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Abstract

The focus of classic mechanism design has been on truthful direct-revelation mechanisms. In
the context of combinatorial auctions the truthful direct-revelation mechanism that maximizes
social welfare is the VCG mechanism. For many valuation spaces computing the allocation
and payments of the VCG mechanism, however, is a computationally hard problem. We thus
study the performance of the VCG mechanism when bidders are forced to choose bids from a
subspace of the valuation space for which the VCG outcome can be computed efficiently. We
prove improved upper bounds on the welfare loss for restrictions to additive bids and upper
and lower bounds for restrictions to non-additive bids. These bounds show that the welfare loss
increases in expressiveness. All our bounds apply to equilibrium concepts that can be computed
in polynomial time as well as to learning outcomes.

1 Introduction

An important field at the intersection of economics and computer science is the field of mechanism
design. The goal of mechanism design is to devise mechanisms consisting of an outcome rule and a
payment rule that implement desirable outcomes in strategic equilibrium. A fundamental result in
mechanism design theory, the so-called revelation principle, asserts that any equilibrium outcome
of any mechanism can be obtained as a truthful equilibrium of a direct-revelation mechanism. How-
ever, the revelation principle says nothing about the computational complexity of such a truthful
direct-revelation mechanism.

In the context of combinatorial auctions the truthful direct-revelation mechanism that maxi-
mizes welfare is the Vickrey-Clarke-Groves (VCG) mechanism [30, 4, 12]. Unfortunately, for many
valuation spaces computing the VCG allocation and payments is a computationally hard problem.
This is, for example, the case for subadditive, fractionally subadditive, and submodular valuations
[17]. We thus study the performance of the VCG mechanism in settings in which the bidders are
forced to use bids from a subspace of the valuation space for which the allocation and payments
can be computed efficiently. This is obviously the case for additive bids, where the VCG-based
mechanism can be interpreted as a separate second-price auction for each item. But it is also the
case for the syntactically defined bidding space OXS, which stands for ORs of XORs of singletons,
and the semantically defined bidding space GS, which stands for gross substitutes. For OXS bids
polynomial-time algorithms for finding a maximum weight matching in a bipartite graph such as
the algorithms of [29] and [10] can be used. For GS bids there is a fully polynomial-time approx-
imation scheme due to [16] and polynomial-time algorithms based on linear programming [6] and
convolutions of M#-concave functions [22, 21, 23].
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One consequence of restrictions of this kind, that we refer to as valuation compressions, is that
there is typically no longer a truthful dominant-strategy equilibrium that maximizes welfare. We
therefore analyze the Price of Anarchy, i.e., the ratio between the optimal welfare and the worst
possible welfare at equilibrium. We focus on equilibrium concepts such as correlated equilibria
and coarse correlated equilibria, which can be computed in polynomial time [25, 15], and naturally
emerge from learning processes in which the bidders minimize external or internal regret [9, 13, 18,
2].

Our Contribution. We start our analysis by showing that for restrictions from subadditive
valuations to additive bids deciding whether a pure Nash equilibrium exists is NP-hard. This
shows the necessity to study other bidding functions or other equilibrium concepts.

We then define a smoothness notion for mechanisms that we refer to as relaxed smoothness.
This smoothness notion is weaker in some aspects and stronger in another aspect than the weak
smoothness notion of [28]. It is weaker in that it allows an agent’s deviating bid to depend on the
distribution of the bids of the other agents. It is stronger in that it disallows the agent’s deviating
bid to depend on his own bid. The former gives us more power to choose the deviating bid, and
thus has the potential to lead to better bounds. The latter is needed to ensure that the bounds on
the welfare loss extend to coarse correlated equilibria and minimization of external regret.

We use relaxed smoothness to prove an upper bound of 4 on the Price of Anarchy with respect
to correlated and coarse correlated equilibria. Similarly, we show that the average welfare obtained
by minimization of internal and external regret converges to 1/4-th of the optimal welfare. The
proofs of these bounds are based on an argument similar to the one in [8]. Our bounds improve the
previously known bounds for these solution concepts by a logarithmic factor. We also use relaxed
smoothness to prove bounds for restrictions to non-additive bids. For subadditive valuations the
bounds are O(log(m)) resp. Ω(1/ log(m)), where m denotes the number of items. For fractionally
subadditive valuations the bounds are 2 resp. 1/2. The proofs require novel techniques as non-
additive bids lead to non-additive prices for which most of the techniques developed in prior work
fail. The bounds extend the corresponding bounds of [3, 1] from additive to non-additive bids.

Finally, we prove lower bounds on the Price of Anarchy. By showing that VCG-based mecha-
nisms satisfy the outcome closure property of [20] we show that the Price of Anarchy with respect
to pure Nash equilibria weakly increases with expressiveness. We thus extend the lower bound of
2 from [3] from additive to non-additive bids. This shows that our upper bounds for fractionally
subadditive valuations are tight. We prove a lower bound of 2.4 on the Price of Anarchy with re-
spect to pure Nash equilibria that applies to restrictions from subadditive valuations to OXS bids.
Together with the upper bound of 2 of [1] for restrictions from subadditive valuations to additive
bids this shows that the welfare loss can strictly increase with expressiveness.

Our analysis leaves a number of interesting open questions, both regarding the computation
of equilibria and regarding improved upper and lower bounds. Interesting questions regarding the
computation of equilibria include whether or not mixed Nash equilibria can be computed efficiently
for restrictions from subadditive to additive bids or whether pure Nash equilibria can be computed
efficiently for restrictions from fractionally subadditive valuations to additive bids. A particularly
interesting open problem regarding improved bounds is whether the welfare loss for computable
equilibrium concepts and learning outcomes can be shown to be strictly larger for restrictions to
non-additive, say OXS, bids than for restrictions to additive bids. This would show that additive
bids are not only sufficient for the best possible bound but also necessary.
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Table 1: Summary of our results (bold) and the related work (regular) for coarse correlated equilibria and
minimization of external regret through repeated play. The range indicates upper and lower bounds on the
Price of Anarchy.

valuations
less general subadditive

bids
additive [2,2] [2,4]

more general [2, 2] [2.4,O(log(m))]

Related Work. The Price of Anarchy of restrictions to additive bids is analyzed in [3, 1, 8] for
second-price auctions and in [14, 8] for first price auctions. The case where all items are identical,
but additional items contribute less to the valuation and agents are forced to place additive bids is
analyzed in [19, 5]. Smooth games are defined and analyzed in [26, 27]. The smoothness concept
is extended to mechanisms in [28].

2 Preliminaries

Combinatorial Auctions. In a combinatorial auction there is a set N of n agents and a set M
of m items. Each agent i ∈ N employs preferences over bundles of items, represented by a valuation
function vi : 2M → R≥0. We use Vi for the class of valuation functions of agent i, and V =

∏
i∈N Vi

for the class of joint valuations. We write v = (vi, v−i) ∈ V , where vi denotes agent i’s valuation
and v−i denotes the valuations of all agents other than i. We assume that the valuation functions
are normalized and monotone, i.e., vi(∅) = 0 and vi(S) ≤ vi(T ) for all S ⊆ T .

A mechanism M = (f, p) is defined by an allocation rule f : B → P(M) and a payment rule
p : B → Rn≥0, where B is the class of bidding functions and P(M) denotes the set of allocations
consisting of all possible partitions X of the set of items M into n sets X1, . . . , Xn. As with
valuations we write bi for agent i’s bid, and b−i for the bids by the agents other than i. We define
the social welfare of an allocation X as the sum SW(X) =

∑
i∈N vi(Xi) of the agents’ valuations

and use OPT(v) to denote the maximal achievable social welfare. We say that an allocation rule f
is efficient if for all bids b it chooses the allocation f(b) that maximizes the sum of the agent’s bids,
i.e.,

∑
i∈N bi(fi(b)) = maxX∈P(M)

∑
i∈N bi(Xi). We assume quasi-linear preferences, i.e., agent i’s

utility under mechanism M given valuations v and bids b is ui(b, vi) = vi(fi(b))− pi(b).
We focus on the Vickrey-Clarke-Groves (VCG) mechanism [30, 4, 12]. Define b−i(S) =

maxX∈P(S)
∑

j 6=i bj(Xj) for all S ⊆ M . The VCG mechanisms starts from an efficient alloca-
tion rule f and computes the payment of each agent i as pi(b) = b−i(M)− b−i(M \ fi(b)). As the
payment pi(b) only depends on the bundle fi(b) allocated to agent i and the bids b−i of the agents
other than i, we also use pi(fi(b), b−i) to denote agent i’s payment.

If the bids are additive then the VCG prices are additive, i.e., for every agent i and every bundle
S ⊆M we have pi(S, b−i) =

∑
j∈S maxk 6=i bk(j). Furthermore, the set of items that an agent wins

in the VCG mechanism are the items for which he has the highest bid, i.e., agent i wins item j
against bids b−i if bi(j) ≥ maxk 6=i bk(j) = pi(j) (ignoring ties). Many of the complications in this
paper come from the fact that these two observations do not apply to non-additive bids.

Valuation Compressions. Our main object of study in this paper are valuation compressions,
i.e., restrictions of the class of bidding functions B to a strict subclass of the class of valuation
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functions V .1 Specifically, we consider valuations and bids from the following hierarchy due to [17],

OS ⊂ OXS ⊂ GS ⊂ SM ⊂ XOS ⊂ CF ,

where OS stands for additive, GS for gross substitutes, SM for submodular, and CF for subadditive.
The classes OXS and XOS are syntactically defined. Define OR (∨) as

(u ∨ w)(S) = maxT⊆S(u(T ) + w(S \ T )) and XOR (⊗) as (u ⊗ w)(S) =
max(u(S), w(S)). Define XS as the class of valuations that assign the same value to all
bundles that contain a specific item and zero otherwise. Then OXS is the class of valuations that
can be described as ORs of XORs of XS valuations and XOS is the class of valuations that can be
described by XORs of ORs of XS valuations.

Another important class is the class β-XOS, where β ≥ 1, of β-fractionally subadditive valu-
ations. A valuation vi is β-fractionally subadditive if for every subset of items T there exists an
additive valuation ai such that (a)

∑
j∈T ai(j) ≥ vi(T )/β and (b)

∑
j∈S ai(j) ≤ vi(S) for all S ⊆ T .

It can be shown that the special case β = 1 corresponds to the class XOS, and that the class
CF is contained in O(log(m))-XOS (see, e.g., Theorem 5.2 in [1]). Functions in XOS are called
fractionally subadditive.

Solution Concepts. We use game-theoretic reasoning to analyze how agents interact with the
mechanism, a desirable criterion being stability according to some solution concept. In the complete
information model the agents are assumed to know each others’ valuations, and in the incomplete
information model the agents’ only know from which distribution the valuations of the other agents
are drawn. In the remainder we focus on complete information. The definitions and our results for
incomplete information are given in Appendix A.

The static solution concepts that we consider in the complete information setting are:

DSE ⊂ PNE ⊂ MNE ⊂ CE ⊂ CCE ,

where DSE stands for dominant strategy equilibrium, PNE for pure Nash equilibrium, MNE for
mixed Nash equilibrium, CE for correlated equilibrium, and CCE for coarse correlated equilibrium.

In our analysis we only need the definitions of pure Nash and coarse correlated equilibria. Bids
b ∈ B constitute a pure Nash equilibrium (PNE) for valuations v ∈ V if for every agent i ∈ N
and every bid b′i ∈ Bi, ui(bi, b−i, vi) ≥ ui(b

′
i, b−i, vi). A distribution B over bids b ∈ B is a coarse

correlated equilibrium (CCE) for valuations v ∈ V if for every agent i ∈ N and every pure deviation
b′i ∈ Bi, Eb∼B[ui(bi, b−i, vi)] ≥ Eb∼B[ui(b

′
i, b−i, vi)].

The dynamic solution concept that we consider in this setting is regret minimization. A sequence
of bids b1, . . . , bT incurs vanishing average external regret if for all agents i,

∑T
t=1 ui(b

t
i, b

t
−i, vi) ≥

maxb′i
∑T

t=1 ui(b
′
i, b

t
−i, vi) − o(T ) holds, where o(·) denotes the little-oh notation. The empirical

distribution of bids in a sequence of bids that incurs vanishing external regret converges to a coarse
correlated equilibrium (see, e.g., Chapter 4 of [24]).

Price of Anarchy. We quantify the welfare loss from valuation compressions by means of the
Price of Anarchy (PoA).

The PoA with respect to PNE for valuations v ∈ V is defined as the worst ratio between the
optimal social welfare OPT(v) and the welfare SW(b) of a PNE b ∈ B,

PoA(v) = max
b: PNE

OPT(v)

SW(b)
.

1This definition is consistent with the notion of simplification in [20, 7].
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Similarly, the PoA with respect to MNE, CE, and CCE for valuations v ∈ V is the worst ratio
between the optimal social welfare SW(b) and the expected welfare Eb∼B[SW(b)] of a MNE, CE,
or CCE B,

PoA(v) = max
B: MNE, CE or CCE

OPT(v)

Eb∼B[SW(b)]
.

We require that the bids bi for a given valuation vi are conservative, i.e., bi(S) ≤ vi(S) for
all bundles S ⊆ M . Similar assumptions are made and economically justified in the related work
[3, 1, 8].

3 Hardness Result for PNE with Additive Bids

Our first result is that deciding whether there exists a pure Nash equilibrium of the VCG mechanism
for restrictions from subadditive valuations to additive bids is NP-hard. The proof of this result,
which is given in Appendix B, is by reduction from 3-Partition [11] and uses an example with no
pure Nash equilibrium from [1]. The same decision problem is simple for V ⊆ XOS because pure
Nash equilibria are guaranteed to exist [3].

Theorem 1. Suppose that V = CF, B = OS, that the VCG mechanism is used, and that agents
bid conservatively. Then it is NP-hard to decide whether there exists a PNE.

4 Smoothness Notion and Extension Results

Next we define a smoothness notion for mechanisms. It is weaker in some aspects and stronger
in another aspect than the weak smoothness notion in [28]. It is weaker because it allows agent
i’s deviating bid ai to depend on the marginal distribution B−i of the bids b−i of the agents other
than i. This gives us more power in choosing the deviating bid, which might lead to better bounds.
It is stronger because it does not allow agent i’s deviating bid ai to depend on his own bid bi.
This allows us to prove bounds that extend to coarse correlated equilibria and not just correlated
equilibria.

Definition 1. A mechanism is relaxed (λ, µ1, µ2)-smooth for λ, µ1, µ2 ≥ 0 if for every valuation
profile v ∈ V , every distribution over bids B, and every agent i there exists a bid ai(v,B−i) such
that∑

i∈N
E

b−i∼B−i

[ui((ai, b−i), vi)] ≥ λ ·OPT(v)−µ1 ·
∑
i∈N

E
b∼B

[pi(Xi(b), b−i)]−µ2 ·
∑
i∈N

E
b∼B

[bi(Xi(b))].

Theorem 2. If a mechanism is relaxed (λ, µ1, µ2)-smooth, then the Price of Anarchy under con-
servative bidding with respect to coarse correlated equilibria is at most

max{µ1, 1}+ µ2
λ

.

Proof. Fix valuations v. Consider a coarse correlated equilibrium B. For each b from the support
of B denote the allocation for b by X(b) = (X1(b), . . . , Xn(b)). Let a = (a1, . . . , an) be defined as
in Definition 1. Then,

E
b∼B

[SW(b)] =
∑
i∈N

E
b∼B

[ui(b, vi)] +
∑
i∈N

E
b∼B

[pi(Xi(b), b−i)]
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≥
∑
i∈N

E
b−i∼B−i

[ui((ai, b−i), vi)] +
∑
i∈N

E
b∼B

[pi(Xi(b), b−i)]

≥ λ OPT(v)− (µ1 − 1)
∑
i∈N

E
b∼B

[pi(Xi(b), b−i)]− µ2
∑
i∈N

E
b∼B

[bi(Xi(b))],

where the first equality uses the definition of ui(b, vi) as the difference between vi(Xi(b)) and
pi(Xi(b), b−i), the first inequality uses the fact that B is a coarse correlated equilibrium, and the
second inequality holds because a = (a1, . . . , an) is defined as in Definition 1.

Since the bids are conservative this can be rearranged to give

(1 + µ2) E
b∼B

[SW(b)] ≥ λ OPT(v)− (µ1 − 1)
∑
i∈N

E
b∼B

[pi(Xi(b), b−i)].

For µ1 ≤ 1 the second term on the right hand side is lower bounded by zero and the result
follows by rearranging terms. For µ1 > 1 we use that Eb∼B[pi(Xi(b), b−i)] ≤ Eb∼B[vi(Xi(b))] to
lower bound the second term on the right hand side and the result follows by rearranging terms.

Theorem 3. If a mechanism is relaxed (λ, µ1, µ2)-smooth and (b1, . . . , bT ) is a sequence of conser-
vative bids with vanishing external regret, then

1

T

T∑
t=1

SW(bt) ≥ λ

max{µ1, 1}+ µ2
·OPT(v)− o(1).

Proof. Fix valuations v. Consider a sequence of bids b1, . . . , bT with vanishing average exter-
nal regret. For each bt in the sequence of bids denote the corresponding allocation by X(bt) =
(X1(b

t), . . . , Xn(bt)). Let δti(ai) = ui(ai, b
t
−i, vi)−ui(bt, vi) and let ∆(a) = 1

T

∑T
t=1

∑n
i=1 δ

t
i(ai). Let

a = (a1, . . . , an) be defined as in Definition 1, where B is the empirical distribution of bids. Then,

1

T

T∑
t=1

SW(bt) =
1

T

T∑
t=1

n∑
i=1

ui(b
t
i, b

t
−i, vi) +

1

T

T∑
t=1

n∑
i=1

pi(Xi(b
t), bt−i)

=
1

T

T∑
t=1

n∑
i=1

ui(ai, b
t
−i, vi) +

1

T

T∑
t=1

n∑
i=1

pi(Xi(b
t), bt−i)−∆(a)

≥ λ OPT(v)− (µ1 − 1)
1

T

T∑
t=1

n∑
i=1

pi(Xi(b
t, bt−i))− µ2

1

T

T∑
t=1

n∑
i=1

bi(Xi(b
t))−∆(a),

where the first equality uses the definition of ui(b
t
i, b

t
−i, vi) as the difference between vi(Xi(b

t))
and pi(Xi(b

t), bt−i), the second equality uses the definition of ∆(a), and the third inequality holds
because a = (a1, . . . , an) is defined as in Definition 1.

Since the bids are conservative this can be rearranged to give

(1 + µ2)
1

T

T∑
t=1

SW(bt) ≥ λ OPT(v)− (µ1 − 1)
1

T

T∑
t=1

n∑
i=1

pi(Xi(b
t), bt−i)−∆(a).

For µ1 ≤ 1 the second term on the right hand side is lower bounded by zero and the
result follows by rearranging terms provided that ∆(a) = o(1). For µ1 > 1 we use that
1
T

∑T
t=1

∑n
i=1 pi(Xi(b

t), bt−i) ≤ 1
T

∑T
t=1

∑n
i=1 vi(Xi(b

t)) to lower bound the second term on the right
hand side and the result follows by rearranging terms provided that ∆(a) = o(1).
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The term ∆(a) is bounded by o(1) because the sequence of bids b1, . . . , bT incurs vanishing
average external regret and, thus,

∆(a) ≤ 1

T

n∑
i=1

[
max
b′i

T∑
t=1

ui(b
′
i, b

t
−i, vi)−

T∑
t=1

ui(b
t, vi)

]
≤ 1

T

n∑
i=1

o(T ).

5 Upper Bounds for CCE and Minimization of External Regret
for Additive Bids

We conclude our analysis of restrictions to additive bids by showing how the argument of [8] can
be adopted to show that for restrictions from V = CF to B = OS the VCG mechanism is relaxed
(1/2, 0, 1)-smooth. Using Theorem 2 we obtain an upper bound of 4 on the Price of Anarchy with
respect to coarse correlated equilibria. Using Theorem 3 we conclude that the average social welfare
for sequences of bids with vanishing external regret converges to at least 1/4 of the optimal social
welfare. We thus improve the best known bounds by a logarithmic factor.

Proposition 1. Suppose that V = CF and that B = OS. Then the VCG mechanism is relaxed
(1/2, 0, 1)-smooth under conservative bidding.

To prove this result we need two auxiliary lemmata.

Lemma 1. Suppose that V = CF, that B = OS, and that the VCG mechanism is used. Then for
every agent i, every bundle Qi, and every distribution B−i on the bids b−i of the agents other than
i there exists a conservative bid ai such that

E
b−i∼B−i

[ui((ai, b−i), vi)] ≥
1

2
· vi(Qi)− E

b−i∼B−i

[pi(Qi, b−i)] .

Proof. Consider bids b−i of the agents −i. The bids b−i induce a price pi(j) = maxk 6=i bk(j) for
each item j. Let T be a maximal subset of items from Qi such that vi(T ) ≤ pi(T ). Define the
truncated prices qi as follows:

qi(j) =

{
pi(j) for j ∈ Qi \ T , and

0 otherwise.

The distribution B−i on the bids b−i induces a distribution Ci on the prices pi as well as a
distribution Di on the truncated prices qi.

We would like to allow agent i to draw his bid bi from the distribution Di on the truncated
prices qi. For this we need that (1) the truncated prices are additive and that (2) the truncated
prices are conservative. The first condition is satisfied because additive bids lead to additive prices.
To see that the second condition is satisfied assume by contradiction that for some set S ⊆ Qi \ T ,
qi(S) > vi(S). As pi(S) = qi(S) it follows that

vi(S ∪ T ) ≤ vi(S) + vi(T ) ≤ pi(S) + pi(T ) = pi(S ∪ T ),

which contradicts our definition of T as a maximal subset of Qi for which vi(T ) ≤ pi(T ).
Consider an arbitrary bid bi from the support of Di. Let Xi(bi, pi) be the set of items won with

bid bi against prices pi. Let Yi(bi, qi) be the subset of items from Qi won with bid bi against the
truncated prices qi. As pi(j) = qi(j) for j ∈ Qi \ T and pi(j) ≥ qi(j) for j ∈ T we have Yi(bi, qi) ⊆
Xi(bi, pi) ∪ T . Thus, using the fact that vi is subadditive, vi(Yi(bi, qi)) ≤ vi(Xi(bi, pi)) + vi(T ). By
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the definition of the prices pi and the truncated prices qi we have pi(Qi)− qi(Qi) = pi(T ) ≥ vi(T ).
By combining these inequalities we obtain

vi(Xi(bi, pi)) + pi(Qi) ≥ vi(Yi(bi, qi)) + qi(Qi).

Taking expectations over the prices pi ∼ Ci and the truncated prices qi ∼ Di gives

E
pi∼Ci

[vi(Xi(bi, pi)) + pi(Qi)] ≥ E
qi∼Di

[vi(Yi(bi, qi)) + qi(Qi)].

Next we take expectations over bi ∼ Di on both sides of the inequality. Then we bring the
pi(Qi) term to the right and the qi(Qi) term to the left. Finally, we exploit that the expectation
over qi ∼ Di of qi(Qi) is the same as the expectation over bi ∼ Di of bi(Qi) to obtain

E
bi∼Di

[ E
pi∼Ci

[vi(Xi(bi, pi))]]− E
bi∼Di

[bi(Qi)] ≥ E
bi∼Di

[ E
qi∼Di

[vi(Yi(bi, qi))]]− E
pi∼Ci

[pi(Qi)] (1)

Now, using the fact that bi and qi are drawn from the same distribution Di, we can lower bound
the first term on the right-hand side of the preceding inequality by

E
bi∼Di

[ E
qi∼Di

[vi(Yi(bi, qi)]] =
1

2
· E
bi∼Di

[ E
qi∼Di

[vi(Yi(bi, qi)) + vi(Yi(qi, bi))]] ≥
1

2
· vi(Qi), (2)

where the inequality in the last step comes from the fact that the subset Yi(bi, qi) of Qi won with bid
bi against prices qi and the subset Yi(qi, bi) of Qi won with bid qi against prices bi form a partition
of Qi and, thus, because vi is subadditive, it must be that vi(Yi(bi, qi)) + vi(Yi(qi, bi)) ≥ vi(Qi).

Note that agent i’s utility for bid bi against bids b−i is given by his valuation for the set of items
Xi(bi, pi) minus the price pi(Xi(bi, pi)). Note further that the price pi(Xi(bi, pi)) that he faces is
at most his bid bi(Xi(bi, pi)). Finally note that his bid bi(Xi(bi, pi)) is at most bi(Qi) because bi is
drawn from Di. Together with inequality (1) and inequality (2) this shows that

E
bi∼Di

[ E
b−i∼B−i

[ui((bi, b−i), vi)]] ≥ E
bi∼Di

[ E
pi∼Ci

[vi(Xi(bi, pi))− bi(Qi)]] ≥
1

2
· vi(Qi)− E

pi∼Ci
[pi(Qi)].

Since this inequality is satisfied in expectation if bid bi is drawn from distribution Di there must
be a bid ai from the support of Di that satisfies it.

Lemma 2. Suppose that V = CF, that B = OS, and that the VCG mechanism is used. Then for
every partition Q1, . . . , Qn of the items and all bids b,∑

i∈N
pi(Qi, b−i) ≤

∑
i∈N

bi(Xi(b)).

Proof. For every agent i and each item j ∈ Qi we have pi(j, b−i) = maxk 6=i bk(j)
≤ maxk bk(j). Hence an upper bound on the sum

∑
i∈N pi(Qi, b−i) is given by

∑
i∈N maxk bk(j).

The VCG mechanisms selects allocation X1(b), . . . , Xn(b) such that
∑

i∈N bi(Xi(b)) is maximized.
The claim follows.

Proof of Proposition 1. The claim follows by applying Lemma 1 to every agent i and the cor-
responding optimal bundle Oi, summing over all agents i, and using Lemma 2 to bound

Eb−i∼B−i
[
∑

i∈N pi(Oi, b−i)] by Eb∼B[
∑

i∈N bi(Xi(b))].
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An important observation is that the proof of the previous proposition requires that the class
of price functions, which is induced by the class of bidding functions via the formula for the VCG
payments, is contained in B. While this is the case for additive bids that lead to additive (or
“per item”) prices this is not the case for more expressive bids. In fact, as we will see in the next
section, even if the bids are from OXS, the least general class from the hierarchy of [17] that strictly
contains the class of additive bids, then the class of price functions that is induced by B is no longer
contained in B. This shows that the techniques that led to the results in this section cannot be
applied to the more expressive bids that we study next.

6 A Lower Bound for PNE with Non-Additive Bids

We start our analysis of non-additive bids with the following separation result: While for restrictions
from subadditive valuations to additive bids the bound is 2 for pure Nash equilibria [1], we show
that for restrictions from subadditive valuations to OXS bids the corresponding bound is at least
2.4. This shows that more expressiveness can lead to strictly worse bounds.

Theorem 4. Suppose that V = CF, that OXS ⊆ B ⊆ XOS, and that the VCG mechanism is
used. Then for every δ > 0 there exist valuations v such that the PoA with respect to PNE under
conservative bidding is at least 2.4− δ.

The proof of this theorem makes use of the following auxiliary lemma, whose proof is deferred
to Appendix C.

Lemma 3. If bi ∈ XOS, then, for any X ⊆M ,

max
S⊆X,|S|=|X|−1

bi(S) ≥ |X| − 1

|X|
· bi(X) .

Proof of Theorem 4. There are 2 agents and 6 items. The items are divided into two sets X1 and
X2, each with 3 items. The valuations of agent i ∈ {1, 2} are given by (all indices are modulo two)

vi(S) =



12 for S ⊆ Xi, |S| = 3

6 for S ⊆ Xi, 1 ≤ |S| ≤ 2

5 + 1ε for S ⊆ Xi+1, |S| = 3

4 + 2ε for S ⊆ Xi+1, |S| = 2

3 + 3ε for S ⊆ Xi+1, |S| = 1

maxj∈{1,2}{vi(S ∩Xj)} otherwise.

The variable ε is a sufficiently small positive number. The valuation vi of agent i is subadditive,
but not fractionally subadditive. (The problem for agent i is that the valuation for Xi is too high
given the valuations for S ⊂ Xi.)

The welfare maximizing allocation awards set X1 to agent 1 and set X2 to agent 2. The resulting
welfare is v1(X1) + v2(X2) = 12 + 12 = 24.

We claim that the following bids b = (b1, b2) are contained in OXS and constitutes a pure Nash
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equilibrium:

bi(S) =



0 for S ⊆ Xi

5 + 1ε for S ⊆ Xi+1, |S| = 3

4 + 2ε for S ⊆ Xi+1, |S| = 2

3 + 3ε for S ⊆ Xi+1, |S| = 1

maxj∈{1,2}{bi(S ∩Xj)} otherwise.

Given b VCG awards set X2 to agent 1 and set X2 to agent 2 for a welfare of v1(X2)+v2(X1) =
2 · (5 + ε) = 10 + 2ε, which is by a factor 2.4− 12ε/(25 + 5ε) smaller than the optimum welfare.

We can express bi as ORs of XORs of XS bids as follows: Let Xi = {a, b, c} and Xi+1 = {d, e, f}.
Let hd, he, hf and `d, `e, `f be XS bids that value d, e, f at 3 + 3ε and 1 − ε, respectively. Then
bi(T ) = (hd(T )⊗ he(T )⊗ hf (T )) ∨ `d(T ) ∨ `e(T ) ∨ `f (T ).

To show that b is a Nash equilibrium we can focus on agent i (by symmetry) and on deviating
bids ai that win agent i a subset S of Xi (because agent i currently wins Xi+1 and vi(S) =
max{vi(S ∩X1), vi(S ∩X2)} for sets S that intersect both X1 and X2).

Note that the price that agent i faces on the subsets S of Xi are superadditive: For |S| = 1 the
price is (5 + ε)− (4 + 2ε) = 1− ε, for |S| = 2 the price is (5 + ε)− (3 + 3ε) = 2− 2ε, and for |S| = 3
the price is 5 + ε.

Case 1: S = Xi. We claim that this case cannot occur. To see this observe that because
ai ∈ XOS, Lemma 3 shows that there must be a 2-element subset T of S for which ai(T ) ≥ 2/3·ai(S).
On the one hand this shows that ai(S) ≤ 9 because otherwise ai(T ) ≥ 2/3·ai(S) > 6 in contradiction
to our assumption that ai is conservative. On the other hand to ensure that VCG assigns S to
agent i we must have ai(S) ≥ ai(T ) + (3 + 3ε) due to the subadditivity of the prices. Thus
ai(S) ≥ 2/3 · ai(S) + (3 + 3ε) and, hence, ai(S) ≥ 9(1 + ε). We conclude that 9 ≥ ai(S) ≥ 9(1 + ε),
which gives a contradiction.

Case 2: S ⊂ Xi. In this case agent i’s valuation for S is 6 and his payment is at least 1− ε as
we have shown above. Thus, ui(ai, b−i) ≤ 5 + ε = ui(bi, b−i), i.e., the utility does not increase with
the deviation.

7 Upper Bounds for CCE and Minimization of External Regret
for Non-Additive Bids

Our next group of results concerns upper bounds for the PoA for restrictions to non-additive bids.
For β-fractionally subadditive valuations we show that the VCG mechanism is relaxed (1/β, 1, 1)-
smooth. By Theorem 2 this implies that the Price of Anarchy with respect to coarse correlated
equilibria is at most 2β. By Theorem 3 this implies that the average social welfare obtained in
sequences of repeated play with vanishing external regret converges to 1/(2β) of the optimal social
welfare. For subadditive valuations, which are O(log(m))-fractionally subadditive, we thus obtain
bounds of O(log(m)) resp. Ω(1/ log(m)). For fractionally subadditive valuations, which are 1-
fractionally subadditive, we thus obtain bounds of 2 resp. 1/2. We thus extend the results of [3, 1]
from additive to non-additive bids.

Proposition 2. Suppose that V ⊆ β-XOS and that OS ⊆ B ⊆ XOS, then the VCG mechanism is
relaxed (1/β, 1, 1)-smooth under conservative bidding.

We will prove that the VCG mechanism satisfies the definition of relaxed smoothness point-wise.
For this we need two auxiliary lemmata.
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Lemma 4. Suppose that V ⊆ β-XOS, that OS ⊆ B ⊆ XOS, and that the VCG mechanism is used.
Then for all valuations v ∈ V , every agent i, and every bundle of items Qi ⊆ M there exists a
conservative bid ai ∈ Bi such that for all conservative bids b−i ∈ B−i,

ui(ai, b−i, vi) ≥
vi(Qi)

β
− pi(Qi, b−i).

Proof. Fix valuations v, agent i, and bundle Qi. As vi ∈ β-XOS there exists a conservative, additive
bid ai ∈ OS such that

∑
j∈Xi

ai(j) ≤ vi(Xi) for all Xi ⊆ Qi, and
∑

j∈Qi
ai(j) ≥ vi(Qi)

β . Consider
conservative bids b−i. Suppose that for bids (ai, b−i) agent i wins items Xi and agents −i win items
M \Xi. As VCG selects outcome that maximizes the sum of the bids,

ai(Xi) + b−i(M \Xi) ≥ ai(Qi) + b−i(M \Qi).

We have chosen ai such that ai(Xi) ≤ vi(Xi) and ai(Qi) ≥ vi(Qi)/β. Thus,

vi(Xi) + b−i(M \Xi) ≥ ai(Xi) + b−i(M \Xi) ≥ ai(Qi) + b−i(M \Qi) ≥
vi(Qi)

β
+ b−i(M \Qi).

Subtracting b−i(M) from both sides gives

vi(Xi)− pi(Xi, b−i) ≥
vi(Qi)

β
− pi(Qi, b−i).

As ui((ai, b−i), vi) = vi(Xi)− pi(Xi, b−i) this shows that ui((ai, b−i), vi) ≥ vi(Qi)/β− pi(Qi, b−i) as
claimed.

Lemma 5. Suppose that OS ⊆ B ⊆ XOS and that the VCG mechanism is used. For every
allocation Q1, . . . , Qn and all conservative bids b ∈ B and corresponding allocation X1, . . . , Xn,

n∑
i=1

[pi(Qi, b−i)− pi(Xi, b−i)] ≤
n∑
i=1

bi(Xi) .

Proof. We have pi(Qi, b−i) = b−i(M)−b−i(M \Qi) and pi(Xi, b−i) = b−i(M)−b−i(M \Xi) because
the VCG mechanism is used. Thus,

n∑
i=1

[pi(Qi, b−i)− pi(Xi, b−i)] =

n∑
i=1

[b−i(M \Xi)− b−i(M \Qi)]. (3)

We have b−i(M \Xi) =
∑

k 6=i bk(Xk) and b−i(M \ Qi) ≥
∑

k 6=i bk(Xk ∩ (M \ Qi)) because (Xk ∩
(M \Qi))i 6=k is a feasible allocation of the items M \Qi among the agents −i. Thus,

n∑
i=1

[b−i(M \Xi)− b−i(M \Qi)] ≤
n∑
i=1

[
∑
k 6=i

bk(Xk)−
∑
k 6=i

bk(Xk ∩ (M \Qi))]

≤
n∑
i=1

[

n∑
k=1

bk(Xk)−
n∑
k=1

bk(Xk ∩ (M \Qi))]

=

n∑
i=1

n∑
k=1

bk(Xk)−
n∑
i=1

n∑
k=1

bk(Xk ∩ (M \Qi)). (4)
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The second inequality holds due to the monotonicity of the bids. Since XOS = 1-XOS for every
agent k, bid bk ∈ XOS, and set Xk there exists a bid ak,Xk

∈ OS such that bk(Xk) = ak,Xk
(Xk) =∑

j∈Xk
ak,Xk

(j) and bk(Xk ∩ (M \Qi)) ≥ ak,Xk
(Xk ∩ (M \Qi)) =

∑
j∈Xk∩(M\Qi)

ak,Xk
(j) for all i.

As Q1, . . . , Qn is a partition of M every item is contained in exactly one of the sets Q1, . . . , Qn and
hence in n− 1 of the sets M \Q1, . . . ,M \Qn. By the same argument for every agent k and set Xk

every item j ∈ Xk is contained in exactly n−1 of the sets Xk∩(M \Q1), . . . , Xk∩(M \Qn). Thus, for
every fixed k we have that

∑n
i=1 bk(Xk∩(M \Qi)) ≥ (n−1) ·

∑
j∈Xk

ak,Xk
(j) = (n−1) ·ak,Xk

(Xk) =
(n− 1) · bk(Xk). It follows that

n∑
i=1

n∑
k=1

bk(Xk)−
n∑
i=1

n∑
k=1

bk(Xk ∩ (M \Qi))

≤ n ·
n∑
k=1

bk(Xk)− (n− 1) ·
n∑
k=1

bk(Xk) =

n∑
i=1

bk(Xk). (5)

The claim follows by combining inequalities (3), (4), and (5).

Proof of Proposition 2. Applying Lemma 4 to the optimal bundles O1, . . . , On and summing over
all agents i, ∑

i∈N
ui(ai, b−i, v) ≥ 1

β
OPT(v)−

∑
i∈N

pi(Oi, b−i) .

Applying Lemma 5 we obtain∑
i∈N

ui(ai, b−i, v) ≥ 1

β
OPT(v)−

∑
i∈N

pi(Xi(b), b−i)−
∑
i∈N

bi(Xi(b)).

8 More Lower Bounds for PNE with Non-Additive Bids

We conclude by proving matching lower bounds for the VCG mechanism and restrictions from
fractionally subadditive valuations to non-additive bids. We prove this result by showing in Ap-
pendix D that the VCG mechanism satisfies the outcome closure property of [20], which implies that
when going from more general bids to less general bids no new pure Nash equilibria are introduced.
Hence the lower bound of 2 for pure Nash equilibria and additive bids of [3] translates into a lower
bound of 2 for pure Nash equilibria and non-additive bids.

Theorem 5. Suppose that OXS ⊆ V ⊆ CF, that OS ⊆ B ⊆ XOS, and that the VCG mechanism
is used. Then the PoA with respect to PNE under conservative bidding is at least 2.

Note that the previous result applies even if valuation and bidding space coincide, and the VCG
mechanism has an efficient, dominant-strategy equilibrium. This is because the VCG mechanism
admits other, non-efficient equilibria and the Price of Anarchy metric does not restrict to dominant-
strategy equilibria if they exist.
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A Results for Incomplete Information Setting

Denote the distribution from which the valuations are drawn by D. Possibly randomized bidding
strategies bi : Vi → Bi form a mixed Bayes-Nash equilibrium (MBNE) if for every agent i ∈ N ,
every valuation vi ∈ Vi, and every pure deviation b′i ∈ Bi

E
v−i∼D−i

[ui(bi, b−i, vi)] ≥ E
v−i∼D−i

[ui(b
′
i, b−i, vi)].

The PoA with respect to mixed Bayes-Nash equilibria for a distribution over valuations is the
ratio between the expected optimal social welfare and the expected welfare of the worst mixed
Bayes-Nash equilibrium

PoA = max
b: MBNE

Ev∼D[OPT(v)]

Ev∼D[SW(b)]

Theorem 6. If an auction is relaxed (λ, µ1, µ2)-smooth then the Price of Anarchy with respect to
MBNE under conservative bidding is at most

max{µ1, 1}+ µ2
λ

.
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Proof. Fix a distribution D on valuations v. Consider a mixed Bayes-Nash equilibrium B and
denote the allocation for bids b by X(b) = (X1(b), . . . , Xn(b)). Let a = (a1, . . . , an) be defined as
in Definition 1. Then,

E
v∼D

[SW(b)] =

n∑
i=1

E
vi∼Di

[ E
v−i∼D−i

[ui((bi, b−i), vi)]] + E
v∼D

[

n∑
i=1

pi(Xi(b), b−i)]]

≥
n∑
i=1

E
vi∼Di

[ E
v−i∼D−i

[ui((ai, b−i), vi)]] + E
v∼D

[

n∑
i=1

pi(Xi(b), b−i)]

≥ λ ·OPT (v)− (µ1 − 1) E
v∼D

[

n∑
i=1

pi(Xi(b), b−i)]− µ2 · E
v∼D

[

n∑
i=1

bi(Xi(b))],

where the first equality uses the definition of ui((bi, b−i), vi) as the difference between vi(Xi(b)) and
pi(Xi(b), b−i), the first inequality uses the fact that B is a mixed Bayes-Nash equilibrium, and the
second inequality uses that a = (a1, . . . , an) is defined as in Definition 1.

Since the bids are conservative this can be rearranged to give

(1 + µ2) E
v∼D

[SW(b)] ≥ λ ·OPT (v)− (µ1 − 1) E
v∼D

[
n∑
i=1

pi(Xi(b), b−i)].

For µ1 ≤ 1 the second term on the right hand side is lower bounded by zero and the result
follows by rearranging terms. For µ1 > 1 we use that Ev∼D[pi(Xi(b), b−i)] ≤ Ev∼D[vi(Xi(b))] to
lower bound the second term on the right hand side and the result follows by rearranging terms.

B Proof of Theorem 1

Given an instance of 3-Partition consisting of a multiset of 3m positive integers w1, . . . , w3m

that sum up to mB, we construct an instance of a combinatorial auction in which the agents have
subadditive valuations in polynomial time as follows:

The set of agents is B1, . . . , Bm and C1, . . . , Cm. The set of items is I ∪ J , where I =
{I1, . . . , I3m} and J = {J1, . . . , J3m}. Let Ji = {Ji, Jm+i, J2m+i}. Every agent Bi has valuations

vBi(S) = max{vI,Bi(S), vJ ,Bi(S)}, where

vI,Bi(S) =
∑
e∈I∩S

we, and

vJ ,Bi(S) =


10B if |Ji ∩ S| = 3,

5B if |Ji ∩ S| ∈ {1, 2},
0 otherwise.

Every agent Ci has valuations

vCi(S) =


16B if |Ji ∩ S| = 3,

8B if |Ji ∩ S| ∈ {1, 2},
0 otherwise.

The valuations for the items in J are motivated by an example for valuations without a PNE in
[1]. Note that our valuations are subadditive.
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We show first that if there is a solution of our 3-Partition instance then the corresponding
auction has a PNE. Let us assume that P1, . . . , Pm is a solution of 3-Partition. We obtain a
PNE when every agent Bi bids wj for each Ij with j ∈ Pi and zero for the other items; and every
agent Ci bids 4B for each item in Ji. The first step is to show that no agent Bi would change his
strategy. The utility of Bi is B, because Bi’s payment is zero. As the valuation function of Bi is
the maximum of his valuation for the items in I and the items in J we can study the strategies
for I and J separately. If Bi would change his bid and win another item in I, Bi would have to
pay his valuation for this item because there is an agent Bj bidding on it, and, thus, his utility
would not increase. As Bi bids conservatively, Bi could win at most one item of the items in Ji.
His value for the item would be 5B, but the payment would be Ci’s bid of 4B. Thus, his utility
would not be larger than B if Bi would win an item of J . Hence, Bi does not want to change his
bid. The second step is to show that no agent Ci would change his strategy. This follows since the
utility of every agent Ci is 16B, and this is the highest utility that Ci can obtain.

We will now show two facts that follow if the auction is in a PNE: (1) We first show that in
every PNE every agent Bi must have a utility of at least B. To see this denote the bids of agent
Ci for the items in Ji by c1, c2, and c3 and assume w.l.o.g. that c1 ≤ c2 ≤ c3. As agent Ci bids
conservatively, c2 + c3 ≤ 8B, and, thus, c1 ≤ 4B. If agent Bi would bid 5B for c1, Bi would win
c1 and his utility would be at least B, because Bi has to pay Ci’s bid for c1. As Bi’s utility in the
PNE cannot be worse, his utility in the PNE has to be at least B. (2) Next we show that in a
PNE agent Bi cannot win any of the items in Ji. For a contradiction suppose that agent Bi wins
at least one of the items in Ji by bidding b1, b2, and b3 for the items in Ji. Then agent Ci does not
win the whole set Ji and his utility is at most 8B. As agent Bi bids conservatively, bi + bj ≤ 5B
for i 6= j ∈ {1, 2, 3}. Then, b1 + b2 + b3 ≤ 7.5B. Agent Ci can however bid b1 + ε, b2 + ε, b3 + ε
for some ε > 0 without violating conservativeness to win all items in Ji for a utility of at least
16B − 7.5B > 8B. Thus, Ci’s utility increases when Ci changes his bid, i.e., the auction is not in
a PNE.

Now we use fact (1) and (2) to show that our instance of 3-Partition has a solution if the
auction has a PNE. Let us assume that the auction is in a PNE. By (1) we know that every agent
Bi gets at least utility B. Furthermore, by (2) we know that every agent Bi wins only items in
I. It follows that every agent Bi pays zero and has exactly utility B. Thus, the assignment of the
items in I corresponds to a solution of 3-Partition.

C Proof of Lemma 3

As bi ∈ XOS there exists an additive bid ai such that
∑

j∈X ai(j) = bi(X) and for every S ⊆ X
we have bi(S) ≥

∑
j∈S ai(j). There are |X| many ways to choose S ⊆ X such that |S| = |X| − 1

and these |X| many sets will contain each of the items j ∈ X exactly |X| − 1 times. Thus,∑
S⊆X,|S|=|X|−1 bi(S) ≥ (|X|− 1) · bi(X). For any set T ∈ arg maxS⊆X,|S|=|X|−1 bi(S), using the fact

that the maximum is at least as large as the average, we therefore have bi(T ) ≥ (|X|−1)/|X|·bi(X).

D Outcome Closure

We say that a mechanism satisfies outcome closure for a given class V of valuation functions and
a restriction of the class B of bidding functions to a subclass B′ of bidding functions if for every
v ∈ V , every i, every conservative b′−i ∈ B′, and every conservative bi ∈ B there exists a conservative
b′i ∈ B′ such that ui(b

′
i, b
′
−i, vi) ≥ ui(bi, b′−i, vi).

16



Proposition 3. If a mechanism satisfies outcome closure for a given class V of valuation functions
and a restriction of the class B of bidding functions to a subclass B′, then the Price of Anarchy
with respect to pure Nash equilibria under conservative bidding for B is at least as large as for B′.

Proof. It suffices to show that the set of PNE for B′ is contained in the set of PNE for B. To see
this assume by contradiction that, for some v ∈ V , b′ ∈ B′ is a PNE for B′ but not for B. As b′ is
not a PNE for B there exists an agent i and a bid bi ∈ B such that ui(bi, b

′
−i, vi) > ui(b

′
i, b
′
−i, vi).

By outcome closure, however, there must be a bid b′′i ∈ B′ such that ui(b
′′
i , b
′
−i, vi) ≥ ui(bi, b′−i, vi).

It follows that ui(b
′′
i , b
′
−i, vi) > ui(b

′
i, b
′
−i, vi), which contradicts our assumption that b′ is a PNE for

B′.

Next we use outcome closure to show that the Price of Anarchy in the VCG mechanism with
respect to pure Nash equilibria weakly increases with expressiveness for classes of bidding functions
below XOS.

Proposition 4. Suppose that V ⊆ CF, that B′ ⊆ B ⊆ XOS, and that the VCG mechanism is used.
Then the Price of Anarchy with respect to pure Nash equilibria under conservative bidding for B is
at least as large as for B′.

Proof. By Proposition 3 it suffices to show that the VCG mechanism satisfies outcome closure for
V and the restriction of B to B′. For this fix valuations v ∈ V , bids b′−i ∈ B′, and consider an
arbitrary bid bi ∈ B by agent i. Denote the bundle that agent i gets under (bi, b

′
−i) by Xi and

denote his payment by pi = pi(Xi, b
′
−i). Since bi ∈ B ⊆ XOS there exists a bid b′i ∈ OS ⊆ B′ such

that ∑
j∈Xi

b′i(j) = bi(Xi) and,

∑
j∈S

b′i(j) ≤ bi(S) for all S ⊆ Xi.

By setting b′i(j) = 0 for j 6∈ Xi we ensure that b′i is conservative. Recall that the VCG
mechanism assigns agent i the bundle of items that maximizes his reported utility. We have that
b′i(Xi) = bi(Xi) and that b′i(T ) ≤ bi(T ) for all T ⊆ M . We also know that the prices pi(T, b−i) for
all T ⊆ M do not depend on agent i’s bid. Hence agent i’s reported utility for Xi under b′ is as
high as under b and his reported utility for every other bundle T under b′ is no higher than under
b. This shows that agent i wins bundle Xi and pays pi under bids (b′i, b

′
−i).
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