
A Business Rules Driven Framework for
Consumer-Provider Contracting of Web Services

Werner Mach
University of Vienna

Faculty of Computer Science
Vienna, Austria

werner.mach@univie.ac.at

Benedikt Pittl
benedikt.pittl@gmx.at

Erich Schikuta
University of Vienna

Faculty of Computer Science
Vienna, Austria

erich.schikuta@univie.ac.at

ABSTRACT
In this paper we present a scalable and extensible architec-
ture of a business rule management framework. This repre-
sentation can be used for agent based automatic negotiation
and re-negotiation of web services. To ensure scalability and
extensibility our architecture is based on the service oriented
design pattern using ontologies. Finally we develop a pro-
totype based on our business rules framework which sim-
plifies business logic modification and maintenance for both
service-provider and -consumer.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
H.3.5 [Online Information Services]: [Web-based ser-
vices]

General Terms
Management, Economics, Design, Theory, Verification

Keywords
Business Rules, Workflow, Ontology, Blackboard, Semantic
Web

1. INTRODUCTION
Over the last years the management of business rules

gained strong attention as a novel approach to handle busi-
ness logic in information systems. Business rules can be
maintained by business users both reducing adaptation time
and increasing flexibility. Currently, business logic is typi-
cally stored in software. Hence, changing business logic re-
quires a software specialist who modifies the software code.
Usually the software specialist, who implements the adapta-
tion of business logic, doesn’t know details about a compa-
nies business domain leading to misunderstandings and er-
rors in turn. Therefore, storing business logic in software is
considered as being error-prone and hard to maintain. Thus,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
iiWAS 2013, Vienna, Austria
Copyright 2013 ACM 978-1-4503-2113-6/13/12 ...$15.00.

mapping business logic into explicit business rules increases
maintainability and usability as business users can use tools
or languages to manage business rules directly, without sup-
port from software specialists.

In our previous research we introduced a generic frame-
work supporting automated negotiation and re-negotiation
of consumer-provider contracting of web services [12] based
on an elaborated cost model [13]. This framework is de-
signed as a self governing infrastructure. The core part is
a knowledge base which enables the framework making de-
cisions during negotiation or re-negotiation autonomously,
i.e. without any interaction of humans. Both provider and
consumer have access to a knowledge base which consists of
both a business rules repository implementing the business
strategy and an economic cost model allowing evaluation of
business decisions. For justification we implemented a proto-
type of a scalable and extensible workflow based on business
rules.

The layout of the paper is as follows: First we present
the state of the art on business models and business rules in
sction 2. We highlight the benefits of using business rules
and their fields of application as well as their deduction from
a business model. In section 3 we present an ontology for
business rules allowing for the definition of arbitrary busi-
ness strategies for a wide field of enterprises. Our proposed
negotiation and re-negotiation framework is introduced in
section 4 followed by an implemented example workflow fos-
tering business rules in section 5. The paper is closed by a
summary and sketch on future work.

2. STATE OF THE ART
In the following we give a short survey about business

rules and enabling semantic web technologies for better un-
derstanding the rational for choosing the appropriate tools
for our approach.

2.1 Business Rules
Many authors [18, 22, 26] cope with business rules. Unfor-

tunately, each of these authors provides different definitions.
Boyer and Mili [3] summarizes several definitions by outlin-
ing two characteristics of business rules.

• Business rules are about business.
A company’s business motivation is the driver for cre-
ating business rules. For example, this motivation can
aim on maximizing profit or minimizing risks. Business
rules are formulated to attain these aims [3]. Busi-
ness rules may not only represent the organization’s

business motivation but also legislation, regulations,
external standards and best practices [26].

• Business rules focus on structure and behav-
ior.
Boyer and Mili [3] distinguish between two types of
rules. Structure rules describe the structure of a busi-
ness, e.g. ”A sale consists of a buyer, a product and
a bill.”. Behavior rules describe how business reacts
in respond to an event, e.g. ”If loan is requested then
liabilities have to be checked.”

An insurance company will have rules coping with the in-
surance premium calculation whereas a bank will have rules
for granting loans. A simple rule of an insurance company
may be ”IF a customer has an income less than 1000$ THEN
the credit enquiry is refused”. This example shows, that busi-
ness rules can be described by simple statements building
upon ”IF-THEN” structures. Each company has thousands
of such simple business rules. However, they may not be doc-
umented explicitly or they are hidden in softwareWitt [26]
emphasizes that the rules have to be accessible for all stake-
holder who are influenced by the rules. Furthermore it must
be possible to update the rules in an adequate time. Rules
in natural language are easy to understand by the business
users.

However, natural language rules may be ambiguous and
the same rules can be formulated in many different ways.
For clear natural language rules you have to constrain the
vocabulary as well as the syntax. In order to standardize
the format and the business terminology, the Object Man-
agement Group (OMG) published the Semantics of Business
Vocabulary and Business Rules (SBVR) as a standard for
defining business rules in natural language. A SBVR vocab-
ulary consists of terms and facts, whereas the facts represent
the relationship between terms. Based on defined terms and
facts rules can be formulated complying to the SBVR by de-
fined fact models. Fact models are used to standardise vo-
cabulary by defining the terminology used within rules [26].

Business rules are executed within business processes by
both IT-systems and humans [3]. Within business processes,
business rules represent the decision logic [17]. In order to
automate business processes by IT-systems, business rules
have to be defined in a computer readable way. We distin-
guish between two type of business rules:
(i) Operative Rules define the actions triggered by an
event, e.g.
R1: Each service must specify a start time and an end time.
R2: The service start time specified in each service must be
not earlier than the service request time.
(ii) Structural Rules how various constructs are defined
by the organization, e.g.
R3: A premium customer is defined as a customer whose total

revenue is greater than 50000$ 1 in the last 5 years.

R4: A premium discount is by definition exactly 20 percentage

of each service price.

2.2 Business Processes
A business process describes a cross departmental series of

steps to produce valuable output for the customer. A process

1The SBVR convention is to mark quantities, dates and
times using a double underline

could, for example, describe the handling of a customer order
within a company [19]. In the following sections we provide
a description of the anatomy of a process. As [15] shows,
each process has five components:

• Trigger. A trigger kick-starts a process. The trigger
of the order process could be a customer placing an
order.

• Input. Inputs are resources needed for executing the
process. This could be for example an order document.

• Enabler. Enablers represent the necessary equipment
for the process execution like a software system for
processing an order.

• Guide. A guide points out how to execute a process.

• Output. As processes aim on customer satisfaction
the result of an process is something valuable for the
customer.

As already mentioned, business processes are executed by
both IT systems and humans. In order to automatize busi-
ness processes by IT systems the process has to be trans-
formed into a workflow, i.e. a workflow describes how to
execute a process. Hence, the business logic, which can be
represented by business rules, has to be accessible for IT
systems. Usually this is done by mapping the business logic
into software code. Unfortunately business users who are
responsible for maintaining and creating business rules are
not able to handle business rules stored in software. Thus,
they have to communicate with IT specialists who imple-
ments the rules in software code. Not only the creation of
new rules but also the change requests of already existing
rules require the skills of an IT specialist. Typically, the
IT specialist may not know details about a rule’s business
domain whereas the business user may not know anything
about software development. Hence misunderstandings can
occur and consequently this approach can be considered as
being error prone [4]. Further problems result that rules
are hidden in several code paths instead of a central repos-
itory [4]. Rules stored this way are hard to manage and
violate many principles [18]: Rules should

• . . . be managed directly by the people who have the
essential knowledge.

• . . . be put down in writing and published.

• . . . be written in natural language.

• . . . be independent of workflows.

• . . . be based upon facts. The facts should be based on
concepts.

• . . . control the behaviour.

• . . . be driven by the important business factors.

• . . . be manageable by authorized persons.

• . . . be handled from a single source.

• . . . be administrated.

Rules managed by Business Rules Management Systems
are able to comply to these principles.

Table 1: Simplified decision table
Storage capacity (Tera Byte) Discount (%)

1,3 0
4,7 2
8,10 5

2.3 Business Rules Management Systems
The prominent principle published by [18] reinforces, that

business user must be able to formulate the business rules
on their own. Generally, there are four ways how business
users can create business rules.

1. Programming Language. Business user can use
UML or programming languages like Java to define
business rules. However, usually business users don’t
know theses languages.

2. New language. Business users can write their rules
in a novel language similar to a natural language which
is readable by both, IT systems and humans.

3. User interfaces. Use interfaces can be used to sup-
port business people managing rules.

4. Restrict natural language. The natural language
approach could be limited to set of vocabularies suffi-
cient to create rules for a special business domain.

All proposed possibilities, besides the first one, require
the definition of a vocabulary or ontology which can be pro-
cessed and interpreted by both, humans and IT systems. An
exact definition of a vocabulary or ontology prevents ambi-
guities of terms [9].

Business Rules Management Systems (BRMS) storing the
business rules representing the business logic of a company
in a repository and are assisting in the management of the
rules by providing several tools and interfaces. This enables
reusability, faster development, clearer auditability and con-
sistency.Many companies offer Business Rules Management
Systems.Two very popular BRMSs are Drools and IBM Web-
Sphere ILOG JRules:

• Drools. Drools [7] is a comprehensive open source
BRMS framework based on Java focusing on business
logic integration. There are several ways to formulate
rules in Drools. One method is to build decision tables
in Microsoft Excel R©. Table 1 shows a simplified de-
cision table for the pricing model of a cloud provider.
The left column shows the storage capacity whereas
the right column shows the discount. If a consumers
buys for example 5 Terabyte, he gets a discount of 2%.

Another way to define rules within the Drools frame-
work is to write rules in the so called mvel dialect. The
rules formulated in this language look similar to Java
source code.

• IBM WebSphere ILOG JRules. IBM WebSphere
ILOG JRules [3] is a comprehensive commercial BRMS
platform. This platform allows to create rules in dif-
ferent ways too. There is a ”rule studio” assisting the
creation of decision tables. But there is also a mecha-
nism to create rules by a restricted natural language.

2.4 Business Models
Business models have the goal to create value, build new

businesses or improve existing businesses. There exists a
broad range of business model definitions, e.g. by Alt and
Zimmermann [1]: ”For the business model discussion [...]
we will distinguish six generic elements of a business model:
Mission, Structure, Process, Revenues, Legal Issues, Tech-
nology”. Gordijn [8] gives a definition which includes activ-
ities for creating values and covers the whole life cycle of
products or services: ”We define e-Business models as con-
ceptual models that show how a network of actors (a value
constellation) creates, exchanges and consumes objects of
value by performing value adding activities.” Osterwalder et.
al. [16] give a more general and comprehensive definition of
business models: ”A business model describes the rationale
of how an organization creates, delivers, and captures value.
The business model is like a blueprint for a strategy to be im-
plemented through organizational structures, processes, and
systems”.

For development of our framework we used Osterwalder’s
business model. We chose his definition of business models
to show how business rules can be derived from a business
model expressed in natural language. He describes a busi-
ness model by means of nine basic building blocks that show
the logic of how a company intends to make money. These
nine blocks cover four main areas of a business: customers,
offer, infrastructure and financial viability.

(i) Customer Segments are the most important parts of
each business model. Different groups of customers should
be handled in different ways. Organization and their pro-
cesses must consider these groups. (ii) Value Propositions
describe the specific products and services for a specific cus-
tomer segment. (iii) Channels include the description how
the company communicates to reach the customer segments.
The purpose of the channels is to deliver value proposition
and is the interface to the customer. (iv) Customer Re-
lationships describe the companies type of relationship to
each customer segment, e.g. personal or automated or a
mixture of them. (v) Revenue Streams hold the rep-
resentation of all cash streams to each customer segment.
Different pricing mechanisms can be used for each revenue
stream. Osterwalder distinguishes between two types of rev-
enue streams: revenues resulting from one-time customer
payments or from ongoing payments. (vi) Key Resources
create value propositions in each company. The resources
can be physical, financial, intellectual or human depending
on the type of business. (vii) Key Activities should be
described to make and keep the business model work, e.g.
for a hardware manufacturer supply chain management is
the key activity. (viii) Key Partnerships represent the
description of the network of a company. These partner-
ships reach from a buyer-seller partnerships to strategic al-
liances. (ix) Cost Structure describes the most important
cost during operation of the business model. That means
all cost for creating, generating and maintaining value and
customer relationships. This cost can be derived directly
from the previous building blocks such as key resources, key
activities and key partnerships.

3. A BUSINESS RULE REPOSITORY
In our work we follow the approach that the building

blocks of a generic business model can be represented as on-

tology. Ontologies are used for structuring data. Maedche
and Staab [14] describe ontologies as the following: ”Ontolo-
gies are (meta)data schemas, providing a controlled vocabu-
lary of concepts, each with an explicitly defined and machine
processable semantics.”

Chandrasekaran et. al. [5] distinguish between two related
fields of applications of the term ontology in IT. First, an on-
tology is the definition of the vocabulary used for describing
a specific domain. Additionally the relationships between
the terms are defined. Second, a representation vocabu-
lary used to describe knowledge is called ontology too. The
representation vocabulary contains the vocabulary which is
used to define facts and consequently describe knowledge of
a specific domain. So, ontologies determine types of objects,
which represent things in the real world, as well as their at-
tributes and their relationships. This structure is used to
represent knowledge.

3.1 An Ontology for Business Rules
Figure 1 illustrates our generic business model ontology as

UML class diagram. Each business model consist of build-
ing blocks similar to Osterwalder’s framework and constrain
data. Our business model ontology contains 1..n building
blocks. That means the resulting business model is not lim-
ited and can easily be extended or shrunk to fit the compa-
nies needs.

Figure 1: Generic Business Model Ontology

The ontology business rule repository consists of follow-
ing elements: (i) Business Rule Repository is the root
element and has the attribute name and date-modified. The
business rule repository has 1..n building blocks, 1..m busi-
ness rules expressed in natural language and 1..p business
term definitions. (ii) Building Block holds the information
about the core description and characteristics of the compa-
nies business. The attribute description is used for defining
the building block. Each building block has 1..n associated
constraint rules. The constraint rules are derived from the
business rules described in natural language. (iii) Natu-
ral Language Rule defines the business rules expressed
in natural language. It is important to have the attribute
version and date-modified for supporting the history man-
agement of business rules. (iv) Business Terms describes

each term used in the constrained rules. (v) Synonyms
are only used for better understanding the defined business
terms, so that all participants involved have a clear under-
standing about the meaning of each term. Each business
term can have one or more synonyms. (vi) Constrained
Rule defines the business rule derived from the natural lan-
guage rule and is used in the processes instead of the natural
language rule. (vii) Corresponding Process holds the in-
formation in which process a rule is being used. Each rule
is used in one or more processes.

Using this generic ontology a company is able to build its
own specific business rule repository. The process for gener-
ating a business rule repository is depicted in algorithm 1:

Data: Business Rules defined in Natural Language 1..R
Result: Constrained Business Model Repository
build constrains for the business model;
define appropriate building blocks 1..B;
for each business rule R do

for each building block B do
if business rule R is related to building block B
then

translate business rule R from natural
language to constrained language;
store translated rule in building block B;
fill in meta-data for rule R
(status,version,expiration date);
break;

end

end

end

Algorithm 1: Generating Business Rule Repository

3.2 Realization by Semantic Web Tools
The W3C has published the XML based standards Onto-

logical Web Language and the Resource Description Frame-
work for defining ontologies.These two standards origin from
the semantic web technology development. As these tech-
nologies are platform independent, exchangeable, compre-
hensive and widely-accepted we use these technologies to
build our architecture of a workflow negotiation for business
applications. For the management of the knowledge base we
apply SPARQL [25] and Jena [10].

Summing up, RDF and OWL are used for ontologies,
whereas SPARQL is used to query these ontologies, and Jena
is used to execute rules from the knowledge base.

3.2.1 Resource Description Framework
The Resource Description Framework is a W3C standard

for building ontologies [24]. Ontologies are knowledge bases
which contain knowledge of a specific domain. In RDF,
knowledge is represented by so called resources and their
relationship to other resources. A resource represents an
object of the real-world like a car or a book. RDF as well
as OWL are technologies for creating ontologies.

3.2.2 Ontological Web Language
RDF can not be used to describe complex ontologies. Con-

sequently the Ontological Web Language (OWL), which is
based on RDF, was developed to build more complex on-
tologies. The W3C published three OWL standards which

are called OWL Full, OWL DL and OWL Lite. OWL Full
is biggest standard which encompasses both, OWL DL and
OWL Lite. OWL Lite is the smallest standard and is part
of OWL Full and OWL DL [23].

3.2.3 SPARQL
RDF and OWL are used to store knowledge. SPARQL

Protocol And RDF Query Language (SPARQL) is a lan-
guage for querying this knowledge. Just as RDF and OWL,
SPARQL was published as standard by the W3C [25].

3.2.4 Jena
Apache Jena is a Java based framework for building se-

mantic web applications [10]. The framework provides an
API for processing OWLs as well as RDFs and allows to
query them via SPARQL. Additionally, Jena provides a rule-
based inference engine which allows to execute Jena rules.
Due to the fact that Jena is a core part of our approach
we will describe the structure of Jena rules in more de-
tails.Listing 1 shows a rule in the turtle syntax. This rule is
used to determine premium customers.

Listing 1: Jena Example Rule
@pref ix j . 0 : h t tp : //www. un iv i e . ac . at
[premium: (? s r d f : t yp e j . 0 :PremiumCustomer)

<−
(? s r d f : t yp e j . 0 :customer)
(? s j . 0 :customer Revenue ? c)
greaterThan (? c , 6 0)

]

1. First of all, prefix definitions can be declared before
the rule is defined. A prefix is initiated by the @prefix
keyword followed by the prefix name and the URI.

2. The rule itself is defined within squared brackets. The
rule may start with the rule name. In listing 1 the rule
is called premium.

3. Jena supports the forward, backward and promiscuous
rule mode. Forward rules have the structure T1, T2, Tn

->T0. T stands for triple. The structure of the forward
rule can be interpreted as if T1, T2, Tn are matching,
T0 is executed. Backward rules have a similar struc-
ture like T0 <- T1, T2, Tn. T0 is executed if the triples
T1, T2, Tn are matching. It is also possible to com-
bine forward and backward rules which requires Jena’s
promiscuous mode. The rule in listing 1 is a backward
rule as it contains the <- arrow.

4. The rule in listing 1 has three triples.
T0: ?s rdf:type j.0:PremiumCustomer
T1: ?s rdf:type j.0:customer
T2: ?s j.0:customer Revenue ?c

Within these triples, variables are used. In T1, a cus-
tomer is stored in variable ?s. In T2, the revenue of the
customer, which is stored in ?s, is loaded into the vari-
able ?c. Finally this variable is used in a so called built-
in. A built-in is similar to a procedure in a program-
ming languages. In listing 1 the greater-than built-in is
used. This greater-than checks if the revenue is greater
than 60. In this case T0 is executed which means that
a customer becomes a premium customer. Each cus-
tomer who complies this rule becomes a premium cus-
tomer by getting the type ”premium customer.”

In the following section 4 we use the resulting business
model repository in our automated negotiation and re-negotiation
framework.

4. A NEGOTIATION AND RENEGOTIATION
FRAMEWORK

Focus of our recent research was the definition of a novel
negotiation and re-negotiation framework [12] which allows
for automatic commerce (negotiation and contracting) of
Web services based on economic principles. This approach
enables market-based service trading (following a bazaar
style) and extends the classical supermarket approach typ-
ical for service negotiation today. We extended the WS-
Agreement standard by feasible workflows to support auc-
tioning for negotiation and re-negotiation. By mapping of
business strategies defined by economic goals of the respec-
tive organization into an ICT enabled framework, our frame-
work facilitates autonomic agents acting as organizational
representatives stipulating service level agreements without
human interaction. This allows for business transactions
transparently to the environment but adhering to business
objectives of the originating organization (i.e. company, in-
dustry, community, etc.).

4.1 Knowledge Base Architecture
Figure 2 illustrates the knowledge base of the framework2

introduced in [12]. The framework is build up on a sym-
metrical architecture as the consumer agent as well as the
provider agent will have the same components:

• Negotiation and re-negotiation engine. The ne-
gotiation and re-negotiation engine is the main compo-
nent of the framework. It is responsible for negotiation
and re-negotiation phase and accesses the knowledge
bases.

• Knowledge base. The knowledge base consists of
three components. The business rules repository con-
tains the business rules of an agent which represent the
business strategy. The economic cost model stores the
costs of each production factor like disc space, compu-
tational power and is responsible for determining an
adequate price. Finally the history data component
stores the historical data of the customer and provider
agent. All these data sets provide the basis for the
decision process during the negotiation phase.

• Service template registry. The service template
registry contains the offered services of the providers.
It can be used by the consumers to look for appropriate
services.

• Consumer- and Provider Agents. The agents act
as interfaces between the framework and applications
or humans. It is used for managing services, modifying
the knowledge base and for controlling the auctioning.

• Auctioneer Agent. The auctioneer agent is used to
supervise the auctioning process.

• Protocols. We adhere to the principle of fostering
existing standards. Therefore our framework is based

2Please note that the figure shows only parts of the frame-
work

on already existing standards only, such as the WSDL,
WS-Agreement, etc.

For implementation of our business rule environment we
used basically two software components:

• D2RQ platform. The D2RQ platform is able to map
MySQL, Oracle and other databases into a RDF struc-
ture. Basically, the platform encompasses the D2RQ
engine and the D2RQ server. The engine is responsible
for converting Jena API calls to SQL queries whereby
the server allows to access the database via SPARQL
queries. This data will be merged with other RDF files
and processed by Apache Jena.

• Apache Jena. Apache Jena processes the RDF data
including inferring Jena rules. The result of the in-
ferring process is a RDF which can be queried by the
SPARQL engine provided by Jena. The query result
is sent back to the client application for further pro-
cessing.

Figure 2 shows, that the customer’s as well as the provider’s
knowledge base encompass the Jena framework. Data is
queried from the database via the D2RQ platform and passed
to Jena in order to inference business rules. In the following
we describe a scalable and extensible workflow based upon
the environment.

Our presentation comprises two steps: first, we define the
goals which should be achieved by a workflow executed based
upon the business rules environment. Then we present the
architecture of this environment using the technologies we
presented before.

The workflow we create should fulfill the following goals:

• Business rules management. The workflow makes
decisions based on business rules instead of business
logic stored in software code. This improves change-
ability and maintainability.

• Flexibility. The workflow can be extended and modi-
fied easily. It should be possible to add and drop tasks
of the workflow.

• Scalability. The workflow should be able to handle
big workloads by elastic resource management.

To create a flexible and scalable workflow we followed
the Service Oriented Architecture principle. By sending re-
quests to different services at same time, requests will be
executed parallel, if they are deployed on different servers.

Regarding our goals, this architecture enables flexibility as
you can consume the services you need in the workflow and
replace them if you do not need them any more. Scalability
can be achieved by horizontal and vertical scalability. Hori-
zontal scalability means deploying the service several times
on different servers. Vertical scalability can be achieved by
adding additional resources to servers which host the heavy
used services.

Our third goal is to handle the business logic in the ser-
vices by business rules. Therefore we use several frameworks
and servers within the services as shown in Figure 4 .

The following steps are executed by a service:

1. A request is sent to the service.

Table 2: Customer Database Table
ID Name Total 3 Annual 4 Premium

124533 Lewis 80$ 40$ True
451234 Bail 85$ 0$ False

Figure 3: Ontology Object Diagram (excerpt)

2. The necessary data is queried by the service via
the D2RQ platform and passed to Jena. The
D2RQ engine maps a database into a RDF structure.
Listing 2 represents the first database entry of table 2
as RDF transformed by the D2RQ engine.

Listing 2: Database in RDF
. . .
<r d f :D e s c r i p t i o n
rd f : about =...# customer /124533>
<r d f : t yp e r d f : r e s o u r c e = . . . customer/>
< r d f s : l a b e l>customer #124533</ r d f s : l a b e l>
<j . 0 :customer ID rd f : da ta type=
”ht tp : //www.w3 . org /2001/XMLSchema#in t e g e r ”>
124533
</ j . 0 :customer ID>
<j . 0 :customer Name>Lewis
</ j . 0 :customer Name>
<j . 0 :customer TotalRevenue rd f : da ta type=
”ht tp : //www.w3 . org /2001/XMLSchema#decimal ”>80
</ j . 0 :customer TotalRevenue>
<j . 0 :customer AnnualRevenue rd f : da ta type=
”ht tp : //www.w3 . org /2001/XMLSchema#double ”>
40 .0E0</ j . 0 :customer AnnualRevenue>
</ r d f :D e s c r i p t i o n>
. . .

3. The rules are loaded by Jena. Osterwalder et. al.
divided a business model into 9 building blocks which
can be represented by business rules. A rule within
the building block ”revenue stream” could be about
determining a discount. This rule might look like the
following: R1: Each customer who’s total revenue is
greater than 80$ and who’s annual revenue is greater

than 40$ gets a discount of 5%.

Figure 3 illustrates an object diagram of the generic
business ontology including rule R1.

3Total Revenue
4Annual Revenue

Figure 2: Negotiation Framework (simplified)

Rule R1 has to be translated into a Jena Rule as shown
in listing 3.

Listing 3: Discount Rule
@pref ix j . 0 : . . .
@pref ix x s : h t tp : //www.w3 . org /2001/XMLSchema#
[Discount :
(? customer r d f : t yp e j . 0 :customer)
(? customer j . 0 :customer TotalRevenue
? tota lRev)
(? customer j . 0 :customer AnnualRevenue
?annualRev)
ge (? totalRev , 8 0)
ge (? annualRev , 4 0)
−>
(? customer j . 0 : d i s c oun t ’ 5 ’ ˆˆ x s : i n t e g e r)]

4. The rules are inferred based on the RDF data
from the D2RQ platform.

Jena is able to execute the rules represented in list-
ing 3. The second data record of the database table
represented in table 2 won’t be affected as the annual
revenue is lower than 40$. The first customer’s rev-
enues fulfill the limits. Therefore the costumer gets an
additional element discount as shown in listing 4.

Listing 4: RDF Result
. . .
<j . 0 : d i s c oun t rd f : da ta type=
”ht tp : //www.w3 . org /2001/XMLSchema#in t e g e r ”>5
</ j . 0 : d i s c oun t>
< r d f s : l a b e l>customer #124533</ r d f s : l a b e l>
. . .

5. The result of the inferring is RDF which can be
queried via SPARQL to get the necessary data.

For querying results we can use SPARQL. Listing 5
shows such a SPARQL query gathering the discount
of the the first costumer who has ID 33. This data can
be used for further processing.

Listing 5: Query Discount
SELECT (s t r (? tmpdiscount) as ? d i scount)
WHERE {? elments j . 0 : d i s c oun t ? tmpdiscount .
? elments j . 0 :customer ID ? id .
FILTER (? id =33)}

Figure 4: System Architecture

4.2 Blackboard Contracting Component
Contracting of specific services between service providers

and service consumers is the basic necessity for construct-
ing a concrete business workflow (service value chain), where
each service of the abstract work flow has to be instantiated.
This has to be done in a way that is optimizing (seeking for
a minimum or a maximum) a custom utility function. In
the focus of our economic domain this utility function will be

defined by the business strategy of the stakeholder and rep-
resents in turn a specific economic value/goal optimization.
Mathematically, this can be mapped to a multi-dimension
multi-choice knapsack problem. Several heuristics have been
proposed to solve these QoS-aware service selection prob-
lems which are known as NP-hard.

Being aware of this computational complexity we decided
to utilize a heuristic approach for optimize our business ser-
vice value chains. A blackboard [6] – initially developed
in the area of artificial intelligence – implements an A∗-
algorithm to heuristically solve NP-hard problems. It is es-
pecially suited for complex problems with incomplete knowl-
edge and uncertainties regarding the attributes and the be-
havior of the involved components.

A global blackboard represents a shared information
space containing input data and partial solutions. The knowl-
edge base representing the business strategy of an enterprise
is composed of several independent regions, each resembles
a single blackboard competence, both non-functional char-
acteristics as costs, levels of reliability and security, etc.,
and functional characteristics, as APIs, protocols, etc. The
global blackboard acts as a“mediator”, allowing the different
regions to communicate and work together finding the best
solution (i.e. contract) according to the business strategy of
the company.

The blackboard mechanism is listed in Algorithm 2. The
goal function for evaluating possible service offer combina-
tions for a request is called the happiness function. A deci-
sion tree is generated based on estimation of the happiness
function for the visited paths. As shown in Algorithm 2, the
expansion (choice) of promising service offers for a step in
the request set, is handled by an OpenList and BlockedList.
The OpenList contains a list of all possible service combina-
tions to choose from. Each of these steps is rated by applying
the happiness function that sums up the happiness of past
decisions and the happiness of the next step. Considering
this, the service which maximizes the happiness function is
chosen for the next step in the optimization approach. The
BlockedList contains services that do not fulfill the given
requirements and therefore must be excluded from the set
of possible solutions.

OpenList = expand(s1); BlockedList = [];
while OpenList 6= [] do

Act = best(OpenList); OpenList \= Act;
if Act == Goal then

return Act;
end
foreach dx in expand(Act) do

dx.costs = Act.costs + h(dx.costs);
if dx /∈ OpenList ∧ dx /∈ BlockedList then

< OpenList += dx;
else

if dx.costs < OpenList[dx.id].costs then
OpenList[dx.id] = dx;

end

end

end

end

Algorithm 2: Blackboard Algorithm

We used this heuristic approach for several multi-dimension
multi-choice knapsack problems in the area of computational
science in the past [11, 21, 2] and it proved extremely feasi-
ble.

Delving into more details of the contracting process is be-

yond the scope of this paper. For more information see [20].

5. AN EXAMPLE WORKFLOW FOSTER-
ING BUSINESS RULES

In this section we present exemplary a concrete imple-
mentation of the introduced workflow. First we introduce
a running example for the following discussion: A grocery
wants to introduce a loyalty card system. With every shop-
ping a consumer can show his loyalty card to request a dis-
count. This discount is calculated based on the total revenue
and the annual revenue. Premium costumers get an extra,
absolute, discount. The discount calculation is realized by
business rules. The consumer data such as the total revenue
is stored in an external database which is shown in table 2.
In our example we used a MySQL database.

Figure 5 shows the solution of this problem using the ar-
chitecture we introduced before.

Figure 5: Buying Process

1. If a consumer buys something, the customer ID stored
on the loyalty card is accessed by the loyalty card sys-
tem. The loyalty card itself contains no further data.
So if Lewis buys something, the loyalty card systems
captures his customer ID 124533. Now the system has
to calculate the discount based on Lewis’s revenues as
well as his premium status which is done by consulting
a web service.

2. The customer ID is sent to a web service. We deployed
the service on an Apache Tomcat server. Therefore we
used the Apache Axis2 engine which supports the easy
handling of web services.

The listing 6 shows the Java web service call in the
client application. First, a request has to be created.
This is done be instantiating a new GetDiscount ob-
ject. The class GetDiscount is defined within the web
service. Before sending the request and consequently
triggering the web service, the request variables must
be set. In the listing, the customer ID, captured by the
loyalty system, is passed to the web service as request
variable.

Listing 6: Call a Web Service
// Creat ing the reques t
DiscountWebServiceStub . GetDiscount reques t =

new DiscountWebServiceStub . GetDiscount () ;
r eques t . setCustomerID (c . getID ()) ;

// Invoking the s e r v i c e
DiscountWebServiceStub . GetDiscountResponse
response = nu l l ;

t ry {
re sponse = stub . getDiscount (r eques t) ;

} catch (RemoteException e) {
e . pr intStackTrace () ;

}

The invoked GetDiscount web service has to connect
to the customer database containing discount relevant
data. In order to get the customer database in a RDF
format, we use the D2RQ engine. Precondition for us-
ing the D2RQ engine is to create a mapping file. List-
ing 7 shows a code snippet of the mapping file cop-
ing with the database attribute TotalRevenue. The
mapping file defines which attributes of the database
should be transformed and consequently accessible as
RDF. A tool for auto generating mapping files is pro-
vided by the D2RQ package.

Listing 7: D2RQ Mapping File
map:customer TotalRevenue a
d2rq :PropertyBr idge ;
d2rq:belongsToClassMap map:customer ;
d2rq :proper ty vocab:customer TotalRevenue ;
d2 rq :p rope r tyDe f i n i t i onLabe l
”customer TotalRevenue ” ;
d2rq:column ”customer . TotalRevenue ” ;
d2rq :datatype xsd :dec imal ;

After the definition of the mapping file, the Java based
web service is able to access the database via D2RQ as
listing 8 shows. Therefore we use the class OntModel,
provided by Jena, which represents an ontology model.
In the listing, we create an empty ontology model inf.
Afterwards we fill the model using the D2RQ engine.
Based on the mapping file mapping.ttl, the D2RQ en-
gine returns the MySql database table, shown in table
2, as RDF.

Listing 8: Accessing Database via D2RQ
OntModel i n f =
ModelFactory . createOntologyModel (
”h t tp : //www.w3 . org /2002/07/ owl#”) ;
i n f . add (new ModelD2RQ(” f i l e :mapp ing . t t l ”)) ;

A simplified code snipped of the content of the ontol-
ogy model inf is provided in listing 2.

As the database is mapped into RDF we are able to
inference rules within the web service. Listing 3 shows
an exemplary rule which is responsible for discount cal-
culation. An additional rule for awarding an absolute
premium discount for premium customers is shown in
listing 9. This rule and the discount rule shown in list-
ing 3 will be executed on the RDF data. Therefore
the method createInfModel from the Jena API can be
used.

Listing 9: Discount Rule
@pref ix j . 0 : f i l e : ///D:/ e c l i p s e /vocab/
@pref ix x s : h t tp : //www.w3 . org /2001/XMLSchema#
[PremiumDiscount:
(? customer r d f : t yp e j . 0 :customer)
(? customer j . 0 :customer Premium ?premium)
equal (?premium , ’ t rue ’ ˆˆ xs :boo l ean)
−>
(? customer j . 0 :PremiumDiscount
’ 2 ’ ˆˆ x s : i n t e g e r)
]

Jena returns the inferring result as RDF. So the cus-
tomer shown in listing 2 gets an additional tag contain-
ing the discount and the absolute premium discount as
listing 10 illustrates.

Listing 10: RDF Result
. . .
<j . 0 :PremiumDiscount
rd f : da ta type=
”ht tp : //www.w3 . org /2001/XMLSchema#in t e g e r ”>
2</ j . 0 :PremiumDiscount>
<j . 0 : d i s c oun t
rd f : da ta type=
”ht tp : //www.w3 . org /2001/XMLSchema#in t e g e r ”>
5</ j . 0 : d i s c oun t>
< r d f s : l a b e l>customer #124533</ r d f s : l a b e l>
. . .

Now we have to extract the discounts of our customer
from our RDF file and return it to the caller of the
web service. Therefore we query the RDF result with
the SPARQL statement shown in listing 11 and return
the discount. Jena provides the class QueryFactory
for executing SPARQL queries. Optionally, the web
service caller can consume further web services using
business rules.

Listing 11: Query Discount
SELECT (s t r (? tmpdiscount) as ? d i scount)
(s t r (? tmpPremiumDiscount) as ?premiumDiscount)
WHERE {? elments j . 0 : d i s c oun t ? tmpdiscount .
? elments j . 0 :premiumDiscount
?tmpPremiumDiscount .
? elments j . 0 :customer ID ? id .
FILTER (? id =33)}

3. Finally the price can be calculated and charged by the
grocery.

6. CONCLUSION
We introduced a business rules driven framework for consumer-

provider contracting of web services. Using business rules
increases maintainability and flexibility as the business user
is able to manage the rules directly.

Currently, several standards, frameworks and technologies
coping with business rules are available. As semantic web
technologies are platform independent, widely accepted and
open, we used these frameworks and technologies as basis for
our architecture. Jena is one of these semantic web based
frameworks and is able to process W3C standards. Addi-
tionally, Jena is able to infer Jena rules based on RDFs. The
D2RQ platform allows to map databases such as MySQL
and Oracle to RDF.

By building a prototype we demonstrated the functional-
ity of our architecture based on Jena. To ensure flexibility,
extensibility and scalability of the architecture, we imple-
mented the prototype based upon the service oriented ar-
chitecture using web services.

A full-fledged, ready-to-use implementation of our envi-
sioned framework is ongoing. From research point of view
we will analyse of the behavior of different auctioning mod-
els. Specific focus will be laid on defining business strategies
in the knowledge base of the autonomic system. Thus, the
framework aims for automatic, adaptive, and dynamic ne-
gotiation and re-negotiation processes establishing an ICT
marketplace for services.

7. REFERENCES
[1] Alt, R., and Zimmermann, H.-D. Preface:

Introduction to special section business models.
Electronic Markets 11, 1 (2001), 3–9.

[2] Beran, P. P., Vinek, E., Schikuta, E., and
Leitner, M. An adaptive heuristic approach to
service selection problems in dynamic distributed
systems. In 13th ACM/IEEE International Conference
on Grid Computing (Grid 2012) (Beijing, China,
2012), IEEE, pp. 66–75.

[3] Boyer, J., and Mili, H. Agile Business Rule
Development: : Process, Architecture, and Jrules
Examples. Springer Berlin Heidelberg, 2011.

[4] Browne, P. JBoss Drools Business Rules. From
technologies to solutions. Packt Publishing, Limited,
2009.

[5] Chandrasekaran, B., Josephson, J. R., and
Benjamins, V. R. What are ontologies, and why do
we need them? IEEE Intelligent Systems 14, 1 (Jan.
1999), 20–26.

[6] Corkill, D. Blackboard Systems. AI Expert 6, 9
(January 1991).

[7] Drools. Drools - the business logic integration
platform [online]. http://www.jboss.org/drools/.
Accessed: 2013-06-23.

[8] Gordijn, J., and Akkermans, H. Ontology-based
operators for e-business model de- and reconstruction.
In Proceedings of the 1st international conference on
Knowledge capture (New York, NY, USA, 2001),
K-CAP ’01, ACM, pp. 60–67.

[9] Graham, I. Business Rules Management and Service
Oriented Architecture: A Pattern Language. Wiley,
2007.

[10] Hebeler, J., Fisher, M., Blace, R., Perez-Lopez,
A., and Dean, M. Semantic Web Programming.
Wiley, 2011.

[11] Kofler, K., Haq, I., and Schikuta, E.
User-Centric, heuristic optimization of service
composition in clouds. In 16th European Conference
on Parallel and Distributed Computing (Euro-Par
2010) (2010), P. D’Ambra, M. Guarracino, and
D. Talia, Eds., vol. 6271 of Lecture Notes in Computer
Science, Springer Berlin / Heidelberg, p. 405–417.
10.1007/978-3-642-15277-1 39.

[12] Mach, W., and Schikuta, E. A generic negotiation
and re-negotiation framework for consumer-provider
contracting of web services. In Proceedings of the 14th
International Conference on Information Integration

and Web-based Applications & Services (New York,
NY, USA, 2012), IIWAS ’12, ACM, pp. 348–351.

[13] Mach, W., and Schikuta, E. Toward an economic
and energy-aware cloud cost model. Concurrency and
Computation: Practice and Experience (2013),
n/a–n/a.

[14] Maedche, A., and Staab, S. Ontology learning for
the semantic web. IEEE Intelligent Systems 16, 2
(2001), 72–79.

[15] Mahal, A., and Zachman, J. How Work Gets Done:
Business Process Management, Basics and Beyond.
Technics Publications, LLC, 2010.

[16] Osterwalder, A., and Pigneur, Y. Business Model
Generation: A Handbook for Visionaries, Game
Changers, and Challengers. Wiley Desktop Editions.
Wiley, 2010.

[17] Pant, K., and Juric, M. Business Process Driven
SOA Using BPMN and BPEL: From Business Process
Modeling to Orchestration and Service Oriented
Architecture. Packt Publishing, Limited, 2008.

[18] Ross, R. Principles of the Business Rules Approach.
Addison-Wesley information technology series.
ADDISON WESLEY Publishing Company
Incorporated, 2003.

[19] Sharp, A., and McDermott, P. Workflow modeling
[electronic resource]: tools for process improvement
and applications development. Artech House,
Incorporated, 2008.

[20] Vigne, R., Mach, W., and Schikuta, E. Towards a
smart webservice marketplace. In IEEE Conference on
Business Informatics (USA, 2013), IEEE.

[21] Vinek, E., Beran, P. P., and Schikuta, E. A
dynamic multi-objective optimization framework for
selecting distributed deployments in a heterogeneous
environment. In International Conference on
Computational Science (ICCS 2011) (Singapore, June
2011), Procedia Computer Science series, Elsevier
Science.

[22] Von Halle, B., Barbara von Halle, L.,
Goldberg, L., and Zachman, J. Business Rule
Revolution (ebook): Running Business the Right Way.
Happy About, 2006.

[23] W3C. Owl web ontology language [online].
http://www.w3.org/TR/owl-features/, 2004.
Accessed: 2013-06-23.

[24] W3C. Rdf primer [online].
http://www.w3.org/TR/rdf-primer, 2004. Accessed:
2013-06-23.

[25] W3C. Sparql query language for rdf [online].
http://www.w3.org/TR/rdf-sparql-query, 2008.
Accessed: 2013-06-23.

[26] Witt, G. Writing Effective Business Rules. Morgan
Kaufmann. Morgan Kaufmann, 2012.

