
To prove the correctness we will show that the fix-point aledi by repeatedly applying the lift
operator on the previous least fix-point converges to th& f@apoint of the new game graph. The
algorithm maintains the following data structure: (i) Fach vertex: € V; N B it keeps a list of
verticesw such tha{z, w) € E andp*(w) # T and (ii) for each vertex € V; \ B a list of vertices

w such thaiz, w) € E andp*(z) = p*(w) + 1. (iii) Every edge(z, w) has a pointer to its location

in the list of z if it is stored in such a list. During each update operatiba,dlgorithm maintains a
queue data structure that contains all player-2 verticess@lprogress measure has increased and
all player-1 vertices that has an outedge to a vertex whasgr@ss measure has increased. We next
describe the algorithm in detail.

Computation of the initiab*. Use the static Biichi algorithm from the previous sectiondmpute
the player-1 and player-2 winning sets and asSigio all vertices in the player-2 winning set. Use
the backward search algorithm [Beeri 1980; Immerman 198dgtermine the rank of every vertex
in the player-1 winning set and set its initial progress meagqual to its rank. Then compute for
each vertex o¥/ its list.

Deletion of the edgéu, v). Maintain a queue of vertices to be processed to update ttgrga®
measure until the least fix-point is reached such that axeft&; is only added to the queue when
its progress measure has increased. Initially, enquedden iteratively process and dequeue the
vertices from the queue.

Case 1: A vertexe of 17 is dequeuedCheck whether given the current progress measure, the
progress measure afneeds to be increased to satisfy the lift operation:fcFo do this first check
whether the list of: is empty. If it is not empty, nothing needs to be done. If itrigay, all remaining
outedges of: are checked to compute the new progress measure valuamd the new list oft.
Then all inedgesu, =) of « are processed using the following steps:

— If wis a player-1 non-Buchi vertex.(e V; \ B), then itis enqueued (if it is not already in the
queue) anck is removed from the list of; if it was there.

— If wis a player-2 non-Buchi vertex.(¢ V4 \ B), then check whether the change in the progress
measure value aof also increases the progress measure value lbft does, then: is enqueued
(if it is not already in the queue), otherwigsds notenqueued.

— If uis a player-1 Bichi vertex( € V4, N B), then (i) if the progress measuremofs not T, then
do nothing; (ii) else remove from the list ofu, and if the list ofu is empty, assign progress
measurel to w andu is enqueued (if it is not already in the queue).

— If uis a player-2 Bichi vertex( € V, N B), then (i) if the progress measuremfs not T, then
do nothing; (ii) else assign progress measur® v andu is enqueued (if it is not already in the
queue).



Case 2: A vertex of V5 is dequeuedn this case the progress measure dfas increased and it
has already been updated. Thus all what remains is to prattéssdgegu, x) of z. The processing
of the inedges is done exactly as in Case 1.

This algorithm is a generalization of the Even-Shiloacloetym [Even and Shiloach 1981] for
maintaining the breadth-first-search tree of a vebtexan undirected graph. Assuniz= {b} and
thatV = V4. Then the progress measure value of a vertexexactlyv's level in the breadth-first
search tree rooted afor equivalently its shortest path distancéYoApplying the lift operator to a
vertexv is exactly the same as checking whethéras still an edge to an edge at lel@lel(v) — 1
and if not, increasing the level ofby 1.

Correctness.Let G be a game graph, and lgt be the least fix-point ofift“. Let G = G \ {e},
wheree € E N Vi x V, be the game graph obtained by deleting a player-1 edget p* be the

least fix-point ofG. Let p.,, be the new fix-point obtained by iteratingft® on p*. We will show
thatp™ = ple,-

LEMMA 2.17. We havep™ < pr,..

PROOF Let py be the progress measure that assifige all vertices, i.e., the least progress
measure. Clearlyy, < p*. Let us denote b)(Lifté)i the result of applying the lift operatar
times onG, for somei € N. From a simple application of Lemma 2.15 it follows tmhtfta)i is
monotonic. Hence we hav&ift)(py) < (Lift%)?(p*). Sincep* = (Lift%)(po) for somej, and

pro, > (Lift9)i(p*) for all i (in particular for thej for which the least fix-point is obtained from
po), it follows thatp* < pr.,.. [ ]

LEMMA 2.18. We havey),, < 7"

PROOF. Observe that the grapii is obtained by deleting an edge for player-1, and hence the
winning set for player 1 can only decrease and the minimatditing distance to the Biichi set
in the winning set can only increase. In other words, we have: 5", i.e., the least fix-point of

the graphG is smaller than the least fix-point @. Sincep;,, = (Lift)i(p*), for somei, we
havep:,, = (Lift%)i(p*) < (Lift®)i(p*) = p*, where the first inequality is a consequence of

Lemma 2.15 tha@LiftG)i is monotonic, and the last equality is a consequence of tiidifats™ is
a fix-point. Hence the desired result follows. [ ]

LEMMA 2.19. We havey),, = 7"

Lemma 2.19 follows from Lemma 2.17 and Lemma 2.18. Lemma 2ri® the fact that the
algorithm implements the iteration of the lift operator cgrtices one by one to compute the fix-
point that is obtained by repeatedly applying the lift operan the least fix-point of the previous
game graph, along with Theorem 2.16, establishes the ¢nagxof the algorithm.

Query operation. The query operation of whether a vertekelongs to the winning set is answered
in constant time by checking the progress measure Atlditionally we can support the operation
that requires to outpull vertices of the winning set, in time proportional to the sif¢éhe winning
set as follows. We maintain a list of winning vertices, andhegertex has a pointer to itself in the
list; and when the progress measure of a vertex is sétitas removed from the list. Thus the list
of winning vertices can be output in time proportional to $iee of the winning set.

Running time. The deletions of player-1 edges only decrease the winni@sd once a vertex is
removed from the winning set (i.e., assigned valum the progress measure algorithm), then it is
never worked upon again. Upon termination déte the least fix-point in the end. The computation
of the initial least fix-point is done in timé&(n?). In the decremental algorithm we check for each
dequeued player-1 vertexwhether its progress measure increases in constant timeh@xsking
whether the list ofu is empty). If it does not increase no further work is donedoirhe constant



amount of work is charged to the edge deletion if an outedgewdés deleted. If no outedge of

was deleted then the progress measure of a varteith (v, w) € E must have increased and we
charge the work ta. If the progress measure eincreases we spend tini[In (u)|+ |Out(u)|) to
determine the new progress measure,cfompute its new list, and process all its inedges, and the
work is charged ta.. A player-2 vertex: is only enqueued when its progress measure has increased.
When it is dequeued we spend tiro¥|In(u)|) to process all its inedges, and charge iutorhe
number of times the progress measure can increase for a i&@gemostn + 1 (as onceitis: + 1

it is assignedr). For a vertex, letNum(v) = p(v), if p(v) # T, andn + 1 otherwise. Hence the
total work done by the algorithm is

O(Z Num(v) - |In(v)]) + O Z Num(v) - |Out(v)]) = O(n - m).

veV veV

THEOREM 2.20. Given an initial game graph with, vertices andn edges, the winning set
partitions can be maintained under the deletion@fm) edges(u,v) with « € V; in total time
O(n -m).

2.4.2. Incremental algorithm for Biichi games. We now present the details of the incremental algo-
rithm for Buchi games, where we consider insertions of elaly edges. The algorithm is similar
to the decremental algorithm, but has several subtle clsafige it is based on the dual progress
measure for player 2, and the case analysis of the algorgldifferent from the decremental algo-
rithm).

Previous results on dual progress measure [Jurdaiski 2000].The incremental algorithm will be
based on the progress measure for coBlichi objectives. idugrgss measure for coBiichi objec-
tives is simpler but different, and hence the incrementg@thm is simpler but different from the
decremental algorithm. We start with the definition of adg@iogress measure for player 2.

Valid progress measure for player Zonsider a game graph with a sBtof Biichi vertices. A
progress measuyeis avalid progress measure for player 2 if the following condition&lfor all
veV:

min(v,w)EE p(w) vEV, \ B;
p(v) > ming, e p(w) +1 v e VaN B;
- maXy wyeE p(w) veW \ B;

max(, wyep p(w) +1 veVinB.

We define the comparison operatgrs> on progress measures with theintwisecomparison.

Lift operation on progress measur@iven a game graphy, the functioncoLift®, like the Lift”
function, takes as input a progress measure and returnggeegeomeasure. For all input progress

measureg, the output progress measure= coLiftG(p) is defined as follows: for alh € V,

min, w)er P(W) vEVa\B;
§(v) = ming, wyep p(w) +1 v e Van B;
maXy w)eE p(w) veV \B,
max(ywep p(w) +1 veViNB.

LEMMA 2.21. For all game graphs?, the functiorcoLift” is monotonic.



PrROOFE Consider progress measuggsp, such thaip; < ps. For a vertexo» we have

min py(w) < min  py(w) = coLift®(py)(v) veVy\ B;
(vyw)eEE (vyw)eEE
min_p1(w)+1< min po(w) + 1 = coLift®(ps)(v) v e Van B;
e (vyw)eEE (v,w)EE
coLift™ (p1)(v) = e
max p1(w) < max ps(w) = colLift™ (ps2)(v) ve Wi\ B;
(vyw)eEE (vyw)eEE
max py(w) +1< max pa(w) + 1 = coLift®(p)(v) wveViNB;
(vyw)eEE (v,w)EE

whereE is the set of edges ifi. It follows thatcolLift®(p;) < coLift”(p,). The desired result
follows. |

SincecoLift® is a monotonic function on a finite lattice, by Tarski-Knast&eorem [Kechris
1995] it has a least fix-point. Before we proceed to the charaation, we present a definition: for
avertexv € Wo(¥), whereV is the coBlichi objectiveoBuchi(C'), whereC = V'\ B is the set of
coBlichi vertices, leiaxvisit(v) = mingeg maxyeyx [{i | w(v,0,7) = (vo,v1,v2,...),v; € B}|
denote the maximum number of visits to Biichi vertices. 8ine W, (¥), once a winning strategy
for player-2 is fixed, there cannot be a cycle with a Blichtexerand hencenaxvisit(v) < n. The
result of [Jurdzihski 2000] established that for all gamegpdps, (i) there is auniqueleast fix-point
p* of coLift?, (ii) the least fix-point is a valid progress measure, (liig feast fix-poinp* fulfillis
the following conditions: (a) all vertices in the winning $er player 1 are assigned the top element
T, and (b) for vertices in the winning set for player 2 the progress measure equaksisit(v)
(i.e., p*(v) = maxvisit(v)). The result of [Jurdzifski 2000] is for the more generalecaf parity
objectives, and the specialization to coBuchi objectiviells the above properties.

THEOREM2.22 ([JURDZzINSKI 2000]). For all game graphs, let p* be the least fix-point of

coLift, and let||p*|| = {v € V' | p(v) € [n]} denote the set of vertices that are not assigned the
top element. Thepp*|| = W»(¥), whereV is the coBichi objective.

Incremental algorithm. We now present our incremental algorithm for player-1 edges dis-
cussion on motivation). Our algorithm initially computég feast fix-point progress measuieof
colLift of the graph and then maintains it after each edge insergarefpeatedly applying the lift
operatorcolLift to the fix-pointp* stored frombeforethe edge insertion. To prove the correctness
we will show that the fix-point obtained by repeatedly applythe lift operator on the previous
least fix-point converges to the least fix-point of the new garaph. The algorithm maintains the
following data structure: (i) For each vertexc V, \ B it keeps a list of verticesv such that
(z,w) € E andp*(z) = p*(w) and (ii) for each vertex € V2> N B a list of verticesw such that
(z,w) € E andp*(z) = p*(w) + 1. (iii) Every edge(z, w) has a pointer to its location in the list of
x if itis stored in such a list. We next describe the algoritindétail. We first describe the insertion
of an edge as the initial fix-point computation is similar.

Insertion of the edgé¢u, v). Maintain a queue of vertices to be processed to update ttgrgs®
measure until the least fix-point is reached such that axeft®; is only added to the queue when
its progress measure has increased. Initially, enquedéen iteratively process and dequeue the
vertices from the queue.

Case 1: A vertex: of 15 is dequeuedCheck whether given the current progress measure, the
progress measure afneeds to be increased to satisfy the lift operatioruforo do this we first
check whether the list of is empty. If it is not empty, nothing needs to be done. If it ispay,
all remaining outedges af are checked to compute the new progress measure valuarmd the
new list of z. Then all inedgesu, =) of « are processed as follows: dfis a player-2 vertex it is
enqueued (if it is not already in the queue) and removed from the list of. if it was there. Ifu is
a player-1 vertex then check whether the change in the pgsgneasure value afalso increases



the progress measure valuewoflf it does, thenu is enqueued (if it is not already in the queue),
otherwiseu is notenqueued.

Case 2: A vertex of 1 is dequeuedn this case the progress measure dfas increased and it
has already been updated. Thus all what remains is to prattesedgesu, =) of x as follows: If
u is a player-2 vertex it is enqueued (if it is not already inqlueue) and: is removed from the list
of w if it was there. Ifu is a player-1 vertex then check whether the change in the@ssgneasure
value ofz also increases the progress measure value bfit does, thenu is enqueued (if it is not
already in the queue), otherwigsas notenqueued.

Computation of the initiab*. The computation of the initigh* is similar to the incremental algo-
rithm itself. We initialize the initial progress measureGafr all vertices, then enqueue the set of
Buchi vertices, and proceed as the incremental algorithtih & fix-point is reached. As we start
with the all0 progress measure and repeatedly apply the lift operatorevguamranteed to reach the
least fix-point. Then we compute for each vertex V5 its list.

CorrectnessLet G be a game graph, and lgt be the least fix-point ofoLift”. LetG = G U {e},
wheree € 2N V4 x V, be the game graph obtained by inserting a player-1 edgetp* be the

least fix-point ofG'. Let p?.,, be the new fix-point obtained by iteratingLift“ on p*. We will show
thatp™ = pr,,-

LEMMA 2.23. We have™ < pf..-

PROOF Let py be the progress measure that assifige all vertices, i.e., the least progress
measure. Clearlyy, < p*. Let us denote b)(coLifta)i the result of applying the lift operatar
times onG, for somei € N. From a simple application of Lemma 2.21 it follows tt@aﬁLifté)i is
monotonic. Hence we haveoLift%)i(pg) < (coLift”)i(p*). Sincep* = (coLift®)?(po) for some

4,andp,,, > (coLift%)i(p*) for all i (in particular for thej for which the least fix-point is obtained
from py), it follows thatp* < pr.,. ]

LEMMA 2.24. We have},, < 7p".

PROOF. Observe that the graphi is obtained by inserting an edge for player-1, and hence the
winning set for player 2 can only decrease amakvisit(v) can only increase for vertices in the
winning set for player 2. In other words, we have< p*, i.e., the least fix-point of the grapgh is

smaller than the least fix-point ¢f. Sincep,,, = (coLiftG)i(p*), for somei, we have
praw = (coLift®)(p™) < (colift®)!(p") = 7",

where the first inequality is a consequence of Lemma 2.2](¢batftG)i is monotonic, and the last
equality is a consequence of the fact tiiats a fix-point. Hence the desired result follows. W

LEMMA 2.25. We have},,, = 7"

Correctness.The correctness follows from Lemma 2.25, the fact that tigerithm implements
the iteration of the lift operator on vertices one by one tmpate the fix-point that is obtained by
repeatedly applying the lift operator on the least fix-pahthe previous game graph, and Theo-
rem2.22.

Query operation and running time. The query operation that is supported is whether a vertex
v belongs to the winning set, and to output the set of winnimiaes. The query operations are
supported exactly as in the case of the decremental algurithe insertions of player-1 edges only
decrease the winning set for player 2, and once a vertex isvethfrom the winning set (i.e.,
assigned valué in the progress measure algorithm), then it is never workszhiagain. Upon
termination, letp be the least fix-point in the end. In the incremental algamitke check for each
dequeued player-2 vertexwhether its progress measure increases in constant timeh@woking



whether the list ofu is empty). If it does not increase no further work is donedoiSincew is
processed, the progress measure of a vertesth (v, w) € E must have increased and we charge
the work tow. If the progress measure afincreases, then we spend tirt|In(u)| + [Out(u)|)

to determine the new progress measure:ptompute its new list, and process all its inedges,
and charge the work ta. A player-1 vertexu is only enqueued when its progress measure has
increased, or an edge is insertediatf an edge was inserted, the work is charged to the inserted
edge. Otherwise is dequeued and we spend ti®¢|In(u)|) to process all its inedges, and charge
it to u. The number of times the progress measure can increase éotex is at mosht + 1 (as once
itisn + 1 itis assignedr). For a vertex, letNum(v) = p(v), if p(v) # T, andn + 1 otherwise.
Hence the total work done by the algorithm is

O(>_ Num(v) - [In(v)]) + O Num(v) - [Out(v)|) = O(n - m).

veV veV

An argument similar to the above also establishes that ihialileast fix-point is computed in time
O(n - m).

THEOREM 2.26. Given an initial game graph with vertices andn edges, the winning set
partitions can be maintained under the insertion(®fm) edges(u, v) with w € V; in total time
O(n - m).

3. ALGORITHMS FOR MAXIMAL END-COMPONENTS DECOMPOSITION

In this section we present two improved static algorithms domputing the maximal end-
component (mec) decomposition of an MBPand the first incremental and decremental algorithms
to maintain the mec decomposition. We start with the badioitiens and preliminaries.

3.1. Definitions

We present the definitions as familiar in the MDP literatiaheugh the relevant graph definitions
are identical to the alternating game graphs defined in tegquis section.

MDP graph and mec decompositionFor an MDPP, the MDP graph consists of a directed graph
G = (V, E) with a finite setV of vertices, a seEl C V x V of directed edges, and a partition
(V1,Vp) of V. The vertices ifi; are called player-1 vertices, and vertice§nare called random
or probabilistic vertices. An edge = (u,v) is called aplayer-ledge ifu € V4, and is called a
randomedge ifu € Vp. An end-component/ C V' is a set of vertices such that (a) the graph
(U,ENU x U) is strongly connected; (b) forall € U N Vp and all(u,v) € E we havev € U;
and (c) eithetU| > 2, orU = {v} and there is a self-loop at(i.e., (v,v) € E). Note that ifU;
and U, are end-components wilti; N Uy # 0, thenU; U Us is an end-component. Aaximal
end-component (me@ an end-component that is maximal under set inclusionnyBwertex of V'
belongs tat mostone maximal end-component. Theximal end-component (mec) decomposition
consists of all the maximal end-componentsofind all vertices ol that do not belong tany
maximal end-component. Maximal end-components generstiinngly connected componetfisr
directed graphsl(» = (/) and closed recurrent sets for Markov chails € ). A bottomsccC' of
a graph is a scc that has no edge leaving o of

By abuse of notation we use mec decomposition of an MDP to riteamec decomposition of
the MDP graph with partitioiiV;, V). For technical convenience we make two assumptions about
the MDP graph: (1) Every vertaxhas at least one outgoing edge, Oet(v) # (), because a vertex
without outgoing edges does not belong to any end-compo(@riVe will consider MDPs such
that random vertices do not have self-loops. Note that &xevith a self-loop that does not belong
to any other mec forms its own trivial mec. Thus, if a MDP grapth self-loops at random vertices
is given, its mec decomposition can be computed as followst Femove all self-loops at random

41n this paper we ussccor strongly connected compongnt amaximal strongly connected component



vertices and compute the mec decomposition of the resigtiygh. For every random vertex with a
self-loop that does not belong to any other mec, forms atriviec consisting only of the vertex. We
could proceed in the same way with self-loops of vertices V7, but we need to allow self-loops
of player-1 vertices for technical reasons in the incremlentintenance of the mec decomposition.

3.2. Algorithms for mec decomposition

In this subsection we present two improved algorithms foc mecomposition. We first define at-
tractors, random set cuts, and prove two lemmata about fhieem we present the classic algorithm
and our improved algorithms.

Random and player-1 attractor. Given an MDPP, letU C V' be a subset of vertices. Thendom
attractor Attrr(U, P) is defined inductively as followsl/, = U, and fori > 0, let U;y1 =
UiU{v e Vp | Out(v)NU; # 0} U{v € V41 | Out(v) C U;}. In other wordslJ;41 consists of
(a) vertices inU;, (b) random vertices that have at least one edgé;tand (c) player-1 vertices
such that all their successors arelin Then Attrg(U,P) = |J,~, U;. The definition ofplayer-1
attractor Atir, (U, P) is obtained by exchanging the role of random vertices angepla vertices in
the above definition. Note that the definition of attractoessame as defined for alternating game
graphs. A (random or player-1) attractércan be computed in tim@ (> [In(v)|) [Beeri 1980;
Immerman 1981].

Random set cutsA setX C V of vertices is aandom set cutif for all random edge$u, v) with
u € X NVp we havev € X. Thus a seU is a mec ifU is strongly connected and is a random set
cut.

Property of attractors. The first lemma below establishes that the random attra¢tameec and
the random attractor of certain vertices of an scc do notrigeto any mec and that it, thus, can be
removed without affecting the mec decomposition of the rieing graph. Hence, the lemma can
be used to identify vertices that do not belongattymec. The second lemma below shows under
which condition an scc is an mec. Thus, it can be used to iijevertices thaform a mec. In the
Lemma 3.1 we show the following results: (1) In part 1 we shioat if C' is a scc in a MDP graph,

U the set of random vertices il with edges out of”, andZ the random attractor df, then no
non-trivial mecX intersects with”Z and any edge from the me¥ to Z must be a player-1 edge;
and (2) in part 2 we show that @ is a mec, andZ the random attractor af minusC, then no
non-trivial mecX intersects withZ and all edges fronX to Z is a player-1 edge.

LEmMmMA 3.1. LetP be an MDP, and letV, E) with partition (V3, Vp) be the MDP graph.

(1) LetC be asccin(V,E). LetU = {v € CNVp | Out(v) N (V\ C) # 0} be the random
vertices inC' with edges out of. LetZ = Attrr(U,P) N C. Then for all non-trivial mec’sX
in P we haveZ N X = () and for any edgéu, v) withu € X andv € Z, v must belong td/;.

(2) LetC be amecirP. LetZ = Attrg(C,P) \ C. Then for all non-trivial mec’s¥ with X # C
in P we haveZ N X = () and for any edgéu, v) withu € X andv € Z, v must belong td/;.

vEA

PROOFE We present both parts of the proof.

— Part 1. Assume by contradiction that there is a non-trivial désuch thatX N Z # (). Since
@XNZCXnNC #0,(b) X must be strongly connected, and (€)s a scc; it follows that
X C C. As X must be arandom set cut, and random verticés rave edges out @', we must
haveX N U = (). Thus we have the following two properties:

(1) (Property 1.)X is a random set cut (i.e., for alle X N Vp we haveOut(u) C X); and
(2) (Property 2).X does not contain any vertex i (i.e., X N U = 0).

We use the above two properties to show by induction¥at Attrg(U,P) = X N Z = (. We
use the following inductive claim: For all> 0 we havel/;n X = (). The base case= 0 follows
asU, = U and by property 2 we hav& N U, = . Fori > 0 we assume thaX N U; = (), and
show thatX N Uiy1 = 0. We haveUi+1 =U; U {U e Vp | Out(v) NnU; # @} @] {U el |
Out(v) C U;}. Consider a vertex € X:



(1) f w € V4, then sincd X| > 2 and X is strongly connected, there existw & X with
(u,v) € E, and sinceX N U; = 0 it follows that Out(u) is not a subset o/; and hence
u Q UiJrl.

(2) If u € Vp, then by property 1 we haveut(u) C X and by induction hypothesis we have
X NU; = 0. Thus we hav®ut(u) N U; = 0, and hencer & U, 1.

It follows that for all: > 0 we haveX N U,; = 0, and thusX N Attrg(U,P) = X N Z = (.

Hence we have a contradiction. For a vertex X, if there is an edgéu,v) with v € Z, then

u ¢ Z. Thusu cannot belong td/» as vertices of/p are not allowed to have outgoing edges

leaving their mec. It follows that we must hawec V.

— Part 2. Assume by contradiction that there is a non-trivial @&such thatZ N X # (). SinceX
is a mec,X must be a random set cut. Sin&eis a random set cut an’l does not contain any
vertex inC, it follows from the inductive proof of the previous casettiian Attrr(C,P) =
X N Z = 0, and hence we have a contradiction. As above for an édge with « € X and
v € Z, we must have, € 1.

The desired result follows. [ |

LEMMA 3.2. LetP be an MDP, and letV, E) with partition (V1, Vp) be the MDP graph. Let
C be asccinV, E) such that for al € C'N Vp we haveOut(v) C C. ThenC'is a mec.

ProoF It follows thatC is a random set cut, and sin€eis a scc it follows that” is a mec.H

It is an easy corollary of Lemma 3.2 that every bottom scc isa.m

Previous algorithm for maximal end-component decompositin. There were two previous itera-
tive algorithms to compute an mec decomposition of an MDR. fiiist algorithm is as follows:

(1) Given an MDPP consider the MDP grap{¥/, E), and compute the scc decomposition and an
increasing topological ordering of the scc’s(®f, E) in O(m) time.

(2) Consider the scc’¢' in increasing topological ordering (i.e., starting frone thottom scc’s). If
there is a random edge leaving then letU be the set of random verticesd@with edges out of
C'. RemoveAttrr (U, P) N C from the graph (by Lemma 3.1 these vertices belong to no mec),
and then goto Step 1 with the new graph with the attractor weweho

(3) Output all scc’s as mec’s.

Observe that in the end all sc&€have no random edges going outdhre mec’s (by Lemma 3.2).
Each iteration take®(m) time and removes at least one vertex (by the random attja@tous the
running time of the algorithm i®©(m - n). We will refer this algorithm as thérst simple static
algorithm for mec decomposition. The second iterative @tlgm is as follows:

(1) Givenan MDFP consider the MDP grap{i/, E), and compute the scc decompositiof £)
in O(m) time.

(2) Include every bottom sa€ to the list mec’s (by Lemma 3.2 is a mec). Removétir g (C, P)
from the graph (by Lemma 3.1 these vertices belong to no naed)then goto Step 1 with the
new graph with the attractor removed.

(3) Output the list of mec’s.

Note that there is always at least one such scc since evepp ¢ras a bottom scc. We remove
Attr r(C, P) and recursively compute mec in the smaller sub-MDP. Eachtite takesD (m) time
and removes at least one vertex. Thus the running time ofifegitam isO(m - n). We will refer
this algorithm as theecond simple stat@lgorithm for mec decomposition.

3.2.1. Firstimproved algorithm. Our first improved algorithm for mec decomposition is obéaity
combining the second simple static algorithm for mec deamsitipn along with dock-step (or
dovetail)linear-time depth-first search (DFS) to find a bottom sccc8igally, each of the searches
that is executed uses the dfs-based scc algorithm of Targjah 1972], which has the property that



if it started at a vertex in a bottom scc it finds this bottomaied stops in time linear in the number
of edges in the scc. In this paper we will use the téwok-step searclith the following meaning:
for k parallel searches, in one step of the lock-step search eacthscan process exactly one edge.
Thus it is ensured that ihlock-steps each search explores exac#yges. The algorithm iteratively
removes vertices from the graph for which either the mec waad or for which it was identified
that they belong to no mec, until all vertices are removedtekationi, we denote the remaining
subgraph a$V;, E;), whereV; is the set of remaining vertices aid is the set of remaining edges.
The algorithm considers two cases: (a) Case 1 is similareg@éitond simple static algorithm, and
(b) Case 2 is the lock-step exploration of a bottom scc. IreCawe start the lock-step exploration
from a set of at most{/m vertices. At least one of them is in a bottom scc. Thus in tinmast
O(v/m - |Uyec Out(u)]) we find a mec”, and amortize the cost over the edge§’oBetween two
consecutive executions of Case 1 it is ensured that at{gasedges are removed from the graph,
and thus Case 1 is executed at mgst-times. Thus we achived@(m - /m)-time algorithm for
the mec decomposition.

The details of the algorithm is as follows. The algorithm mtains the seL;; of vertices that
were removed from the graph since the last iteration of Cased the set/;,; of vertices that
lost an edge to vertices removed from the graph since lastiiv@ of Case 1. Initially(Vj, Ey) :=
(V,E), Ly := Jo := ), and: := 0. We describe our algorithm, and we refer our algorithm as
NEWMECALGO1.

Step ORepeat

(1) Case 1If ((|.J;] = /m) ori = 0), then

(a) Compute the scc decomposition of the current MDP g(&phF;).

(b) For all scc’sC' that have a random edge leaving out(dflet U be the subset of random
vertices inC' that have an edge leavin@. The setAttrr (U, P) N C is removed from the
graph.

(c) For all scc’sC that do not have a random edge leavitigthe sccC is identified as a mec
and Attrr(C, P) is removed from the graph.

(d) The setL;; is the set of vertices removed from the graph in this iteratind.J; , be the
set of vertices in the remaining graph with an edgé {o; .

(e) i := i+ 1;if V; = 0, then stop the algorithm, else go to Step 0.

(2) Case 2Else(]J;| < 4/m), then

(a) We do a lock-step search using the scc algorithm of Téljajan 1972] from every vertex
vin J;. LetC be the first bottom scc discovered in the lock-step searahlddk-step search
ends when the first bottom s€tis discovered.

(b) The bottom scc is identified as a mec and we remaoxeétr z(C, P) from the graph. Let
the setl;11 be the set of vertices removed from the graph since the &sttibn of Case 1
(i.e., Liy1 = L; U Attrg(C, P), whereC' is the bottom scc removed in step 2(a) of this
iteration) and let/; 1, be the set of vertices in the remaining graph with an edgk; 1q,
i.e., Jit1:= (J; \ Attrgr(C,P)) U Q;, whereQ); is the subset of vertices & with an edge
to Attrr(C, P). Thus the sef; 1 is the set of vertices in the graph that lost an edge to the
vertices removed since the last iteration that executed Cas

(c) i:=1i+ 1;if V; = 0, then stop the algorithm, else go to Step 0.

Correctness and running time analysisWe now present the correctness argument and running
time analysis.

LEMMA 3.3. The algorithm NEWMECALGO1 correctly computes the maximal end-
component decomposition of an MPP

PROOFE The algorithm repeatedly removes bottom sccs and thedlorarattractors. Since every
bottom scc is a mec (by Lemma 3.2) and in each step a randoactattiis removed (hence in



the current graph all the outgoing edges for random vertaicereserved), the correctness of the
algorithm follows from Lemma 3.1 and Lemma 3.2. [ ]

LEMMA 3.4. For every iterationi and for every bottom so€' of the graph(V;, E;) there is a
vertex inJ; that belongs ta”'.

PrROOF We consider an iteration of the algorithm. We show that in the gragi;, F;) the
intersection ofJ; and each bottom scc ¢V;, E;) is non-empty. The proof of the claim is as follows:
consider a bottom sc€' in the graph(V;, E;). Then there is no edge that leaw@sn the graph
(Vi, E;). Letj < i be the last iteration before iteratiéisuch that Case 1 was executed in iteration
j (and in all iterations betweehand: Case 2 is executed). @ N J; is empty, then it follows that
none of the vertices i@’ has lost an edge since and including iteratjo®inceC' is a bottom scc
in (V;, E;), it follows thatC' must also have been a bottom scd W), £;) and, thus, it must have
been discovered as a mec in step 1(a) of iteratidience we have a contradiction. It follows that
we always have a vertex ify that is in a bottom scc. [ |

An easy consequence of this lemma is thadlways contains a vertex in amec in the graph E; ).
LEMMA 3.5. The running time of algorithfNEwWMECALGO1 on an MDPP with m edges is

O(m - /m).

PROOFE We now analyze the running time oEMPMECALGOL. The total work of the algorithm
when Case 1 is executed over all iterations is at nitst - \/m): this follows because between
two iterations of Case 1 at leaét(/m) edges must have been removed from the graph (since
|J;| > /m everytime Case 1 is executed other than the case whed), and each iteration can be
achieved irO(m) time (since the scc decomposition can be computé(in) time) [Tarjan 1972].
We now show that the total work of the algorithm when Case Xéxeted over all iterations is at
mostO(m - /m). The argument is as follows: consider an iterati@uch that Case 2 is executed.
By Lemma 3.4 for every bottom s&¢ there is a vertex ity; that belong ta”. Let C' be the bottom
scc discovered in iteratiohwhile executing Case 2. L&ut(C) = [, Out(v). The algorithm
of [Tarjan 1972] for scc decomposition ensures that if tlagtistg vertex is in the bottom scc, then
the bottom scc is identified in time proportional to the numbkedges of the bottom scc. The
lock-step search ensures that the edges explored in thégigte is at mosO(|J;| - |Out(C)|) <
O(v/mx |Out(C)|). SinceC is identified as a mec and removed from the graph we chargedhe w
of O(y/m - |Out(C')|) to edges iMDut(C), charging workO(,/m) to each edge. Since there are at
mostm edges, the total charge of the work over all iterations whagse is executed is at most

O(m - /m). |
THEOREM 3.6. Given an MDPP, the algorithmNEWMECALGO1 computes the mec decom-
position ofP in time O(m - v/m).

3.2.2. Second improved algorithm. In this section we present an algorithm for the mec decornposi
tion problem that runs i@ (n?) time.

Notations. Given an MDPP, and the MDP graplé: = (V, E) with parition (V1, Vp)), we will
denote byReachable(X, G) the set of vertices that can reach a vertexXirin the graph(V, E).
Note thatX C Reachable(X,G). Basically the algorithm is similar to BivBucHIALGO, and
instead of searching for separating cuts, the algorithnmfec decomposition searches for bottom
scc’s. Specifically as before, we halg n graphsG; such thatw; = (V, E;) and E; contains all
edges(u, v) whereoutdeg(u) < 2¢. We denote by the full graph. We color verticesin G; blue

if outdeg(v) > 2¢,i.e.,Bl; = {v € V | outdeg(v) > 2'} and all other vertices are coloreite,
i.e.,,Wh; = {v € V | outdeg(v) < 2'}. Note thatG = Gz and thus all vertices it ,, are
white. Thus, none of the outedges of the blue vertices dfelong toG;, i.e., all blue vertices have
outdegree 0 irt;.

Second improved algorithm.Our second improved algorithm for mec decomposition of anfMD
P consists of two nested loops, an outer loop with loop couptand an inner loop with loop



counteri. The algorithm will iteratively delete vertices from theagh, and we denote bi; the
set of vertices deleted in iteratignWe will denote byGY the graph in the beginning of iteratign
and its vertex set and edge setlésand E7, respectively. We will denote b§i/ = (V7, E/) the
sub-graph of?? = (V7, E7) whereE’ contains all edgeéu, v) where|Out(u) N E7| < 2°. The
setBl is the set of vertices i’ with outdegree greater tha in G7. The steps of the algorithm
NEWMECALGO?2 are as follows. Below we denote By the sub-MDP ofP at the beginning of
iteration; (in particularP? = P).
(1) LetD, be the set of vertices deleted in iteratipprFor j := 0, let Dy := Attrg(X, P°), where
X is the set of vertices that are in the bottom scc’s in theahgraphG. Every bottom scc is an
mec and included in the mec decomposition.
(2) Remove the vertices dP; to obtain the grapla=’; j := j + 1. If all vertices are removed, then
the whole algorithm terminates and outputs the mec decoitipus
) i:=1;
(4) repeat
(a) Construct grapti). Compute the set = Reachable(Bl,, G?) of vertices inG/ that can
reach the s%l{ of blue vertices using the standard linear-time algoritbnréachability.
(b) LetS; = V7 \ Y/ be the set of vertices that cannot reach theBseof blue vertices;
(€)i:=i+1
(5) until S; is non-empty
(6) if S; # 0, then letD; = Attrp(X,P7), whereX is the set of vertices that are in the bottom
scc’s in the sub-graph induced By in GZ Every bottom scc is an mec and included in the mec
decomposition. Go to Step 2.
Basic correctness argumentLet us denotes’ to be the remaining game graph after iteratjon
Let S; be the set identified at iteratign and let the inner iteration stop &t All vertices in.S; are
white, sinceS; = V7 \ Reachable(Bl.,G2.) andBl. C Reachable(BI.,G7.). Forallv € S, all
outedges fromv end in a vertex irf;: otherwise if there is an edge fromto Reachable(Bl. , G2.),
thenv would have been included iReachable(Blg* , G{*). Hence any bottom scc in the subgraph
induced bysS; in GZ. is also a bottom scc af. The correctness of the identification of the bot-
tom scc as an mec and the removal of the attractor follows fremma 3.1 and Lemma 3.2. The
correctness of the algorithm follows.

LEMMA 3.7. Algorithm NEWMECALGO2 correctly computes the mec decomposition of an
MDP P.

Running time analysis.The crucial result of the running time analysis depends erfdowing
lemma. It shows that in an outer iteratignif the inner iteration stops at iteratiaii and X is the

set of vertices identified as bottom scc, tHém Bl _, is non-empty.

LEMMA 3.8. Consider an outer iteration of the algorithm, and let the inner iteration stop at
iterationi*. LetX be the set of vertices identified as bottom scc of the grapicied byS in G7..
ThenX NBIL _, # 0.

PROOF Assume towards contradiction that there is a bottom(3ag the induced subgraph of
S'in GZ. suchthat’ NBI. _, = (). Now we consider the iteratiari — 1 and then for every vertex in
C'in GJ._, all outedges end in a vertex @. SinceC does not contain a vertex froBt’. _, andC
has no outgoing edges, it follows thatC V7 \ Reachable(Bl. _,,G7.). Since all edges af?.

are contained iz, we have thatC C V7 \ Reachable(BI., _,, G _,). Hence a non-emptyset
S; would have been identified in iteratiah — 1, and this contradicts that the algorithm stops at
iterationi* and not ini* — 1. ]



LEMMA 3.9. The total time spent bNEWMECALGO2 is O(n?).

PrROOFR Assume that for an outer iteratigin the inner iteration stops the repeat until loop at
valuei*. By the previous lemma, one of the vertiees X must have belong tBI. _; and thus it

has outdegree at leat —'. Since we identify the bottom scc that contaiit must contain all the
endpoints of the outedges from HenceX contains at least’ —! vertices. The time spent for all
the executions of the repeat loop in this iteration of theeplaop is the time spent in all graptis,

G}, ...,GJ., which sums ta(2'" - n) (the graph construction is similar as in Section 2.3, and the
reachability computation is linear time). We char@én) to each deleted vertex. As the algorithm
deletes at most vertices the total time spent over the whole algorithm{%?). The removal of

all the player-2 attractors over all iterations tak&sn) = O(n?) time. The result follows. [ |

THEOREM 3.10. Algorithm NEWMECALGO2 correctly computes the mec decomposition of
an MDPP in O(n?) time.

COROLLARY 3.11. Given an MDPP, the mec decomposition can be computed in time
O(min{m - v/m,n?}); and hence in tim®(m - n?/3).

3.3. Incremental and decremental algorithms

We present algorithms for maintaining the mec decompasitiban MDP under the following
operations: (a)ncremental algorithmaddition of an edgéu,v) with v € V4; (b) decremental
algorithm: deletion of an edgéu, v) with « € V;.

Motivation for dynamic algorithms. As in the case verification of open systems, in the verificatio
of probabilistic systems it is natural that the systems urdgfication are developed incrementally
by adding choices (or decrementally by removing choiceff)y@Eytem till the objective is satisfied.
The system choices are represented by player 1, whereasatbahjlistic environment (or nature)
is modeled by the random (or probabilistic) player, and tystesn design has no control over the
environment choices. Hence dynamic algorithms with pkdyedge deletions or insertions are the
relevant decremental and incremental algorithms reqdimedDPs.

3.3.1. Incremental algorithm for mec decomposition. We first present the basic idea of the incre-
mental algorithm.

Basic idea.Since we consider insertions of player-1 edges, the imsertof edges can only merge
mec’s. Hence we collapse the mec’s in a collapsed graph #shb non-trivial mec’s. We then
show that insertion of one player-1 edge in such a graph addest one non-trivial mec. We now
present the notion of a collapsed graph.

Collapsed graphGiven a graphiG = (V, E) with vertex partition(V;, Vp), the collapsed graph
Geo = (Vo, Ec) with vertex partition(Vi©, V') is defined as follows: Every me€ is collapsed
to a single vertex that belongs to player 1, and all outgoiagg. incoming) edges from (resp. to)
C' are added to the graph, removing parallel edges. Formetlg,,] = {C | C'is an me¢ be the
setof all mec’s. Let = (Joce C. ThenVo = Cp, U (V \ M) with Vi© = C,, U (Ve N V1) and
VE =Ve \ VE.

EC {(u,v)|u,v€(V\M),(u,v)€E}
{(Cv) | CeCp,ve (V\M),JueC(uv) € E}
{(u,C") | C" € Cpyu € (V\M),Jve C.(u,v) € E}

{(C,C") | C,.C"eCp,FueC,FvelC(u) e E}

An end-component’ is non-trivial if |C| > 2, otherwise it is &rivial end-component. The col-
lapsed graph with vertex partitiqiv,”, V.S') has the following property:

cccl

LEMMA 3.12. The collapsed graptic with vertex partitionV,¢, VS') has no non-trivial end-
components.



PROOF If there is a non-trivial end-component in the collapsedpiyG'« with the partition
(V€,VS), then the union of the set of vertices of the end-componeart isnd-component in the
original graphG = (V, E) with partition(V7, Vp), and this contradicts that the collapsed graph was
obtained after the mec decomposition. ]

The following lemma shows that if an edge, v) is added to a grapwith no non-trivial end-
componentsthen there is at most one non-trivial mec in the resultirapgr Thus, when an edge
(u,v) with u € V7 is added to a grap@, then the insertion either (i) does not affect the collapsed
graph at all (ifu andv belonged to the same mec), or (i) an edge is insertedGhidut G¢ still
has no non-trivial mec’s or (iii) the edge is inserted iGtp andG ¢ has now one non-trivial mec.
This fact holds because the insertion of a player-1 edges doesplit up any existing mec. In a
graph with no non-trivial mec the above fact also holds feeitions of random edges. However, in
general graphs, the insertion of a random edge) with u € Vp can split up the mec containing
into a potentially large number of mec’siifdoes not belong to it. Thus, the following lemma holds
for both player-1 and random edges only because it makesrtirgsassumption that the graph has
no non-trivial end-component.

LEmMMA 3.13. Consider a graptG = (V, E) with vertex partition(V;, Vp) that has no non-
trivial end-component. If we add an edge= (u,v) then(V, E U {e}) with partition (V1,Vp)
either (a) still has no non-trivial end-component or (b) hetsmost one non-trivial maximal end-
component. Additionally, for every s€tin the graph with the inserted edgeifZ C', then the mec
decomposition of’ before and after the insertion are identical.

PrROOFE Consider the mec decomposition after the edge insertidraasume”' is a non-trivial
mec that does not contain Then the insertion ofu, v) neither changed the edges between two
vertices inC' nor the edges leaving'. ThusC was also an end component before the insertion of
(u,v). However, this contradicts the assumption that the MD&oes not contain any non-trivial
mec’s before the insertion. Thus, the insertion can havatedeat most one new mec, namely the
mec containing: andv. Furthermore, the mec decomposition of at most one scc, Iyahescc
containingu andv in the updated graph, was changed by the edge insertion b follows. H

Incremental algorithm. Our incremental algorithm maintains as data structurdie@tBM EC data
structures) (a) the collapsed graph: = (Vo, E¢), (b) stores for every vertex il the set of
edges that are mapped to it, and (3) stores at every verteX the vertex’ € V¢ to whichv is
mapped. When an edde, v) with u € V; is inserted it executes the following steps. In step 5 the
algorithm performs a computation similar to random atwacbmputation, but ignorning self-loops
for player-1 vertices (to ensure that trivial mec’s are rgatbby the computation). The steps are as
follows:

(1) Compute the scc decomposition of the MDP gréyh, E¢) of G¢.

(2) Consider the sc€ that contains the vertex

(3) If |C| = |{u}| = 1, then stop sinc€ is the new trivial mec.

(4) Determine the sdt of random vertices i’ that have outgoing edges leaviay

(5) ComputeZ = J,;~ Z; with Zy = U and fori > 0, Zi;1 = Z; U {v € Vp | Out(v) N Z; #
Pu{ve Vs |Outlv)NnC C Z;U{v}}.5

(6) Compute the scc decomposition@f\ Z in the collapsed graph. f' \ Z # () then there is a
bottom sca”” with |C’| > 2 andC” is the new unique non-trivial mec. Update the data strusture
accordingly.

We now prove the crucial lemma that shows that if in step 6 weh@’| > 2, then it is the new
unique non-trivial mec.

5The definition ofZ; 1 is similar to random attractor, the only difference is forlayer-1 vertexv if all edges inC' other
than the self-loop is it¥;, thenv is included inZ; ;.



LEMMA 3.14. In Step 6, ifC'\ Z # 0, then there is a unique bottom s€& in C' \ Z with
|C'| > 2.

PROOF We assume thall = C \ Z # (. The following assertions must hold: (a) for all
u € U NV, we must hav®ut(u) NU # () (otherwiseu would have been included i#); (b) for
alluw € UnNVp we must hav®ut(u) C U (otherwiseu would have been included id). It follows
that every vertex iV has an outedge iy, and hence the sub-graph induced®ymust have a
bottom scc. Consider a bottom s€¢ in the sub-graph of/. If |C'| = 1, then letC’ = {v'}. Then
v’ must have a self-loop. Since by assumption random vertice®thave self-loops we must have
v' € V4. Thenwe have’ € V; andOut(v')NC C ZU{v'}, and hence’ must have been included
in Z, and this contradicts that € C'\ Z. It follows that|C’| > 2. Since|C’| is a bottom scc it
follows from Lemma 3.2 that” is a non-trivial mec. Since by Lemma 3.13 it follows that ther
at most one non-trivial mec, it follows thét’ is the unique non-trivial mec. ]

By Lemma 3.1 the vertices i do not belong to any non-trivial mec. Thus(f\ Z = (), then
none of the vertices i’ belong to an mec and thus no new mec was creatéttinlf C'\ Z # (),
then by Lemma 3.14 there exists a unique bottom sc¢ \nZ, which according to Lemma 3.2 is a
mec. Since Lemma 3.13 showed that the addition of an édge) with « € V; generates at most
one new non-trivial mec idz- there are no further new mec’s. Each step of the algorithrastak
time O(m). This result is summarized in Lemma 3.15.

Note: The correctness and the running time analysis of the inanehalgorithm only use the
fact that the change in the graph modified the mec decompnsitside at most one scc and that the
change created at most one new mec. Thus, the same algoathivecused for updating the mec
decomposition after an edge deletion, as long as it is gteedithat the operation modifies the mec
decomposition of at most one scc and creates at most one new me

LEMMA 3.15. LetP be an MDP such tha® has no non-trivial end-component. If we add an
edge(u, v) with u € V3, then the maximal end-component decomposition can be dethjputime
O(m).

The collapsed graph, the incremental algorithm on the psdid graph, and Lemma 3.15 gives us
the desired result for the incremental algorithm. Our athar outputs the mec decomposition, or
equivalently an integer for every vertex such that two eegiin the same mec has the same positive
integer and vertices that do not belong to any mec is assigmedjative integer. Thus the query of
whether two vertices belong to the same mec is answered Btaartime.

THEOREM 3.16. Given an MDPP and the maximal end-component decompositioR,dhe
new maximal end-component decomposition after the insedf an edgdu, v) with w € V4 can
be computed in tim&(m).

3.3.2. Decremental algorithm for mec decomposition. We consider maintaining the mec decom-
position of an MDP under edge deletion for player-1 vertiddse basic idea is to show that the
decremental scc decomposition algorithm of Lacki [Lacki PDcombined with the approach of the
first simple static algorithm works in amortized tir6én).

Decremental algorithm. We show that the first simple static algorithm can be modiftedandle

the deletion of an edgéu, v) with « € V;. The observation is as follows: under player-1 edge
deletion, the mec’s of an MDP can only be decomposed intolesmalec’s, and the size of the
mec’s do not increase. Hence at any point of the algorithm Wlenaintain edgegu, v) such that
both« andv belong to the same mec, and all other edges will not be storedridata structures.
Given the mec decomposition of an MDP, we consider an edgdidek for player 1. The basic
idea is if the deletion of edge:, v) splits the mec containing bothandv, then it also must split

the scc containing andv becauséu, v) is a player-1 edge. In this case the decremental scc data
structure of [Lacki 2011] will return all the new scc’s ancethdges between them in total time
O(n-m) over all deletions. We spend time proportional to the nunolheew scc’s to topologically



sort them and to check all new scc’s in increasing topoldgicder whether they form a mec or
whether they have to be split further. The cost of this is ghdro all the edges between the new
scc’s. Note that there are as many such edges as there arecisvarsd each edge is charged in
this way only once as it is removed for our data structure idliately afterwards. If a scc has to
be split further, at least one vertex of the scc does not lggloany mec and will be removed from
our data structure. We use the approach of the first simpiie stgorithm for mec decomposition
to determine the new mec’s and by repeating this step patntémoving multiple vertices from
our data structure (as they do not belong to any mec’s any)mne total work ofO(k - m), where

k is the number of removed vertices in this way, is charged éd:tbeleted vertices, leading to a
total time ofO(n - m) over all deletions.

The details of the algorithm is as follows: we keep as datecires (a) a list of mec’s and along
with each mec the list of vertices in the mec and (b) the deergah scc data structure of [Lacki
2011] keeping all edges inside mec’s and none of the othereddpus every scc in the data structure
is also a mec. For an edge= (u, v) with u € V4, whene is deleted we execute the following steps:
(A) If the edgee does not belong to any existing mec, then no action is red(agthe edgeis not
stored in our data structure); and (B) if the eddmlongs to a me€’, then we execute the following
steps:

(1) Compute the scc decomposition 6f using the decremental scc decomposition algorithm
of [Lacki 2011]. LetL be an empty list.

(2) If Cis a still a scc, then no action is required, otherwise rent@¥eom the list of mec’s and
execute the following steps:

(a) Compute an increasing topological ordering of the s@a@s, starting from bottom scc’s)
and add tal all the scc’s created in this way. Remove all edges that ddeloing to any
scc from the decremental scc data structure.

(b) While L is not empty

i. Consider the next sc€” of L and remove it fromL. If C’ has a random edge leaving
C’, then execute the following step.

ii. Let U be the non-empty set of random vertices with an edge lea¥infemoved =
Attrr(U,G | C) (i.e., allincoming and outgoing edges of verticesiirare removed,
whereG | C is the MDP induced by). SetL as the empty list; compute the scc
decomposition and an increasing topological ordering efsitc’s and add té all the
scc’s created in this way. Remove all edges that do not beloramy scc from the
decremental scc data structure.

(c) Add all the scc’s to the list of mec’s.

We now present the correctness and the amortized runniegainalysis.

CorrectnessLike edge deletions in scc’s, under player-1 edge deletitvesmec’s of an MDP can
only be decomposed into smaller mécence it follows that if the deleted edge does not belong to
any mec, then it can be simply removed. We now consider treewhsn the edgedeleted belongs
to a mecC. Note that sinc& is a mec, before the edge deletion the following property$idior

all edges(u,v) with w € C' N Vp, we havev € C. If C is a scc after the edge deletion, then it
follows that it is still a random set cut, and hen€és an end-component. Sin¢éis a mec before
edge deletion, and mec's can only be decomposed into smadie’s after edge deletion, it follows
thatC' is a mec after edge deletion. This establishes the coreswiethe step whet is still a
scc. The correctness of the other part follows from coresdrof the first simple static algorithm, in
particular from the fact that in step 2(c) we output the maalistc’s that do not have any random
edge leaving them.

Amortized running time analysig/e first observe that the amortized cost of maintaining tleeede
mental scc decomposition over all iterations can be actigvémeO(n - m) [Lacki 2011]. More-

SNote that in case of deletions of random edges, smaller ncao’'snerge into larger mec’s.



over the decremental scc decomposition algorithm of [L&€EKi1] can return the edges leaving a
newly created scc (as required in step 2(a)) in total tinge - m) as each edge is adjacent to a newly
created scc at mosttimes.

Thus detecting the new scc’s in step 1 and step 2(b)(ii) catobe in total timeD(n - m). The
topological sorting in step 2(a), considering the scc'opatiogical ordering in step 2(b)(i), and the
if condition checks of step 2(b)(ii) of the first iteration thfe while loop is charged to the edges
between the newly created scc’s. If no new scc has a random ledging, then the while loop
stops without any further splitting. Each of the scc’slins a mec in this case. Thus the work is
proportional to the number of edges between the newly aleste’s and can be charged to them.
As each edge is adjacent to a newly created scc atmistes, this gives a total time @(n - m).

In case that at least one “if” condition of step 2(b)(ii) isatwated to true, then a non-empty
random attractor (i.e., at least one vertex) is removed &l 3(b) is repeated. We charge the
computation of the random attractor, the scc decompositientopological sort, the update 6f
and all tests of the “if” statement until the next succesefug or the termination of the while loop
to the non-empty set of removed vertices. Thsn) work is charged to the removed vertices. This
can be repeated multiple times, each iteration being chdagthe vertices removed in this iteration.
Note that once a vertex is removed, it never belongs to afligéitices in a mec again. Thus every
vertex is charged at most once with{) work. Hence the total time for all the iterations of all the
while loops isO(n - m). This completes the proof of Theorem 3.17. Also note thahahe case
of the incremental algorithm, the decremental algorithso autputs the mec decomposition, and
hence the query of whether two vertices belong to the sameasaswered in constant time.

THEOREM 3.17. Given an initial MDP withm edges, the maximal end-component decomposi-
tion can be maintained under the deletion@fmn) edgequ, v) with w € V; in total timeO(n - m).

4. CONCLUSION
In this work we presented an improved ((?)-time) static algorithm for alternating Biichi games

improving the long-standin@(» - m) barrier. Our result is obtained by a hierarchical graph con-
struction technique, an improvement technique for alporgé based on attractors for games, and
improves the complexity dependence on edges. The clasadfiBbjectives are also special case
of parity objectives. The classical algorithm for alteingtgames with parity objectives witt
priorities (i.e., parity indexl), is a recursive algorithm based on attractors (altergat@achabil-
ity), and the base case of the recursive algorithm is altergd@iichi games. Thus our result for
Buchi games immediately improves the complexity of thesiegal algorithm for parity games from
O(n?=1-m) to O(n?). However, the sub-exponential algorithm for parity ganveigh(complexity
n®(V)) does not depend on the edge parameter, and our technique ragact on it. The small
progress measure algorithm for parity games [Jurdzin@RDRis also not based on attractors and
our technique has no immediate impact. We also presentaweg (O (min{m - \/m, n?})-time)
static algorithms for maximal end-component decompasitigoroving the long-standin@ (n - m)
barrier. We also present the first incremental and decrrhelgarithms for the problems, and for
all the algorithms the amortized update time is linear, aattimthe best known complexity of sim-
pler problems (such as decremental reachability in grapdsdacremental scc decomposition in
graphs). The most interesting open questions are as foli@ysloes there exist a@(n - m!'~<)-
time or anO(m - nt~¢)-time algorithm for alternating Biichi games, foer> 0; and (b) can the
maximal end-component decomposition problem be solveichi@® (. - /m).
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