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The computation of the winning set for Büchi objectives in alternating games on graphs is a central problem in computer
aided verification with a large number of applications. The long standing best known upper bound for solving the problem
is eO(n · m), wheren is the number of vertices andm is the number of edges in the graph. We are the first to break the
eO(n ·m) boundary by presenting a new technique that reduces the running time toO(n2). This bound also leads toO(n2)-
time algorithms for computing the set of almost-sure winning vertices for Büchi objectives (1) in alternating games with
probabilistic transitions (improving an earlier bound ofeO(n · m)), (2) in concurrent graph games with constant actions
(improving an earlier bound ofO(n3)), and (3) in Markov decision processes (improving form > n4/3 an earlier bound of
O(m · √m)). We then show how to maintain the winning set for Büchi objectives in alternating games under a sequence of
edge insertions or a sequence of edge deletions inO(n) amortized time per operation. Our algorithms are the first dynamic
algorithms for this problem. We then consider another core graph theoretic problem in verification of probabilistic systems,
namely computing the maximal end-component decompositionof a graph. We present two improved static algorithms for
the maximal end-component decomposition problem. Our firstalgorithm is anO(m · √m)-time algorithm, and our second
algorithm is anO(n2)-time algorithm which is obtained using the same technique as for alternating Büchi games. Thus we
obtain anO(min{m · √m, n2})-time algorithm improving the long-standingO(n ·m) time bound. Finally, we show how
to maintain the maximal end-component decomposition of a graph under a sequence of edge insertions or a sequence of edge
deletions inO(n) amortized time per edge deletion, andO(m) worst case time per edge insertion. Again, our algorithms
are the first dynamic algorithms for this problem.
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1. INTRODUCTION

We consider two fundamental algorithmic problems that lie in the core of many applications in
formal verification and analysis of systems. The two problems are alternating games with Büchi
objectives, and maximal end-component decomposition of Markov decision processes (MDPs). We
will present graph theoretic description of both the problems. In this work we present faster static
algorithms for both the problems improving the long-standing upper bounds, and the first dynamic
algorithms for both problems.

Alternating Büchi games.Consider a finite directed graph(V, E) with a partition(V1, V2) of V
and a setB ⊂ V of Büchi vertices. This graph is called agame graph. Let n = |V | andm = |E|.
Two players play the followingalternating gameon the graph that forms an infinite path. They
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start by placing a token on an initial vertex and then take turns indefinitely in moving the token:
At a vertexv ∈ V1 player 1 moves the token along one of the outedges ofv, at a vertexu ∈ V2

player 2 moves the token along one of the outedges ofu. A first question to ask is given a start
vertexx ∈ V can player 1 guarantee that the infinite path visits a vertex in B at least once, no
matter what choices player 2 makes. If so player 1 canwin from x andx belongs to thewinning set
of player 1. The question of computing the set of vertices from which player 1 can win (called the
winning set) is called the(alternating) reachability game problem. The problem is PTIME-complete
and the winning set of player 1 can be computed in time linear in the size of the graph [Beeri
1980; Immerman 1981]. A second, more central question is whether player 1 can guarantee that
the infinite path visits a vertex inB infinitely often, no matter what choices player 2 makes. The
computation of the winning set of player 1 for this setting iscalled the(alternating) B̈uchi game
problem. The best known algorithms for this problem are algorithms that repeatedly compute the
alternating reachability game solution on the graph after the removal of specific vertices. Their
running time isÕ(n ·m), where we denote bỹO(f) = O(f/ log(f)) (i.e., to omitlog-factors). We
present in this paper a new algorithmic technique for the alternating Büchi game problem which is
inspired by dynamic graph algorithms and reduces the running time toO(n2).

Büchi games: applications and significance.Two-player games on graphs played by player 1 and
the adversary player 2 are central in many problems in computer science, specially in verification
and synthesis of systems such as the synthesis of systems from specifications and synthesis of reac-
tive systems [Church 1962; Pnueli and Rosner 1989; Ramadge and Wonham 1987], verification of
open systems [Alur et al. 2002], checking interface compatibility [de Alfaro and Henzinger 2001],
well-formedness of specifications [Dill 1989], and many others. Besides their application in verifi-
cation, they have also been studied in artifical intelligence as AND-OR graphs [Mahanti and Bagchi
1985], and in the context of alternating Turing machines [Chandra et al. 1981]. The class of Büchi or
repeated reachability objectives was introduced in the seminal works of Büchi [Büchi 1960; 1962;
Büchi and Landweber 1969] in the context of automata over infinite words. The alternating Büchi
game problem has many applications in relation to synthesis, verification and automata theory. For
example, (a) the solution of the synthesis problem for deterministic Büchi automata is achieved
through solving the alternating Büchi game problem (see [Kupferman and Vardi 2005] for the im-
portance of deterministic Büchi automata); and (b) the verification of open systems with liveness
and weak fairness conditions (two key specifications used inverification) is again solved through
the alternating Büchi game problem [Alur et al. 2002]. Vardi [Vardi 2007b; 2007a] discusses further
applications of the alternating Büchi game problem and itsimportance. We mention a few appli-
cations of alternating Büchi games, and its relation to logic and automata theory to highlight its
significance.

(1) (Protocol synthesis).In verification, after safety and reachability conditions,the most widely
used condition is liveness (or weak-fairness) that corresponds to Büchi objectives. For example,
the progress condition in mutual exclusion protocols (thatspecifies that it should always hold
that if there is a request to the criticial section by a process, then the process eventually enters
the critical section) is a liveness condition. The synthesis of mutual exclusion protocols reduces
to solving alternating Büchi games [Chatterjee and Henzinger 2007a]. Moreover, recent works
for synthesis of fair non-repudiation protocols (a class ofsecurity protocols) also only requires
liveness objectives and are synthesized through solution of alternating Büchi games [Chatterjee
and Raman 2012].

(2) (Automata and LTL synthesis).Though deterministic Büchi word automata (DBW) are notω-
regular complete, there are several results of wide interest related to the importance of properties
in verification expressed as a DBW. In particular, DBW can express many important and most
practically relevant fragments of linear-time temporal logic (LTL), the de-facto logic to specify
properties in verification [Kupferman and Vardi 2005; 1998;Alur and Torre 2004; Krishnan et al.
1994]. We mention a few of them below:



(a) It was shown in [Kupferman and Vardi 2005] that a translation from LTL to DBW whenever
possible is much simpler than using complicated determinization of ω-regular automata.
Thus the fragment of LTL that can be translated to DBW can be translated efficiently. More-
over, it was shown in [Kupferman and Vardi 1998] that an important fragment of linear-time
µ-calculus (a formalism to specify properties in verification as fix-point formulas), namely,
linear-time AFMC (alternation freeµ-calculus) exactly corresponds to DBW.

(b) There are many other relevant fragments of LTL that are used in practice and can be trans-
lated to DBW. For example, four subclasses of LTL (with always and eventually operators)
were introduced in [Alur and Torre 2004] and it was shown thatall of them can be translated
to DBW. Another fragment of LTL that can be translated to DBW was presented in [Krish-
nan et al. 1994]. It was shown in all these works that the fragments proposed cover a large
set of properties that are actually used in verification.

(c) Finally, currently the popular fragment of LTL that is used in specifying properties for syn-
thesis is called the GR(1) (generalized reactivity (1)) fragment [Piterman et al. 2006]. A
huge fragment of GR(1) properties for synthesis reduces to conjunction of Büchi objectives.
GR(1) properties consist of a conjunction of assumptions and a conjunction of guarantees.
If the guarantees are safety properties only (or the assumptions are safety properties only),
then GR(1) synthesis reduces to solving alternating games with conjunction of Büchi objec-
tives. Morevoer, in several practical examples of synthesis the properties used satisfy that
the guarantees are safety properties. The most prominent example of synthesis of GR(1)
properties used in industrial example is the synthesis of AMBA AHB protocol [Bloem et al.
2007; Godhal et al. 2011]. In the specifications for AMBA AHB Master and AMBA AHB
Slave the guarantees are either safety properties, or safety with next or until upto 3 steps
(all of which are safety properties) [Godhal et al. 2011]. The synthesis problem for all these
properties are reduced to alternating games with conjunction of Büchi objectives; and alter-
nating games withn vertices,m edges, and conjunction ofk Büchi objectives reduces to
solving alternating Büchi games withk · n vertices andk · m edges.

In summary, many important properties in verification, mostpractically relevant subclasses of stan-
dard logics (such as LTL andµ-calculus) can be translated to DBW, and practical examplesof
specifications used in synthesis are Büchi objectives. Thus alternating Büchi games are of wide
interest and significance to the verification, synthesis andtemporal logic community.

Büchi games: previous results.The alternating Büchi game problem is one of the core problems
in verification and synthesis (as highlighted in the above discussion). The classical algorithm for
alternating Büchi games follows from the results of [Emerson and Jutla 1991; McNaughton 1993;
Zielonka 1998], its complexity isO(n · m). The algorithm was improved in the special case of
game graphs withm = O(n) to O(n2/ log n) time in [Chatterjee et al. 2003]. A generalization of
the algorithm from [Chatterjee et al. 2003] was presented in[Chatterjee et al. 2006], and the new
algorithm requiresO((n · m · log ∆)/ log n) time, where∆ is the maximum outdegree. Thus the
long standing best known upper bound for solving the alternating Büchi game problem is̃O(n ·m).

Motivation for dynamic algorithms. In the design and verification of open systems it is natural that
the systems under verification are developed incrementallyby adding choices or removing choices
for the system, which is represented by player 1. However theadversary, modeled by player 2, is
the environment, and the system design has no control over the environment actions. Hence there
is a clear motivation to obtain dynamic algorithms for the alternating Büchi game problem, when
edges leaving player-1 vertices are inserted or deleted, while edges leaving player-2 vertices remain
unchanged.

Maximal end-component decomposition problem.The standard mathematical model in the anal-
ysis of probabilistic systems are calledMarkov decision processes (MDPs), that exhibit both non-
deterministic and probabilistic behavior [Howard 1960; Courcoubetis and Yannakakis 1995]. We
first present a graph problem that lies at the core of many algorithms in the analysis of MDPs and



probabilistic verification. Given a directed graphG = (V, E) with a finite setV of vertices, a set
E ⊆ V × V of directed edges, and a partition(V1, VP ) of V , anend-componentU ⊆ V is a set
of vertices such that (a) the graph(U, E ∩ U × U) is strongly connected; (b) for allu ∈ U ∩ VP

and all(u, v) ∈ E we havev ∈ U ; and (c) either|U | ≥ 2, or U = {v} and there is a self-loop at
v (i.e., (v, v) ∈ E). Note that ifU1 andU2 are end-components withU1 ∩ U2 6= ∅, thenU1 ∪ U2

is an end-component. Amaximal end-component (mec)is an end-component that is maximal un-
der set inclusion. Every vertex ofV belongs toat mostone maximal end-component. Themaximal
end-component (mec) decompositionconsists of all the maximal end-components ofV and all ver-
tices ofV that do not belong toanymaximal end-component. Maximal end-components generalize
strongly connected components1 for directed graphs (withVP = ∅) and closed recurrent sets for
Markov chains (withV1 = ∅).

MDPs: applications and previous results.In probabilistic verification, systems are frequently
modeled as Markov decision processes. As described below, MDPs are a generalization of graphs.
The generalization is needed to model two different kind of “behaviors” at vertices [Howard 1960].
More specifically there are two types of vertices, namely thevertices inV1, that are regular vertices
in graph algorithmic setting, i.e., where the algorithm canchoose which outedge to follow, and the
vertices inVP , that are vertices where the outedge is chosen randomly according to a given distribu-
tion δ. The former vertices are calledplayer-1 vertices, the latter are calledrandom vertices, and the
probability distribution is calledprobabilistic transition function.The probabilistic transition func-
tion is a distribution over all out-neighbors of a vertex2 and can be different for different random
vertices. More formally, aMarkov decision process (MDP)P = ((V, E), (V1, VP ), δ) consists of a
directedMDP graph(V, E), a partition(V1,VP ) of thefinite setV of vertices, and a probabilistic
transition functionδ: VP → D(V ), whereD(V ) denotes the set of probability distributions over
the vertex setV . Note that (a) a directed graph is a special case of an MDP withVP = ∅ and (b)
a Markov chain is a special case of an MDP withV1 = ∅. MDPs are used to model and solve
control problems in systems such as stochastic systems [Filar and Vrieze 1997], concurrent prob-
abilistic systems [Courcoubetis and Yannakakis 1995], probabilistic systems operating in open en-
vironments [Segala 1995], and under-specified probabilistic systems [Bianco and de Alfaro 1995].
For instance, MDPs are the formal model to analyze systems with randomized embedded sched-
ulers [de Alfaro et al. 2005], or analyze correctness of randomized distributed algorithms (see, e.g.,
[Pogosyants et al. 2000; Kwiatkowska et al. 2000; Stoelinga2002]). Thus MDPs withω-regular
specifications (that can express all commonly used properties in verification) are at the heart of
most problems in probabilistic verification. The maximal-end component decomposition problem is
the graph algorithmic problem required to solve MDPs withω-regular specifications [Courcoubetis
and Yannakakis 1995; de Alfaro 1997]. In addition, several algorithms for analysis of MDPs with
quantitative objectives such aslim sup and lim inf objectives [Chatterjee and Henzinger 2007b],
and combination of mean-payoff and parity objectives [Chatterjee et al. 2010], or multi-objective
optimization in MDPs [Etessami et al. 2008; Brázdil et al. 2011] rely crucially on the maximal
end-component decomposition problem. The previous best known bound to compute the maximal
end-component decomposition of MDPs isO(n ·m) [Courcoubetis and Yannakakis 1995; de Alfaro
1997].

Motivation for dynamic algorithms. As in the case of open systems, in the design and analysis of
probabilistic systems it is natural that the systems under verification are developed incrementally by
adding choices or removing choices for player 1. Hence thereis a clear motivation to obtain dynamic
algorithms for the maximal end-component decomposition problem for MDPs that achieve a better
running time than recomputation from scratch when edges(u, v) with u ∈ V1 are inserted or deleted.

1In this paper we usesccor strongly connected componentfor amaximal strongly connected component.
2More formally we require that for allu ∈ VP and allv ∈ V we have(u, v) ∈ E iff δ(u)(v) > 0.



Our contributions. In this work we present improved static and the first dynamic algorithms for
the alternating Büchi game problem and the maximal end-component decomposition problem using
graph algorithmic techniques. Our main results are as follows.
(1) Alternating B̈uchi games.Our results for alternating Büchi games are as follows:

(a) Improved static algorithm.We present anO(n2) time algorithm for the alternating Büchi
game problem, and thus break the long standing barrier ofÕ(n · m) for the problem. It
follows that along with theO(n2/ log n) algorithm form = O(n) [Chatterjee et al. 2003],
theO(n · m) barrier is now broken for all cases.

(b) First dynamic algorithms.We present the first incremental and decremental algorithmsfor
the alternating Büchi game problem for insertion and deletion of player-1 edges. Our al-
gorithm is based on the progress measure algorithm of [Jurdziński 2000] and generalizes
the Even-Shiloach algorithm for decremental reachabilityin undirected graphs [Even and
Shiloach 1981]. The total time for all operations isO(n · m), i.e., the amortized time per
operation isO(n). Our correctness proof is an elegant fix-point based argument, and to the
best of our knowledge such fix-point based arguments for correctness have not been used
for dynamic graph algorithms.

(2) Maximal end-component decomposition.Our results for maximal end-component decomposi-
tion are as follows:
(a) Improved static algorithms.We present two improved static algorithms for the problem. Our

first improved algorithm requiresO(m ·√m) time. Using our technique to solve alternating
Büchi games, we also present anO(n2)-time algorithm for the problem in MDPs. Thus we
obtain anO(min{m ·√m, n2})-time algorithm for the problem, and hence the problem can
be solved inO(m · n2/3) time, improving theO(m · n) bound from 1995 [Courcoubetis
and Yannakakis 1995; de Alfaro 1997]. This is the first algorithm that breaks theO(m · n)
barrier for the problem.

(b) First dynamic algorithms.We show how to maintain the maximal end-component decompo-
sition after an edge insertion or deletion in time linear in the size of the graph. For the decre-
mental case the running time bound is amortized (amortizedO(n) per operation), whereas
for the incremental case we give a worst case bound (worst caseO(m) per operation). Note
that the problem of maintaining a maximal end-component decomposition generalizes the
problem of maintaining a scc decomposition, and our resultsmatch the best known bounds
for incremental and decremental scc decomposition.

Our main results are shown in Table I. Our results for alternating Büchi games and maximal end-
decomposition improve the bounds for additional problems that we list next.
(1) The problem of computing the set of almost-sure (or probability 1) winning vertices in alter-

nating games with probabilistic transitions (aka simple stochastic games [Condon 1992]) and
Büchi objectives can be solved inO(n2) time improving the previous knowñO(n · m) bound:
this follows from the linear reduction of [Chatterjee et al.2004] from simple stochastic games to
alternating Büchi games for almost-sure winning and our B¨uchi games algorithm.

(2) The problem of computing the set of almost-sure (probability 1) and limit-sure (probability
arbitrarily close to 1) winning vertices in concurrent graph games (aka games with simultaneous
interaction) with constant actions with Büchi objectivescan be solved inO(n2) time: this follows
from the linear reduction from concurrent games to alternating Büchi games [Jurdziński et al.
2002] and our Büchi games algorithm. The best known bound for concurrent graph games with
constant actions with Büchi objectives wasO(n · |δ|), where|δ| is the number of transitions
which isO(n2) in the worst case. Thus, in the worst case the previous best known bound was
O(n3).

(3) As a consequence of ourO(n2) algorithm for Büchi games and the linear reduction of [Chat-
terjee et al. 2004], we also obtain anO(n2) algorithm for computing almost-sure winning states
for MDPs with Büchi objectives. The best known bound for this problem wasO(m ·√m) [Chat-



Table I. Running time analysis: Our results are in bold font.

Previous Algorithm Our Algorithm Incremental Decremental

Alt. Büchi games O(m · n) O(n2) O(n) O(n)

O(n·m·log(∆)
log(n)

) (Amortized) (Amortized)
∆ is max-degree

Max. end-component O(m · n) O(min{m · √m,n2}) O(m) O(n)
(Worst-case) (Amortized)

terjee et al. 2003]. Thus we obtain anO(min{m · √m, n2})-time (henceO(m · n2/3)-time)
algorithm for the problem. Thus, our algorithm is faster than the previous result form > n4/3.

(4) We showed in [Chatterjee and Henzinger 2011] that the almost-sure winning vertices in MDPs
with parity objectives (a canonical form to express allω-regular objectives) can be computed
usinglog(d) calls to a maximal end-component decomposition algorithm and one call to com-
pute almost-sure winning vertices for reachability objectives (which can be treated a special
case of Büchi objectives), whered is the number of priorities (or parities) of the parity objec-
tive. Thus it follows from our results that MDPs with parity objectives can be solved in time
O(log(d) · min{m · √m, n2}).
Our main technical contributions for alternating Büchi games are as follows: (1) The classical al-

gorithm for alternating Büchi games repeatedly removesnon-winningvertices from the game graph
and then recomputes the player-1 winning set for the alternating reachability game problem. Simi-
lar to the classical algorithm our algorithm repeatedly removes non-winning vertices from the game
graph. However, it finds these vertices more efficiently using a hierarchical graph decomposition
technique. This technique was used first by Henzinger et al. [Henzinger et al. 1999] for process-
ing repeated edge deletions in undirected graphs. We show how this technique can be extended to
work for vertex deletions in (directed) game graphs. As a result we achieve faster algorithms for
the alternating Büchi game problem and for computing the maximal end-component decomposi-
tion. Moreover, even in sparse graphs, our technique can be useful. If m = c · n andc is a large
constant, then our hiercharical decomposition can be used with a small number of levels, such as2
or 3, to speed up the algorithm in practice. (2) Even and Shiloach[Even and Shiloach 1981] gave
a deletions-only algorithm for maintaining reachability in undirected graphs. We show how to ex-
tend this algorithm to edge deletions in directed game graphs. A purely graph-theoretic proof of the
correctness of the new algorithm would be lengthy. However,by using an elegant argument based
on fix-points we give a simple proof of the correctness and an analysis of the running time of the
new algorithm. The new algorithm is simple and, like the algorithm in [Even and Shiloach 1981],
does not need any sophisticated data structures. We use a “dual” fix-point argument to construct an
incremental algorithm for alternating Büchi games.

Our main technical contributions for maximal end-component decompositions are as follows:
(1) A bottom sccC is a scc that has no edge leavingC. Our first algorithm for mec decomposition
repeatedly finds bottom scc’s using the scc decomposition algorithm of [Tarjan 1972] and we show
that by lock-step search from a specially chosen set of startvertices we can achieve aO(m · √m)
bound. Our second improved static algorithm uses the same hierarchical graph decomposition tech-
nique as our algorithm for Büchi games. (2) Our result for dynamic algorithms is obtained by com-
bining results for dynamic algorithms for scc decomposition and the analysis of the previous known
static maximal end-component decomposition algorithm.

The paper is organized as follows: In Section 2 we present allthe results for alternating Büchi
games and in Section 3 we present the results for maximal end-component decomposition.

2. ALGORITHMS FOR B ÜCHI GAMES

In this section we will present improved static and the first dynamic algorithms for alternating Büchi
games. We start with the basic definitions and preliminariesrequired.



2.1. Definitions

We consideralternating graph gamesplayed by two-players with Büchi (liveness or repeated reach-
ability) and the complementary coBüchi objectives for theplayers, respectively. We define game
graphs, plays, strategies, objectives and the notion of winning below.

Alternating game graphs.An (alternating) game graphG = ((V, E), (V1, V2)) consists of a di-
rected graph(V, E) with a setV of n vertices and a setE of m edges, and a partition(V1, V2)
of V into two sets. The vertices inV1 areplayer 1 vertices, where player 1 chooses the outgo-
ing edges, and the vertices inV2 areplayer 2 vertices, where player 2 (the adversary to player 1)
chooses the outgoing edges. Intuitively alternating game graphs are the same as AND-OR graphs.
For a vertexu ∈ V , we write Out(u) = {v ∈ V | (u, v) ∈ E} for the set of successor ver-
tices ofu andIn(u) = {v ∈ V | (v, u) ∈ E} for the set of incoming edges ofu. We denote by
outdeg(u) = |Out(u)| the number of outgoing edges fromu, and byindeg(u) = |In(u)| the num-
ber of incoming edges. We assume that every vertex has at least one outgoing edge. i.e.,Out(u) is
non-empty for all verticesu ∈ V .

Plays.A game is played by two players: player 1 and player 2, who forman infinite path in the game
graph by moving a token along edges. They start by placing thetoken on an initial vertex, and then
they take moves indefinitely in the following way. If the token is on a vertex inV1, then player 1
moves the token along one of the edges going out of the vertex.If the token is on a vertex inV2,
then player 2 does likewise. The result is an infinite path in the game graph, calledplays. Formally,
aplay is an infinite sequence〈v0, v1, v2, . . .〉 of vertices such that(vk, vk+1) ∈ E for all k ≥ 0. We
write Ω for the set of all plays.

Strategies.A strategy for a player is a rule that specifies how to extend plays. Formally, astrategy
σ for player 1 is a functionσ: V ∗ · V1 → V that, given a finite sequence of vertices (representing
the history of the play so far) which ends in a player 1 vertex,chooses the next vertex. The strategy
must choose only available successors, i.e., for allw ∈ V ∗ andv ∈ V1 we haveσ(w · v) ∈ Out(v).
The strategies for player 2 are defined analogously. A strategy is memorylessif it is independent of
the history and only depends on the current vertex. Formally, a memoryless strategy for player 1 is a
functionσ: V1 → V such thatσ(v) ∈ Out(v) for all v ∈ V1, and analogously for player 2 strategies.
We writeΣ andΠ for the sets of all strategies for player 1 and player 2, respectively. Given a starting
vertexv ∈ V , a strategyσ ∈ Σ for player 1, and a strategyπ ∈ Π for player 2, there is a unique
play, denotedω(v, σ, π) = 〈v0, v1, v2, . . .〉, which is defined as follows:v0 = v and for allk ≥ 0, if
vk ∈ V1, thenσ(〈v0, v1, . . . , vk〉) = vk+1, and ifvk ∈ V2, thenπ(〈v0, v1, . . . , vk〉) = vk+1.

Objectives.An objectiveΦ ⊆ Ω is a subset of plays, i.e., objectives describe the set of winning
plays. We consider game graphs with a Büchi objective for player 1 and the complementary coBüchi
objective for player 2. For a playω = 〈v0, v1, v2, . . .〉 ∈ Ω, we defineInf(ω) = {v ∈ V |
vk = v for infinitely manyk ≥ 0} to be the set of vertices that occur infinitely often inω. We also
define reachability and safety objectives as they will be useful in the analysis of the algorithms.

(1) Reachability and safety objectives.Given a setT ⊆ V of vertices, the reachability objective
Reach(T ) requires that some vertex inT be visited, and dually, the safety objectiveSafe(F )
requires that only vertices inF be visited. Formally, the sets of winning plays areReach(T ) =
{〈v0, v1, v2, . . .〉 ∈ Ω | ∃k ≥ 0. vk ∈ T } andSafe(F ) = {〈v0, v1, v2, . . .〉 ∈ Ω | ∀k ≥ 0. vk ∈
F}. The reachability and safety objectives are dual in the sense thatReach(T ) = Ω\Safe(V \T ).

(2) Büchi and coB̈uchi objectives.Given a setB ⊆ V of vertices, the Büchi objectiveBuchi(B)
requires that some vertex inB be visited infinitely often, and dually, the coBüchi objective
coBuchi(C) requires that only vertices inC be visited infinitely often. Thus, the sets of winning
plays areBuchi(B) = {ω ∈ Ω | Inf(ω) ∩ B 6= ∅} andcoBuchi(C) = {ω ∈ Ω | Inf(ω) ⊆ C}.
The Büchi and coBüchi objectives are dual in the sense thatBuchi(B) = Ω \ coBuchi(V \ B).
Observe that Büchi and coBüchi objectives aretail (or prefix-independent)objectives, i.e., a play
satisfies the objective if and only if the play obtained by adding or deleting a finite prefix also
satisfies the objective.



Winning strategies and sets.Given an objectiveΦ ⊆ Ω for player 1, a strategyσ ∈ Σ is awinning
strategyfor player 1 from a vertexv if for all player 2 strategiesπ ∈ Π the playω(v, σ, π) is winning,
i.e.,ω(v, σ, π) ∈ Φ. The winning strategies for player 2 are defined analogouslyby switching the
role of player 1 and player 2 in the above definition. A vertexv ∈ V is winning for player 1 with
respect to the objectiveΦ if player 1 has a winning strategy fromv. Formally, the set ofwinning
vertices for player 1with respect to the objectiveΦ is W1(Φ) = {v ∈ V | ∃σ ∈ Σ. ∀π ∈
Π. ω(v, σ, π) ∈ Φ} the set of all winning vertices. Analogously, the set of all winning vertices for
player 2 with respect to an objectiveΨ ⊆ Ω is W2(Ψ) = {v ∈ V | ∃π ∈ Π. ∀σ ∈ Σ. ω(v, σ, π) ∈
Ψ}.

THEOREM 2.1 (CLASSICAL MEMORYLESS DETERMINACY [EMERSON AND JUTLA 1991]).
For all game graphsG = ((V, E), (V1, V2)), all Büchi objectivesΦ for player 1, and the comple-
mentary coB̈uchi objectiveΨ = Ω \ Φ for player 2, we haveW1(Φ) = V \ W2(Ψ). There exists a
memoryless winning strategyσ for player 1 for all vertices inW1(Φ) for the objectiveΦ; and there
exists a memoryless winning strategyπ for player 2 for all vertices inW2(Ψ) for the objectiveΨ.

Thus the theorem shows that every vertex ofV either belongs to the winning set of Büchi objec-
tives of player 1 or to the winning set of coBüchi objectivesfor player 2. Since we only consider
this setting we simply say in the rest of the paper that every vertex either iswinning for player 1or
winning for player 2. Observe that for Büchi objectiveΦ and the coBüchi objectiveΨ = Ω \ Φ by
definition we haveV \ W2(Ψ) = {v ∈ V | ∀π ∈ Π. ∃σ ∈ Σ. ω(v, σ, π) ∈ Φ}. Theorem 2.1 states
thatV \ W2(Ψ) = {v ∈ V | ∃σ ∈ Σ. ∀π ∈ Π. ω(v, σ, π) ∈ Φ}, i.e., the order of the universal and
the existential quantifiers can be exchanged. In other words, if for every strategyπ of player 2 there
exists a strategyσ for player 1 that wins from vertexv, then there exists a (general) strategyσ for
player 1 that wins againsteverystrategyπ of player 2. For all objectives considered in the paper if
there exists a winning strategywith memoryfor a player at a vertexv, then there exists a memoryless
winning strategy for the player atv. Thus for simplicity we will only consider the simpler classof
memoryless strategies.

The algorithmic question.The algorithmic question in alternating graph games with B¨uchi objec-
tive Φ is to compute the setW1(Φ). In the sequel of this section we consider algorithms for Büchi
games, and when we mention winning vertices or strategies wemean winning for Büchi objectives,
unless explicitly mentioned otherwise.

2.2. Classical algorithm

In this section we present the classical iterative algorithm for Büchi games to compute the winning
sets. We then present our new algorithm. We start with the notion of closed sets, attractors, and
alternating reachabilitywhich are key notions for the analysis of all the algorithms we present.
We present the graph theoretic definitions, and then presentwell-known facts that establish the
connection of the graph definitions and strategies in alternating game graphs.

Closed sets.A setU ⊆ V of vertices is aclosed setfor player 1 if the following two conditions
hold: (a) For all verticesu ∈ (U ∩V1), we haveOut(u) ⊆ U , i.e., all successors of player 1 vertices
in U are again inU ; and (b) for allu ∈ (U ∩ V2), we haveOut(u) ∩ U 6= ∅, i.e., every player 2
vertex inU has a successor inU . The closed sets for player 2 are defined analogously as above
by exchanging the roles of player 1 and player 2 (exchangingV1 andV2). Every closed setU for
playerℓ ∈ {1, 2}, induces a sub-game graph, denotedG ↾ U . The following proposition establishes
connection of closed sets and winning for safety, reachability, and coBüchi objectives. The proof of
the proposition is stratight-forward and we present it for sake of completeness.

PROPOSITION 2.2. Consider a game graphG, and a closed setU for player 1. Then the fol-
lowing assertions hold:

(1) Player 2 has a winning strategy for the objectiveSafe(U) for all vertices inU , i.e., player 2 can
ensure that if the play starts inU , then the play never leaves the setU .



(2) For all T ⊆ V \ U , we haveW1(Reach(T )) ∩ U = ∅, i.e., for any setT of vertices outsideU ,
player 1 does not have a strategy from vertices inU to ensure to reachT .

(3) If U ∩B = ∅ (i.e., there is no B̈uchi vertex inU ), then every vertex inU is winning for player 2
for the coB̈uchi objective.

PROOF. We first present the proof of the first item, then show the firstitem implies the second
item (we will also remark that the second item also implies the first item, i.e., they are equivalent).
We will then argue that the third item is an easy consequence.

(1) We present a witness memoryless strategyπ for player 2 to ensure the objectiveSafe(U) for
all vertices inU . For a vertexu ∈ U ∩ V2, the strategyπ(u) = v ∈ U chooses a successor
v in U (such a successor exists since by definition of closed set forall u ∈ U ∩ V2 we have
Out(u)∩U 6= ∅). Consider an arbitrary strategyσ for player 1 and a vertexv ∈ U , and the play
ω(v, σ, π) = 〈v0, v1, v2, . . .〉 with v0 = v. We havev0 ∈ U . Fori ≥ 0, (i) if vi ∈ V1 is a player-1
vertex andvi ∈ U , then sinceU is closed (i.e., all successors ofvi also lie inU ) we have that
vi+1 also belong toU ; and (ii) if vi ∈ V2 is a player-2 vertex andvi ∈ U , then by definition ofπ,
we havevi+1 ∈ U . It follows that the play only visits vertices inU and thus satisfy the objective
Safe(U). Thus the strategyπ is a winning strategy for player 2 for the objectiveSafe(U) for all
vertices inU .

(2) Since player 2 can ensure that from all vertices inU the objectiveSafe(U) is satisfied (i.e.,
vertices outsideU is never visited) (by the first item), it follows that for allT ⊆ V \ U we have
W1(Reach(T ))∩U = ∅. This shows that the first item implies the second item. We also remark
that if we consider the second item withT = V \ U , it implies that for all vertices inU player 2
must ensureSafe(U). In other words, the first and second item are equivalent.

(3) The third item is an easy consequence of the first item as the safety objective implies the coBüchi
objective (i.e.,Safe(U) ⊆ coBuchi(U)). In other words, ifB is never visited, then clearly the
Büchi objective to visitB infinitely often is violated.

The desired result follows.

Attractors. Given a game graphG, a setU ⊆ V of target vertices, and a playerℓ ∈ {1, 2}, the
setAttrℓ(U, G) (calledattractor) is the set of vertices from which playerℓ has a strategy to reach
a vertex inU against all strategies of the other player; that is,Attrℓ(U, G) = Wℓ(Reach(U)). The
setAttr1(U, G) can be defined inductively as follows: letR0 = U ; and for alli ≥ 0 let

Ri+1 = Ri ∪ {v ∈ V1 | Out(v) ∩ Ri 6= ∅} ∪ {v ∈ V2 | Out(v) ⊆ Ri}.

ThenAttr1(U, G) =
⋃

i≥0 Ri. The fact thatAttr1(U, G) = W1(Reach(U)) is standard, for exam-
ple see [Zielonka 1998; Thomas 1997] for details. The inductive definition ofAttr2(U, G) is analo-
gous withV1 replaced byV2 and vice-versa. For all verticesv ∈ Attr1(U, G), definerank(v, U) = i
if v ∈ Ri \ Ri−1, that is,rank(v, U) denotes the leasti ≥ 0 such thatv is included inRi. Define a
memoryless attractor strategyσ ∈ Σ for player 1 as follows: for each vertexv ∈ (Attr1(U, G)∩V1)
with rank(v, U) = i, choose a successorσ(v) ∈ (Ri−1 ∩ Out(v)) (such a successor exists by the
inductive definition). It follows that for all vertexv ∈ Attr1(U, G) and all strategiesπ ∈ Π for
player 2, the playω(v, σ, π) reachesU in at most|Attr1(U, G)| steps. The definition of memory-
less attractor strategy for player 2 forAttr2(U, G) is similar. Observe that forℓ ∈ {1, 2}, we have
U ⊆ Attrℓ(U, G), i.e., the setU always belongs to the attractor.

Alternating reachability. Forℓ ∈ {1, 2}, for a vertexu ∈ Attrℓ(U, G) we say thatu canaltℓ-reach
the setU . In other words, altℓ-reach denotes that playerℓ has a strategy to reach the target set,
irrespective of the strategy of the other player.

Fact. For all game graphsG, all playersℓ ∈ {1, 2}, and all setsU ⊆ V of vertices, the following
holds:



Algorithm 1 Classical algorithm for Büchi Games
Input : A game graphG = ((V, E), (V1, V2)) andB ⊆ V .
Output: W ⊆ V .
1. G0 := G; V 0 := V ; 2. W0 := ∅; 3. j := 0
4. repeat

4.1Wj+1 := AvoidSetClassical(Gj , B ∩ V j)
4.2V j+1 := V j \ Wj+1; Gj+1 = G ↾ V j+1; j := j + 1;

until Wj = ∅
5. W :=

⋃j
k=1 Wk;

6. return W .

ProcedureAvoidSetClassical

Input: Game graphGj andBj ⊆ V j .
Output: setWj+1 ⊆ V j .
1. Rj := Attr1(B

j , Gj); 2. Tr
j := V j \ Rj ; 3. Wj+1 := Attr2(Tr

j , Gj)

(1) The setV \ Attrℓ(U, G) is a closed set for playerℓ, i.e., no playerℓ vertex inV \ Attrℓ(U, G)
has an edge toAttrℓ(U, G) and every vertex of the other player inV \ Attrℓ(U, G) has an edge
in V \ Attrℓ(U, G).

(2) The setAttrℓ(U, G) can be computed in timeO(|∑v∈Attrℓ(U,G) In(v)|) [Beeri 1980; Immer-
man 1981].

COROLLARY 2.3. Every vertex in the setV \ Attr1(B, G) is winning for player 2 and is not
winning for player 1.

We now start with an informal description of the classical algorithm.

Informal description of classical algorithm. The classical algorithm(Algorithm 1) repeatedly
removes vertices from the graph. We describe an iterationj of the algorithm: the set of vertices at
iterationj is denoted byV j , the game graph byGj and the set of Büchi verticesB ∩ V j by Bj .
At iterationj, the algorithm first finds the set of verticesRj from which player 1 can alt1-reach the
setBj , i.e., computesAttr1(B

j , Gj). The rest of the verticesTr
j = V j \ Rj is a closed subset

for player 1, andTr
j ∩ Bj = ∅. Thus the setTr

j is winning for player 2 (by Corollary 2.3).
Then the set of verticesWj+1, from which player 2 can alt2-reach the setTr

j , i.e.,Attr2(Tr
j , Gj)

is computed. The setWj+1 is winning for player 2, andnot for player 1 inGj and also inG.
Thus, it is removed from the vertex set to obtain game graphGj+1. The algorithm then iterates
on the reduced game graph, i.e., proceeds to iterationj + 1 on Gj+1. In every iteration a linear-
time attractor computation is performed with the current B¨uchi vertices as target to find the set of
vertices which can alt1-reach the Büchi set. Each iteration takesO(m) time and the algorithm runs
for at mostO(n) iterations, giving a total time ofO(n · m). The algorithm is formally described as
Algorithm 1. The correctness proof of the algorithm shows that when the algorithm terminates, all
the remaining vertices are winning for player 1 [McNaughton1993; Thomas 1997].

THEOREM 2.4 (CORRECTNESS AND RUNNING TIME). Given a game graph G =
((V, E), (V1, V2)) andB ⊆ V the following assertions hold:

(1) W = W2(coBuchi(V \ B)) andV \ W = W1(Buchi(B)), whereW is the output of Algo-
rithm 1; and

(2) the running time of Algorithm 1 isO(n · m).



We also remark that the analysis of the classical algorithm is optimal, i.e., there exists a family of
game graphs where the classical algorithm requireθ(n · m) time (for example see [Chatterjee et al.
2006]).

2.3. New algorithm

In this section we present our new algorithm for computing the winning set for game graphs with
Büchi objectives in timeO(n2).
Notations.Given an alternating game graphG = ((V, E), (V1, V2)) and a setB of Büchi vertices,
we label the Büchi vertices as priority 0 vertices, and the setV \ B as priority 1 vertices. For every
vertexv the inedges have afixedorder such that all edges from priority 1 player-2 vertices come
before all other edges. In other words, we assign priority 1 to edges(u, v) such thatu ∈ (V \B)∩V2

(player-2 vertices that are not Büchi vertices), and assign priority 0 to all other edges, and priority 1
edges come before priority 0 edges in the fixed order of the edges. LetG̃ = (Ṽ , Ẽ) be a sub-graph
of G with Ṽ ⊆ V , andẼ ⊆ E ∩ (Ṽ × Ṽ ), such that each vertex has at least one outgoing edge. We
definelog n sub-graphs̃Gi of G̃ such thatG̃i = (Ṽ , Ẽi). The setẼi contains all edges(u, v) where

(1) |Out(u) ∩ Ẽ| ≤ 2i (i.e., the outdegree ofu in Ẽ is at most2i), or
(2) the edge(u, v) belongs to the first2i inedges of vertexv in Ẽ.

Note thatẼi−1 ⊆ Ẽi since the order of the inedges is fixed. We color every player-1 vertexv in G̃i

blue if outdeg(v) > 2i in Ẽ. We color every player-2 vertexv in Gi red if outdeg(v) > 2i in Ẽ.
All other vertices have color white. For every vertexv that is white inG̃i, all its outedgesOut(v)

are contained iñEi. There are up to2i · n such edges tõEi. Additionally the first up to2i inedges
of every vertex belong tõEi, and again there are up to2i ·n such edges tõEi. Thus|Ẽi| ≤ 2i+1 ·n.
Note thatG̃ = G̃log n and thus all vertices iñGlog n are white.
The new algorithm NEWBUCHIALGO. The new algorithm consists of two nested loops, an outer
loop with loop counterj and an inner loop with loop counteri. The algorithm will iteratively delete
vertices from the graph, and we denote byDj the set of vertices deleted in iterationj, and byU the
set of vertices deleted in all iterations upto the current iteration (initiallyU is empty). Forj ≥ 1, we
will denote byGj the game graph after removal of the setU of vertices at the beginning of iteration
j. We denote the vertex set in iterationj asV j , the edge set asEj , and the Büchi set asBj (i.e.,
Bj := V j ∩ B). We denote byGj

i = (V j , Ej
i ) the sub-graph ofGj = (V j , Ej) as defined above

(i.e., we treatGj asG̃ and obtainGj
i andG̃i). For clarification we have the following properties for

Gj
i : Ej

i contains all edges(u, v) where (i) |Out(u) ∩ Ej | ≤ 2i or (ii) the edge(u, v) belongs to
the first2i inedges of vertexv in Ej ; (iii) Ej

i−1 ⊆ Ej
i ; (iv) every player-1 vertexv in Gj

i is blue if

outdeg(v) > 2i in Ej ; (v) every player-2 vertexv in Gj
i is red if outdeg(v) > 2i in Ej ; and (vi) all

other vertices have color white. Note thatG0
i is Gi (the initial graphs). Also note that since vertices

are removed over iterations, the graphsGj
i can include edges that were not included inG0

i . The
intuitive description of the new algorithm is as follows: Starting fromi = 0 the algorithm searches
in each iterationj in each graphGj

i for a special player-1 closed setSj with no Büchi vertex and
stops at the smallesti at which such a closed set exists. SinceSj ∩Bj = ∅, Proposition 2.2 implies
that all the vertices inSj are winning for player 2. Thus, by the same arguments as for the classical
algorithm the player-2 attractorAttr2(S

j , Gj
i ) are winning for player 2 inGj

i and, as our correctness
proof shows, also winning inG. Thus they are removed from the vertex set and the algorithm iterates
on the reduced game graph. ComputingSj takes timeO(2i · n) and, due to the fact that no such
set was found inGj

i−1 we can show thatSj contains at least2i−1 vertices. Thus, using amortized
analysis we chargeO(n) to each of the2i−1 vertices inSj that are removed, giving a total running
time ofO(n2). The details of NEWBUCHIALGO follow.



(1) Let j := 0; Y0 := Attr1(B, G); X0 := V \ Y0; D0 := Attr2(X, G).
(2) Remove the vertices ofDj to obtain graphGj ; j := j + 1; andU := U ∪ Dj;
(3) i := 1;
(4) repeat

(a) Construct graphGj
i . Let Zj

i be the vertices ofV j that are (i) either redwith no outedgesin
Gj

i or (ii) blue inGj
i .

(b) Y j
i := Attr1(B

j ∪ Zj
i , Gj

i );
(c) Sj := V j \ Y j

i ;
(d) i := i + 1;

(5) until Sj is non-empty ori = log n
(6) if Sj 6= ∅, thenDj := Attr2(Sj , G

j) and go to Step 2, else the whole algorithm terminates and
outputsV \ U .

Note that in Step 2 the vertex setDj is removed to obtain the graphGj , but we do not immedi-
ately construct all sub-graphsGj

i . Instead we constructGj
i in the inner loop, i.e., the graphGj

i is
constructed only ifV j \ Y j

i−1 is empty in iterationi − 1 of the inner loop.

Correctness analysis.Let U∗ be the set of vertices removed from the graph over all iterations and
Y ∗ = V \U∗ be the output of the algorithm. We first show thatY ∗ ⊆ W1(Φ), whereΦ is the Büchi
objective, i.e.,Y ∗ is winning for player 1. Then we show thatU∗ ∩ W1(Φ) = ∅ (i.e., U∗ is not
winning for player 1). Together with Theorem 2.1 this shows thatY ∗ = W1(Φ) estabilishing the
correctness of the algorithm. Finally we analyze the running time of the algorithm. We first present
Lemma 2.5 and Lemma 2.7 and the proofs of these two lemmata aresimilar (but not identical
as our algorithm and the classical algorithm removes different sets in respective iterations) to the
correctness proof for the classical algorithm.

LEMMA 2.5. Let Y ∗ be the output ofNEWBUCHIALGO, and letG∗ and B∗ be the game
graph and the B̈uchi set on termination, respectively (i.e.,G∗ is the graph induced byY ∗ andB∗ is
B ∩ Y ∗). The following assertions hold:

(1) Y ∗ = Attr1(B
∗, G∗), i.e., player 1 can alt1-reach the setB∗ in G∗ fromY ∗.

(2) Y ∗ is a player-2 closed set in the original game graphG.
(3) Y ∗ ⊆ W1(Φ), whereΦ is the B̈uchi objective.

PROOF. We prove the three parts below.

(1) Consider the last iterationj∗ of the outer loop of the algorithm. Since it is the last iteration, the
setSj∗ must be empty. It follows thati must have beenlog n in the last iteration of the repeat

loop, i.e., the last iteration of the repeat loop consideredGj∗

log n = G∗. Let i = log n. Note that

all vertices are white inG∗, i.e.,Zj∗

i was empty. Hence we haveY j∗

i = Attr1(B
∗ ∪Zj∗

i , G∗) =

Attr1(B
∗, G∗). Note thatY ∗ = Y j∗

i . Hence the fact thatSj∗ was empty at the end of the

iteration implies thatV j∗ \ Y j∗

i was empty, i.e., all vertices ofG∗ belong toAttr1(B
∗, G∗).

HenceY ∗ = Attr1(B
∗, G∗).

(2) Whenever a set of vertices is deleted in any iteration, itis an player-2 attractor. Hence if a vertex
u ∈ Y ∗ ∩ V2 would have an edge to a vertexv ∈ U∗, thenu would have been included inU∗

(whereU∗ = V \ Y ∗). Similarly for a player 1 vertexu ∈ Y ∗ ∩ V1 it must have an edge inY ∗,
as we assume that it has at least one outedge and if all its outedges pointed toU∗ it would have
been included inU∗. It follows thatY ∗ is a player-2 closed set inG.

(3) The result is obtained from the previous two items. Consider a memoryless attractor strategyσ
in G∗ for player-1 that ensures that for all vertices inY ∗ the setB∗ is reached within|Y ∗| steps
against all strategies of player-2. Moreover the strategy only chooses successor inY ∗. SinceY ∗

is a player-2 closed set, it follows that against all strategies of player-2 the setY ∗ is never left,



Uj−1

Sj Bj

Fig. 1. Pictorial depiction ofUj−1 andSj .

thus it is ensured thatB∗ is visited infinitely often. Hence the strategyσ ensures that for all
verticesv ∈ Y ∗ and all strategiesπ we haveω(v, σ, π) ∈ Φ. It follows thatY ∗ ⊆ W1(Φ).

The desired result follows.

To complete the correctness proof we need to show that ifU∗ = V \ Y ∗, thenU∗ ∩W1(Φ) = ∅,
whereΦ is the Büchi objective. We will show the result by inductionon the number of iterations.
Let us denote byUj the set of vertices removed till iterationj. The base case is trivial as initially
U = ∅. By inductive hypothesis, we assume forj ≥ 1 we haveUj−1 ∩ W1(Φ) = ∅, and then show
thatUj ∩ W1(Φ) = ∅. Let Gj be the alternating game graph obtained after removal of the setUj−1

of vertices. We will show the following proposition.

PROPOSITION 2.6. In Gj , let Sj be the non-empty set identified in iterationj, then
Attr1(B

j , Gj) ∩ Sj = ∅.

In the following lemma we first show how with Proposition 2.6 we establish the correctness of our
algorithm and finally prove Proposition 2.6 to complete the correctness proof.

We first depict the situation with the aid of a figure that wouldhelp in understanding the following
lemma. The situation is shown in Figure 1 where2 denote player-1 vertices and3 denote player-2
vertices. In the figureUj−1 denotes the vertices already removed, and since player-2 attractors are
removed it follows that player-2 edges toUj−1 are not possible from the remaining vertices. Since
Sj is a closed set for player 1, for all player-1 vertices inSj either the edges point toUj−1 or toSj,
but not to vertices outsideUj−1 ∪ Sj, and all player-2 vertices inSj have at least one edge inSj.
Also note that the vertex setBj of the remaining Büchi vertices (after removal ofUj−1) does not
intersect withSj . With this pictorial view we now prove the following lemma.

LEMMA 2.7. The inductive hypothesis thatUj−1 ∩ W1(Φ) = ∅ and Proposition 2.6 implies
thatUj ∩ W1(Φ) = ∅.

PROOF. We first show a claim, and then use it to establish the lemma.

Claim. The inductive hypothesis thatUj−1 ∩ W1(Φ) = ∅ and Proposition 2.6 implies thatSj ∩
W1(Φ) = ∅.

We first prove the claim. By Proposition 2.6 we haveAttr1(B
j , Gj)∩Sj = ∅, and it follows that

if player 1 follows a strategy from any vertex inSj such that the setV j = V \ Uj−1 of vertices is
never left, then no Büchi vertex is ever reached, as it is notpossible to reachBj from a vertex ofSj

in the subgraphGj . If the setV j is left after a finite number of steps, then the setUj−1 is reached,



and by inductive hypothesisUj−1 ∩ W1(Φ) = ∅, i.e., player 2 can ensure fromUj−1 that the set of
Büchi vertices is visited finitely often. Since the Büchi objective is independent of finite prefixes, it
follows that if V j is left andUj−1 is reached, then player 2 ensures that the Büchi objective is not
satisfied. It follows thatSj ∩ W1(Φ) = ∅. Thus we have the desired claim.

We now prove the lemma using the above claim. Observe thatUj \Uj−1 is a player 2 attractor to
Sj , and hence player 2 can ensure fromUj \Uj−1 thatSj is reached in finite number of steps. Since
Büchi objectives are independent of finite prefixes, by inductive hypothesisUj−1 ∩ W1(Φ) = ∅,
and by the above claim we haveSj ∩ W1(Φ) = ∅, it follows thatUj ∩ W1(Φ) = ∅.

Hence to complete the proof we need to establish Proposition2.6. Suppose a non-empty subset
Sj is identified at iterationj and letSj be identified at iterationi of the inner loop. Observe that
we haveSj = V j \ Attr1(B

j ∪ Zj
i , Gj

i ) and thusSj ∩ Attr1(B
j ∪ Zj

i , Gj
i ) = ∅. This implies

that Sj ∩ Attr1(B
j , Gj

i ) = ∅. However to establish Proposition 2.6 we need to show thatSj ∩
Attr1(B

j , Gj) = ∅ (which does not follow fromSj ∩ Attr1(B
j , Gj

i ) = ∅ asGj may have more
edges thanGj

i ). While the proofs of Lemma 2.5 and Lemma 2.7 are similar to the correctness proof
of the classical algorithm, establishing Proposition 2.6 and the running time analysis is the heart
of our proof. The proofs require the notion of a separating cut: separating cuts and the following
lemmata of the section are the crux of the proof.

Separating cut.We say a setS of vertices induces aseparating cutin a graphGi or Gj
i if (a) the

only edges fromS to V \ S come from player-2 vertices inS, (b) every player-2 vertex inS has an
edge to another vertex inS, (c) every player-1 vertex inS is white, and (d)B ∩ S = ∅. ThusS is a
player-1 closed set where every player-1 vertex is white andwhich does not contain a vertex inB.

We will now present some lemmata that will establish Proposition 2.6 and will also be used in
the running time analysis.

LEMMA 2.8. Let G = ((V, E), (V1, V2)) be a game graph where every vertex has at least
outdegree 1, andG′ = ((V, E′), (V1, V2)) be a sub-graph ofG with E′ ⊆ E. LetVW be the set of
vertices that are colored white such that for all verticesv in VW we haveOut(v)∩E = Out(v)∩E′.
LetZ ⊆ V \ VW be a set of blue player-1 and red player-2 vertices ofG′ such that all red vertices
in Z have outdegree 0 inG′. If S induces a separating cut inG′, thenS ∩ Attr1(B ∪ Z, G) = ∅.

PROOF. We first show that every vertex inS has an edge to another vertex inS in G′. For player-
2 vertices this follows from condition (b) of a separating cut. For player-1 vertices this follows since
they have outdegree 1 inG, are white inG′, and cannot have an edge to a vertex inV \ S.

Note thatS∩ (B∪Z) = ∅ sinceS contains no blue vertex, every red vertex inS has outdegree at
least 1 andB ∩ S = ∅ by condition (d) of a separating cut. By condition (a) of a separating cut for
all player-1 vertices inS all outgoing edges ofG′ are inS. It follows thatS is a player-1 closed set
in G′. By condition (c) of a separating cut all player-1 vertices in S must be white (i.e.,S ⊆ VW ),
and for white vertices inVW the set of outedges inG′ andG coincide. It follows thatS is a player-1
closed set inG. SinceS is a player-1 closed set inG andS ∩ (B ∪ Z) = ∅, the result follows from
Proposition 2.2 (second item).

LEMMA 2.9. Let Sj be the non-emptyset computed byNEWBUCHIALGO in iteration j. Then
(1) Sj is a separating cut inGj ; and (2)Sj ∩Attr1(B

j , Gj) = ∅.

PROOF. We establish both the items of the result.

(1) We establish all the conditions of a separating cut forSj , whereSj is obtained in iterationi∗ of
the inner loop for iterationj.
(a) Condition (a).By construction no player-1 vertex inSj has an edge toV j \ Sj , otherwise

it would belong to the player-1 attractor ofBj ∪ Zj
i∗ . Since all player-1 vertices inSj are

white inGj
i∗ , the outedges of the player-1 vertices inSj are the same inEj

i∗ and inEj . Thus
condition (a) of a separating cut holds inGj .



(b) Condition (b).Every player-2 vertexv in Sj must have an edge inEj
i∗ to a vertex inSj,

otherwise all its edges inEj
i∗ would go to vertices inV j \ Sj and thus it would belong to

Attr1(B
j ∪ Zj

i∗ , G
j
i∗). SinceEj

i∗ ⊆ Ej , it follows that every player-2 vertexv in Sj must
have an edge inEj to a vertex inSj . Hence condition (b) of a separating cut holds inGj .

(c) Condition (c).All vertices are white inGj . Thus condition (c) holds trivially.
(d) Condition (d).The condition (d),Sj ∩ Bj = ∅ holds, since otherwise a vertex ofSj would

belong toBj and, thus, toAttr1(B
j ∪ Zj

i∗ , G
j
i∗).

ThusSj induces a separating cut inGj . The desired result follows.
(2) Letv be a vertex inSj . By constructionv cannot alt1-reachBj ∪ Zj

i∗ in Gj
i∗ , wherei∗ was the

last value ofi in the repeat loop of iterationj. We will show thatv cannot alt1-reachBj in Gj .
As we showed in the first item of the lemma,Sj induces a separating cut inGj ; and thus we can
apply Lemma 2.8 withG = Gj , G′ = Gj

i∗ , Z = ∅, andS = Sj to obtain the result of the second
item.

The desired result follows.

Lemma 2.9 proves Proposition 2.6 and this completes the correctness proof, and gives the fol-
lowing lemma.

LEMMA 2.10. Let Y ∗ be the output ofNEWBUCHIALGO. Then we haveY ∗ = W1(Φ), where
Φ is the B̈uchi objective.

Running time analysis.We now analyze the running time of the algorithm.

LEMMA 2.11. Let Gj
i be the game graph in iterationj of the outer loop and iterationi of the

inner loop. IfS induces a separating cut inGj
i , thenS ⊆ Sj .

PROOF. Let Zj
i be the set of blue and degree-0 red vertices ofGj

i as defined in iterationj of
the outer loop andi of the inner loop of the algorithm. We invoke Lemma 2.8 withG = G′ = Gj

i ,
B = Bj andZ = Zj

i , and obtain that none of the vertices inS can alt1-reachBj ∪Zj
i in Gj

i . Hence
we haveS ⊆ V j \ Attr1(B

j ∪ Zj
i , Gj

i ). ThusS ⊆ Sj .

LEMMA 2.12. Consider an iterationj of the outer loop ofNEWBUCHIALGO such that the
algorithm stops the inner loop at valuei and identifies a non-empty setSj . ThenSj is a separating
cut inGj

i .

PROOF. Consider the non-empty setSj obtained in the graphGj
i . First, note that all player-1

vertices inSj are white, sinceZj
i contains all blue player-1 vertices ofV j andSj = V j\Attr1(B

j∪
Zj

i , Gj
i ). Also note that all red player-2 vertices without an outedgealso belong toZj

i . SinceSj is a
complement of a player-1 attractor inGj

i it follows thatSj is a player-1 closed set. Moreover as the
target setBj ∪ Zj

i contain all Büchi vertices, there is no Büchi vertex inSj . ThusSj is a player-1
closed set where every player-1 vertex is white, andSj does not contain a Büchi vertex. Thus,Sj

induces a separating cut inGj
i .

Note thatGj has possibly more edges thanGj
i and separating cuts are not preserved if we con-

sider more edges (condition (a) maybe violated) or less edges (condition (b) maybe violated). Thus
Lemma 2.12 is neither a consequence of nor implies Lemma 2.9 (item 1). By Lemma 2.12 we have
thatSj is a separating cut inGj

i . Lemma 2.11 shows that every separating cutS in Gj
i is a subset

of Sj . It follows thatSj is the largest (under set inclusion) separating cut. Recallthat for the run-
ning time analysis we need to show that computingSj takes timeO(2i · n) and, due to the fact
that no such set was found inGj

i−1 we can show thatSj it contains at least2i−1 vertices. Using



Lemma 2.11 we show that NEWBUCHIALGO identifies a separating cut inGj
i for the smallesti,

and also identifies the largest separating cut inGj
i . Thus Lemma 2.11 is key to the running time

analysis, which we present in Lemma 2.13. Before the detailsof Lemma 2.13 we describe the data
structure to ensure that in every iterationj, the construction of the graphGj

i can be achieved in time
O(n · 2i).

Graph construction.We maintain with each vertex (i) the list of its outedges; (ii) the list of its
inedges sorted according to the fixed order of inedges (i.e.,edges from priority 1 player-2 vertices
or priority 1 edges come before all other edges); (iii) list of pointers to the element of the list of
outedges and inedges of other vertices it belongs to. When a vertex is removed in an iteration, then
using the list of pointers we update the list of inedges and outedges of the other vertices. Hence over
all iterations the data structures are maintained withO(n2) work. Given the list of outedges and
inedges in sorted order, the graphGj

i is constructed in timeO(n · 2i) as for every vertex we traverse
the list of inedges and outedges upto the first2i elements.

LEMMA 2.13. The total time spent byNEWBUCHIALGO is O(n2).

PROOF. We present theO(n2) running time analysis and we consider two cases. Recall that
vertices inV \ B are refered as priority-1 vertices.

All other than the last iteration of the outer loop.Assume in iterationj the algorithm stops the
repeat until loop at valuei and this is not the last iteration of the algorithm. ThenSj is not empty.
By Lemma 2.12 we have thatSj induces a separating cut inGj

i . Consider the setSj in Gj
i−1. There

are 2 cases to consider:

(1) Case 1:Sj contains a player-1 vertexx that is blue inGj
i−1. Thusx has outdegree at least2i−1

in Gj
i and none of these edges go to vertices inV j \ Sj in Gj

i . Thus,Sj contains at least2i−1

vertices.
(2) Case 2:All player-1 vertices inSj are white inGj

i−1. Thus, their outedges inGj
i andGj

i−1 are
identical.
Consider a player-2 vertexu in Sj . Thus there exists an edge(u, v) ∈ Ej

i with v ∈ Sj . There
are two possibilities.
— Case 2a:For all player-2 verticesu ∈ Sj there exists a vertexv ∈ Sj with (u, v) ∈ Ej

i−1.

But thenSj would be a separating cut inGj
i−1. By Lemma 2.11 it follows that a non-empty

subsetS with Sj ⊆ S would be non-empty in iterationi− 1 and thus the repeat loop would
have stopped after iterationi−1. This is not the case and thus the condition of Case 2a does
not hold.

— Case 2b:There exists a player-2 vertexu ∈ Sj that has an edge(u, v) ∈ Ej
i to a vertex

v ∈ Sj but this edge is not contained inEj
i−1. This can only happen ifv has at least2i−1

other inedges inEj
i−1. Note thatu is a priority-1 player-2 vertex, and hence the edge(u, v)

has priority 1 and recall that by the fixed inorder of edges, priority-1 edges come before all
priority 0 edges. Hence it follows that since the edge(u, v) is not inGj

i−1, all inedges ofv

that are inGj
i−1 must have priority 1 by the fixed order of inedges, i.e., all the inedges ofv in

Gj
i−1 are from priority-1 player-2 vertices. We now argue that no priority-1 player-2 vertex

in Y j
i = V j \ Sj has an edge to a vertexSj in Gj

i : (i) all priority 1 player-2 vertices inZj
i

are red (and hence have no outgoing edge inGj
i ); and (ii) sinceY j

i = Attr1(B
j ∪ Zj

i , Gj
i )

we have that for all player-2 vertices in(Y j
i \ (Bj ∪ Zj

i )) all its outgoing edges inGj
i must

be contained inY j
i . Thus no priority-1 player-2 vertex inV j \ Sj has an edge to a vertex of

Sj in Gj
i . SinceEj

i−1 ⊆ Ej
i , no priority-1 player-2 vertex inV j \Sj has an edge to a vertex

in Sj in Gj
i−1. It follows that none of the inedges ofv in Gj

i−1 are fromV j \ Sj and, since



v has at least2i−1 inedges from priority-1 player-2 vertices, the setSj must contain at least
2i−1 player-2 vertices.

Thus in either caseSj contains at least2i−1 vertices and all these vertices are deleted. The time
spent for all the executions of the repeat loop in this iteration of the outer loop is the time spent in
all graphsG1, G2, ..., Gi∗ , which sums toO(2i · n) (for the graph construction and the attractor
computation). We chargeO(n) work to each deleted vertex. This accounts for all but the last itera-
tion of the outer loop. As the algorithm deletes at mostn vertices the total time spent over the whole
algorithm other than the last iteration isO(n2).
The last iteration of the outer loop.In the last iterationj∗ of the outer loop, when no vertex is
deleted, the algorithm works on alllog n graphs, spending timeO(n · 2i) in graphGj∗

i . Since each
graphGj∗

i has at mostn · 2i+1 edges and there arelog n graphs, the total number of edges worked
in the last iteration is

log n∑

i=1

n · 2i+1 = 4 · n ·
log n∑

i=1

2i−1 = 4 · n · (2log n − 1) = 4 · n · (n − 1) = O(n2).

Hence the total time required in the last iteration isO(n2). An identical argument also shows that
the time to build all the graphsGj∗

i is at mostO(n2). Hence the desired result follows.

THEOREM 2.14. Given an alternating game graphG with n vertices, and an B̈uchi objective
Φ, algorithmNEWBUCHIALGO correctly computes the winning setW1(Φ) in timeO(n2).

2.4. Decremental and incremental algorithms

In this section we present the decremental and incremental algorithms for computing the winning
set in game graphs with Büchi objectives. We will show that thesmall progress measurealgorithm
of [Jurdziński 2000] works in total timeO(n · m) for a sequence of player-1 edge deletions or
insertions, and hence the amortized time per operation isO(n).
Motivation. In verification and synthesis of open systems, the systems under verification are devel-
oped incrementally by adding choices (or decrementally by removing choices) for the system till
the objective is satisfied. The system choices are represented by player 1, whereas the adversary,
modeled by player 2, is the adversarial environment, and thesystem design has no control over the
environment choices. Hence dynamic algorithms with player-1 edge deletions or insertions are the
relevant decremental and incremental algorithms requiredfor Büchi games, and we will only study
these kind of update operations. Moreover, since Büchi objectives generalize reachability objectives,
and alternating game graphs generalize directed graphs, our algorithm is a significant generalization
of the Even-Shiloach algorithm [Even and Shiloach 1981] fordecremental reachability in graphs.
However our proof is very different, based on a fix-point argument, and is much simpler. In other
words, the second motivation is to present decremental and incremental algorithms for alternating
games (that subsume graphs) with simple fix-point based correctness proof.
Summary of previous results.Our decremental and incremental algorithms will be based onthe
small progress measure algorithm of [Jurdziński 2000], which takesO(n · m) time for alternating
Büchi and coBüchi games.3 In our decremental algorithm we will use the small progress measure
algorithm for alternating games withBüchi objectives; and in our incremental algorithm we will
use the small progress measure algorithm for alternating games withcoBüchiobjectives. The small
progress measure algorithm for Büchi games maintains an integer (calledprogress measure) for
every vertex and updates it using a monotoniclift operation based on the successor vertices, un-
til a fix-point is reached. We will show how to adapt the progress measure algorithm to present
decremental and incremental algorithms for alternating B¨uchi games.

3We will specialize the small progress measure algorithm of [Jurdziński 2000] (that also works for parity objectives) for
Büchi and coBüchi objectives.



2.4.1. Decremental algorithm for Büchi games. In this section we present the decremental algorithm,
and we consider only deletion of player-1 edges, as discussed in the motivation.

Previous results on progress measure [Jurdziński 2000].Our decremental algorithm is based on
the notion of progress measure. We start with the notion of a progress measure and valid progress
measure.

Progress measure.Given a game graph withn vertices, a progress measure is a functionρ : V →
[n] ∪ ⊤, where[n] = {0, 1, 2, . . . , n}, that assigns to every vertex either a number from0 to n,
or the top element⊤. We will follow the conventions that: (a) for allj ∈ [n] we havej < ⊤;
(b) n + 1 = ⊤; (c) ⊤ + 1 = ⊤; (d)⊤ ≥ ⊤. Intuitively,⊤ will be assigned to a vertex if it does not
belong to the winning set. Given a game graph with a setB of Büchi vertices, a progress measureρ
is avalid progress measure if the following conditions hold for allv ∈ V :

ρ(v)





≥ min(v,w)∈E ρ(w) + 1 v ∈ V1 \ B;

≥ max(v,w)∈E ρ(w) + 1 v ∈ V2 \ B;
{

= ⊤ v ∈ V1 ∩ B, for all (v, w) ∈ E we haveρ(w) = ⊤;

= 0 v ∈ V1 ∩ B, there exists(v, w) ∈ E such thatρ(w) 6= ⊤;
{

= ⊤ v ∈ V2 ∩ B, there exists(v, w) ∈ E such thatρ(w) = ⊤;

= 0 v ∈ V2 ∩ B, for all (v, w) ∈ E we haveρ(w) 6= ⊤;

We define the comparison operators≤,≥ on progress measures with thepointwisecomparison, i.e.,
for ⊲⊳∈ {≤,≥} and progress measuresρ1 andρ2, we writeρ1 ⊲⊳ ρ2 iff for all v ∈ V we have
ρ1(v) ⊲⊳ ρ2(v).

Lift operation on progress measure.Given a game graphG, the functionLift
G takes as input a

progress measure and returns a progress measure. For all input progress measuresρ, the output
progress measureρ′ = Lift

G(ρ) is defined as follows: for allv ∈ V , (i) for v ∈ V1 ∩ B, we have
ρ′(v) = ⊤ if for all (v, w) ∈ E we haveρ(w) = ⊤, and 0 otherwise; (ii) forv ∈ V2 ∩ B, we have
ρ′(v) = ⊤ if there exists(v, w) ∈ E with ρ(w) = ⊤, and 0 otherwise; (iii) forv ∈ V1 \B, we have
ρ′(v) = min(v,w)∈E ρ(w) + 1; and (iv) forv ∈ V2 \ B, we haveρ′(v) = max(v,w)∈E ρ(w) + 1.
A functionf operating on progress measures (that takes as input a progress measure and returns a
progress measure) is calledmonotonicif for all progress measuresρ1 ≤ ρ2 we havef(ρ1) ≤ f(ρ2).

LEMMA 2.15. For all game graphsG, the functionLift
G is monotonic.

PROOF. Consider progress measuresρ1, ρ2 such thatρ1 ≤ ρ2. For a non-Büchi vertexv ∈
(V \ B) we have

Lift
G(ρ1)(v) =

{
min(v,w)∈E ρ1(w) + 1 ≤ min(v,w)∈E ρ2(w) + 1 = Lift

G(ρ2)(v) v ∈ V1 \ B;

max(v,w)∈E ρ1(w) + 1 ≤ max(v,w)∈E ρ2(w) + 1 = Lift
G(ρ2)(v) v ∈ V2 \ B;

whereE is the set of edges inG. It follows that for all v ∈ (V \ B) we haveLift
G(ρ1)(v) ≤

Lift
G(ρ2)(v). Note that for vertices inB, progress measures are either 0 or⊤. For v ∈ B we

have the following cases: (i)v ∈ V1 ∩ B: if Lift
G(ρ1)(v) = ⊤, then for all(v, w) ∈ E we have

ρ1(w) = ⊤, and hence for all(v, w) ∈ E we haveρ2(w) = ⊤; thusLift
G(ρ2)(v) = ⊤; and

(i) v ∈ V2 ∩ B: if Lift
G(ρ1)(v) = ⊤, then there exists(v, w) ∈ E with ρ1(w) = ⊤, and hence

we haveρ2(w) = ⊤; thusLift
G(ρ2)(v) = ⊤. It follows that we haveLift

G(ρ1) ≤ Lift
G(ρ2). The

desired result follows.

SinceLift
G is a monotonic function on a finite lattice, by the Tarski-Knaster Theorem [Kechris

1995] it has a least fix-point. Given a player-1 attractorAttr1(U, G), theminimal alternating dis-
tanceof a vertexv ∈ Attr1(U, G) is the rankrank(v, U) of the vertexv (in other words it is the



alternating shortest distance toU where player-1 minimizes the distance and player-2 maximizes
the distance toU ) (recall the definition of rank from Section 2.1). The resultof [Jurdziński 2000]
established that for all game graphsG, (i) there is auniqueleast fix-pointρ∗ of Lift

G, (ii) the least
fix-point ρ∗ is a valid progress measure, (iii) the least fix-pointρ∗ fulfills the following conditions:
(a) for all verticesv in the complement of the winning set we haveρ∗(v) = ⊤; (b) for all Büchi
verticesv in the winning set we haveρ∗(v) = 0; and (c) for all non-Büchi verticesv in the winning
set we haveρ∗(v) = rank(v, B∗), whereB∗ is the set of Büchi vertices in the winning set (i.e.,
in the winning set the progress measure equals the minimal alternating distance to the set of Büchi
vertices in the winning set). The result of [Jurdziński 2000] holds actually for the more general case
of parity objectives, and the specialization to Büchi objectives yields the above properties.

THEOREM 2.16 ([JURDZIŃSKI 2000]). For all game graphsG, let ρ∗ be the least fix-point of
Lift

G, and let||ρ∗|| = {v ∈ V | ρ(v) ∈ [n]} denote the set of vertices that are not assigned the top
element. Then||ρ∗|| = W1(Φ), whereΦ is the B̈uchi objective.

Decremental algorithm.We now present our decremental algorithm. Our algorithm initially com-
putes the least fix-point progress measureρ∗ of the graph and then maintains it after each edge
deletion by repeatedly applying the lift operator to the fix-pointρ∗ storedbeforethe edge deletion.
To prove the correctness we will show that the fix-point obtained by repeatedly applying the lift
operator on the previous least fix-point converges to the least fix-point of the new game graph. The
algorithm maintains the following data structure: (i) For each vertexx ∈ V1 ∩ B it keeps a list of
verticesw such that(x, w) ∈ E andρ∗(w) 6= ⊤ and (ii) for each vertexx ∈ V1 \B a list of vertices
w such that(x, w) ∈ E andρ∗(x) = ρ∗(w) + 1. (iii) Every edge(x, w) has a pointer to its location
in the list ofx if it is stored in such a list. During each update operation, the algorithm maintains a
queue data structure that contains all player-2 vertices whose progress measure has increased and
all player-1 vertices that has an outedge to a vertex whose progress measure has increased. We next
describe the algorithm in detail.
Computation of the initialρ∗. Use the static Büchi algorithm from the previous section tocompute
the player-1 and player-2 winning sets and assign⊤ to all vertices in the player-2 winning set. Use
the backward search algorithm [Beeri 1980; Immerman 1981] to determine the rank of every vertex
in the player-1 winning set and set its initial progress measure equal to its rank. Then compute for
each vertex ofV1 its list.
Deletion of the edge(u, v). Maintain a queue of vertices to be processed to update the progress
measure until the least fix-point is reached such that a vertex of V2 is only added to the queue when
its progress measure has increased. Initially, enqueueu. Then iteratively process and dequeue the
vertices from the queue.

Case 1: A vertexx of V1 is dequeued.Check whether given the current progress measure, the
progress measure ofx needs to be increased to satisfy the lift operation forx. To do this first check
whether the list ofx is empty. If it is not empty, nothing needs to be done. If it is empty, all remaining
outedges ofx are checked to compute the new progress measure value ofx and the new list ofx.
Then all inedges(u, x) of x are processed using the following steps:

— If u is a player-1 non-Büchi vertex (u ∈ V1 \ B), then it is enqueued (if it is not already in the
queue) andx is removed from the list ofu if it was there.

— If u is a player-2 non-Büchi vertex (u ∈ V2 \B), then check whether the change in the progress
measure value ofx also increases the progress measure value ofu. If it does, thenu is enqueued
(if it is not already in the queue), otherwiseu is notenqueued.

— If u is a player-1 Büchi vertex (u ∈ V1 ∩B), then (i) if the progress measure ofx is not⊤, then
do nothing; (ii) else removex from the list ofu, and if the list ofu is empty, assign progress
measure⊤ to u andu is enqueued (if it is not already in the queue).

— If u is a player-2 Büchi vertex (u ∈ V2 ∩B), then (i) if the progress measure ofx is not⊤, then
do nothing; (ii) else assign progress measure⊤ to u andu is enqueued (if it is not already in the
queue).



Case 2: A vertexx of V2 is dequeued.In this case the progress measure ofx has increased and it
has already been updated. Thus all what remains is to processall inedges(u, x) of x. The processing
of the inedges is done exactly as in Case 1.

This algorithm is a generalization of the Even-Shiloach algorithm [Even and Shiloach 1981] for
maintaining the breadth-first-search tree of a vertexb in an undirected graph. AssumeB = {b} and
thatV = V1. Then the progress measure value of a vertexv is exactlyv’s level in the breadth-first
search tree rooted atb (or equivalently its shortest path distance tob). Applying the lift operator to a
vertexv is exactly the same as checking whetherv has still an edge to an edge at levellevel (v) − 1
and if not, increasing the level ofv by 1.

Correctness.Let G be a game graph, and letρ∗ be the least fix-point ofLift
G. Let G = G \ {e},

wheree ∈ E ∩ V1 × V , be the game graph obtained by deleting a player-1 edgee. Let ρ∗ be the

least fix-point ofG. Let ρ∗
new

be the new fix-point obtained by iteratingLift
G on ρ∗. We will show

thatρ∗ = ρ∗
new

.

LEMMA 2.17. We haveρ∗ ≤ ρ∗
new

.

PROOF. Let ρ0 be the progress measure that assings0 to all vertices, i.e., the least progress

measure. Clearly,ρ0 ≤ ρ∗. Let us denote by(Lift
G)i the result of applying the lift operatori-

times onG, for somei ∈ N. From a simple application of Lemma 2.15 it follows that(Lift
G)i is

monotonic. Hence we have(Lift
G)i(ρ0) ≤ (Lift

G)i(ρ∗). Sinceρ∗ = (Lift
G)j(ρ0) for somej, and

ρ∗
new

≥ (Lift
G)i(ρ∗) for all i (in particular for thej for which the least fix-point is obtained from

ρ0), it follows thatρ∗ ≤ ρ∗
new

.

LEMMA 2.18. We haveρ∗
new

≤ ρ∗.

PROOF. Observe that the graphG is obtained by deleting an edge for player-1, and hence the
winning set for player 1 can only decrease and the minimal alternating distance to the Büchi set
in the winning set can only increase. In other words, we haveρ∗ ≤ ρ∗, i.e., the least fix-point of

the graphG is smaller than the least fix-point ofG. Sinceρ∗
new

= (Lift
G)i(ρ∗), for somei, we

haveρ∗
new

= (Lift
G)i(ρ∗) ≤ (Lift

G)i(ρ∗) = ρ∗, where the first inequality is a consequence of

Lemma 2.15 that(Lift
G)i is monotonic, and the last equality is a consequence of the fact thatρ∗ is

a fix-point. Hence the desired result follows.

LEMMA 2.19. We haveρ∗
new

= ρ∗.

Lemma 2.19 follows from Lemma 2.17 and Lemma 2.18. Lemma 2.19and the fact that the
algorithm implements the iteration of the lift operator on vertices one by one to compute the fix-
point that is obtained by repeatedly applying the lift operator on the least fix-point of the previous
game graph, along with Theorem 2.16, establishes the correctness of the algorithm.

Query operation. The query operation of whether a vertexv belongs to the winning set is answered
in constant time by checking the progress measure ofv. Additionally we can support the operation
that requires to outputall vertices of the winning set, in time proportional to the sizeof the winning
set as follows. We maintain a list of winning vertices, and each vertex has a pointer to itself in the
list; and when the progress measure of a vertex is set to⊤ it is removed from the list. Thus the list
of winning vertices can be output in time proportional to thesize of the winning set.

Running time. The deletions of player-1 edges only decrease the winning set, and once a vertex is
removed from the winning set (i.e., assigned value⊤ in the progress measure algorithm), then it is
never worked upon again. Upon termination, letρ be the least fix-point in the end. The computation
of the initial least fix-point is done in timeO(n2). In the decremental algorithm we check for each
dequeued player-1 vertexu whether its progress measure increases in constant time (bychecking
whether the list ofu is empty). If it does not increase no further work is done foru. The constant



amount of work is charged to the edge deletion if an outedge ofu was deleted. If no outedge ofu
was deleted then the progress measure of a vertexw with (u, w) ∈ E must have increased and we
charge the work tow. If the progress measure ofu increases we spend timeO(|In(u)|+|Out(u)|) to
determine the new progress measure ofu, compute its new list, and process all its inedges, and the
work is charged tou. A player-2 vertexu is only enqueued when its progress measure has increased.
When it is dequeued we spend timeO(|In(u)|) to process all its inedges, and charge it tou. The
number of times the progress measure can increase for a vertex is at mostn + 1 (as once it isn + 1
it is assigned⊤). For a vertexv, let Num(v) = ρ(v), if ρ(v) 6= ⊤, andn + 1 otherwise. Hence the
total work done by the algorithm is

O(
∑

v∈V

Num(v) · |In(v)|) + O(
∑

v∈V

Num(v) · |Out(v)|) = O(n · m).

THEOREM 2.20. Given an initial game graph withn vertices andm edges, the winning set
partitions can be maintained under the deletion ofO(m) edges(u, v) with u ∈ V1 in total time
O(n · m).

2.4.2. Incremental algorithm for Büchi games. We now present the details of the incremental algo-
rithm for Büchi games, where we consider insertions of player-1 edges. The algorithm is similar
to the decremental algorithm, but has several subtle changes (like it is based on the dual progress
measure for player 2, and the case analysis of the algorithm is different from the decremental algo-
rithm).

Previous results on dual progress measure [Jurdziński 2000].The incremental algorithm will be
based on the progress measure for coBüchi objectives. The progress measure for coBüchi objec-
tives is simpler but different, and hence the incremental algorithm is simpler but different from the
decremental algorithm. We start with the definition of a valid progress measure for player 2.

Valid progress measure for player 2.Consider a game graph with a setB of Büchi vertices. A
progress measureρ is avalid progress measure for player 2 if the following conditions hold for all
v ∈ V :

ρ(v) ≥






min(v,w)∈E ρ(w) v ∈ V2 \ B;

min(v,w)∈E ρ(w) + 1 v ∈ V2 ∩ B;

max(v,w)∈E ρ(w) v ∈ V1 \ B;

max(v,w)∈E ρ(w) + 1 v ∈ V1 ∩ B.

We define the comparison operators≤,≥ on progress measures with thepointwisecomparison.

Lift operation on progress measure.Given a game graphG, the functioncoLift
G, like the Lift

G

function, takes as input a progress measure and returns a progress measure. For all input progress
measuresρ, the output progress measureρ′ = coLift

G(ρ) is defined as follows: for allv ∈ V ,

ρ′(v) =






min(v,w)∈E ρ(w) v ∈ V2 \ B;

min(v,w)∈E ρ(w) + 1 v ∈ V2 ∩ B;

max(v,w)∈E ρ(w) v ∈ V1 \ B;

max(v,w)∈E ρ(w) + 1 v ∈ V1 ∩ B.

LEMMA 2.21. For all game graphsG, the functioncoLift
G is monotonic.



PROOF. Consider progress measuresρ1, ρ2 such thatρ1 ≤ ρ2. For a vertexv we have

coLift
G(ρ1)(v) =






min
(v,w)∈E

ρ1(w) ≤ min
(v,w)∈E

ρ2(w) = coLift
G(ρ2)(v) v ∈ V2 \ B;

min
(v,w)∈E

ρ1(w) + 1 ≤ min
(v,w)∈E

ρ2(w) + 1 = coLift
G(ρ2)(v) v ∈ V2 ∩ B;

max
(v,w)∈E

ρ1(w) ≤ max
(v,w)∈E

ρ2(w) = coLift
G(ρ2)(v) v ∈ V1 \ B;

max
(v,w)∈E

ρ1(w) + 1 ≤ max
(v,w)∈E

ρ2(w) + 1 = coLift
G(ρ2)(v) v ∈ V1 ∩ B;

whereE is the set of edges inG. It follows that coLift
G(ρ1) ≤ coLift

G(ρ2). The desired result
follows.

SincecoLift
G is a monotonic function on a finite lattice, by Tarski-Knaster Theorem [Kechris

1995] it has a least fix-point. Before we proceed to the characterization, we present a definition: for
a vertexv ∈ W2(Ψ), whereΨ is the coBüchi objectivecoBuchi(C), whereC = V \B is the set of
coBüchi vertices, letmaxvisit(v) = minπ∈Π maxσ∈Σ |{i | ω(v, σ, π) = 〈v0, v1, v2, . . .〉, vi ∈ B}|
denote the maximum number of visits to Büchi vertices. Sincev ∈ W2(Ψ), once a winning strategy
for player-2 is fixed, there cannot be a cycle with a Büchi vertex, and hencemaxvisit(v) ≤ n. The
result of [Jurdziński 2000] established that for all game graphsG, (i) there is auniqueleast fix-point
ρ∗ of coLift

G, (ii) the least fix-point is a valid progress measure, (iii) the least fix-pointρ∗ fulfillis
the following conditions: (a) all vertices in the winning set for player 1 are assigned the top element
⊤; and (b) for verticesv in the winning set for player 2 the progress measure equalsmaxvisit(v)
(i.e.,ρ∗(v) = maxvisit(v)). The result of [Jurdziński 2000] is for the more general case of parity
objectives, and the specialization to coBüchi objectivesyields the above properties.

THEOREM 2.22 ([JURDZIŃSKI 2000]). For all game graphsG, let ρ∗ be the least fix-point of
coLift

G, and let||ρ∗|| = {v ∈ V | ρ(v) ∈ [n]} denote the set of vertices that are not assigned the
top element. Then||ρ∗|| = W2(Ψ), whereΨ is the coB̈uchi objective.

Incremental algorithm. We now present our incremental algorithm for player-1 edges(see dis-
cussion on motivation). Our algorithm initially computes the least fix-point progress measureρ∗ of
coLift of the graph and then maintains it after each edge insertion by repeatedly applying the lift
operatorcoLift to the fix-pointρ∗ stored frombeforethe edge insertion. To prove the correctness
we will show that the fix-point obtained by repeatedly applying the lift operator on the previous
least fix-point converges to the least fix-point of the new game graph. The algorithm maintains the
following data structure: (i) For each vertexx ∈ V2 \ B it keeps a list of verticesw such that
(x, w) ∈ E andρ∗(x) = ρ∗(w) and (ii) for each vertexx ∈ V2 ∩ B a list of verticesw such that
(x, w) ∈ E andρ∗(x) = ρ∗(w)+1. (iii) Every edge(x, w) has a pointer to its location in the list of
x if it is stored in such a list. We next describe the algorithm in detail. We first describe the insertion
of an edge as the initial fix-point computation is similar.

Insertion of the edge(u, v). Maintain a queue of vertices to be processed to update the progress
measure until the least fix-point is reached such that a vertex of V1 is only added to the queue when
its progress measure has increased. Initially, enqueueu. Then iteratively process and dequeue the
vertices from the queue.

Case 1: A vertexx of V2 is dequeued.Check whether given the current progress measure, the
progress measure ofx needs to be increased to satisfy the lift operation forx. To do this we first
check whether the list ofx is empty. If it is not empty, nothing needs to be done. If it is empty,
all remaining outedges ofx are checked to compute the new progress measure value ofx and the
new list ofx. Then all inedges(u, x) of x are processed as follows: Ifu is a player-2 vertex it is
enqueued (if it is not already in the queue) andx is removed from the list ofu if it was there. Ifu is
a player-1 vertex then check whether the change in the progress measure value ofx also increases



the progress measure value ofu. If it does, thenu is enqueued (if it is not already in the queue),
otherwiseu is notenqueued.

Case 2: A vertexx of V1 is dequeued.In this case the progress measure ofx has increased and it
has already been updated. Thus all what remains is to processall inedges(u, x) of x as follows: If
u is a player-2 vertex it is enqueued (if it is not already in thequeue) andx is removed from the list
of u if it was there. Ifu is a player-1 vertex then check whether the change in the progress measure
value ofx also increases the progress measure value ofu. If it does, thenu is enqueued (if it is not
already in the queue), otherwiseu is notenqueued.

Computation of the initialρ∗. The computation of the initialρ∗ is similar to the incremental algo-
rithm itself. We initialize the initial progress measure as0 for all vertices, then enqueue the set of
Büchi vertices, and proceed as the incremental algorithm until a fix-point is reached. As we start
with the all0 progress measure and repeatedly apply the lift operator we are guaranteed to reach the
least fix-point. Then we compute for each vertexv ∈ V2 its list.

Correctness.Let G be a game graph, and letρ∗ be the least fix-point ofcoLift
G. Let G = G ∪ {e},

wheree ∈ E ∩ V1 × V , be the game graph obtained by inserting a player-1 edgee. Let ρ∗ be the

least fix-point ofG. Letρ∗
new

be the new fix-point obtained by iteratingcoLift
G onρ∗. We will show

thatρ∗ = ρ∗
new

.

LEMMA 2.23. We haveρ∗ ≤ ρ∗
new

.

PROOF. Let ρ0 be the progress measure that assings0 to all vertices, i.e., the least progress

measure. Clearly,ρ0 ≤ ρ∗. Let us denote by(coLift
G)i the result of applying the lift operatori-

times onG, for somei ∈ N. From a simple application of Lemma 2.21 it follows that(coLift
G)i is

monotonic. Hence we have(coLift
G)i(ρ0) ≤ (coLift

G)i(ρ∗). Sinceρ∗ = (coLift
G)j(ρ0) for some

j, andρ∗
new

≥ (coLift
G)i(ρ∗) for all i (in particular for thej for which the least fix-point is obtained

from ρ0), it follows thatρ∗ ≤ ρ∗
new

.

LEMMA 2.24. We haveρ∗
new

≤ ρ∗.

PROOF. Observe that the graphG is obtained by inserting an edge for player-1, and hence the
winning set for player 2 can only decrease andmaxvisit(v) can only increase for vertices in the
winning set for player 2. In other words, we haveρ∗ ≤ ρ∗, i.e., the least fix-point of the graphG is

smaller than the least fix-point ofG. Sinceρ∗
new

= (coLift
G)i(ρ∗), for somei, we have

ρ∗
new

= (coLift
G)i(ρ∗) ≤ (coLift

G)i(ρ∗) = ρ∗,

where the first inequality is a consequence of Lemma 2.21 that(coLift
G)i is monotonic, and the last

equality is a consequence of the fact thatρ∗ is a fix-point. Hence the desired result follows.

LEMMA 2.25. We haveρ∗
new

= ρ∗.

Correctness.The correctness follows from Lemma 2.25, the fact that the algorithm implements
the iteration of the lift operator on vertices one by one to compute the fix-point that is obtained by
repeatedly applying the lift operator on the least fix-pointof the previous game graph, and Theo-
rem 2.22.

Query operation and running time. The query operation that is supported is whether a vertex
v belongs to the winning set, and to output the set of winning vertices. The query operations are
supported exactly as in the case of the decremental algorithm. The insertions of player-1 edges only
decrease the winning set for player 2, and once a vertex is removed from the winning set (i.e.,
assigned value⊤ in the progress measure algorithm), then it is never worked upon again. Upon
termination, letρ be the least fix-point in the end. In the incremental algorithm we check for each
dequeued player-2 vertexu whether its progress measure increases in constant time (bychecking



whether the list ofu is empty). If it does not increase no further work is done foru. Sinceu is
processed, the progress measure of a vertexw with (u, w) ∈ E must have increased and we charge
the work tow. If the progress measure ofu increases, then we spend timeO(|In(u)| + |Out(u)|)
to determine the new progress measure ofu, compute its new list, and process all its inedges,
and charge the work tou. A player-1 vertexu is only enqueued when its progress measure has
increased, or an edge is inserted atu. If an edge was inserted, the work is charged to the inserted
edge. Otherwiseu is dequeued and we spend timeO(|In(u)|) to process all its inedges, and charge
it to u. The number of times the progress measure can increase for a vertex is at mostn+1 (as once
it is n + 1 it is assigned⊤). For a vertexv, let Num(v) = ρ(v), if ρ(v) 6= ⊤, andn + 1 otherwise.
Hence the total work done by the algorithm is

O(
∑

v∈V

Num(v) · |In(v)|) + O(
∑

v∈V

Num(v) · |Out(v)|) = O(n · m).

An argument similar to the above also establishes that the initial least fix-point is computed in time
O(n · m).

THEOREM 2.26. Given an initial game graph withn vertices andm edges, the winning set
partitions can be maintained under the insertion ofO(m) edges(u, v) with u ∈ V1 in total time
O(n · m).

3. ALGORITHMS FOR MAXIMAL END-COMPONENTS DECOMPOSITION

In this section we present two improved static algorithms for computing the maximal end-
component (mec) decomposition of an MDPP, and the first incremental and decremental algorithms
to maintain the mec decomposition. We start with the basic definitions and preliminaries.

3.1. Definitions

We present the definitions as familiar in the MDP literature,though the relevant graph definitions
are identical to the alternating game graphs defined in the previous section.

MDP graph and mec decomposition.For an MDPP, the MDP graph consists of a directed graph
G = (V, E) with a finite setV of vertices, a setE ⊆ V × V of directed edges, and a partition
(V1, VP ) of V . The vertices inV1 are called player-1 vertices, and vertices inVP are called random
or probabilistic vertices. An edgee = (u, v) is called aplayer-1edge ifu ∈ V1, and is called a
randomedge ifu ∈ VP . An end-componentU ⊆ V is a set of vertices such that (a) the graph
(U, E ∩ U × U) is strongly connected; (b) for allu ∈ U ∩ VP and all(u, v) ∈ E we havev ∈ U ;
and (c) either|U | ≥ 2, or U = {v} and there is a self-loop atv (i.e., (v, v) ∈ E). Note that ifU1

andU2 are end-components withU1 ∩ U2 6= ∅, thenU1 ∪ U2 is an end-component. Amaximal
end-component (mec)is an end-component that is maximal under set inclusion. Every vertex ofV
belongs toat mostone maximal end-component. Themaximal end-component (mec) decomposition
consists of all the maximal end-components ofV and all vertices ofV that do not belong toany
maximal end-component.Maximal end-components generalize strongly connected components4 for
directed graphs (VP = ∅) and closed recurrent sets for Markov chains (V1 = ∅). A bottomsccC of
a graph is a scc that has no edge leaving out ofC.

By abuse of notation we use mec decomposition of an MDP to meanthe mec decomposition of
the MDP graph with partition(V1, VP ). For technical convenience we make two assumptions about
the MDP graph: (1) Every vertexv has at least one outgoing edge, i.e.Out(v) 6= ∅, because a vertex
without outgoing edges does not belong to any end-component. (2) We will consider MDPs such
that random vertices do not have self-loops. Note that a vertex with a self-loop that does not belong
to any other mec forms its own trivial mec. Thus, if a MDP graphwith self-loops at random vertices
is given, its mec decomposition can be computed as follows: First remove all self-loops at random

4In this paper we usesccor strongly connected componentfor amaximal strongly connected component.



vertices and compute the mec decomposition of the resultinggraph. For every random vertex with a
self-loop that does not belong to any other mec, forms a trivial mec consisting only of the vertex. We
could proceed in the same way with self-loops of verticesv ∈ V1, but we need to allow self-loops
of player-1 vertices for technical reasons in the incremental maintenance of the mec decomposition.

3.2. Algorithms for mec decomposition

In this subsection we present two improved algorithms for mec decomposition. We first define at-
tractors, random set cuts, and prove two lemmata about them.Then we present the classic algorithm
and our improved algorithms.
Random and player-1 attractor.Given an MDPP, let U ⊆ V be a subset of vertices. Therandom
attractor AttrR(U, P) is defined inductively as follows:U0 = U , and for i ≥ 0, let Ui+1 =
Ui ∪ {v ∈ VP | Out(v) ∩ Ui 6= ∅} ∪ {v ∈ V1 | Out(v) ⊆ Ui}. In other words,Ui+1 consists of
(a) vertices inUi, (b) random vertices that have at least one edge toUi, and (c) player-1 vertices
such that all their successors are inUi. ThenAttrR(U, P) =

⋃
i≥0 Ui. The definition ofplayer-1

attractorAttr1(U, P) is obtained by exchanging the role of random vertices and player-1 vertices in
the above definition. Note that the definition of attractors are same as defined for alternating game
graphs. A (random or player-1) attractorA can be computed in timeO(

∑
v∈A |In(v)|) [Beeri 1980;

Immerman 1981].
Random set cuts.A setX ⊆ V of vertices is arandom set cutif for all random edges(u, v) with
u ∈ X ∩ VP we havev ∈ X . Thus a setU is a mec ifU is strongly connected and is a random set
cut.
Property of attractors. The first lemma below establishes that the random attractor of a mec and
the random attractor of certain vertices of an scc do not belong to any mec and that it, thus, can be
removed without affecting the mec decomposition of the remaining graph. Hence, the lemma can
be used to identify vertices that do not belong toanymec. The second lemma below shows under
which condition an scc is an mec. Thus, it can be used to identify vertices thatform a mec. In the
Lemma 3.1 we show the following results: (1) In part 1 we show that if C is a scc in a MDP graph,
U the set of random vertices inC with edges out ofC, andZ the random attractor ofU , then no
non-trivial mecX intersects withZ and any edge from the mecX to Z must be a player-1 edge;
and (2) in part 2 we show that ifC is a mec, andZ the random attractor ofC minusC, then no
non-trivial mecX intersects withZ and all edges fromX to Z is a player-1 edge.

LEMMA 3.1. LetP be an MDP, and let(V, E) with partition (V1, VP ) be the MDP graph.

(1) Let C be a scc in(V, E). Let U = {v ∈ C ∩ VP | Out(v) ∩ (V \ C) 6= ∅} be the random
vertices inC with edges out ofC. LetZ = AttrR(U, P) ∩ C. Then for all non-trivial mec’sX
in P we haveZ ∩ X = ∅ and for any edge(u, v) with u ∈ X andv ∈ Z, u must belong toV1.

(2) LetC be a mec inP. LetZ = AttrR(C, P) \ C. Then for all non-trivial mec’sX with X 6= C
in P we haveZ ∩ X = ∅ and for any edge(u, v) with u ∈ X andv ∈ Z, u must belong toV1.

PROOF. We present both parts of the proof.

— Part 1. Assume by contradiction that there is a non-trivial mecX such thatX ∩ Z 6= ∅. Since
(a) X ∩ Z ⊆ X ∩ C 6= ∅, (b) X must be strongly connected, and (c)C is a scc; it follows that
X ⊆ C. AsX must be a random set cut, and random vertices inU have edges out ofC, we must
haveX ∩ U = ∅. Thus we have the following two properties:
(1) (Property 1.)X is a random set cut (i.e., for allu ∈ X ∩ VP we haveOut(u) ⊆ X); and
(2) (Property 2).X does not contain any vertex inU (i.e.,X ∩ U = ∅).
We use the above two properties to show by induction thatX ∩AttrR(U, P) = X ∩Z = ∅. We
use the following inductive claim: For alli ≥ 0 we haveUi∩X = ∅. The base casei = 0 follows
asU0 = U and by property 2 we haveX ∩ U0 = ∅. For i > 0 we assume thatX ∩ Ui = ∅, and
show thatX ∩ Ui+1 = ∅. We haveUi+1 = Ui ∪ {v ∈ VP | Out(v) ∩ Ui 6= ∅} ∪ {v ∈ V1 |
Out(v) ⊆ Ui}. Consider a vertexu ∈ X :



(1) If u ∈ V1, then since|X | ≥ 2 andX is strongly connected, there exists av ∈ X with
(u, v) ∈ E, and sinceX ∩ Ui = ∅ it follows thatOut(u) is not a subset ofUi and hence
u 6∈ Ui+1.

(2) If u ∈ VP , then by property 1 we haveOut(u) ⊆ X and by induction hypothesis we have
X ∩ Ui = ∅. Thus we haveOut(u) ∩ Ui = ∅, and henceu 6∈ Ui+1.

It follows that for all i ≥ 0 we haveX ∩ Ui+1 = ∅, and thusX ∩ AttrR(U, P) = X ∩ Z = ∅.
Hence we have a contradiction. For a vertexu ∈ X , if there is an edge(u, v) with v ∈ Z, then
u 6∈ Z. Thusu cannot belong toVP as vertices ofVP are not allowed to have outgoing edges
leaving their mec. It follows that we must haveu ∈ V1.

— Part 2.Assume by contradiction that there is a non-trivial mecX such thatZ ∩X 6= ∅. SinceX
is a mec,X must be a random set cut. SinceX is a random set cut andX does not contain any
vertex inC, it follows from the inductive proof of the previous case that X ∩ AttrR(C, P) =
X ∩ Z = ∅, and hence we have a contradiction. As above for an edge(u, v) with u ∈ X and
v ∈ Z, we must haveu ∈ V1.

The desired result follows.

LEMMA 3.2. LetP be an MDP, and let(V, E) with partition (V1, VP ) be the MDP graph. Let
C be a scc in(V, E) such that for allv ∈ C ∩ VP we haveOut(v) ⊆ C. ThenC is a mec.

PROOF. It follows thatC is a random set cut, and sinceC is a scc it follows thatC is a mec.

It is an easy corollary of Lemma 3.2 that every bottom scc is a mec.

Previous algorithm for maximal end-component decomposition.There were two previous itera-
tive algorithms to compute an mec decomposition of an MDP. The first algorithm is as follows:

(1) Given an MDPP consider the MDP graph(V, E), and compute the scc decomposition and an
increasing topological ordering of the scc’s of(V, E) in O(m) time.

(2) Consider the scc’sC in increasing topological ordering (i.e., starting from the bottom scc’s). If
there is a random edge leavingC, then letU be the set of random vertices inC with edges out of
C. RemoveAttrR(U, P) ∩ C from the graph (by Lemma 3.1 these vertices belong to no mec),
and then goto Step 1 with the new graph with the attractor removed.

(3) Output all scc’s as mec’s.

Observe that in the end all scc’sC have no random edges going out ofC are mec’s (by Lemma 3.2).
Each iteration takesO(m) time and removes at least one vertex (by the random attractor). Thus the
running time of the algorithm isO(m · n). We will refer this algorithm as thefirst simple static
algorithm for mec decomposition. The second iterative algorithm is as follows:

(1) Given an MDPP consider the MDP graph(V, E), and compute the scc decomposition of(V, E)
in O(m) time.

(2) Include every bottom sccC to the list mec’s (by Lemma 3.2C is a mec). RemoveAttrR(C, P)
from the graph (by Lemma 3.1 these vertices belong to no mec),and then goto Step 1 with the
new graph with the attractor removed.

(3) Output the list of mec’s.

Note that there is always at least one such scc since every graph has a bottom scc. We remove
AttrR(C, P) and recursively compute mec in the smaller sub-MDP. Each iteration takesO(m) time
and removes at least one vertex. Thus the running time of the algorithm isO(m · n). We will refer
this algorithm as thesecond simple staticalgorithm for mec decomposition.

3.2.1. First improved algorithm. Our first improved algorithm for mec decomposition is obtained by
combining the second simple static algorithm for mec decomposition along with alock-step (or
dovetail)linear-time depth-first search (DFS) to find a bottom scc. Specifically, each of the searches
that is executed uses the dfs-based scc algorithm of Tarjan [Tarjan 1972], which has the property that



if it started at a vertex in a bottom scc it finds this bottom sccand stops in time linear in the number
of edges in the scc. In this paper we will use the termlock-step searchwith the following meaning:
for k parallel searches, in one step of the lock-step search each search can process exactly one edge.
Thus it is ensured that inℓ lock-steps each search explores exactlyℓ edges. The algorithm iteratively
removes vertices from the graph for which either the mec was found or for which it was identified
that they belong to no mec, until all vertices are removed. Atiterationi, we denote the remaining
subgraph as(Vi, Ei), whereVi is the set of remaining vertices andEi is the set of remaining edges.
The algorithm considers two cases: (a) Case 1 is similar to the second simple static algorithm, and
(b) Case 2 is the lock-step exploration of a bottom scc. In Case 2 we start the lock-step exploration
from a set of at most

√
m vertices. At least one of them is in a bottom scc. Thus in time at most

O(
√

m · | ∪u∈C Out(u)|) we find a mecC, and amortize the cost over the edges ofC. Between two
consecutive executions of Case 1 it is ensured that at least

√
m edges are removed from the graph,

and thus Case 1 is executed at most
√

m-times. Thus we achived aO(m · √m)-time algorithm for
the mec decomposition.

The details of the algorithm is as follows. The algorithm maintains the setLi+1 of vertices that
were removed from the graph since the last iteration of Case 1, and the setJi+1 of vertices that
lost an edge to vertices removed from the graph since last iteration of Case 1. Initially,(V0, E0) :=
(V, E), L0 := J0 := ∅, andi := 0. We describe our algorithm, and we refer our algorithm as
NEWMECALGO1.

Step 0.Repeat

(1) Case 1.If ((|Ji| ≥
√

m) or i = 0), then
(a) Compute the scc decomposition of the current MDP graph(Vi, Ei).
(b) For all scc’sC that have a random edge leaving out ofC, let U be the subset of random

vertices inC that have an edge leavingC. The setAttrR(U, P) ∩ C is removed from the
graph.

(c) For all scc’sC that do not have a random edge leavingC, the sccC is identified as a mec
andAttrR(C, P) is removed from the graph.

(d) The setLi+1 is the set of vertices removed from the graph in this iteration andJi+1 be the
set of vertices in the remaining graph with an edge toLi+1.

(e) i := i + 1; if Vi = ∅, then stop the algorithm, else go to Step 0.
(2) Case 2.Else(|Ji| ≤

√
m), then

(a) We do a lock-step search using the scc algorithm of Tarjan[Tarjan 1972] from every vertex
v in Ji. LetC be the first bottom scc discovered in the lock-step search. The lock-step search
ends when the first bottom sccC is discovered.

(b) The bottom sccC is identified as a mec and we removeAttrR(C, P) from the graph. Let
the setLi+1 be the set of vertices removed from the graph since the last iteration of Case 1
(i.e., Li+1 := Li ∪ AttrR(C, P), whereC is the bottom scc removed in step 2(a) of this
iteration) and letJi+1 be the set of vertices in the remaining graph with an edge toLi+1,
i.e.,Ji+1 := (Ji \AttrR(C, P)) ∪Qi, whereQi is the subset of vertices ofVi with an edge
to AttrR(C, P). Thus the setJi+1 is the set of vertices in the graph that lost an edge to the
vertices removed since the last iteration that executed Case 1.

(c) i := i + 1; if Vi = ∅, then stop the algorithm, else go to Step 0.

Correctness and running time analysis.We now present the correctness argument and running
time analysis.

LEMMA 3.3. The algorithm NEWMECALGO1 correctly computes the maximal end-
component decomposition of an MDPP.

PROOF. The algorithm repeatedly removes bottom sccs and their random attractors. Since every
bottom scc is a mec (by Lemma 3.2) and in each step a random attractor is removed (hence in



the current graph all the outgoing edges for random verticesare preserved), the correctness of the
algorithm follows from Lemma 3.1 and Lemma 3.2.

LEMMA 3.4. For every iterationi and for every bottom sccC of the graph(Vi, Ei) there is a
vertex inJi that belongs toC.

PROOF. We consider an iterationi of the algorithm. We show that in the graph(Vi, Ei) the
intersection ofJi and each bottom scc of(Vi, Ei) is non-empty. The proof of the claim is as follows:
consider a bottom sccC in the graph(Vi, Ei). Then there is no edge that leavesC in the graph
(Vi, Ei). Let j < i be the last iteration before iterationi such that Case 1 was executed in iteration
j (and in all iterations betweenj andi Case 2 is executed). IfC ∩ Ji is empty, then it follows that
none of the vertices inC has lost an edge since and including iterationj. SinceC is a bottom scc
in (Vi, Ei), it follows thatC must also have been a bottom scc in(Vj , Ej) and, thus, it must have
been discovered as a mec in step 1(a) of iterationj. Hence we have a contradiction. It follows that
we always have a vertex inJi that is in a bottom scc.

An easy consequence of this lemma is thatJi always contains a vertex in a mec in the graph(Vi, Ei).

LEMMA 3.5. The running time of algorithmNEWMECALGO1 on an MDPP with m edges is
O(m · √m).

PROOF. We now analyze the running time of NEWMECALGO1. The total work of the algorithm
when Case 1 is executed over all iterations is at mostO(m · √m): this follows because between
two iterations of Case 1 at leastO(

√
m) edges must have been removed from the graph (since

|Ji| ≥
√

m everytime Case 1 is executed other than the case wheni = 0), and each iteration can be
achieved inO(m) time (since the scc decomposition can be computed inO(m) time) [Tarjan 1972].
We now show that the total work of the algorithm when Case 2 is executed over all iterations is at
mostO(m · √m). The argument is as follows: consider an iterationi such that Case 2 is executed.
By Lemma 3.4 for every bottom sccC there is a vertex inJi that belong toC. Let C be the bottom
scc discovered in iterationi while executing Case 2. LetOut(C) =

⋃
v∈C Out(v). The algorithm

of [Tarjan 1972] for scc decomposition ensures that if the starting vertex is in the bottom scc, then
the bottom scc is identified in time proportional to the number of edges of the bottom scc. The
lock-step search ensures that the edges explored in this iteration is at mostO(|Ji| · |Out(C)|) ≤
O(

√
m×|Out(C)|). SinceC is identified as a mec and removed from the graph we charge the work

of O(
√

m · |Out(C)|) to edges inOut(C), charging workO(
√

m) to each edge. Since there are at
mostm edges, the total charge of the work over all iterations when Case 2 is executed is at most
O(m · √m).

THEOREM 3.6. Given an MDPP, the algorithmNEWMECALGO1 computes the mec decom-
position ofP in timeO(m · √m).

3.2.2. Second improved algorithm. In this section we present an algorithm for the mec decomposi-
tion problem that runs inO(n2) time.

Notations. Given an MDPP, and the MDP graphG = (V, E) with parition (V1, VP )), we will
denote byReachable(X, G) the set of vertices that can reach a vertex inX in the graph(V, E).
Note thatX ⊆ Reachable(X, G). Basically the algorithm is similar to NEWBUCHIALGO, and
instead of searching for separating cuts, the algorithm formec decomposition searches for bottom
scc’s. Specifically as before, we havelog n graphsGi such thatGi = (V, Ei) andEi contains all
edges(u, v) whereoutdeg(u) ≤ 2i. We denote byG the full graph. We color verticesv in Gi blue
if outdeg(v) > 2i, i.e.,Bli = {v ∈ V | outdeg(v) > 2i} and all other vertices are coloredwhite,
i.e.,Whi = {v ∈ V | outdeg(v) ≤ 2i}. Note thatG = Glog n and thus all vertices inGlog n are
white. Thus, none of the outedges of the blue vertices ofGi belong toGi, i.e., all blue vertices have
outdegree 0 inGi.

Second improved algorithm.Our second improved algorithm for mec decomposition of an MDP
P consists of two nested loops, an outer loop with loop counterj and an inner loop with loop



counteri. The algorithm will iteratively delete vertices from the graph, and we denote byDj the
set of vertices deleted in iterationj. We will denote byGj the graph in the beginning of iterationj,
and its vertex set and edge set asV j andEj , respectively. We will denote byGj

i = (V j , Ej
i ) the

sub-graph ofGj = (V j , Ej) whereEj
i contains all edges(u, v) where|Out(u) ∩ Ej | ≤ 2i. The

setBl
j
i is the set of vertices inGj

i with outdegree greater than2i in Gj
i . The steps of the algorithm

NEWMECALGO2 are as follows. Below we denote byPj the sub-MDP ofP at the beginning of
iterationj (in particularP0 = P).
(1) LetDj be the set of vertices deleted in iterationj. Forj := 0, let D0 := AttrR(X, P0), where

X is the set of vertices that are in the bottom scc’s in the initial graphG. Every bottom scc is an
mec and included in the mec decomposition.

(2) Remove the vertices ofDj to obtain the graphGj ; j := j + 1. If all vertices are removed, then
the whole algorithm terminates and outputs the mec decomposition.

(3) i := 1;
(4) repeat

(a) Construct graphGj
i . Compute the setY j

i = Reachable(Bl
j
i , G

j
i ) of vertices inGj

i that can
reach the setBl

j
i of blue vertices using the standard linear-time algorithm for reachability.

(b) LetSj = V j \ Y j
i be the set of vertices that cannot reach the setBl

j
i of blue vertices;

(c) i := i + 1
(5) until Sj is non-empty
(6) if Sj 6= ∅, then letDj := AttrR(X, Pj), whereX is the set of vertices that are in the bottom

scc’s in the sub-graph induced bySj in Gj
i . Every bottom scc is an mec and included in the mec

decomposition. Go to Step 2.

Basic correctness argument.Let us denoteGj to be the remaining game graph after iterationj.
Let Sj be the set identified at iterationj, and let the inner iteration stop ati∗. All vertices inSj are
white, sinceSj = V j \Reachable(Bl

j
i∗ , Gj

i∗) andBl
j
i∗ ⊆ Reachable(Bl

j
i∗ , G

j
i∗). For allv ∈ Sj , all

outedges fromv end in a vertex inSj : otherwise if there is an edge fromv to Reachable(Bl
j
i∗ , Gj

i∗),
thenv would have been included inReachable(Bl

j
i∗ , G

j
i∗). Hence any bottom scc in the subgraph

induced bySj in Gj
i∗ is also a bottom scc ofGj . The correctness of the identification of the bot-

tom scc as an mec and the removal of the attractor follows fromLemma 3.1 and Lemma 3.2. The
correctness of the algorithm follows.

LEMMA 3.7. Algorithm NEWMECALGO2 correctly computes the mec decomposition of an
MDP P.

Running time analysis.The crucial result of the running time analysis depends on the following
lemma. It shows that in an outer iterationj, if the inner iteration stops at iterationi∗ andX is the
set of vertices identified as bottom scc, thenX ∩ Bl

j
i∗−1 is non-empty.

LEMMA 3.8. Consider an outer iterationj of the algorithm, and let the inner iteration stop at
iteration i∗. LetX be the set of vertices identified as bottom scc of the graph induced byS in Gj

i∗ .
ThenX ∩ Bl

j
i∗−1 6= ∅.

PROOF. Assume towards contradiction that there is a bottom sccC in the induced subgraph of
S in Gj

i∗ such thatC∩Bl
j
i∗−1 = ∅. Now we consider the iterationi∗−1 and then for every vertex in

C in Gj
i∗−1 all outedges end in a vertex inC. SinceC does not contain a vertex fromBl

j
i∗−1 andC

has no outgoing edges, it follows thatC ⊆ V j \Reachable(Bl
j
i∗−1, G

j
i∗). Since all edges ofGj

i∗−1

are contained inGj
i∗ we have thatC ⊆ V j \ Reachable(Bl

j
i∗−1, G

j
i∗−1). Hence a non-emptyset

Sj would have been identified in iterationi∗ − 1, and this contradicts that the algorithm stops at
iterationi∗ and not ini∗ − 1.



LEMMA 3.9. The total time spent byNEWMECALGO2 is O(n2).

PROOF. Assume that for an outer iterationj, the inner iteration stops the repeat until loop at
valuei∗. By the previous lemma, one of the verticesv in X must have belong toBl

j
i∗−1 and thus it

has outdegree at least2i∗−1. Since we identify the bottom scc that containv it must contain all the
endpoints of the outedges fromv. HenceX contains at least2i∗−1 vertices. The time spent for all
the executions of the repeat loop in this iteration of the outer loop is the time spent in all graphsGj

1,
Gj

2, ...,Gj
i∗ , which sums toO(2i∗ · n) (the graph construction is similar as in Section 2.3, and the

reachability computation is linear time). We chargeO(n) to each deleted vertex. As the algorithm
deletes at mostn vertices the total time spent over the whole algorithm isO(n2). The removal of
all the player-2 attractors over all iterations takesO(m) = O(n2) time. The result follows.

THEOREM 3.10. Algorithm NEWMECALGO2 correctly computes the mec decomposition of
an MDPP in O(n2) time.

COROLLARY 3.11. Given an MDPP, the mec decomposition can be computed in time
O(min{m · √m, n2}); and hence in timeO(m · n2/3).

3.3. Incremental and decremental algorithms

We present algorithms for maintaining the mec decomposition of an MDP under the following
operations: (a)incremental algorithm:addition of an edge(u, v) with u ∈ V1; (b) decremental
algorithm:deletion of an edge(u, v) with u ∈ V1.
Motivation for dynamic algorithms. As in the case verification of open systems, in the verification
of probabilistic systems it is natural that the systems under verification are developed incrementally
by adding choices (or decrementally by removing choices) ofthe sytem till the objective is satisfied.
The system choices are represented by player 1, whereas the probabilistic environment (or nature)
is modeled by the random (or probabilistic) player, and the system design has no control over the
environment choices. Hence dynamic algorithms with player-1 edge deletions or insertions are the
relevant decremental and incremental algorithms requiredfor MDPs.

3.3.1. Incremental algorithm for mec decomposition. We first present the basic idea of the incre-
mental algorithm.
Basic idea.Since we consider insertions of player-1 edges, the insertions of edges can only merge
mec’s. Hence we collapse the mec’s in a collapsed graph that has no non-trivial mec’s. We then
show that insertion of one player-1 edge in such a graph adds at most one non-trivial mec. We now
present the notion of a collapsed graph.
Collapsed graph.Given a graphG = (V, E) with vertex partition(V1, VP ), thecollapsed graph
GC = (VC , EC) with vertex partition(V C

1 , V C
P ) is defined as follows: Every mecC is collapsed

to a single vertex that belongs to player 1, and all outgoing (resp. incoming) edges from (resp. to)
C are added to the graph, removing parallel edges. Formally, let Cm = {C | C is an mec} be the
set of all mec’s. LetM =

⋃
C∈Cm

C. ThenVC = Cm ∪ (V \ M) with V C
1 = Cm ∪ (VC ∩ V1) and

V C
P = VC \ V C

1 .

EC = {(u, v) | u, v ∈ (V \ M), (u, v) ∈ E}
∪ {(C, v) | C ∈ Cm, v ∈ (V \ M), ∃u ∈ C.(u, v) ∈ E}
∪ {(u, C′) | C′ ∈ Cm, u ∈ (V \ M), ∃v ∈ C′.(u, v) ∈ E}
∪ {(C, C′) | C, C′ ∈ Cm, ∃u ∈ C, ∃v ∈ C.(u, v′) ∈ E}

An end-componentC is non-trivial if |C| ≥ 2, otherwise it is atrivial end-component. The col-
lapsed graph with vertex partition(V C

1 , V C
P ) has the following property:

LEMMA 3.12. The collapsed graphGC with vertex partition(V C
1 , V C

P ) has no non-trivial end-
components.



PROOF. If there is a non-trivial end-component in the collapsed graphGC with the partition
(V C

1 , V C
P ), then the union of the set of vertices of the end-component isan end-component in the

original graphG = (V, E) with partition(V1, VP ), and this contradicts that the collapsed graph was
obtained after the mec decomposition.

The following lemma shows that if an edge(u, v) is added to a graphwith no non-trivial end-
components, then there is at most one non-trivial mec in the resulting graph. Thus, when an edge
(u, v) with u ∈ V1 is added to a graphG, then the insertion either (i) does not affect the collapsed
graph at all (ifu andv belonged to the same mec), or (ii) an edge is inserted intoGC but GC still
has no non-trivial mec’s or (iii) the edge is inserted intoGC andGC has now one non-trivial mec.
This fact holds because the insertion of a player-1 edges does not split up any existing mec. In a
graph with no non-trivial mec the above fact also holds for insertions of random edges. However, in
general graphs, the insertion of a random edge(u, v) with u ∈ VP can split up the mec containingu
into a potentially large number of mec’s ifv does not belong to it. Thus, the following lemma holds
for both player-1 and random edges only because it makes the strong assumption that the graph has
no non-trivial end-component.

LEMMA 3.13. Consider a graphG = (V, E) with vertex partition(V1, VP ) that has no non-
trivial end-component. If we add an edgee = (u, v) then (V, E ∪ {e}) with partition (V1, VP )
either (a) still has no non-trivial end-component or (b) hasat most one non-trivial maximal end-
component. Additionally, for every sccC in the graph with the inserted edge ifu 6∈ C, then the mec
decomposition ofC before and after the insertion are identical.

PROOF. Consider the mec decomposition after the edge insertion and assumeC is a non-trivial
mec that does not containu. Then the insertion of(u, v) neither changed the edges between two
vertices inC nor the edges leavingC. ThusC was also an end component before the insertion of
(u, v). However, this contradicts the assumption that the MDPP does not contain any non-trivial
mec’s before the insertion. Thus, the insertion can have created at most one new mec, namely the
mec containingu andv. Furthermore, the mec decomposition of at most one scc, namely the scc
containingu andv in the updated graph, was changed by the edge insertion. The result follows.

Incremental algorithm. Our incremental algorithm maintains as data structures (called IMEC data
structures) (a) the collapsed graphGC = (VC , EC), (b) stores for every vertex inVC the set of
edges that are mapped to it, and (3) stores at every vertexv ∈ V the vertexv′ ∈ VC to whichv is
mapped. When an edge(u, v) with u ∈ V1 is inserted it executes the following steps. In step 5 the
algorithm performs a computation similar to random attractor computation, but ignorning self-loops
for player-1 vertices (to ensure that trivial mec’s are removed by the computation). The steps are as
follows:

(1) Compute the scc decomposition of the MDP graph(VC , EC) of GC .
(2) Consider the sccC that contains the vertexu.
(3) If |C| = |{u}| = 1, then stop sinceC is the new trivial mec.
(4) Determine the setU of random vertices inC that have outgoing edges leavingC.
(5) ComputeZ =

⋃
i≥0 Zi with Z0 = U and fori ≥ 0, Zi+1 = Zi ∪ {v ∈ VP | Out(v) ∩ Zi 6=

∅} ∪ {v ∈ V1 | Out(v) ∩ C ⊆ Zi ∪ {v}}. 5

(6) Compute the scc decomposition ofC \ Z in the collapsed graph. IfC \ Z 6= ∅ then there is a
bottom sccC′ with |C′| ≥ 2 andC′ is the new unique non-trivial mec. Update the data structures
accordingly.

We now prove the crucial lemma that shows that if in step 6 we have |C′| ≥ 2, then it is the new
unique non-trivial mec.

5The definition ofZi+1 is similar to random attractor, the only difference is for a player-1 vertexv if all edges inC other
than the self-loop is inZi, thenv is included inZi+1.



LEMMA 3.14. In Step 6, ifC \ Z 6= ∅, then there is a unique bottom sccC′ in C \ Z with
|C′| ≥ 2.

PROOF. We assume thatU = C \ Z 6= ∅. The following assertions must hold: (a) for all
u ∈ U ∩ V1 we must haveOut(u) ∩ U 6= ∅ (otherwiseu would have been included inZ); (b) for
all u ∈ U ∩VP we must haveOut(u) ⊆ U (otherwiseu would have been included inZ). It follows
that every vertex inU has an outedge inU , and hence the sub-graph induced byU must have a
bottom scc. Consider a bottom sccC′ in the sub-graph ofU . If |C′| = 1, then letC′ = {v′}. Then
v′ must have a self-loop. Since by assumption random vertices do not have self-loops we must have
v′ ∈ V1. Then we havev′ ∈ V1 andOut(v′)∩C ⊆ Z ∪{v′}, and hencev′ must have been included
in Z, and this contradicts thatv′ ∈ C \ Z. It follows that |C′| ≥ 2. Since|C′| is a bottom scc it
follows from Lemma 3.2 thatC′ is a non-trivial mec. Since by Lemma 3.13 it follows that there is
at most one non-trivial mec, it follows thatC′ is the unique non-trivial mec.

By Lemma 3.1 the vertices inZ do not belong to any non-trivial mec. Thus, ifC \ Z = ∅, then
none of the vertices inC belong to an mec and thus no new mec was created inGC . If C \ Z 6= ∅,
then by Lemma 3.14 there exists a unique bottom scc inC \ Z, which according to Lemma 3.2 is a
mec. Since Lemma 3.13 showed that the addition of an edge(u, v) with u ∈ V1 generates at most
one new non-trivial mec inGC there are no further new mec’s. Each step of the algorithm takes
timeO(m). This result is summarized in Lemma 3.15.

Note: The correctness and the running time analysis of the incremental algorithm only use the
fact that the change in the graph modified the mec decomposition inside at most one scc and that the
change created at most one new mec. Thus, the same algorithm can be used for updating the mec
decomposition after an edge deletion, as long as it is guaranteed that the operation modifies the mec
decomposition of at most one scc and creates at most one new mec.

LEMMA 3.15. Let P be an MDP such thatP has no non-trivial end-component. If we add an
edge(u, v) with u ∈ V1, then the maximal end-component decomposition can be computed in time
O(m).

The collapsed graph, the incremental algorithm on the collapsed graph, and Lemma 3.15 gives us
the desired result for the incremental algorithm. Our algorithm outputs the mec decomposition, or
equivalently an integer for every vertex such that two vertices in the same mec has the same positive
integer and vertices that do not belong to any mec is assigneda negative integer. Thus the query of
whether two vertices belong to the same mec is answered in constant time.

THEOREM 3.16. Given an MDPP and the maximal end-component decomposition ofP, the
new maximal end-component decomposition after the insertion of an edge(u, v) with u ∈ V1 can
be computed in timeO(m).

3.3.2. Decremental algorithm for mec decomposition. We consider maintaining the mec decom-
position of an MDP under edge deletion for player-1 vertices. The basic idea is to show that the
decremental scc decomposition algorithm of Lacki [Lacki 2011] combined with the approach of the
first simple static algorithm works in amortized timeO(n).

Decremental algorithm.We show that the first simple static algorithm can be modified to handle
the deletion of an edge(u, v) with u ∈ V1. The observation is as follows: under player-1 edge
deletion, the mec’s of an MDP can only be decomposed into smaller mec’s, and the size of the
mec’s do not increase. Hence at any point of the algorithm we will maintain edges(u, v) such that
bothu andv belong to the same mec, and all other edges will not be stored in our data structures.
Given the mec decomposition of an MDP, we consider an edge deletione for player 1. The basic
idea is if the deletion of edge(u, v) splits the mec containing bothu andv, then it also must split
the scc containingu andv because(u, v) is a player-1 edge. In this case the decremental scc data
structure of [Lacki 2011] will return all the new scc’s and the edges between them in total time
O(n ·m) over all deletions. We spend time proportional to the numberof new scc’s to topologically



sort them and to check all new scc’s in increasing topological order whether they form a mec or
whether they have to be split further. The cost of this is charged to all the edges between the new
scc’s. Note that there are as many such edges as there are new scc’s and each edge is charged in
this way only once as it is removed for our data structure immediately afterwards. If a scc has to
be split further, at least one vertex of the scc does not belong to any mec and will be removed from
our data structure. We use the approach of the first simple static algorithm for mec decomposition
to determine the new mec’s and by repeating this step potentially removing multiple vertices from
our data structure (as they do not belong to any mec’s anymore). The total work ofO(k ·m), where
k is the number of removed vertices in this way, is charged to the k deleted vertices, leading to a
total time ofO(n · m) over all deletions.

The details of the algorithm is as follows: we keep as data structures (a) a list of mec’s and along
with each mec the list of vertices in the mec and (b) the decremental scc data structure of [Lacki
2011] keeping all edges inside mec’s and none of the other edges. Thus every scc in the data structure
is also a mec. For an edgee = (u, v) with u ∈ V1, whene is deleted we execute the following steps:
(A) If the edgee does not belong to any existing mec, then no action is required (as the edgee is not
stored in our data structure); and (B) if the edgee belongs to a mecC, then we execute the following
steps:

(1) Compute the scc decomposition ofC using the decremental scc decomposition algorithm
of [Lacki 2011]. LetL be an empty list.

(2) If C is a still a scc, then no action is required, otherwise removeC from the list of mec’s and
execute the following steps:
(a) Compute an increasing topological ordering of the scc’s(i.e., starting from bottom scc’s)

and add toL all the scc’s created in this way. Remove all edges that do notbelong to any
scc from the decremental scc data structure.

(b) WhileL is not empty
i. Consider the next sccC′ of L and remove it fromL. If C′ has a random edge leaving

C′, then execute the following step.
ii. Let U be the non-empty set of random vertices with an edge leavingC′. RemoveA =

AttrR(U, G ↾ C) (i.e., all incoming and outgoing edges of vertices inA are removed,
whereG ↾ C is the MDP induced byC). SetL as the empty list; compute the scc
decomposition and an increasing topological ordering of the scc’s and add toL all the
scc’s created in this way. Remove all edges that do not belongto any scc from the
decremental scc data structure.

(c) Add all the scc’s to the list of mec’s.

We now present the correctness and the amortized running time analysis.

Correctness.Like edge deletions in scc’s, under player-1 edge deletions, the mec’s of an MDP can
only be decomposed into smaller mec’s6. Hence it follows that if the deleted edge does not belong to
any mec, then it can be simply removed. We now consider the case when the edgee deleted belongs
to a mecC. Note that sinceC is a mec, before the edge deletion the following property holds: for
all edges(u, v) with u ∈ C ∩ VP , we havev ∈ C. If C is a scc after the edge deletion, then it
follows that it is still a random set cut, and henceC is an end-component. SinceC is a mec before
edge deletion, and mec’s can only be decomposed into smallermec’s after edge deletion, it follows
thatC is a mec after edge deletion. This establishes the correctness of the step whenC is still a
scc. The correctness of the other part follows from correctness of the first simple static algorithm, in
particular from the fact that in step 2(c) we output the maximal scc’s that do not have any random
edge leaving them.

Amortized running time analysis.We first observe that the amortized cost of maintaining the decre-
mental scc decomposition over all iterations can be achieved in timeO(n ·m) [Lacki 2011]. More-

6Note that in case of deletions of random edges, smaller mec’scan merge into larger mec’s.



over the decremental scc decomposition algorithm of [Lacki2011] can return the edges leaving a
newly created scc (as required in step 2(a)) in total timeO(n ·m) as each edge is adjacent to a newly
created scc at mostn times.

Thus detecting the new scc’s in step 1 and step 2(b)(ii) can bedone in total timeO(n · m). The
topological sorting in step 2(a), considering the scc’s in topological ordering in step 2(b)(i), and the
if condition checks of step 2(b)(ii) of the first iteration ofthe while loop is charged to the edges
between the newly created scc’s. If no new scc has a random edge leaving, then the while loop
stops without any further splitting. Each of the scc’s inL is a mec in this case. Thus the work is
proportional to the number of edges between the newly created scc’s and can be charged to them.
As each edge is adjacent to a newly created scc at mostn times, this gives a total time ofO(n · m).

In case that at least one “if” condition of step 2(b)(ii) is evaluated to true, then a non-empty
random attractor (i.e., at least one vertex) is removed and step 2(b) is repeated. We charge the
computation of the random attractor, the scc decomposition, the topological sort, the update ofL,
and all tests of the “if” statement until the next successfulone or the termination of the while loop
to the non-empty set of removed vertices. ThusO(m) work is charged to the removed vertices. This
can be repeated multiple times, each iteration being charged to the vertices removed in this iteration.
Note that once a vertex is removed, it never belongs to a list of vertices in a mec again. Thus every
vertex is charged at most once withO(m) work. Hence the total time for all the iterations of all the
while loops isO(n · m). This completes the proof of Theorem 3.17. Also note that as in the case
of the incremental algorithm, the decremental algorithm also outputs the mec decomposition, and
hence the query of whether two vertices belong to the same mecis answered in constant time.

THEOREM 3.17. Given an initial MDP withm edges, the maximal end-component decomposi-
tion can be maintained under the deletion ofO(m) edges(u, v) with u ∈ V1 in total timeO(n ·m).

4. CONCLUSION

In this work we presented an improved (O(n2)-time) static algorithm for alternating Büchi games
improving the long-standing̃O(n · m) barrier. Our result is obtained by a hierarchical graph con-
struction technique, an improvement technique for algorithms based on attractors for games, and
improves the complexity dependence on edges. The class of B¨uchi objectives are also special case
of parity objectives. The classical algorithm for alternating games with parity objectives withd
priorities (i.e., parity indexd), is a recursive algorithm based on attractors (alternating reachabil-
ity), and the base case of the recursive algorithm is alternating Büchi games. Thus our result for
Büchi games immediately improves the complexity of the classical algorithm for parity games from
O(nd−1 · m) to O(nd). However, the sub-exponential algorithm for parity games (with complexity
nO(

√
n)) does not depend on the edge parameter, and our technique hasno impact on it. The small

progress measure algorithm for parity games [Jurdziński 2000] is also not based on attractors and
our technique has no immediate impact. We also presented improved (O(min{m · √m, n2})-time)
static algorithms for maximal end-component decomposition improving the long-standingO(n ·m)
barrier. We also present the first incremental and decrmental algorithms for the problems, and for
all the algorithms the amortized update time is linear, and match the best known complexity of sim-
pler problems (such as decremental reachability in graphs and decremental scc decomposition in
graphs). The most interesting open questions are as follows: (a) does there exist anO(n · m1−ǫ)-
time or anO(m · n1−ǫ)-time algorithm for alternating Büchi games, forǫ > 0; and (b) can the
maximal end-component decomposition problem be solved in timeO(n · √m).
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