
Impact Analysis for Event-based Systems
using Change Patterns

Simon Tragatschnig, Huy Tran and Uwe Zdun
Research Group Software Architecture

University of Vienna, Austria
{firstname.lastname}@univie.ac.at

ABSTRACT
Being composed of highly decoupled components, event-driven ar-
chitectures are promising solutions for facilitating high flexibility,
scalability, and concurrency of distributed systems. However, ana-
lyzing, maintaining, and evolving an event-based system are chal-
lenging tasks due to the intrinsic loose coupling of its components.
One of the major obstacles for analyzing an event-based system
is the absence of explicit information on the dependencies of its
components. Furthermore, assisting techniques for analyzing the
impacts of certain changes are missing, hindering the implemen-
tation the changes in event-based architectures. We presented in
this paper a novel approach to supporting impact analysis based
on the notion of change patterns formalized using trace semantics.
A change pattern is an abstraction of the modification actions per-
formed when evolving an event-based system. Based on this formal
foundation, we introduce supporting techniques for estimating the
impact and detecting undesired effects of a particular system evo-
lution, such as dead paths, deadlocks, and livelocks. Quantitative
evaluations for event-based systems with large numbers of compo-
nents show that our approach is feasible and scalable for realistic
application scenarios.

1. INTRODUCTION
Facilitating high flexibility, scalability, and concurrency in

distributed systems is challenging. Event-driven architectures are
a promising solution [13], which consist of a number of compu-
tational or data components that communicate with each other
by emitting and receiving events [13]. In an event-based system,
a component is totally unaware of the others and is indirectly
triggered by particular events emitted by other components, which
leads to a high degree of flexibility. There is a rich body of work
in different research areas that investigate and exploit the promi-
nent advantages of event-based communication styles such as
middleware infrastructure [6], event-based coordination [1], active
database systems [17], and service-oriented architectures [16],
to name but a few. Unfortunately, the loose coupling in event-
based systems also leads to increase difficulty and uncertainty in
maintaining and evolving these systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’14 March 24-28, 2014, Gyeongju, Korea.
Copyright 2014 ACM 978-1-4503-2469-4/14/03 ...$15.00.

Understanding and implementing specific changes in event-
based systems is challenging for two main reasons. Firstly, the
absence of explicit dependencies among constituent components
makes understanding and analyzing the overall system composition
difficult. Secondly, the lack of supporting techniques for analyzing
the implications of changes in an event-based system hinders
the implementation and maintenance of these changes. Existing
approaches for software change impact analysis are deriving
dependency information from source code, assuming components
are directly referenced by other components [11]. Only a few
approaches are able to interpret event based architecture styles [18,
10] to derive dependency information. However, these approaches
use design- or compile-time information to derive dependencies
and are therefore not applicable for analyzing the impact of
changes at runtime.

We proposed a novel approach for supporting the evolution of
event-based systems by introducing fundamental abstractions for
describing primitive modifications, namely, change primitives, that
can be used to alter an event-based system [24]. More complex
change patterns, for instance, substituting or moving components,
can be described by composing these change primitives. In par-
ticular, our approach leverages formal descriptions of change pat-
terns in terms of trace semantics to support change impact analysis.
In order to aid the software engineers in understanding and/or ad-
justing particular changes, we develop algorithms for automatically
determining the impact of these changes, especially the undesired
or unintended effects, such as dead paths, deadlocks, and livelocks.
Our quantitative evaluations show that our approach is feasible and
applicable in realistic large-scale settings with considerably large
numbers of constituent components.

In Section 2, we introduce some preliminary concepts and defi-
nitions in the context of event-based software systems and the trace
semantics used to formalize our change patterns. Section 3 de-
scribes the fundamental concepts and abstractions of our approach
for supporting the evolution of event-based systems. The algo-
rithms for detecting anomalies and estimating the impact of a cer-
tain change are elaborated in Section 4. Section 5 presents the
evaluations of performance and scalability of our approach based
on our proof-of-concept implementation as well as the estimation
of the productivity gaining when applying change patterns. The re-
lated literature is discussed in Section 6. We summarize the main
contributions and discuss the planned future work in Section 7.

2. PRELIMINARIES
The main focus of our work is to support change impact analysis

for event-based systems. Without loss of generality, we adopt the
notion that a generic event-based system comprises a number of
components performing computational or data tasks and commu-

nicating by exchanging events through event channels [13]. Due
to the inherent loosely coupled nature of the participating compo-
nents of an event-based system, understanding and implementing
changes is challenging for software engineers. To support better
applying specific changes and understand its impacts, we slightly
reduced the non-determinism due to the loose coupling relation-
ships while still preserving flexibility and adaptability by making
some basic assumptions on the behavior of the constituent ele-
ments. First, each component exposes an event-based interface that
specifies a set of events that the component expects (aka the input
events) and a set of events that the component will emit (aka the
output events). Second, the execution of a component will be trig-
gered by its input events. And third, a component will eventually
emit its output events after its execution finishes.

Please note that the first assumption does not forbid altering a
component’s input and output events but only enables us to ob-
serve the input/output event information at a certain point in time.
The major advantage of this premise is that it supports extracting
dependency information at any time without requiring access to
the source code. Indeed, this requirement is totally pragmatic in
case third-party components are used as they are often provided as
black-boxes with documented interfaces. In general, these require-
ments can be satisfied by most of existing event-based components
without change or with reasonable extra costs (e.g., for developing
simple wrappers to use third-party libraries and components) [13].

For demonstration purpose, we leverage the DERA frame-
work [25] that provides basic concepts for modeling and
developing event-based systems and supports the three require-
ments. The DERA concepts can easily be generalized to the
concepts found in many other event-based systems. In DERA, a
component is represented by an event actor (or actor for short). An
event can be considered essentially as “any happening of interest
that can be observed from within a computer” [13] (or a software
system). DERA uses the notion of event types to represent a class
of events that share a common set of attributes. To encapsulate
a logical group of related actors, DERA provides the concept of
execution domains. Two execution domains can be connected via
a special kind of actor, namely, event bridge, which receives and
forwards events from one domain to the other [25].

DEFINITION 1 (EXECUTION DOMAIN). A DERA execution
domain S can be described by a 2-tuple (A, E), where A is the
finite set of event actors that are deployed or executing within S,
and E is the finite set of event types exchanged by the actors of S.

Well-defined actor interfaces will support us in analyzing and
performing runtime changes in event-based systems, such as sub-
stituting an event actor by another with a compatible port or chang-
ing the execution order of event actors by substituting an actor with
another [25]. In our work, the advantage of explicitly defining ac-
tor interfaces is to enable us to capture the dependencies between
the actors at a certain point in time by analyzing their inputs and
outputs. The actor’s interface is defined as follows.

DEFINITION 2 (ACTOR INTERFACE). An interface Ix of an
actor x can be described by a tuple (•x, x•), where •x is a finite
set of input events that x expects and x• is a finite set of output
events that x will emit. The notions •x and x•, respectively, are
so-called the input and output ports of the actor x.

To describe the observed behavior of event-based systems as well
as the semantics of the proposed change patterns, we leverage trace
semantics [5]. With trace semantics, the underlying system can be
treated as a black box and its behavior is described in terms of the
states and actions that we observe from outside.

DEFINITION 3 (TRACE). Let S(A, E) be an event-based sys-
tem and TS be the set of all possible execution traces over S. A
trace t ∈ TS is defined as t = a1 → a2 → a3 → . . . , where
ai ∈ A. The notion a1 → a2 (or a1 ≺ a2 for short) denotes that
a1 precedes a2 in the trace t.

Given an actor x ∈ A, let •x and x• be the input and output
ports of x, respectively. In a trace t, a1 precedes a2, i.e., a1 −→ a2
or more precisely as a1

e−→ a2, implies that there exists e ∈ E such
that e ∈ a1•∩•a2 and e causes the transition from a1 to a2. Hence,
a1 ≺ a2 also implies that a1• ∩ •a2 6= ∅.

3. CHANGE PATTERNS FOR EVENT-
BASED SYSTEMS

The implementation of a particular change in an event-based sys-
tem involves defining the relevant actions (e.g., adding or remov-
ing components) and carrying out these actions while taking into
account the consequences (as other components might be affected
by these actions). To enact a change in an event-based system, the
software engineers have to deal with many technical details at dif-
ferent levels of abstraction, which is very tedious and error-prone.

Tragatschnig et al. presented fundamental abstractions for im-
plementing certain changes in an event-based system based on the
notion of change pattern [24]. In this approach, low-level prim-
itives are introduced for encapsulating the basic change actions,
such as adding or removing an event or an actor, replacing an event
or actor, and so forth. Based on these primitives, change patterns
for event-based systems are defined based on the patterns that are
frequently occurring and supported in most of today’s information
systems according to the survey presented in [26].

In this paper, we leverage the notion of change patterns and pro-
pose a formalization of the change patterns based on trace seman-
tics in order to support impact analysis. Due to space limitation, we
present a set of representative change patterns in Table1. We also
discuss potential variants and extensions of the pattern. The pat-
terns are based on the widely accepted intention of the developers
as observed and documented in [26].

Change Pattern Description

INSERT(x, Y, Z)
Add an actor x such that all actors of Y will
become predecessors and those of Z will be-
come successors of x, respectively

DELETE(x)
Remove the actor x from the current execu-
tion domain S

MOVE (x, y, z)
will move the actor x in a way that the actor y
will become predecessor and the actor z will
become successor of x, respectively

REPLACE(x, y) Substitute the actor x by the actor y

SWAP(x, y)
Given an actor x that precedes an actor y,
this pattern will switch the execution order be-
tween x and y

PARALLELIZE(x, y)
Enable the concurrent execution of two actors
x and y that are performed sequentially before

MIGRATE(x,S1,S2) Migrate an actor x from an execution domain
S1 to another execution domain S2

Table 1: A subset of change patterns

Formally speaking, a change pattern can be seen as a function
that transforms an event-based system from one state to another.
We will use the notation p : S 7→ S ′ to denote that a change pat-
tern p is applied on an event-based system represented by a DERA
execution domain S(A, E).

We will discuss our approach in detail through an illustrative
study of the change pattern MOVE as this pattern conceptually em-
braces the functions of other patterns such as DELETE and IN-

SERT. Nevertheless, our approach can be applied in other patterns
in the same manner.

Let us assume that the developers need to change the exe-
cution position of a certain component. For example, entering
the shipping address was initially done before the user selects
goods. Since most of the competitors ask for the shipping address
after the selection of goods, the component for gathering the
shipping address should be moved. This task cannot easily be
done at runtime in information systems that do not use flexible
communication styles such as event-based architectures because
the execution order loaded into the execution engine is often based
on rigid dependencies prescribed at design time. In event-based
systems, on the other hand, the large degree of flexibility also leads
to more complexity that the developers are confronted with. The
reason is that there is a lack of adequate abstractions for supporting
moving particular execution parts to different places. The MOVE
pattern aims at overcoming this issue.

Pattern: MOVE
Description MOVE(x, y, z) will move the actor x in a way that the ac-

tor y will become predecessor and the actor z will become
successor of x, respectively.

Move

x
between
y and z

after

y e2 ze1xe2 e1
e1

The MOVE pattern that transforms an execution domain S into

S ′, i.e., p : S MOVE(x,y,z)−−−−−−−−→ S ′, is formalized as follows:

A′ = p(A) ≡ A
E ′ = p(E) ≡ E
•y′ = •y \ {e|e ∈ x• ∩ •y ∧ e 6∈ a•,

∀a ∈ A ∧ a 6= x},where y′ = p(y)
y′• = y• \ {e|e ∈ y• ∩ •z ∧ e 6∈ a•,

∀a ∈ A ∧ a 6= x},where y′ = p(y)
•x′ = •x ∪ y′•,where x′ = p(x), y′ = p(y)
•z′ = x• ∪ •z′ \ {e|e ∈ y• ∩ •z ∧ e 6∈ a•,

∀a ∈ A},where z′ = p(z)

(1)

Essentially, the MOVE pattern alters the execution order such
that the execution of x will follow the execution of y and trigger
the execution of z, i.e., y′ → x′ → z′. According to Equation (1)
we devise the post-conditions for the MOVE pattern, which must
be satisfied by the changed system.

LEMMA 1. The new state S′ of the execution domain S achieved by

applying the MOVE pattern, i.e., S MOVE(x,y,z)−−−−−−−−→ S′, satisfies:

∀t ∈ TS′ , ∀y ∈ Y : y ∈ t⇒ y ≺ x (2)
∀t ∈ TS′ ,∀z ∈ Z : x ∈ t⇒ x ≺ z (3)

We sketch a simple proof for Equation (2), which can be applied
similarly for Equation (3).

PROOF. Let S ′ be the result of the application of the
MOVE(x, y, z) pattern on S. When an actor y ∈ Y finishes its
execution, y will emit all of its output events according to the
prerequisite R3 including the events that x is awaiting with respect
to Equation 1. As a result, x will be triggered next due to R2.
Thus, y ≺ x.

4. CHANGE IMPACT ANALYSIS
It is vital for the developers who implement and deploy partic-

ular changes on a software system to understand the effect of the

changes not only to the elements that are directly involved but also
to the rest of the system [4]. In the previous section, we present for-
mal descriptions and proofs of correctness of change patterns that
are the foundation for understanding the direct effects of the change
patterns on the involved elements. The indirect impact (aka the rip-
ple effect) [4] of change patterns will be discussed and analyzed in
this section. We mainly focus on unsafe impacts of these patterns,
for instance, dead paths, deadlocks, and livelocks, because these
impacts likely lead to potential severe anomalies [22].

4.1 Dead actors analysis
In the context of event-based systems, dead actors cannot be

reached by any execution traces because their sets of input events
are (unintentionally) empty or never emitted by any other actors.
As a result, dead actors will lead to dead execution paths if they are
not the final steps.

Algorithm 1 Analysis of dead actors for a pattern p on a system S
1: Input: Event-based system S(A, E) and a pattern p
2: Output: Two sets of dead actors due to empty inputs R∅ or

missing inputsRmx

3: function ANALYZEDEADACTORS(S, p)
4: R∅ ← ∅
5: Rmx ← ∅
6: T ← ∅ . a temporary set of actors that have no outputs
7: APPLYPATTERN(S, p)
8: for each x ∈ A do
9: if (x• = ∅) then

10: T ← T ∪ x
11: end if
12: if (•x = ∅) then
13: R∅ ← R∅ ∪ x
14: else
15: xmissing_inputs ← •x
16: for all y ∈ A \ (T ∪ x) do
17: xmissing_inputs ← xmissing_inputs \ y•
18: if (xmissing_inputs = ∅) then
19: break
20: end if
21: end for
22: if (xmissing_inputs 6= ∅) then
23: Rmx ←Rmx ∪ x
24: end if
25: end if
26: end for
27: returnR∅ andRmx

28: end function

We develop an algorithm for analyzing actors and their ports to
determine a set of actors that have empty input events or some
of inputs might never be emitted by any other actors (see Algo-
rithm 1). The outcome of the algorithm can help the developers
to identify the causes of potential dead execution paths and alter
the actors accordingly. The statement APPLYPATTERN(S, p) in
line 7 represents the application of a particular change pattern. If
APPLYPATTERN(S, p) is omitted, the Algorithm 1 can be used at
any time (e.g., before or after applying a certain change pattern) to
find dead actors. We note that the first execution of the analysis can
be costly because each pair of actors’ inputs and outputs is com-
pared. However, our evaluation shows that performing the analysis
incrementally can reduce the cost notably starting from the second
iteration.

Apart from dead actors, livelocks and deadlocks are also unde-

sired anomalies in any software systems but they likely happen es-
pecially in case the systems evolve without a thorough understand-
ing and analysis of the systems and the impact of the implemented
changes. Checking deadlocks and livelocks in an event-based sys-
tem is similar to other distributed systems. That is, it requires com-
plex formal specifications and model checking techniques [2] that
are beyond the scope of this paper and will be part of our future
endeavors. Nonetheless, in another ongoing work, we are develop-
ing a technique for mapping the snapshots of a DERA-based sys-
tem onto existing formalisms for distributed systems, such as Petri
Nets [14], CSS [9], or π-calculus [12]. In this way, we can enable
the checking for deadlock and livelocks before or after implement-
ing a certain system evolution using primitive actions or change
patterns.

4.2 Estimation of Change Pattern Impact
Normally, in order to understand the effect of a certain change in

traditional event-based systems, the developers have to investigate
the source code to gather the sources and targets of the events ex-
changed among the components of the system. By leveraging the
advantage of proposing well-defined interfaces of actors, we can
better assist the developers in this task. Algorithm 2 is developed
to help the developers to estimate the set of elements influenced by
a change, and therefore, to determine the boundary of the region
for further analysis and investigation. The notation p.x denotes the
corresponding parameter x of the pattern p. The outcome of Al-
gorithm 2 comprises two sets of actorsRin andRout representing
the actors that have inputs and outputs relating to the actor x, and
therefore, being influenced when x is altered, for instance, by using
the change pattern.

Algorithm 2 Estimating the impact of a change pattern p applied
on a system S(A, E)
1: function ESTIMATEIMPACT(S, p)
2: Rin ← ∅ .Rin contains the actors whose inputs are

affected
3: Rout ← ∅ .Rout comprises the actors whose outputs

are affected
4: for all a ∈ A do
5: if (a• ∩ •p.x 6= ∅) then
6: Rout ←Rout ∪ a
7: end if
8: if (p.x• ∩ •a 6= ∅) then
9: Rin ←Rin ∪ a

10: end if
11: end for
12: returnRin andRout

13: end function

5. EVALUATION
In the scope of our work presented in this paper, a proof-of-

concept implementation of the primitive actions and change pat-
terns has been developed and incorporated into the DERA frame-
work [25]. We conducted an evaluation to assess whether our algo-
rithms for supporting dead actors and change impact analysis pro-
posed in Section 3 are applicable and scalable for realistic event-
based systems.

We measured the performance and scalability of the analysis
algorithms with the event-based systems developed using DERA
framework. The numbers of constituent elements of these systems
are ranging from 50 to 1000. The estimated average numbers of

 0

 200

 400

 600

 800

 0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(m

s)

Number of actors

insert
delete
move

replace
swap

parallelize

Figure 1: Performance of dead actor analysis

events in these systems are approximately from 1.5 to 2 times of
the number of the actors and the estimated average numbers of the
actors’ input and output ports are about 10 percent of the number
of actors.

Using the change patterns description as proposed, also leads to
an effort reduction of 11 percent [24], which means that the number
of equivalent statements in comparison to programming language
code reduces roughly nine folds (i.e., 1/11 %).

5.1 Performance and Scalability Evaluation
We opted to conduct the measurements on a normal desktop ma-

chine, as the analysis will usually be carried out on the workstations
of the software engineers. The machine used in our experiments
has an Intel 2.60GHz CPU with two gigabytes of memory running
the Java VM 1.6 and a Linux operating system. Each measurement
is iterated 100 times and the resulting execution time, in millisec-
onds, is calculated on average. We mainly report here the average
numbers because the deviations are very small.

We present in Figure 1 the average execution time, in millisec-
ond, measured for each change pattern applied on different num-
bers of actors. In Figure 1, the difference between the execution
times of the patterns is very small. It means that the pattern plays
no real role regarding the dead actor analysis performance. This
is because we measure the first execution time of each pattern ap-
plied on a particular number of actors. As we discussed in Sec-
tion 4, the first execution of the dead actor analysis algorithm can
be costly because pairs of actors are mutually compared. Neverthe-
less, the exclusion of unnecessary actors at line 16 of Algorithm 1
partially reduces the execution time. We note that the execution of
our change patterns only takes a fraction of a second even in the
worst case, i.e., the system under consideration consists of roughly
1000 actors and 2000 event types.

In reality, the dead actors analysis can be performed in an incre-
mental manner. That is, a thorough comparison of pairs of actors
will only be carried out when the developers start analyzing or de-
ploying the very first change in the system. In the next application
of change primitive actions or change patterns, we only need to
consider a subset of actors that belong to R∅ and Rmx (cf. Algo-
rithm 1) as well as the actor that is added, removed or replaced, and
few related actors. Figure 2 shows our evaluation of the incremen-
tal dead actors analysis for a system consisting of 1000 actors and
about 2000 event types. We can see that, start from the second iter-
ation, the execution time has been notably reduced and then almost
remains unchanged afterwards.

The average execution time of the impact analysis algorithm is

 0

 200

 400

 600

 800

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(m

s)

Incremental Step n(th)

Figure 2: Performance of incremental dead actor analysis

 0

 10

 20

 30

 40

 50

 0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(m

s)

Number of actors

Figure 3: Performance of impact analysis

presented in Figure 3. As the algorithm only needs one iteration
(see Line 4 of Algorithm 2) over the number of actors, it takes less
than 50 milliseconds even in the worst case, i.e., for the systems
consisting of 1000 actors and about 2000 event types.

In summary, the evaluation results of the algorithms show that
our supporting techniques for dead actor and change impact anal-
ysis are considerably fast (taking less than a fraction of a second)
and scalable enough (handling 1000 of elements) to be used by the
software engineers in their normal working stations. The perfor-
mance of our algorithms can be optimized further in several ways.
For example, during the first round of execution, we retrieve the
dependencies among the actors and store the dependency informa-
tion in memory or in a database. As a result, the next inquiries of
the dependencies between actors and matching of their inputs and
outputs will be faster because we just query the dependencies in the
database instead of mutually comparing pairs of actors to find out
the dependencies.

6. RELATED WORK
Weber et al. [26, 21] identified a large set of change patterns that

are frequently occurring in and supported by the most of today’s
process-aware information systems, where a process is described
by a number of activities and a control flow is defining their execu-
tion sequence. Since the process structure is defined at design time,
changing it at runtime is very difficult. Several approaches try to
relax the rigid structures of process descriptions to enable a certain

degree of flexibility of process execution [8, 19, 20]. Event-based
systems, like DERA, provide a high flexibility for runtime changes,
since only virtual relationships among actors exist. The change pat-
terns observed by Weber et al. are designed to target PAIS in which
the execution order of the elements are prescribed at design time
and not changed or slightly deviated from the prescribed descrip-
tions at runtime. We also investigated that the set of change patterns
for PAISs can not be congruently mapped to event-based systems.
For instance, the pattern INSERT for PAISs may insert a new com-
ponent either serial, parallel or conditional [26]. In event-based
systems, inserting a component will be parallel by default, since
the relation to other components is not known. By regarding the
interfaces of components in event-based systems, different varia-
tions of a change patterns are possible. For instance, there is only
one scenario for moving a component in PAISs. In event-based sys-
tems, moving a component may have different variations of side ef-
fects, depending on how the interfaces of the involved components
will be changed (do not change either input or output interface, or
merge the interfaces). Therefore, change patterns for PAISs are not
readily applicable for event-based systems where components are
highly decoupled from each other.

Based on the formal definition of change patterns, we are able to
calculate the impact of a planned change. There are a rich body of
work focusing on extracting the dependency information to support
analyzing the impact of a certain change [11]. Unfortunately,
they often assume explicit invocations between elements, and
therefore, are not readily applicable for event-based systems.
The only technique to extract implicit invocation information
from an event-based system, proposed by Murphy et al. [15], is
Lexical Source Model Extraction (LSME). However, the results
are imprecise and incomplete. Another approach to analyze
event-based system is proposed by Jayaram et al. [10], which aims
at extracting type information and dependencies at compile time,
based on EventJava [7]. Analysis at runtime, or after changes
applied, are not supported. Program slicing techniques [23, 3] can
help to derive the implicit dependencies by analyzing inputs and
outputs of the invocations in the source code.

While all of these techniques are powerful and promising, they
can not be applied for systems that do not have their source code
available, for instance, third-party libraries and components. Our
approach does not depend on the availability of the system’s source
code. The extra cost required by our approach is for explicitly ex-
posing the inputs and outputs of the constituent components. Nev-
ertheless, there is no extra cost when the event-based systems are
developed using the DERA framework.

The most closely related work on supporting impact analysis for
event-based systems is a technique, namely, Helios, based on mes-
sage dependence graphs presented by Popescu et al. [18]. Helios
requires that the underlying systems must satisfy three constraints,
including a message-oriented middleware supporting standard mes-
sage source and sink interfaces for each component, the use of
object-oriented programming languages with strong static typing,
and the use of type-based filtering that supports mapping message
types to programming language types as well as type-safe commu-
nication. Our prerequisites of the underlying event-based systems
are less strict than Helios and easy to be satisfied by existing event-
based systems. Moreover, we introduce appropriate abstractions
and techniques for supporting the developers in analyzing and per-
forming different types of changes on an event-based system.

Since all of the existing approaches for impact analysis for event-
based systems need design-time information, they are not able to
take a system’s state at runtime into account when it comes to enact
a change. For instance, deleting a component at runtime will have

no impact at all if it was already processed and there is no chance to
be executed again in future. Our approach enables impact analysis
on runtime information by observing and assessing event traces.

7. CONCLUSION
Supporting the evolution of event-based systems is challeng-

ing because software engineers have to deal not only with the
complexity but also a large degree of flexibility of these systems.
We address this challenge in this paper by introducing novel
concepts and techniques for aiding the software engineers in better
implementing particular changes on an event-based system and
analyzing the impact of these changes. We propose an approach to
support change impact analysis for event-based systems through
algorithms for detecting anomalies and estimating the impact of
a certain change, based on change patterns that are frequently
supported and used in several information systems nowadays
along with their formal descriptions. The evaluation of our proof-
of-concept implementation shows that our approach is feasible
and applicable in realistic large-scale settings with a considerable
amount of constituent elements both with respect to our approach’s
performance and scalability. A limitation is the performance of the
dead actor analysis for very large numbers of actors, which can be
mitigated to a large extent through incremental analysis, as shown
in our evaluation.

Acknowledgment. This work was partially supported by the
EU’s Seventh Framework Programme Project INDENICA
(http://www.indenica.eu), Grant No. 257483 and the Wiener
Wissenschafts-, Forschungs- und Technologiefonds (WWTF),
Grant No. ICT12-001.

8. REFERENCES
[1] F. Arbab and C. L. Talcott, editors. 5th Int’l Conf.

Coordination Models and Languages, volume 2315 of
LNCS. Springer, 2002.

[2] C. Baier and J.-P. Katoen. Principles of Model Checking. The
MIT Press, 2008.

[3] D. Binkley and M. Harman. A survey of empirical results on
program slicing. volume 62 of Advances in Computers,
pages 105 – 178. Elsevier, 2004.

[4] S. A. Bohner and R. S. Arnold. Software Change Impact
Analysis. IEEE Computer Society Press, Los Alamitos, CA,
USA, 1996.

[5] M. Broy and E.-R. Olderog. Trace-Oriented Models of
Concurrency. In J. Bergstra, A. Ponse, and S. Scott, editors,
Handbook of Process Algebra, pages 101–195. Elsevier
Science B.V., 2001.

[6] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and
evaluation of a wide-area event notification service. ACM
Trans Comput Syst, 19(3):332–383, Aug. 2001.

[7] P. Eugster and K. R. Jayaram. Eventjava: An extension of
java for event correlation. In Proceedings of the 23rd
European Conference on ECOOP 2009 — Object-Oriented
Programming, Genoa, pages 570–594, Berlin, Heidelberg,
2009. Springer-Verlag.

[8] A. Hallerbach, T. Bauer, and M. Reichert. Capturing
variability in business process models: the provop approach.
J. Softw. Maint. Evol., 22:519–546, Oct. 2010.

[9] C. A. R. Hoare. Communicating Sequential Processes.
Prentice Hall, Apr. 1985.

[10] K. R. Jayaram and P. Eugster. Program analysis for
event-based distributed systems. In Proceedings of the 5th

ACM international conference on Distributed event-based
system, DEBS ’11, pages 113–124, New York, NY, USA,
2011. ACM.

[11] S. Lehnert. A taxonomy for software change impact analysis.
In Proceedings of the 12th International Workshop on
Principles of Software Evolution and the 7th annual ERCIM
Workshop on Software Evolution, IWPSE-EVOL ’11, pages
41–50, New York, NY, USA, 2011. ACM.

[12] R. Milner. Communicating and Mobile Systems: the
Pi-Calculus. Cambridge University Press, 1st edition, June
1999.

[13] G. Mühl, L. Fiege, and P. Pietzuch. Distributed Event-Based
Systems. Springer, 2006.

[14] T. Murata. Petri Nets: Properties, Analysis and Applications.
Proceedings of the IEEE, 77(4):541–580, 1989.

[15] G. C. Murphy and D. Notkin. Lightweight lexical source
model extraction. ACM Trans. Softw. Eng. Methodol.,
5(3):262–292, July 1996.

[16] S. Overbeek, M. Janssen, and P. Bommel. Designing,
formalizing, and evaluating a flexible architecture for
integrated service delivery: combining event-driven and
service-oriented architectures. Service Oriented Computing
and Applications, 6:167–188, 2012.

[17] N. W. Paton and O. Díaz. Active database systems. ACM
Comput. Surv., 31(1):63–103, Mar. 1999.

[18] D. Popescu, J. Garcia, K. Bierhoff, and N. Medvidovic.
Impact analysis for distributed event-based systems. In 6th
ACM Int’l Conf. Distributed Event-Based Systems (DEBS),
pages 241–251, New York, NY, USA, 2012. ACM.

[19] G. Redding, M. Dumas, A. ter Hofstede, and A. Iordachescu.
Modelling flexible processes with business objects. In IEEE
Conf. on Commerce and Enterprise Computing (CEC), pages
41–48, 2009.

[20] M. Reichert and P. Dadam. Enabling adaptive process-aware
information systems with ADEPT2. In Handbook of
Research on Business Process Modeling, pages 173–203.
Information Science Reference, 2009.

[21] S. Rinderle-Ma, M. Reichert, and B. Weber. On the formal
semantics of change patterns in process-aware information
systems. In 27th Int’l Conf. on Conceptual Modeling (ER),
pages 279–293. Springer-Verlag, 2008.

[22] J. Sifakis. Deadlocks and livelocks in transition systems. In
P. Dembinski, editor, Mathematical Foundations of
Computer Science 1980, volume 88 of LNCS, pages
587–600. Springer Berlin Heidelberg, 1980.

[23] F. Tip. A survey of program slicing techniques. Technical
report, Amsterdam, The Netherlands, 1994.

[24] S. Tragatschnig, H. Tran, and U. Zdun. Change patterns for
supporting the evolution of event-based systems. In 21st
International Conference on COOPERATIVE
INFORMATION SYSTEMS (CoopIS 2013), pages 1–8, Graz,
Austria, September 2013. Springer.

[25] H. Tran and U. Zdun. Event-driven actors for supporting
flexibility and scalability in service-based integration
architecture. In 20th Int’l Conf. Cooperative Information
Systems (CoopIS), pages 164–181. Springer, 2012.

[26] B. Weber, S. Rinderle, and M. Reichert. Change patterns and
change support features in process-aware information
systems. In 19th Int’l Conf. Advanced Information Systems
Engineering (CAiSE), pages 574–588. Springer-Verlag,
2007.

