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Abstract—The software architecture community has proposed
to document the design rationale of software architectures by
means of architectural design decisions (ADDs). The constant
evolution of software systems requires that both architectural
designs and corresponding ADDs are continuously documented
and synchronized. However, in practice, designs and ADDs be-
come inconsistent over time. Usually, the potential inconsistencies
need to be detected and resolved manually. We propose to
alleviate this problem by providing semi-automated support for
detecting and handling these inconsistencies. For this, we use
constraints for consistency checking between reusable ADDs
and component-and-connector (C&C) models. These constraints
apply on the C&C models and their invalidation is resolved by
software architects either 1) by executing automatically suggested
model fixes on the C&C models, or 2) by reconsidering ADDs
and subsequently updating the corresponding C&C diagrams, in
order to align designs to decisions. We demonstrate our approach
in the context of a case study and evaluate its efficiency and
scalability.

I. INTRODUCTION

To describe software architectures various architectural
views [1–3] for different stakeholders’ needs are used. Among
these views, the component-and-connector (C&C) model is
often considered the one that contains the most significant
architectural information [1]. In recent years, software archi-
tecture is no longer solely regarded as the solution structure (as
modeled in the C&C view), but also as the set of architectural
design decisions (ADDs) that led to that structure [4]. The
main idea is that by documenting ADDs we can capture and
preserve the architectural knowledge and the design rationale.

In practice, ADD documentations often do not get main-
tained over time [5]. One of the main reasons for this is that
documenting ADDs is a tedious and time-consuming task,
especially for repeated ADDs [5, 6]. When ADDs are captured,
they often do not get synchronized with the corresponding
design views, and thus ADDs and designs drift apart as
software systems evolve [4]. Until now and to the best of
our knowledge, no approach for automated unidirectional or
bidirectional translation between ADDs and design views has
been proposed. Thus, keeping ADDs and design views con-
sistent and synchronized is a tedious and error-prone manual
task.

As models are often used for describing ADDs and ar-
chitectural views, the problem of keeping ADDs and design
views synchronized can be seen as an inconsistency manage-
ment problem. Spanoudakis and Zisman [7] see inconsistency
management as a multi-step process composed of 1) the
detection of inconsistencies, 2) the diagnosis of the cause
of inconsistencies, and 3) the handling of inconsistencies.
The management of model inconsistencies (with an emphasis
on UML models) has been addressed in various research
approaches (see [8–14]). The existing approaches focus on
maintaining the well-formedness of models according to spe-
cific consistency constraints (as in [10, 11]) and are to a
large extent based on predefined repair actions for violations
of predefined consistency checking rules [9, 11, 12]. Other
approaches address the enforcing of consistency or even
bidirectional transformations between architectural views at
different levels of abstraction (as in [15]).

The existing approaches can not deal with the handling
of inconsistencies between ADDs and architectural views, as
each and every decision leads to decision-specific inconsisten-
cies, different to the inconsistencies that might be caused by
another decision. In addition, for each caused inconsistency
the intention of the software architect has to be considered.
In contrast, the other approaches aim to generally resolve
inconsistency management problems (e.g. for all models based
on the UML meta-model) providing automated fixes. For
instance, an inconsistency caused by deleting a component
from the C&C model can be resolved either by restoring
this component (a strategy akin to the existing approaches
listed above), renaming an existing component, or asking the
software architect to reconsider the corresponding ADD.

In our previous work [16], we addressed the bridging
between ADDs and C&C views by introducing a formal map-
ping model between different ADD types, on the one hand,
and elements and properties of C&C models, on the other
hand. Based on this formal mapping model, transformation
actions that apply on the C&C models, as well as OCL-like
constraints for consistency checking between the ADDs and
the C&C models, can be automatically derived using model-
driven techniques. For recurring decisions, these mappings
can be made reusable, thus reducing implementation time



and effort [17]. Although this approach assists in consistency
checking between ADDs and C&C models and the automatic
generation of C&C models from ADDs, it does not provide
any support for handling potential inconsistencies, whenever
decisions and designs evolve. In addition, this approach has not
considered reusable ADDs which is the focus of the current
approach.

We present in this paper a novel approach aiming to
address the semi-automated handling of inconsistencies be-
tween reusable ADDs and C&C views along with adequate
tool support. Initial architectural designs can be automatically
generated from ADDs using transformation actions that act on
the C&C models. Constraints with corresponding model fixes
can be automatically generated from the underlying ADDs.
The validation of these constraints highlights inconsistencies
between the ADDs and C&C views and suggests possible
fixes that entail either modifications of the view elements or
required reconsiderations of existing ADDs.

To demonstrate our approach, we develop a prototype for
inconsistency management between decisions modeled in AD-
vISE1 – a tool for architectural decision modeling and making
support – and C&C views modeled with VbMF2 – a tool for
describing architectural view models (both are tools from our
previous work). We use our prototypical implementation in the
context of an industrial case study and show that our proposal
is efficient and scalable for large numbers of inconsistencies.

The remainder of the paper is structured as follows. First,
in Section II we present briefly the tools ADvISE and VbMF.
In Section III we discuss the details of our approach giving
also illustrative examples. The application of our approach in
an industrial case study and its evaluation are presented in
Section IV. We compare to related work in Section V and
summarize our key contributions in Section VI.

II. BACKGROUND

In this section we briefly present ADvISE and VbMF, the
two tools we integrate for demonstrating our approach for
inconsistency management between decisions and designs.

A. Architectural Design Decision Support Framework

The Architectural Design Decision Support Framework
(ADvISE) is an Eclipse-based tool that supports the modeling
of reusable ADDs using Questions, Options and Criteria
(QOC) [18] for decision making. In particular, it assists the
architectural decision making process by introducing for a
group of design issues a set of questions along with potential
options, answers and related (often design pattern based)
solutions, as well as dependencies and constraints between
them. The advantage of the reusable ADD models is that they
need to be created only once for a recurring design situation. In
similar application contexts, corresponding questionnaires can
be automatically instantiated and used for making concrete de-
cisions, from which architectural decision documentations are

1http://swa.univie.ac.at/Architectural_Design_Decision_Support_
Framework_(ADvISE)

2http://swa.univie.ac.at/View-based_Modeling_Framework

generated. For demonstrating our approach for inconsistency
management between decisions and designs we use ADDs
modeled in ADvISE.

B. View-based Modeling Framework

The View-based Modeling Framework (VbMF) is also an
Eclipse-based tool that implements a model-driven, architec-
tural view model. That is, it leverages the notion of view
models for describing various concerns of the software systems
at different abstraction levels and model-driven development
techniques for generating code and configurations from those
view models [19]. Among other views, VbMF provides a
high-level service component view model – similar to a
typical UML component model – for representing essential
architectural design elements such as components, ports, con-
nectors, and properties, independently from the underlying
platforms and technologies. Technology- and platform-specific
information will be described separately in the low-level view
models that refine and enrich the high-level counterparts. In
this paper, we mainly use the high-level service component
view model of VbMF (or in short form, the VbMF C&C view)
for describing the architectural design of a software system.

III. INCONSISTENCY MANAGEMENT BETWEEN ADDS
AND C&C VIEWS

A. Approach Overview
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Figure 1. Approach Overview
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The overview of our approach in Figure 1 shows the
two existing tools for modeling ADDs and design views –
ADvISE and VbMF respectively – as well as their integration
through the Architectural Knowledge (AK) Transformation
Language that transforms decisions to designs. Our main
contribution in this paper is the Inconsistency Management
implementation which integrates with both, the ADvISE and
VbMF tools. Dark-gray color is used to highlight artifacts
that are automatically derived using model-driven techniques,
whereas light-gray color highlights manually created artifacts.
Tools and toolsuites are depicted in boxes with rounded edges.
Please note that ADvISE and VbMF contain multiple tools
(e.g., textual and graphical editors, etc.), which for simplicity
reasons are not included in this “big picture”.

Reusable ADD models based on Questions, Options and
Criteria (QOC) (i.e., the artifact Reusable ADDs (QOC)) are
created using the ADvISE tool for recurring design issues.
From these models, ADvISE can automatically generate ques-
tionnaires for assisting the making of Actual ADDs, which are
made possibly multiple times if multiple Questionnaires are
derived from the same reusable ADD model. The reusable
ADD models are edited by software architects. For using
and manipulating C&C Diagrams VbMF provides a graphical
editor for the C&C View Model. Instances of C&C Diagrams
can be automatically generated from ADDs using Transfor-
mation Actions. In VbMF C&C Diagrams can be manually
manipulated with a graphical C&C view editor.

To check if C&C diagrams still comply to the existing
ADDs, OCL-like Constraints are generated using predefined
mappings between the reusable ADDs and constraint tem-
plates. The Constraint Validator uses these constraints to check
the consistency between actual ADDs and the corresponding
C&C diagram. Their invalidation triggers model fixes for the
C&C diagrams or recommendations for changing existing
ADDs. The selection of the fixes is left to the software
architects. The first kind of fixes – model fixes for the C&C
diagrams – can be executed automatically, while the second
kind of fixes – recommendations for revising ADDs – have to
be performed by the architects.

Reusability is achieved by formally mapping Constraint
Templates to Reusable ADDs. The template variables are
replaced by actual values as soon as actual ADDs are made.
The templates have to be created manually by the software
architects, but only once for each reusable ADD model. This
way, for Actual ADDs we can instantiate the corresponding
Constraints many times whenever new ADDs are made or
existing ADDs are modified.

B. Case Study

In this subsection, we discuss a case study from the area
of service-based platform integration which will be used
to demonstrate our approach for inconsistency management
between ADDs and C&C views. In this case study, three
heterogeneous platforms from the industry automation area,
a Warehouse Management System (WMS, storage of goods
or storage bins into racks via conveyor systems), a Yard

Q: How to implement a unified
interface for a service-based
integration solution?

O: Gateway C: Hide technological
complexity

O: Facade C: Hide interface complexity

O: Remote
Facade

C: Hide complexity

C: Remote calls

Positive Assessment
Negative Assessment

Figure 2. Reusable ADD based on QOC

Management System (YMS, scheduling, coordination, loading
and unloading of trucks), and an Enterprise Resource Planning
System (ERP, overall commissioning and handling of goods
on an abstract level beyond real storage places) need to
provide domain-specific services in an integrated manner. For
this, an intermediate integration layer will provide services to
operator applications developed on top of it3. The design of
the integration layer requires many recurring decisions that
cover various integration aspects including interface adapta-
tion between the platforms, integration of service-based and
non-service-based solutions, routing, enriching, aggregation,
splitting, etc. of messages and events, and so on. To address
this, we have defined in our previous work a reusable pattern-
based ADD model, covering architectural design issues related
to integration and adaptation, interface design, communication
style, and communication flow [20].

C. Example of a Reusable ADD

One of the various ADDs that have to be made concerns
the design of unified interfaces that will provide integrated
services for the three aforementioned platforms. We illustrate
this ADD in Figure 2 using the Question, Options and Criteria
approach [18]. We provide three alternative solutions for
this design issue, namely a “Gateway”, a “Facade” and a
“Remote Facade” related to four criteria (“Remote calls”,
“Hide complexity”, “Hide interface complexity” and “Hide
technological complexity”) which are either positively (solid
lines) or negatively (dotted lines) assessed. Such a reusable
ADD is modeled with the ADvISE tooling and can be reused
many times by answering the derived questionnaires.

D. Transformation of ADDs into C&C Views

For transforming reusable ADDs into C&C diagrams a
transformation language (AK Transformation Language) [17]
is used to express actions that create or update the corre-
sponding C&C models. These transformation actions reflect
the ADDs on the C&C views and will be generated from a
reusable transformation action template related to the design
options of the reusable ADDs. Once an actual ADD is made
by the software architect the template parameters will be
bound to the concrete decision information. Assume that in
our running example we decide to implement a Gateway

3Please refer to project INDENICA ((http://www.indenica.eu) for the com-
plete case study.

http://www.indenica.eu


for subscribing to the Yard Management System notification
service from an application build on top of the integration
layer. The gateway component (“YMSNotificationGateway”)
will invoke services from the “Orchestration” component in
the integration layer. The transformation actions of Listing 1
will transform the aforementioned ADD in elements of the
C&C view. In particular, the execution of the transformation
actions will result in the creation of one component, three
ports, one connector and one stereotype.

1 add component "YMSNotificationGateway"
2 add stereotype <<"Gateway">> to Indenica.YMSNotificationGateway
3 add port "P" kind=PROVIDED to Indenica.Orchestration
4 add port "R" kind=REQUIRED to Indenica.YMSNotificationGateway
5 add connector "YMSNotificationGatewayOrchestration" from Indenica

.YMSNotificationGateway.R to Indenica.Orchestration.P
6 add port "P" kind=PROVIDED to Indenica.YMSNotificationGateway

Listing 1. Transformation actions for implementing the Gateway
“YMSNotificationGateway”

The automated transformation of ADDs into C&C views
will provide an initial architectural design. However, this
unidirectional transformation can not support the evolution
of decisions and designs. The reason is that this approach
assumes that the design is created from the same initial stage
and that existing ADDs and C&C views are not modified.
Therefore, it can not cope with the synchronization of ADDs
and C&C views when modifications on one or both sides
occur, especially when these modifications cause inconsisten-
cies. In this case, software architect’s intention to change the
ADDs and the corresponding C&C views has to be taken into
consideration in order to synchronize ADDs and C&C views.

In the following subsections, we discuss how the incon-
sistency management between decisions and designs can be
addressed by introducing constraints with predefined fixes
between the ADDs and C&C views.

E. Detection and Fixing of Inconsistencies

We propose using consistency checking to ensure the in-
tegrity of C&C views and their corresponding ADDs. For in-
stance, if implementing an ADD implies (among other things)
the creation of a component in the C&C view the consistency
is preserved as long as the underlying component exists in the
view. In this context, two main sources of inconsistencies exist:
1) the C&C views are modified, so that existing ADDs are not
valid anymore, 2) the ADDs are modified, so that the existing
C&C view becomes outdated with regard to the ADDs. In
our approach, we implement the management of this kind of
inconsistencies (i.e., detection and handling) by introducing
OCL-based constraints between reusable ADDs and C&C
view elements. We implement these constraints using Epsilon
Validation Language (EVL) [21], as EVL provides comple-
mentary support to OCL for providing user feedback, repairing
inconsistencies, and introducing dependent constraints.

As presented in Figure 3 a number of constraints (similar
to invariants in OCL) can be defined in a specific context. A
context specifies the kind of C&C view elements on which the
constraints will be evaluated. Each constraint has a name, an
error message and a body (expression), and can additionally
define two kind of fixes: either model actions which are
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Figure 3. Abstract Syntax of Constraints

automatically applied on the C&C view or recommendations
which have to be executed by the software architect.

These constraints do not have to be edited for each ADD
separately but are generated from predefined templates mapped
to reusable ADDs. These mappings have to be defined once
for each reusable ADD and can be “instantiated” many times
afterwards, whenever actual ADDs are made or modified.
Also, the constraints in template form can be reused among
different reusable ADDs. In Table I we list exemplary reusable
constraint templates along with error messages and suggested
fixes for potential invalidations. All variables to be replaced
when the templates are instantiated are indicated with $. List-
ing 2 is an example of one constraint derived from the ADD
discussed before as a running example: the use of a Gateway
for the Yard Management System notification service.

1 context ComponentView {
2 constraint ComponentYMSNotificationGatewayExists {
3 check: self.componentExists("YMSNotificationGateway")
4 message: 'Component YMSNotificationGateway does not exist'
5 fix {
6 title: 'Change existing component to YMSNotificationGateway'
7 do {
8 var cName: String;
9 cName = UserInput.prompt("Select component of "+self.name);

10 if (cName.isDefined()) {
11 self.getComponent(cName).name = "YMSNotificationGateway";
12 }
13 }
14 }
15 fix {
16 title: 'Create component YMSNotificationGateway'
17 do {
18 var newC: new Component;
19 newC.name = "YMSNotificationGateway";
20 self.element.add(newC);
21 }
22 }
23 fix {
24 title: 'Reconsider ADD OperatorInterface.AD1.

InterfaceComplexity'
25 do {
26 UserInput.info("Please reconsider the decision and re-

generate the constraints.");
27 }
28 }
29 }
30 }
31 operation ComponentView componentExists(name: String): Boolean {
32 return Component.allInstances.exists(c:Component|c.name.equals(

name));
33 }
34 operation ComponentView getComponent(name: String): Component {
35 return Component.allInstances.selectOne(c:Component|c.name.equals

(name));
36 }

Listing 2. Example of a constraint with fixes



Table I
EXEMPLARY REUSABLE CONSTRAINTS WITH FIXES IN TEMPLATE FORM

Constraint Error Message Fixes

Component.allInstances.exists(c:Component|c.name=$comp)
Component $comp does not
exist

1) Change existing component to $comp
2) Create component $comp
3) Reconsider related ADD $add

Connector.allInstances.exists(c:Connector|c.name=$conn
and (c.source.name=$a and c.target.name=$b))

Connector $conn between
$a and $b does not exist

1) Change connector between $a and $b to $conn
2) Create connector $conn between $a and $b
3) Reconsider related ADD $add

Component.allInstances.exists(c:Component|c.name=$comp
and c.port.exists(p:Port|p.name=$port and p.kind=
PortKind#$kind)))

Port $port of kind $kind
for component $comp does
not exist

1) Change existing port to $port of kind $kind
2) Change kind of existing port $port to $kind
3) Create port $port of kind $kind for component $comp
4) Reconsider related ADD $add

Element.allInstances.exists(e:Element|e.name=$elem and e
.annotation.exists(p:Property|p.name=$prop and p.
type=$type and p.value=$value))

Element $elem does not
have property $prop
$type=$value

1) Change existing property $prop of $elem to
$type=$value

2) Change existing property of $elem to $prop
$type=$value

3) Create property $prop $type=$value for element
$elem

4) Reconsider related ADD $add

Element.allInstances.exists(e:Element|e.name=$elem and e
.annotation.exists(s:Stereotype|s.name=$stereo))

Element $elem is not
annotated as $stereo

1) Change existing annotation of $elem to $stereo
2) Create annotation $stereo for element $elem
3) Reconsider related ADD $add

Component.allInstances.exists(c:Component|c.name=$cont
and c.nestedComponent.exists(c:Component|c.name=
$comp))

Component $comp is not
contained in $cont

1) Move component $comp into $cont
2) Reconsider related ADD $add

The constraint ComponentYMSNotificationGatewayEx-

ists is used to check if the component YMSNotification-
Gateway still exists in the C&C view. If this evaluates to
false it returns the error message Component YMSNotifi-

cationGateway does not exist. For fixing this inconsis-
tency three alternatives exist: a) an existing component will be
renamed to YMSNotificationGateway (lines 6–12), b) the
component YMSNotificationGateway will be added to the
C&C view (lines 15–20), or c) the related ADD will be revised
(lines 23–26). The first two fixes can be applied automatically
on the C&C view while the last fix – recommendation has to be
performed by the user. The selection of the fix to be executed
is left to the software architect. Every time an ADD changes,
the newly generated constraints will check the conformance
of the C&C view with respect to the modified ADDs.

F. Dependencies between Fixes

A single modification in the C&C view (e.g., the deletion
of a connector) or the revision of an existing ADD may
cause many constraints to be invalidated. In the case that
many changes have been performed in both sides the software
architect will be overwhelmed by a big number of error
messages and possible fixes. Apart from that, some fixes may
not be executable, as they depend on some preconditions. For
instance, checking the existence of a port of a component
requires that the component still exists in the C&C view.
To reduce evaluated constraints we use guards which limit
the applicability of invariants according to the result of an
expression. Thus, the evaluation of some constraints is delayed
until the preconditions are satisfied after the execution of other
fixes.

In our running example, the constraint that checks if the
port YMSNotificationGateway.P exists (the one created by
line 6 of Listing 1) will be validated only if the component
YMSNotificationGateway already exists in the C&C view
or as soon as it is restored by executing another fix, as shown
in Listing 3.

By introducing dependencies between the various con-
straints we reduce on the one hand the number of currently
invalidated constraints, and on the other hand we ensure that
all proposed fixes are executable.

1 context ComponentView {
2 constraint PortYMSNotificationGatewayPExists {
3 guard : ComponentYMSNotificationGatewayExists
4 check : self.portExists("YMSNotificationGateway.P")
5 message : 'Port YMSNotificationGateway.P does not exist'
6 ...
7 }
8 }

Listing 3. Example of constraint dependencies

IV. EVALUATION

A. Prototype Implementation

We applied our approach in the context of the case study for
service-based platform integration in a warehouse described
in detail in Section III. For this, we used the following tools:
a) ADvISE for modeling reusable ADDs and making concrete
decisions, b) VbMF for editing the corresponding C&C views,
c) a prototype implementation for mapping ADDs to con-
straints in template form and generating concrete constraints,
and d) we finally reused EVL Eclipse plugin4 for editing and

4http://www.eclipse.org/epsilon/doc/evl/

http://www.eclipse.org/epsilon/doc/evl/


validating constraints with fixes applying on the underlying
C&C views.

In order to support ADD making the ADvISE tooling
provides interactive questionnaires, such as the one shown in
Figure 4. From the predefined mappings between the ADDs
and constraint templates actual constraints are generated which
can be afterwards validated using the EVL tool. The screenshot
in Figure 5 displays the result of this validation. In particular,
an excerpt of the C&C view from the design of the integration
layer in the warehouse, as well as invalidated constraints and
proposed fixes for one of the detected inconsistencies are
displayed.

Table II summarizes the number of ADDs that were reused
in the case study for an excerpt of the ADD model consisting
of 6 reusable ADDs (Remote Proxy, Remote Adapter, Result
Callback, Request-Ack, Gateway and Facade) classified in 3
categories (Interface Integration, Communication Style and
Interface Design), along with the generated constraints, total
number of provided fixes, and C&C view elements. Except for
the actual ADDs that are made by software architects using
tool support based on the ADvISE Questionnaires, all other
artifacts are automatically generated from the corresponding
templates using model-driven techniques and a template en-
gine.

Table II
REUSABLE ADDS AND GENERATED ARTIFACTS

ADD Category Reusable ADD ADDs C&C
Elements

Constraints Fixes

Interface
Integration

Remote Proxy 3 21 24 84
Remote Adapter 1 7 8 28

Communication
Style

Result Callback 7 42 84 280
Request-Ack 2 12 24 80

Interface Design Gateway 2 8 12 42
Facade 1 10 12 43

Total 16 100 164 557

In the following subsections, we evaluate the efficiency and
scalability for handling the inconsistencies between ADDs
and C&C diagrams for different sizes of ADD models and
C&C view models, and also different numbers of detected
inconsistencies.

B. Efficiency and Scalability

The results documented in this section are based on the
ADDs and C&C views that were captured in the context of our
case study. We conducted all our measurements on a normal
desktop machine, as our approach will usually run on the local
machines of the software architects. The machine for testing
had an Intel Quad Core i5 2.53GHz with 8GB of memory
running Java VM 1.6 on Debian Linux. All measurements
were performed 100 times and the resulting time was reported
on average, as the deviations calculated were small.

First, we measured the time needed for validating the con-
straints checking the consistency of the corresponding C&C
views with respect to the actual ADDs. The measurements
were conducted with different versions of C&C models in

different iterations of the development of the case study. In
particular, C&C diagrams or parts of them were used to
create the different C&C diagrams of Table III. Afterwards, we
validated the generated constraints with fixes for these models.
Figure 6 shows that the validation time increases linearly with
the number of C&C view elements – at least for the C&C view
sizes that we tested – and it remains very low (in a fragment
of one second) even for large C&C diagrams, with more than
250 elements (models of such size are rarely used in practice).

Table III
CONSTRAINT VALIDATION TIME

ADDs 6 12 18 24 30 36 42 48 54 60
C&C Elements 24 48 72 96 120 144 168 192 216 240
Constraints 30 56 80 110 137 161 188 218 246 276

Validation time (ms) 54 65 73 88 102 114 141 161 185 214
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Figure 6. Time for Constraint Validation for Different C&C Model Sizes

In addition, we measured the detected inconsistencies and
the number of model updates that would be required for fixing
these inconsistencies manually in various situations. Our aim
was to estimate the manual effort that is saved by performing
the fixes using our approach and accompanying tooling. To
produce these inconsistencies we randomly modified (deleted,
renamed, etc.) elements of the C&C view from our case study.
Afterwards, we modified the related ADDs, and repeated our
measurements. The results are presented in Table IV and
Table V respectively. In the first case, changing only 15%
of the C&C view elements requires that 96 model updates
have to be performed manually on the C&C view, while in
the second case, changing half of the ADDs will require more
than 100 model updates. Please note that these numbers are
calculated as mean values based on the setting we created for
the case study (see also Table II) and can not be generalizable.
They are documented, here, in order to give some indication
about the number of inconsistencies that can be caused by
changing the ADDs or the C&C views for designs of the
size of our case study, as well as the effort for resolving all
inconsistencies manually. From both tables we can conclude
that even small or medium size changes, either on the ADDs
or on the C&C views, lead to a significant amount of required
model updates. These model updates can be performed in our
approach automatically.



Figure 4. ADvISE Questionnaire

Figure 5. Validation of EVL Constraints



Table IV
C&C VIEW MODIFICATIONS

C&C View Changes % of all Elements Inconsistencies Model Updates Required

2 2% 6 13
5 5% 14 32
10 10% 28 64
15 15% 42 96
20 20% 56 128
25 25% 70 160
30 30% 84 192
50 50% 140 320

Table V
ADD MODIFICATIONS

ADD Changes % of all ADDs Inconsistencies Model Updates Required

1 6% 7 14
2 13% 13 27
3 19% 20 41
4 25% 27 55
5 31% 34 69
6 38% 40 82
7 44% 47 96
8 50% 54 110

C. Discussion and Limitations

Our key contributions are providing semi-automated support
for inconsistency detection and handling between reusable
ADDs and C&C views, and the high reusability of the assets
used for inconsistency management. Our approach does not
target the automatic resolution of inconsistencies but rather
the suggestion of available fixes (executable fixes or recom-
mendations) to the software architect. Thus, the decision about
inconsistency handling is left to the architect and depends
on the architect’s intention. Due to the big manual effort for
keeping ADDs and C&C views synchronized the handling of
inconsistencies without automation is very tedious for small
numbers of ADDs, C&C view elements and inconsistencies
and becomes unfeasible as the number of inconsistencies
increases. Regarding the manual steps of our approach, namely
the editing of reusable ADD models and constraint templates
with the mappings between them, many of the participating
assets can be customized and reused in various design situa-
tions. The reusability and automation of our approach is based
on reusable/recurring ADDs, however, with small efforts some
non-reusable ADDs can also be integrated to the C&C views.

Our approach is generalizable to other ADD models and
architectural views. The constraint templates can be applied
for any existing ADD model or ADD documentation because
the essential concepts and elements of these models and those
in the ADvISE ADD model are almost equivalent. In most
cases, the binding between the template variables and the
elements of ADD models might need human intervention.
Although our inconsistency management approach is based
on ADD models based on Questions-Options-Criteria, most
of the existing reusable ADD models in the literature [6, 22]
contain the notion of trade-offs for alternative options. Also,
the constraints can be easily modified to cover similar C&C
models or architectural views on different scenarios as well. As

the VbMF C&C view contains very similar elements as other
typical C&C views our approach is applicable for most of
existing component models such as UML component diagram
with marginal effort for adapting the actions to accommodate
new elements.

In our approach, we use existing general concepts of incon-
sistency detection and handling [10, 21] and set the focus on
the inconsistencies between ADDs and corresponding C&C
views. To the best of our knowledge, this is the first approach
that addresses the resolution of such inconsistencies between
decisions and designs systematically and proposes tool sup-
port. Of course, not all aspects of inconsistency management
are discussed in this paper, for instance, how to deal with
contradicting constraints, how to predict side effects of fixing
inconsistencies, and so on. However, many solutions to these
issues can be reused from the existing work [10, 12] and get
adapted to the context of our work.

We did not perform any usability studies within human
designers, thus we were not able to evaluate the usefulness
of our approach in the design process and in the long term.
Lacking such an empirical evaluation, we are not able to
predict the time needed for fixing the inconsistencies by
software architects, the advantage of introducing dependencies
between the constraints, or the maximum number of ADDs,
C&C view elements and detected inconsistencies architects
can deal with. An empirical evaluation of our proposal for
inconsistency management is, however, part of our future
work.

V. RELATED WORK

The documentation of the design rationale as well as the
gathering of Architectural Knowledge (AK) have promoted
ADDs to first class citizens in software architecture. Most
of the approaches based on decision-capturing templates [3],
ontologies for architectural decisions [23] and decision meta-
models [6], as well as related tools mainly target reasoning on
software architectures and reusing of AK and do not tackle the
maintenance and synchronization of ADDs with architectural
views.

The generation of architectural design views from specifica-
tions has been studied extensively in the literature. Kaindl et
al. [24] suggest to map requirements to architectural design
using model-driven approaches and Grunbacher et al. [25]
introduce a mapping from requirements to intermediate models
that are closer to software architecture. A different approach by
van Lamsweerde et al. [26] derives software architectures from
the formal specifications of a system goal model (KAOS) using
transformation rules and refines the architectures incrementally
using patterns that satisfy quality of service goals like avail-
ability and fault tolerance. The aforementioned approaches do
not focus on the consistency checking between requirements
and architectural views. Another disadvantage compared to our
approach is that the rationale that led from the requirements to
the architectural views is not documented. That is, because the
requirements belong to the problem space, while ADDs belong
to the solution space. In all cases, the mapping is unidirectional



and does not allow synchronization between requirements and
architectural models.

Our approach is not the first one to relate ADDs to software
architectures. The problem of inconsistencies between ADDs
and software architectures that cause design knowledge vapor-
ization has been discussed before by Choi et al. [27]. For this,
they propose to make ADDs more explicit by introducing a
meta-model for relating decisions with architectural elements
and a decision constraint graph for representing decision rela-
tionships and studying decision change impact analysis. Com-
pared to our approach, this approach demands that most of the
work is done manually: decision making, architectural design
and change propagation during software evolution. STREAM-
ADD [28] also relates architectural decisions documented in
decision templates with requirements and architectural models
generated from these requirements. This approach focuses
rather on the integration of systematic documentation of AK
than on the handling of inconsistencies between decisions and
designs.

To support maintenance of architectural decisions as other
software artifacts evolve, traceability links between decision
models and architecture models have been used. Capilla et
al. [29] introduce fine-grained traceability links between de-
sign decisions and other software artifacts. The LISA ap-
proach [30] captures traceability relations from an architectural
component model to design decisions, the code base, and mod-
els of architecture-significant requirements in a semi-automatic
way. Mirakhorli and Cleland-Huang [31] also introduce the
TTIM approach that provides a reusable infrastructure for
tracing architecture tactics to designs used to trace from tactic-
related design decisions to architecture components in which
a decision is realized. The establishment of such traceability
links, however, has not been combined with any kind of
inconsistency detection and handling between the connected
software artifacts.

The consistency checking of software designs and the
resolution of inconsistencies have been considered as central
activities in software evolution and maintenance, and many ap-
proaches have been proposed for inconsistency management.
Almeida da Silva et al. [8] use Prolog-based inconsistency
rules to detect inconsistencies in UML models and specify
their causes from the last changes. A search-based algorithm
finds the best plan from a subset of predefined plans expressed
as a set of actions applied on the model elements. Egyed [10]
proposes to fix inconsistencies in UML design models by exe-
cuting inconsistency rules, whose execution returns references
to the affected model elements. The main idea of this approach
is to identify all possible changes and provide to the user the
ones which resolve the inconsistency. Nentwich et al. [12]
introduce a framework for detecting and fixing inconsistencies
in distributed XML documents. The constraints are described
as first order logic formulae and the repairs are generated au-
tomatically from predefined mappings. In a different approach,
Dam and Winikoff [32] describe software designs as agent sys-
tems and use Belief-Desire-Intention (BDI) plans derived from
OCL rules and from a library of repair plan types to express

alternative repair scenarios when the constraints are violated.
Other approaches use graph transformation rules to detect
and propose resolutions for various types of inconsistencies
in UML models [13] or formalize classified inconsistencies,
resolution rules conditions and conclusions for UML models
using equational logics [33] and description logics [9]. In all
cases, the consistency checking rules and the repair plans for
resolving inconsistencies are predefined. The aforementioned
approaches concentrate mainly on the well-formedness of
UML models which is not the case for the inconsistency
management between decisions and designs. In our approach,
unique constraints are generated for each ADD that is reflected
in the C&C diagram, thus, detected inconsistencies have to be
handled in each case separately, dependent on the reusable
ADD model and its mapping to the corresponding C&C view.

Puissant et al. [14] use an artificial intelligence technique
based on automated planning which does not require any
manually written resolution rules. In this approach, all repair
actions are calculated automatically given the initial state,
a set of possible actions and the desired goal. In our case,
the handling of inconsistencies is more complex, as potential
inconsistencies have to be resolved in two directions: by
changing the C&C models or by reconsidering the ADDs and
are highly dependent on the architect’s intention.

The inconsistency problem can be solved also by propagat-
ing the changes from one model to the other and by synchro-
nizing the models using bidirectional model transformations.
For example, Chechik et al. [34] introduce an algorithm that
locates changes for activity and sequence diagrams and use
relationships between their elements to propagate changes. For
model synchronization using bidirectional transformations the
technique of triple graph grammars is widely used (see, for
example, [15]). Such predefined mappings at meta-model level
are not possible in our case, as ADDs are reflected in different
ways in the architectural design.

VI. CONCLUSIONS

Our approach presented in this paper is one of the first at-
tempts for inconsistency management between reusable ADDs
and architectural design views, namely C&C views. While we
focused in our work on the C&C view, our approach can
easily be applied for other design views, like logical views
(modeled for instance in class diagrams) or deployment views.
In contrast to the related work on inconsistency management
of software designs, inconsistency management for ADDs
requires decision-specific treatment of inconsistencies, as the
concrete architectural knowledge in the decision must be con-
sidered for providing the appropriate fixes for inconsistency
resolution.

Our approach provides means for automatically detecting
and proposing the resolution of inconsistencies to the software
architect based on automatically generated constraints with
fixes. These fixes can either be applied directly on the C&C
view elements or provide feedback to the user for reconsid-
ering an existing ADD. We have applied our approach in an
industrial case study on service-based platform integration in



a warehouse, using Eclipse-based tools that implement our
proposal. In the context of this case study we discussed the
efficiency and reusability of our approach and we showed that
the validation of constraints is scalable for large numbers of
C&C view elements and constraints. In our future work, we
will extend our design space to include more reusable ADD
models. In addition, we will study more complex relationships
between ADDs and design views in other contexts and case
studies. We also plan to evaluate the usability and effectiveness
of our tools in empirical studies with software architects from
the industry.
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