Shortest Path Approach to Edge Routing

Jiri Dokulil, Jana Katreniakova, David Bednarek
University of Vienna, Vienna, Austria
Comenius University, Bratislava, Slovakia
Charles University, Prague, Czech Republic
jiri.dokulil@univie.ac.at, katreniakova@dcs.fmph.uniba.sk, bednarek @ksi.mff.cuni.cz

Abstract

Traditionally, drawing of edges is performed together
with drawing of nodes. However, there are situations
where positions of the nodes are fixed, e.g., when the po-
sitions are defined by the user or a separate algorithm.
An example of this situation is a database schema editor,
where user positions the nodes (i.e., visual representations
of definitions of individual database tables) according to
their meaning, for example grouping them according to
subdomains of the problem. In this case, we only need to
draw the edges but we must do that in such a way that the
lines that represent these edges do not cross the rectan-
gles that represent the nodes — we need to perform some
kind of edge routing. This paper describes an algorithm
that performs edge routing in such a way that the lengths
of the polylines it produces are minimal. We also describe
several ways of improving the performance of the basic al-
gorithm so that it can be used even for interactive graph
visualization and manipulation, which is necessary in our
scenario. Then, we show several post-processing steps that
are used to turn the results of the algorithm into a usable
visualization.

1 Introduction

There is a huge number of different applications of
graph drawing. They impose different limitations on in-
puts and outputs of the graph drawing algorithms so there
is no definitive solution that would fit every situation. One,
less common and less explored, set of problems are those
where we already know the drawing of the nodes of the
graph. The shape and position of the visual elements that
represent the nodes in the drawing have already been sup-
plied by an outside source — either a user or software.

A number of such use cases come from the rapidly ex-
panding area of parallel and distributed computing, where
branched workflows, pipelines, execution plans and other
parallel computation schemes are often inspected or de-
signed by humans and computer-assisted drawing forms an
invaluable tool in the design of parallel applications espe-
cially in the area of e-science. From the other use cases, we

selected the widely understood visualization of database
schemas as a running example.

In all the cases mentioned above, the nodes of the graph
(i.e. the tables in a database schema or various units of
computation in parallel computing) have some naturally
preferred layouts for the human operator, like clustering
the tables together according to a sub-problem that they
are used for. In addition, to maintain human understand-
ing, the layout shall not change much when nodes or edges
are added or removed. On the other hand, the users of-
ten don’t want to bother with positioning of the edges (i.e.
the foreign keys in a database schema) as they expect that
the layout of the edges be inferred from the layout of the
nodes.

The edges in the graph are drawn as (poly)lines con-
necting the related nodes. Quite often, the only criterion
for the routing of these lines is that it should be “nice”.
This makes the task ideal for graph drawing techniques.

In the following text, we present one approach to the
problem. We took an inspiration from an already existing
solution for visualization of interconnected class instances
which uses an algorithm that routes the polylines in such
a way that they have minimal possible length [6]. The
advantage of the approach is predictability and stability
(the same input produces identical results, similar inputs
usually produce similar results), which is useful when the
target audience are software developers and the software
serves as a tool where aesthetics are not important. The
disadvantage of that algorithm is the fact that it can only
be used on small graphs due to its time complexity. There
are improved versions of this approach, but none of them
completely fit our needs. So, we have come up with sev-
eral ways to significantly speed up the original algorithm
(in the average case, not asymptotically). Even though the
worst case performance is still poor, we believe (and our
experiments confirm it) that it works well in practical ap-
plications.

However, before the results can actually be presented to
the user, there are several post processing steps that should
be performed to improve readability and aesthetics of the

drawing. We describe two of these steps, one of which is
necessary (and sufficient) and the other is optional.

We also provide a way to efficiently handle the situation
where the position of one node is being changed by the user
(update handling). This is a common scenario: the user
has just decided to move one of the tables in the schema
designer to a position that suits him or her better. It turns
out that it is not necessary to redraw the whole graph.

First, we will discuss related work. Then, in Section 3,
we describe the original algorithm and the improvements
that we have done. Section 4 deals with implementation
issues, especially with ways of speeding up the evaluation.
Section 5 describes the post processing steps. Then, we
briefly discuss the implementation and measured perfor-
mance. The last section concludes the paper and provides
some ideas for future work.

2 Related work

Graph drawing algorithms mostly solve the problem of
drawing the whole graph — positioning of nodes is inter-
connected with drawing of edges and one algorithm han-
dles both subproblems. This is not possible in our case.
We cannot change the positions of edges even if we could
create “nicer” drawing of edges in the new layout. There-
fore we can only find routes for drawing of edges in the free
space between the drawn nodes. Moreover, we do not have
any further information about the node positions, except
the basic assumption that the rectangles do not overlap.

There are several basic options of solving this kind
of problems: path-finding algorithms, force-directed al-
gorithms, heuristics based on rerouting of edges, and
shortest-path algorithms.

2.1 Path-finding algorithms

Algorithms based on robot motion planning [9, 5] try to
find an effective path among the obstacles in the plane. The
polygon which forms the free space in the plane is first tri-
angulated (or otherwise subdivided). Then, the algorithm
uses centers of the triangles to find a suitable path for the
robot. It is the shortest path in the dual graph (tree) of the
triangulation [9]. This can also be used for edge-routing.
However, it does not produce the shortest possible path.

Other algorithms (e.g., [14] used for example in [7]) use
the path through a maze which is constructed on the free
space. They are much faster, but produce only orthogonal
drawing of edges.

2.2 Force-directed algorithms

The force-directed algorithms mostly use springs or
other forces between nodes and edges to achieve the best
positioning of both nodes and edges. However, these forces
can also be used to remove edge-node or even edge-edge
intersections [2, 8]. These solutions use some other routing
algorithm as the first step and then use the force-directed
approach to get more aesthetic drawing.

There are many variants of these algorithms, for ex-
ample constrained force-directed approach [3] that tries to
preserve pre-defined node positions to some degree.

2.3 Rerouting of edges

The edge-routing algorithm [1] was designed to handle
a general drawing of any graph where nodes are drawn as
rectangles (only constrained by the requirement that there
is at least § > 0 free space between the nodes). It finds the
solution by incrementally rerouting the polyline to avoid
edge-node crossings. It is a heuristic and thus does not
provide any guarantees for the optimality of edge-drawing.

There are more ways of heuristically rerouting edges
[10], but we have chosen this algorithm for its simplicity
and implemented it as a part of our effort to improve per-
formance of our solution (for more details, see sections 3.3
and ??).

2.4 Shortest-path algorithms

Routing edges along the shortest path has already been
tried. In [6], the author only needed to visualize small
graphs, so the implemented solution did not scale well with
the size of the graph. The biggest performance issue is the
construction and maintenance of the visibility graph. In
[13], the authors describe a way to significantly speed up
this process by very efficiently managing changes to the
visibility graph. We took a different path by trying to elim-
inate the need to build the whole visibility graph, rather
than improving the performance of the building process.
But some of their ideas are close to the implementation
improvements described in Section 4, especially 4.2.

Unfortunately, the drawings produced by that algorithm
cannot be used for our use-case, since it draws edges in
such a way that they overlap, making it impossible to al-
ways distinguish the individual edges. But, it might be
possible to combine our approach with the performance
improvements that they use.

There is also a different way of approaching the whole
problem. It is possible to slightly relax the requirement of
finding the shortest path and only require a good approxi-
mation. In [4], the authors present one such solution. They
are able to speed up the drawing by an order of magni-
tude, while keeping the mean increase of the length of the
polylines at around 20%. But it always redraws the whole
graph, even if there is just a partial update.

3 Algorithms

The following sections describe the algorithms from the
theoretical point of view. We describe the terminology, the
problem and the various algorithms that may be used to
solve the problem.
3.1 Terminology

In the following text, graph always refers to a non-
directed, finite graph G = (V, E). The drawing of the
graph I'(G) is a function over nodes and edges, that maps

each node of the graph to a rectangle positioned in 2D
space with its sides parallel to either x or y axis. The func-
tion I is naturally extended to sets of nodes and edges. We
assume that I' is defined in such a way that the rectangles
that correspond to nodes do not overlap. In fact, we assume
that there is 6 > 0 free space between the rectangles.
Further symbols and functions used in the text are:

e T 7 denotes the line connecting points x and y,

e corners(n) (n is a node) is the set of (four) points
that lie at the corners of I'(n),

e center(n) is the center of I'(n),

e |p| is the length of the polyline p.

3.2 The problem

In our case, we want to find an optimal (shortest) poly-
line p defined by points (p1,...,px) that connects two
nodes n1 and ns. In the following text, we assume that
we connect the centers of the nodes, but any point that falls
within the rectangle I'(n) would work just the same.

We say that the polyline p is valid for R, where R is a
set of non-overlapping rectangles that includes I'(n;) and
I'(n2) if the following conditions hold:

e no line p; p; 11 crosses any rectangle from R for 2 <
1 <k-—2,

e p1 p2 only crosses I'(ny),
e Dr_1 P only crosses I'(n2),

e no bend (i.e., pa, ..., pr—1) lies in T'(ny) or T'(ng).

In other words, the polyline does not cross any rectan-
gle except that the first segment crosses I'(n1) and the last
segment crosses I'(nz).

A polyline p valid for R is optimal iff there is no shorter
polyline valid for R that connects the same two points.
Note that we omit “for R” if a statement holds for any
applicable set — a set of non-overlapping rectangles from
(V) that includes T'(n1) and T'(ns2).

Lemma 1 For any valid polyline p, there is a valid poly-
line p’ = (pf, ..., P},) such that:
 p1 =phand p = pp,
o [p[<Ip
o V€ (ph,...

)

,Dhs_1)3n : T € corner(n).

In other words, for any valid polyline, we can find a
polyline, that connects the same points, is the same length
or shorter, and only bends at the corners of rectangles. A
physical interpretation is that if we replaced the rectangles
with solid blocks of material and the polyline with a tensed

strip of rubber, then the rubber strip would contract so that
it only bends at the corners of the solid blocks.

As a result of this, we can limit our search for the op-
timal polyline to polylines that only bend at corners of
rectangles. This fact was used to create an algorithm for
edge routing [6], that works by creating a visibility graph
of all corners and then finding the shortest path through this
graph using Dijkstra’s algorithm — the edge weight is natu-
rally defined as the distance between the connected points
(corners). This algorithm will be called SC (Shortest path
using Corners) in the rest of the text.

The corner visibility graph CVG(T'(G),ny,nz) for
the drawing T'(G) of the graph G = (V,E) and for
nodes n1, ny from G is the graph (CV Gy, CV G g) where
CVGy = U,ey corner(n) U {center(ni), center(nz)}
and C'V G is the union of the following sets:

o {{v1,v3} 1 v1 € CVGy ANvy € CVGy Awvp #
vg A U7 U3 does not cross any rectangle from I'(G)},

o {{v1,v2} : v1 = center(ni) Avy € CVGy Auvy #
vg A U1 U3 does not cross any rectangle from I'(G) \

{T'(n1)}}
o {{v1,v2} : v; € CVGy A vy = center(ng) A vy #
vo A U7 U7 does not cross any rectangle from I'(G) \

{C(n2)}},

o {{v1,v2} : v1 = center(ni) A vy = center(nz) A
v1 # wve A U1 Uz does not cross any rectangle from

L(G) \ {T'(n1),P(n2)}}-

The optimal valid polyline is then defined by
the shortest path from center(ni) to center(nz) in
CVG(I'(G),n1, ne). The disadvantage of this approach is
the time complexity of the algorithm which also results in
poor performance of real-world applications even on small
graphs.

3.3 Problem reduction

Two main sources of poor performance of the original
algorithm are the following: first, building the visibility
graph is very time-consuming, since we have to test vis-
ibility (the fact, whether a line crosses any rectangle) for
each pair of corners. Second, running Dijkstra’s algorithm
on such a large graph also takes considerable time.

We can significantly reduce the problem if we have
some upper bound of the length of the optimal polyline p.
An example of such estimation is the situation, where we
have a valid polyline p’ that connects the same two end-
points. Obviously, the optimal valid polyline cannot be
any longer, since it is defined as the shortest possible valid
polyline (with the two defined endpoints).

It is clear that the optimal polyline cannot contain any
point x such that |py Z| + [T px| > |p’| since that would
make it longer than p’ which is a contradiction.

The algorithm for edge routing can be modified by using
any other edge routing algorithm route(I'(G), nq, ny) that
produces valid polylines like this:

1. limit := |route(T'(G), n1, na)|,

2. define CVG' as the induced subgraph of
CVG('(G),n1,n2) where CVG, = {c €
CV Gy : |center(ny) c| + |c center(ng)| < limit},

3. the optimal polyline is defined by the minimal path
from center(ny) to center(ng) in CVG'.

3.4 Lazy algorithm

Running the Dijkstra’s algorithm on a reduced visibility
graph helps with one of the sources of poor performance.
But the other one, which is the time required to build the
visibility graph still remains. This can be improved by a
major modification of the algorithm. The basic principle
is the same as the SC algorithm, but the visibility graph is
built in a lazy manner — we only build the part of the graph
that is needed at the moment. For this reason, we call the
algorithm LSC (Lazy SC).

In the following, path(CVG’) denotes the polyline
that was defined by the shortest path from center(n;) to
center(ng) in CVG'.

1. V:i={n1,n}

2. CVGE = CVGIT(V),n1,nz)

3. p:=path(CVG")

4. T'(n) := one of the rectangles from I'(G) crossed by

p
if no I'(n) exists, p is the result (end algorithm)

6. addntoV
7. goto 2

b

The second step may be modified in the same way that
was used in Section 3.3 to only include corners that are
close enough. In step 4, we choose any single rectangle
from a set of possible candidates. There is no simple opti-
mal strategy for selecting the “best” rectangle — it is easy to
find counter-examples for all options like the closest rect-
angle to origin, the rectangle in the middle, etc. For this
reason, we decided to use the first candidate that we can
find and end the search at that moment.

The LSC algorithm also finds an optimal valid polyline
(see Appendix D).

4 Implementation

The task of creating a working implementation of all the
algorithms is straightforward. However, since our goal is
to create an interface that would quickly respond to user’s
actions, we have to build it in a more sophisticated manner.

4.1 Indexing

One of the common operations is to check whether a
line crosses any rectangle that represents a node (crossing
look-up). For example, this is used to build the visibility
graph. A simple solution would be to take each rectan-
gle and check, whether the line crosses it or not. But to
build the full corner visibility graph, this operation is per-
formed for (nearly) each pair of points, where a point is
either a corner or center of a node. It may not be necessary
to check all pairs that include a node center — we only need
to include those, where the center is actually used as a end-
point of a polyline. In other words, there is an edge adja-
cent to the node represented by the rectangle. But the worst
case may be very likely — for example, in database schema
design tool, it is quite likely that each table is involved in
at least one parent-child relationship (foreign key). On the
whole, we are likely to test close to (5n)(5n — 1)/2 lines
to check whether they cross a rectangle that represents a
node. This would necessitate n(5n)(5n — 1)/2 tests of
line-rectangle crossing.

The number of crossing look-ups can be reduced by the
LSC algorithm, although the worst-case scenario remains
the same. The cost of each look-up can be reduced by a
spatial index. However, traditional indexes were not de-
signed for queries in the form of a line [11].

One solution is to use a straightforward grid-based in-
dex [12], where the space is evenly covered by a square
grid. Each square contains an information about all rect-
angles that overlap the square. The crossing look-up is
performed by finding all squares that are crossed by the
line and then creating a union of all rectangles associated
to these squares. Then each of these candidates is tested to
check whether it is really crossed by the line or not.

Obviously, in the worst case situation, we still have to
perform the same number of tests as we would do without
the index. But in real applications, the index can signifi-
cantly improve the overall performance.

4.2 Updates

In some relevant scenarios, we may be faced with a sit-
uation where the position of one node is modified and we
need to update the drawing of the graph. We could recal-
culate the optimal polyline for each edge, but that may not
always be necessary.

There are three classes of edges that we have to update,
when a node 7 is moved to a new location:

1. edges incident to n,

2. edges that are represented by a polyline that crosses
the new location of n,

3. edges that had their drawing affected by the node n
(before n was moved).

It is easy to identify edges that belong to the first two
classes. The third class is slightly more difficult. It con-
tains all edges such that the LSC algorithm used the node
n (i.e., n was added to the V' set used in the algorithm). We
can store the set V' for each edge and use it to find edges
that can be updated (this is called invisibility graph in [13]).

Note that it is not sufficient to just update edges that
directly bend at one of the corners of I'(n). An example
of such situation is the scenario, where I'(n) obstructed a
possible route for the polyline in such a way, that it forced
the algorithm to take a completely different route, away
from IT'(n).

Also note that the update process requires the program
(option 2 in the list) to find all edges that are represented
by a polyline which passes through a certain area. This can
either be done by brute force or by an index — the problem
is very similar to the one described in Section 4.1 and can
be solved by similar means.

4.3 Information sharing

When the LSC algorithm is executed for an edge, it
builds a graph that is closely related to the maximal cor-
ner visibility graph CVG(I'(G),n1,n2). However, it is
not a subgraph of the full graph. This is due to the fact
that the “local” graph only computes the visibility with re-
gard to the current contents of the I'(V') set. So it may de-
clare that two corners can see each other, even though the
line that connects them is obstructed by a rectangle from
D(G)\T(V).

If we modify the representation of the corner visibility
graph by adding the list of all rectangles that cross each
link, we can overcome this problem and reuse the informa-
tion that was computed for one edge in the computation of
the following edges.

4.4 Parallel computation

In the basic form of the LSC algorithm, the routing of
one edge is completely independent on routing of any other
edge, so they can be executed in parallel to further reduce
the time that the user has to wait before a drawing is gen-
erated.

However, if information sharing described in the previ-
ous section is used, special care has to be taken to synchro-
nize generation of the global visibility graph. This can be
achieved by proper use of locks and if the locks are suf-
ficiently fine-grained (e.g., for each corner or node, rather
than one global lock) it will not limit scalability by much,
since collisions would be rare thanks to the fact that the
number of nodes will typically be much larger than the de-
gree of parallelism.

4.5 Overlapping nodes

In the theoretical part of the text, we always assumed
that the rectangles that represent the nodes do not overlap.
But in reality, to handle user’s input, when the user changes

\

Figure 1: Example of bad corner sorting

the position of the nodes, we need to handle even such sit-
uations — we cannot force the user to move nodes in such
a way that they never overlap throughout the whole action.
The actual implementation can draw edges in any situa-
tion, but if some rectangles overlap, the edges adjacent to
nodes represented by these rectangles may be drawn in a
way that does not meet our criteria for edge — the polyline
may not be optimal or even valid (it may cross some of the
rectangles). The simplest way of achieving this behavior is
to tune the Dijkstra’s algorithm in such a way that it finds
a path through the visibility graph even if there shouldn’t
be one. We add the obstructed links to the graph but with
such high cost that they can only be used if there is no other
way.

5 Post-processing

The algorithm described in Section 3 does not produce
results that could be used directly to visualize a database
schema. The improvements described in the previous sec-
tion only affect the performance and (in one case) “patho-
logical” cases. In this section, we present two post process-
ing steps that are applied to the result of the routing algo-
rithm in order to make edges distinguishable (corner sort-
ing) and improve the visual appearance (corner smooth-
ing). The first step is necessary, otherwise the user will
often be unable to find out, which pairs of nodes are con-
nected and which are not.

5.1 Corner sorting

If two (or more) edges bend at the same corner, both of
these bends lie at exactly the same coordinates, which in
turn means that four segments (two for each edge) termi-
nate at those coordinates. The user would not be able to
identify correctly pair the segments.

So, for each corner, we take all polylines that bend
at that corner plus all polylines that pass near the corner
(within a pre-defined distance) without bending there. We
add a new bend to the latter polylines — we make them bend
at the corner they were passing.

Then, we take all of the n bends and move them to
slightly different locations near the corner of the node. To
do so, we need to do two things: (a) create a set P of n dif-
ferent positions and (b) assign bends to that positions. The
problem is, that this process may introduce new edge-edge
crossings (see Figure 1). We try to do the step (b) in such
a way that it minimizes the problem.

The set P is created by selecting evenly spaced points
on the line segment that starts and the corner a ends at a
pre-defined distance from the corner in the direction “away
from the corner” (along the (1, 1) vector for the lower-right
corner in traditional screen coordinates, i.e., with x-axis
pointing right, y-axis pointing to the bottom; other corners
are analogous).

To assign bends to positions, we first need to define
ordering on the bends. Originally, we wanted to solve it
by transforming the problem of minimizing the number of
edge-edge crossings to finding a minimal permutation. But
it turned out, that a much simpler and faster solution is ca-
pable of providing decent results. First, we split the plane
to two sub-planes along the “away from the corner” axis.
Each polyline has one segment in one plane (“left”) and
another in the other (“right”’). We count the number of dis-
tinct directions of all “left” segments and the same number
for “right” segments. Whichever side has more distinct di-
rections is the winner. Then, we order the segments on
the winning side according to the angle they form with the
“away from the corner” axis.

Finally, we assign positions from P to the bends in this
order. The first bend (smallest angle) gets the point that is
the farthest from the corner. In case of a draw, the order is
arbitrary, but it should be stable (i.e., it should not change
between multiple executions of the algorithm).

5.2 Corner smoothing

In order to make the drawing more appealing, the bends
on the polylines are transformed into Bezier curves. We
only transform a small region close to the actual bend, so
that the overall characteristics of the drawing are main-
tained.

The curve is defined by a starting point P1, which is
on the line in § distance before the corner (internally, we
maintain an implicit orientation of the edge and the poly-
line), end point P4, which is on the line in § distance after
the corner, and two control points P2 and P that are both
placed at the original bend.

6 Implemenation and example

We have implemented all of the described algorithms
and improvements. On the whole, the best performance
was achieved in a variant that used all improvements ex-
cept for the edge index. The cost of maintaining the index
is not justified by reduced cost of edge lookup. The re-
sulting performance is sufficient to draw graphs with tens
of nodes and hundreds of edges in real time. For graphs
with hundreds of nodes, it takes several seconds to com-
pute the whole drawing, but the updates are still handled in
fractions of seconds.

An example output from the algorithms is shown in Fig-
ure 2. It is only a mock-up of a databse design tool, but the
graph drawing algorithms are fully implemented.

7 Conclusions and future work

We have shown several ways in which the basic idea of
routing edges by finding the shortest path in the visibility
graph can be made to run much faster. As a result, the al-
gorithms could be used to implement an interactive appli-
cation, which should be able to respond to user’s actions in
real time. The main improvement comes from the “lazy”
algorithm, which eliminates the need to build the whole
visibility graph. We have also described several ways in
which the performance can be further improved by efficient
implementation of the algorithm and post-processing steps
that transform the drawing into to make it more useful.

There are two main directions that we would like to ex-
plore in the future. First, it may be possible to most of
the techniques of speeding up visibility graph construction
[13] into our algorithms. Second, we would like to further
improve the design of the schema editor, starting with the
problem of displaying edge labels (names of the relations,
possibly even more detailed information).

Acknowledgment

This work was supported in part by the grant
P103/13/08195S of the Grant Agency of the Czech Repub-
lic.

References
[1] Jiri Dokulil and Jana Katreniakova. Edge routing
with fixed node positions. In IV '08: Proceedings
of the 2008 12th International Conference Informa-
tion Visualisation, pages 626—-631, Washington, DC,
USA, 2008. IEEE Computer Society.

[2] Tim Dwyer, Kim Marriott, and Michael Wybrow. In-
tegrating edge routing into force-directed layout. In
IN: PROC. 14TH INTL. SYMP. GRAPH DRAWING
(GD 06). VOLUME 4372 OF LECTURE. Springer,
2007.

[3] Tim Dwyer, Kim Marriott, and Michael Wybrow.
Topology preserving constrained graph layout. In
Ioannis G. Tollis and Maurizio Patrignani, editors,
Graph Drawing, volume 5417 of Lecture Notes in
Computer Science, pages 230-241. Springer, 2008.

[4] Tim Dwyer and Lev Nachmanson. Fast edge-routing
for large graphs. In David Eppstein and Emden R.
Gansner, editors, Graph Drawing, volume 5849 of
Lecture Notes in Computer Science, pages 147-158.
Springer, 2009.

[5] Sanjiv Kapoor and S. N. Maheshwari. Efficient algo-
rithms for euclidean shortest path and visibility prob-
lems with polygonal obstacles. In Symposium on
Computational Geometry’88, pages 172—182, 1988.

(6]

(7]

(8]

(9]

(10]

(11]

bank insurance_company

id (PK)
bank_id (FK)
house_id (FK)
end_date

id (PK)

SSN
MNfirst_name
last_name
city_of_birth (FK)

address child bank account [
id (PK) - id (PK% @ W Ir?ag:g)
R e e person_id (FK) —————__|IBAN country (FK)
number last_name account_nr country (FK) y
P year_of_birth bank (FK)
city (FK) City_of_birth (FK)
brand_of
id (PK)
Earent_id (FK)
rand_id (FK)
loan_security person date_acquired

_/

car_maker
id (PK)
name
logo

private_car country (FK)

id (PK)

owner_id (FK)

car_type_id (FK)

year_built

registration

color car_type

insured_by (FK) i (PK)

maker_id (FK)

name
MPG_city
MPG_highway
MPG_avg
CO2_city
CO2_highway
CO2_avg
weight
top_speed

engine_capacit)
fleet_car produced_in (Fi)
id (PK)
owner_id (FK)
car_type_id (FK)
year_build
registration
color
keeper_id (FK)
insured_by (FK)

Figure 2: Example of a database schema with edges drawn using our algorithm and both post-process steps

Martin Konicek. Debugger Frontend for the
SharpDevelop IDE. Master thesis, Charles Univer-
sity in Prague, 2011.

Pushpa Kumar, Kang Zhang, and Mao Lin Huang.
From tree to graph - experiments with e-spring algo-
rithm. In Mao Lin Huang, Quang Vinh Nguyen, and
Kang Zhang, editors, Visual Information Communi-
cation, pages 41-63. Springer US, 2010.

Wei Lai and Peter Eades. Removing edge-node in-
tersections in drawings of graphs. Inf. Process. Lett.,
81:105-110, January 2002.

D. T. Lee and F. P. Preparata. Euclidean shortest
paths in the presence of rectilinear barriers. Networks,
14(3):393-410, 1984.

K. Miriyala, S.W. Hornick, and R. Tamassia. An
incremental approach to aesthetic graph layout. In
Computer-Aided Software Engineering, 1993. CASE
’93., Proceeding of the Sixth International Workshop
on, pages 297-308, 1993.

Philippe Rigaux, Michel Scholl, and Agnes Voisard.
Spatial Databases: With Application to GIS. Morgan
Kaufmann, 2001.

[14] yFiles. Class

[12] Hanan Samet. The Design and Analysis of Spatial

Data Structures. Addison-Wesley, 1989.

[13] Michael Wybrow, Kim Marriott, and Peter J. Stuckey.

Incremental connector routing. In IN: PROC. 13TH
INT. SYMP. ON GRAPH DRAWING (GDO05). VOL-
UME 3843 OF LNCS, pages 446-457. Springer,
2006.

library.
http://www.yworks.com/en/products_yfiles_about.html.

