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This paper takes an exploratory look on control plane signaling in a mobile cellular core network. In contrast to most contributions
in this field, our focus does not lie on the wireless or user-oriented parts of the network, but on signaling in the core network. In
an investigation of core network data we take a look at statistics related to GTP tunnels and their signaling. Based on the results
thereof we propose a definition of load at the GGSN and create an initial load queuing model. We find signs of user devices putting
burden on the core network through their behavior.

1. Introduction

The Internet has reached ubiquity some time ago. Even if
there is no wired access nearby you can rely onWiFi hotspots
and cellular networks for wide-area coverage. These cellular
networks are usually based onThird Generation Partnership
Project (3GPP) specifications which have evolved from the
circuit switched Global System for Mobile Communications
(GSM) network into the fully packet switched Long Term
Evolution (LTE) currently being rolled out. But being packet
switched does not mean that it shares a lot of similarity
with a typical wireline Internet protocol stack and network
infrastructure. A “3G” network (a term synonymous for
the typical type of cellular network used today) is very
distinct from typical wired networks as it must provide,
amongst other things, mobility and authentication in its core
specifications rather than as optional on-top services as is
typically used in the Internet.

The TCP/IP stacks largely follow two principles: “keep
it simple, stupid” (KISS) and the end-to-end principle [1],
which essentially means to restrict the protocols to the neces-
sary bare-minimum and keep state only in the end systems.
3G takes a different approach, keeping a large amount of state
at the obligatory nodes in its “core network,” which explicitly
communicate by signaling procedures defined by the 3GPP.
The adverse effects of state keeping in network devices

have been known a long time. For example, in the early
2000s, Internet users, running BitTorrent with connections
to many peers across low-end home routers, suffered from
poor performance. In Universal Mobile Telecommunications
System (UMTS) mobile networks, the networking hardware
is vastly more powerful, but the control plane tasks are
vastly more complex than port and network translation
as well, namely, carrying and routing IP and voice traffic,
user mobility, authentication, authorization, and accounting
(AAA), and so on.Many specialized protocols are involved to
communicate intents and states in the network. This causes
processing overhead and additional traffic on network paths
and increases the number of states to be held in memory
on the core network nodes. All of these attributes can be
subsumed under the term “network load” which we plan to
investigate in this work.

While other publications look at the near-edge interac-
tions in these networks, research on the core is scarce, the
reason for it being simple: you cannot do research without
data from the operator there. Research at the edge, beginning
at the IP stack level and upwards, can be conducted relatively
simple. Writing simple tests and measurement scripts, often
involving tcpdump and other tools, is usually all you need.
But amobile phone does not let you peek inside its layer 1 and
2 interactions (or even the implementation). Any information
on this black box must be indirectly inferred from above
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(forcing behavior known from the specifications through
scripts) or below (spectrum analysis using software defined
radio approaches). To take a look at the core’s view of traffic
and data, one needs access to a dedicated measurement and
capturing infrastructure placed inside the network. With
this, researchers can not only just look into user traffic
flowing through the network but also quite easily observe the
signaling-heavy mobile network control plane.

Operators usually dimension their networks in relation to
the occurring user traffic. But in such a signaling-dependent
architecture this might not be useful anymore, as every
user traffic has to be explicitly allowed, set up, and metered
through all of the network’s components. This has already
led to trouble in some mobile networks. User traffic tunnels,
despite carrying very little actual traffic, were the cause for
disproportionate amounts of signaling traffic due to being
closed and reopened at a high rate.This was the unintentional
cause for a DDoS in the radio access network [2, 3]. This
inherent complexity of signaling in mobile cellular networks
is easily missed by programmers who do not or cannot know
that their applications will run over such wireless links and
probably would not expect this behavior from a network that
pretends to transparently carry IP.

In this paper we attempt to give some insights into the
mobile network control plane and its impact on dimension-
ing and load modeling. To do this, some important aspects
of the 3GPP specifications have to be explained to give some
basic vocabulary for the following exploratory research. We
then look into signaling with a focus on Packet Data Pro-
tocol (PDP) Contexts and their management through GPRS
Tunneling Protocol (GTP) tunnel management procedures.
Using a weeklong dataset from a mobile operator recorded
at the Gn interface between the Serving GPRS Support
Node (SGSN) andGateway GPRS Support Node (GGSN), we
attempt to find criteria influencing signaling. Moreover, we
are formulating hypotheses on the load impact of signaling,
backed by statistics gathered from the dataset.

The rest of the paper is structured as follows. Section 2
discusses relevant work in the field. Section 3 briefly intro-
duces UMTS and GTP basics and protocol details relevant to
core signaling. Section 4 gives an overview on theMETAWIN
data acquisition platform and a description of the dataset
specifics and our approach to evaluation. While Section 5
presents a statistical evaluation of aspects of our dataset,
Section 6 is an attempt on deriving an initial and simple
toy load model from these statistics. Section 7 concludes the
paper and gives a short outlook.

2. Related Work

Previous academic endeavors concerning themselves with
core network signaling statistics are scarce and roughly
belong to one of two areas. This includes inferring control
plane behavior by either application layer active measure-
ment at the mobile device, synthetic traces, or traces from
other radio networks. Additionally, past research also eval-
uated actual 3G core network traces for user traffic charac-
teristics.This work is also an extension to our research report

[4] aiming to providemore in-depth statistical analyses to the
control plane.

Stories about signaling storms and overloaded control
planes in mobile networks [2, 3] blame specific combinations
of device types, operating systems, and applications to cause
excessive amounts of signaling in the radio network. Many
popular free-to-play mobile games use periodically display
refreshed advertisements. This leads to a scenario, wherein
a large amount of devices constantly set up and tear down
data connections just to retrieve new ads, thereby triggering
tens of Radio Resource Control- (RRC-) related control plane
messages on each retrieval and straining the signaling-heavy
structure of current mobile networks. These dynamics are
already under investigation by several publications. A paper
on cross-layer interaction in mobile cellular networks falls
into this category [5], discussing interaction, for example,
between application layer and RRC and its consequences
for device energy consumption and radio channel allocation
efficiency. The authors argue that there is much room for
improvement in this area and propose some enhancements.

In [6], mobile network traces are used to simulate a
malicious signaling storm by transmitting low-volume user-
plane traffic with interdeparture times slightly larger than the
transition timers in the RRC state machines. This constantly
causes signaling to occur.The authors propose tools to detect
this and discuss a possible scale of this type of denial-of-
service attack. For investigating the transition of RRC states,
[7] proposes simple yet effective application layer based
methods.This is further enhanced by research from Schwartz
et al. [8] using this technique to analyze the radio signaling
load and thus power efficiency from different applications.

While the approaches above concern themselves with
radio signaling they neglect core network signaling. The
following research papers have access to core network mea-
surements but do not directly tackle signaling. The authors
of [9, 10] both take the approach of looking at high-level
user traffic characteristics in a mobile network, focusing
on temporal and spatial variations of user traffic volume
and peeking at the influence of different devices on this
metric. Additional user flow and session traffic metrics are
being looked at in [11] concluding that flows are generally
shorter than in wired networks, with a potential impact on
signaling load. Svoboda et al. [12] conducted a core network
measurement study of various user traffic related patterns
and also provided an initial insight into PDP Context activity
and durations. A recent publication provides an investigation
aimed at RRC signaling between Radio Network Controller
(RNC) and SGSN [13]. The authors classify their evaluations
based on device model and vendor and on the application
type and find that different devices strongly differ in their
RRC characteristics, which could possibly also have an
impact on GTP signaling. A 2010 publication [14] indirectly
infers RRC signaling and deducts that the involved RRC
state machine is largely inefficient in terms of signaling
overhead and energy consumption for typical traffic patterns
seen in the data. The authors of [15] give us some thoughts
on the influence of core network elements on one-way
delays in mobile networks and the expected load impact
of these elements. A final paper discusses some theoretical
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Figure 1: Simplified setup of the packet switched domain in an UMTS network including a METAWIN monitoring probe.

denial-of-service (DoS) attack scenarios on mobile networks
[16]. ADoS typically needs to find a (performance-wise)weak
link in an architecture or employs an amplification attack.
This presents helpful information in evaluating core network
load and finding bottlenecks.

All of these publications touch parts of the areas tackled
in this paper but do not yet present a complete picture. We
think that the combination of the focus on core signaling, a
statistical evaluation of PDP Contexts with an investigation
of sources influencing these, and a simple load model are
genuine contributions of our work.

3. GPRS and Tunnel Management

This section serves as a short introduction on cellular
data network basics and describes relevant details of GPRS
Tunneling Protocol (GTP), the tunneling protocol under
investigation.

3.1. GPRS Fundamentals. The packet switched domain of
a Universal Mobile Telecommunications System (UMTS)
network is an evolution of General Packet Radio System
(GPRS) and thus closely related to it. First defined by the
Third Generation Partnership Project (3GPP) in Release
99, it focuses its improvements over Global System for
Mobile Communications (GSM)mostly on the radio aspects,
while keeping the core network GPRS architecture intact at
large. 3GPP Technical Specification (TS) 23.060 [17] defines
the basic aspects involving GPRS protocols and its system
architecture. TS 29.060 [18] describes the specifics of GTP
flowing across the Gn and Gp interfaces which forms the
foundation for our work.

As shown in Figure 1, user traffic originating at any
Mobile Station (MS) connected to the radio network flows
through a Node B (also called base station), which provides
radio connectivity. The traffic of multiple Node Bs in the
same area is aggregated into a Radio Network Controller
(RNC). These base stations and RNCs form the UMTS Ter-
restrial Radio Access Network (UTRAN), which is typically
connected by back-haul fiber links to the core network part
formed by the Serving GPRS Support Node (SGSN) and the
Gateway GPRS Support Node (GGSN).

One role of the SGSN is to serve as mobility anchor for
mobile devices. It is also the endpoint for Radio Resource
Control- (RRC-) based signaling and the RadioAccess Bearer
(RAB), the radio counterpart to the core network user
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IP IP
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Figure 2: Typical signaling protocol stack at the Gn interface
between SGSN and GGSN.

traffic tunnel. The GGSN provides the gateway to the public
Internet. The Gn interface connects those two nodes, using
the GTP protocol to encapsulate user as well as control plane
traffic as seen in the protocol stack in Figure 2. GTP is further
separated into GTP-C, facilitating control message exchange,
and GTP-U for transporting user traffic through tunnels in
the core.

3.2. GTP Signaling. Tunnels state is held in the SGSN and
GGSN as Packet Data Protocol (PDP) Context data struc-
tures. These contain various information, such as the device
IP address, International Mobile Subscriber Identity (IMSI),
and a tunnel identifier. The concept is used to isolate user
traffic from core network control plane signaling and to
provide certain Quality of Service (QoS) guarantees to the
user traffic. Multiple QoS profiles per device can also be
established by setting up up to ten secondary contexts beyond
the primary PDP Context. However, QoS secondary contexts
are very rarely in use today; any user-plane IP traffic is
typically transported within the primary “best effort” tunnel.

The GTP-C signaling, responsible for the context man-
agement interactions, contains procedures formanaging data
paths, MS locations, mobility, and, of course, tunnels. GTP
messages usually come as request-response pairs. Neither
part has fixed size but is rather constructed from a number
of Information Elements (IEs), many of which are either
optional or variable length through additional optional fields.

The focus of our work will be the three tunnel man-
agement message pairs involved in the maintenance of PDP
Contexts. These are as follows.

(i) The Create Context Message. It is part of several larger
control plane procedures that activate the GTP tunnel
for a mobile device. These can be initiated from the
network as well as the device itself, again depending
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on the specific implementation of the architecture.
When a GGSN receives this request from an SGSN,
it attempts to complete the Context creation. Depend-
ing on the outcome, a response is sent back, indicating
the success or failure of the operation. Typical failures
include failed user authentication, lack of resource, or
unrecoverable system failures.

(ii) Delete Context Message. This indicates the immediate
release of the Context involved. Together with the
Create event, these mark the beginning and the end
of everyGTP tunnel,making themgood candidates to
determine tunnel durations for our load evaluations.

(iii) Update Context Messages. Several procedures also
emit tunnel updatemessages, when some aspect of the
tunnel has changed, for example, occurring in mobil-
ity and load-balancing related procedures but also
procedures involving secondary tunnels for a device.
By observing Update Context message one could, for
example, capture most forms of mobility happening
in the network and get a good picture of correlations
between mobility and tunneling characteristics.

The variable-length nature of these messages makes
evaluating the imposed network signaling overhead rather
difficult. For example, the Create Context Response consists
of up to 36 IEs, some of them mandatory, most either condi-
tional or optional. Including the headers of both the packet
and the individual elements, the minimum size (counting
only the required bytes of variable-length elements) is 52
bytes, while the lower bound for the message size with all IE
present is 307 bytes.

Taking the maximum size we arrive at a naive estimate
of the maximum overhead on user traffic induced by tunnel
management signaling in our dataset. The estimated ratio
of (tunnel management) signaling traffic to total user-plane
traffic in our dataset is a minute 0.10%.Therefore, the volume
of control plane traffic appears to be noncritical in this setup.
Thus, we assume that the overload problems mentioned in
related work arise rather in other areas affected by control
plane signaling. This includes the memory profile of the
control plane state kept in the gateway nodes, the time
required to process the large quantity of information held in
themessages, or the imposed latency through severalmessage
round trips during transactions.

3.2.1. State Machine Influences on GTP. As indicated, most
nodes in a cellular mobile network keep all sorts of state
characterizing the data connection. For the tunnel man-
agement aspects, two state machines are of special note,
namely, the mobility management and RRC state machines.
The former, defined in [17], describes the general state of the
data connection and switches states based either on an idle
timer or arrival of new packets for the mobile device. The
RRC state machine depicted in Figure 3 governs the usage
of radio channels. State changes happen again depending
on user activity and inactivity. Based on the state both
procedures can enable and disable radio tunnels as well as
core network tunnels, making them a good example of user
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Figure 3: Simplified Radio Resource Control state model.

traffic dynamics directly influencing core network signaling,
similar to the observations in [6].

3.3. Discussion of GTP Signaling. As discussed, most of the
actions in the network as well as in the mobile devices are
reflected in the presented tunnel management messaging.
Therefore, taking a look at the dynamics of this control aspect
in real networks gives valuable insights on the influence of
many of the networks’ aspects.

Looking at the Create, Update, and Delete PDP Context
Request and Reply message pairs we can already directly
deduce some possibly load-related information. The time
between a request and its corresponding response could also
be an indicator for the amount of processing involved for
this message as well as the current general processing load
at the GGSN. The total tunnel duration originates from the
time delta between corresponding Create and Delete events.
A decrease in the average tunnel duration will increase the
number of total tunnels and thus also the volume of signaling
messages and the necessary processing for these messages.
Conversely, longer tunnel durations cause an increased over-
all memory footprint in the involved nodes to store the
PDP Contexts. Large numbers of update messages, especially
combined with frequent Radio Access Technology (RAT)
switches, are usually an indicator for devices often switching
their routing area.

4. Dataset And Methodology

For our analysis, we use data acquired by the Measurement
and Traffic Analysis in Wireless Networks (METAWIN)
monitoring system developed in a previous research project
[19].

The location of the measurement probe at the Gn inter-
face within the core network, marked in Figure 1, gives access
to both wide-area mobility signaling (not analyzed in this
paper) and signaling related to user-plane IP traffic (which
we want to scrutinize). The METAWIN monitoring system
extracts and correlates information from the lower layers of
the 3GPP protocol stack, specifically the GTP protocol on the
Gn interface [20].This includes the Radio Access Technology
(RAT) identifier as well as the terminal types of the mobile
clients. The latter is determinable by the Type Allocation
Code (TAC) part of the International Mobile Equipment
Identity (IMEI) (cf. [21]) and will be discussed later in detail.

To meet privacy requirements, the METAWIN system
anonymizes captured data on the fly at multiple layers: the
application-level payload is removed and all user identifiers
(e.g., IMSI) are hashed before recording.That is, singleMSs in
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our dataset may be differentiated bymeans of an anonymized
Mobile Station Identifier (MS-ID) but not traced back to the
actual customer. The packet capturing hardware deployed
within the METAWIN monitoring system is synchronized
using Global Positioning System (GPS). Accordingly, the
packet timestamps have an accuracy of ±100 ns or better [22,
pages 97-98].We further accommodate to the sensitive nature
of this dataset by disclosing as little information as possible
but as much as is required for this research.

4.1. Dataset Description. The METAWIN-recorded dataset
used in our evaluation is a weeklong trace from the third
week of April 2011. It consists of 2.2 billion aggregated flows
for the user traffic and 410 million GTP tunnel management
transactions, the latter representing the data base for this
paper. It was tapped at one of the GGSNs of the operator
and contains about half of the total traffic volume handled
by the operator in this period. The GTP data contains the
response codes for each transaction. With these codes, failed
interactions can be sorted out and treated separately.

We fed the records into a SQL database and conducted
further evaluations through scripted queries on the database.
Any privacy-relevant data, for example, the IMEI, MS-ID,
and any IP address involved, is only visible as hashes and is
processed in a privacy-preserving manner. Since the hashing
of the IMEI is consistent throughout the dataset, user traffic
flows and the GTP data can be cross-correlated despite
anonymization, giving the opportunity for further research.

4.2. Device Identification and Classification. The type of a
device can still be identified in form of the TAC on every
entry.The TAC is part of the IMEI, uniquely identifying each
device type [21]. The rest of the IMEI constitutes the serial
number of the involved devices, which is not present in the
data.

TACs are managed by the GSM Association which in
turn assigns local organizations, distinguished by the first two
digits of the TAC as Reporting Body Identifier, to allocate
TAC to manufacturers. However, this allocation information
is not freely available. Commercial databases exist, but this is
neither affordable for research institutions, nor is it conducive
to our goal of providing information to the public. While
there are some websites that allow one to query for specific
TACs for noncommercial purposes, only very few efforts
attempt to collect TAC information into a publicly available
database.Webased our data-mining efforts on a set from [23],
with some additional devices collected on our own. Since the
unit identification part of the IMEI is just six decimal digits
long, popular devices will even be assigned more than one
TAC, making the acquisition of all relevant TAC even more
complicated.

For our investigation, we went through large portions of
the TACs present in our dataset and identified and catego-
rized the most important entries. In this case, importance
means various metrics like the traffic volume, the number of
flows, and the number of GTP signaling messages for each
TAC.

After having available the device names for most TACs,
we were able to add metainformation and categorize the
entries based on their device type and operating system.
For the device type we partitioned the devices roughly into
smartphones, regular mobile phones, and 3GUSB dongles or
3G/WiFi routers. The operating system includes most of the
popular incarnations found in the network at measurement
time, including Android, iOS, and Symbian. Note, however,
that many devices, especially USB dongles, cannot be linked
to any specific OS.

As we are working with an incomplete TAC database it
is important to know whether our TAC mappings provide
sufficiently useful data to allow for the envisioned device
discriminating statistics. Therefore, Table 1 provides some
statistics on our knowledge of devices in the dataset. About 80
percent of all distinct and active devices could be identified.
Looking at the total number of GTP signaling messages, we
see that we can determine the device name of over 90 percent.
Theflowdata shows an even clearer picture, as we can identify
almost all of the devices involved.

After applying the categorization to the TACs we evaluate
the device composition in the network. The two largest
portions of devices are smartphones and 3G dongles, while
classic cell phones do not seem to play a major role in the
packet switched domain anymore. One observation across all
device types is that about 14 percent of all mobile devices have
activated their mobile data service and have signaling traffic
but do not cause any user-plane traffic.

The difference between 3G dongles and smartphones is
also noteworthy. While the former cause large amounts of
user-plane traffic (compared to the device numbers), they are
responsible for but a few core network signaling events and
tunnels. This picture is reversed for smartphones with much
signaling and little amounts of data.

5. Core Network Load Statistics

Having characterized the dataset available to us we now shed
some light on the control plane and load dynamics in amobile
core network and attempt to show the possible impact of
certain devices or other properties of the network.

5.1. Defining Core Network Load. The primary question
driving this investigation is, “how can load in a core network
be defined and measured?” A summary of our thoughts to
this question follows here.

With the basics of the architecture in mind, a top
candidate for high load is the GGSN. All traffic leaving or
entering the packet switched domain must go through this
element, and it is in control of the described GTP signaling
procedures as well. Being an endpoint for the GTP tunnel
makes it responsible to sort and encapsulate incoming traffic
into the corresponding user tunnel. To accomplish this a
lot of state has to be kept—and processed when signaling
occurs. Therefore, our working hypothesis is that, in order
to determine load, the GGSN needs to be monitored closely,
and any traffic related to this node should be investigated for
indications of the current load.
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Table 1: Relative TAC statistics.

Percentage of devices with
entry in TAC DB

% of flows 99.72%
% of traffic 99.97%
% of tunnels 87.57%
% of GTP signaling messages 90.95%
% of distinct MS-IDs 80.93%

For our definition of the term “load” we differentiate
between signaling traffic and overhead, on the one hand,
and processing load and memory consumption on the other
hand. Both are measures of load at specific nodes. While the
formermostly has an impact on the actual network traffic, the
latter can only be grasped inside the network element. With
our data we can directly investigate the signaling traffic but
indirect measures for the processing load and memory usage
have to be found. In the rest of this section we evaluate the
results of several approaches to both of these definitions of
load.

While looking at the GGSN may be the most obvious
choice, it is by far not the only one. In addition toGTP tunnels
the SGSN has to handle RAB and mobility management as
well. However, it is assumed that there are more regionally
distributed SGSN nodes present in a typical mobile network.
This means that a single element would have to handle less
mobile devices and therefore load. One has also to bear in
mind that the SGSN can be completely circumvented by
setting up a direct tunnel between GGSN and RNC.

Apart from the two gateways directly inside the traffic
path, there are several other nodes essential to the control
plane decisionmaking, whichmay very well be also very load
sensitive.TheHome Location Register (HLR), for example, is
a central database storing all user related information which
needs to be retrieved any time a user needs to undergo initial
authentication and authorization. Typically, the procedures
the elements are involved in are fewer and they are also harder
to investigate with the data available to us. Hence, it was
decided to concentrate just on the case of the GGSN.

5.2. Load Influencing Factors. Having described our under-
standing of core network load we can nowmove on to discuss
some of the factors that could influence the load, making
them targets for our evaluation.

The first and arguably one of the most important factors
is the mobile devices themselves. Specifically, this covers
the behavior of the network layer 1 and 2 implementation
(sometimes called “’baseband”) as well as the operating
system (OS) and the running applications. The OS and
baseband decide when the device should establish a mobile
data connection, how long the connection is held, or which
mobile technology takes preference. Depending on the access
technology, be it GPRS, EDGE, UMTS, HSPA, or HSPA+, we
can expect subtle differences through their specifications, for
example, in the timing of the radio transmission intervals,
which could influence our investigation.

Some specific tunnel duration properties could stem
from the OS’s IP and transport protocol implementation.
For example, TCP timeouts might be configured to different
default values causing mobile connections and tunnels to be
held either shorter or longer. Also, mobile network firewalls
have been found to interfere with transport and application
layer timeout and keep-alive or heartbeat mechanisms on
mobile devices [24].

The actual user traffic patterns are generated by the
applications running on top of the OS. For example, the
aforementioned ad-based free applications with their ad-
retrieval strategy cause network traffic and possibly signaling
in certain intervals. Since the application ecosystem for
smartphones is extremely rich and ever growing we cannot
pinpoint individual ones from our aggregate dataset.

An additional factor in the picture is the user and her
or his behavioral patterns. They present themselves both in
the traffic dynamics and in the mobility pattern, but they
are rather difficult to distinguish in such a dataset given the
large amount of data and the difficulty of correctly correlating
tunnel management messages. We leave this as potential
future work.

Easier to observe are the temporal effects of user behavior,
which do not target individual users but the overall effects of
device usage based on the time of day, the day of the week,
or other time spans. In network user traffic analyses diurnal
effects are typically very distinct with peak traffic some time
during the day and the lowest traffic shortly after midnight.
But these investigations are for user traffic only. We aim to
find out if the mobile network control plane shows similar
patterns and can thusly be correlated to user traffic.

We also expect the mobile network and its protocol
implementations to be visible in the measurements. For
example, the RRC idle timer is typically in the range of 10 to
30 minutes, which could mean there will be a large number
of tunnels with a duration in this range. Such choices are
usually made either by the mobile network operator or the
device manufacturer and can vary from one implementation
to another. It is therefore quite difficult to give any hard
numbers in advance, and one has to correlate such aspects
with certain events in the results.

5.3. Individual Examinations. To examine some of these
factors, we present the following number of individual inves-
tigations. Our measure of choice is the GTP tunnels as they
carry lots of meaning in being directly related to the amount
of signaling in the network. We investigate their duration as
well as the number of arrivals and look at a measure for the
processing time of events at the GGSN. These insights will
also allow us to build a simple toy model for the core network
load in the next section.

5.3.1. GTP Tunnel Duration. In our evaluation, we define the
duration of a GTP tunnel as the time between a GTP Create
and the corresponding GTP Delete event. After the reply for
a Create has been sent from the GGSN any setup procedures
at the node should have completed and it should recognize
incoming traffic from or to this user. After the Delete, the
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user’s traffic will not be routed anymore. Any lazy cleanup
happening after the Delete is not relevant for this specific
investigation.

We differentiate all the tunnel events in our dataset based
on two factors. First, we look at tunnels from different device
types, be it a smartphone, a regular or feature phone, or
one of the many 3G dongles or mobile routers. After that,
we investigate possible influences from the operating system.
Both categorizations should prove valuable, for example, in
deciding if currently some phone types put more signaling
load on the network and to direct measures to improve this
situation.

Influence of the Device Type. Figure 4 shows the empiri-
cal cumulative distribution functions for the PDP Context
durations in our dataset. We distinguish the total duration
distribution as well as the distributions for smartphones,
regular phones, and 3G dongles. It can be observed that
tunnel durations range betweenmere seconds andmore than
one week. (Although our dataset is just one week long, some
tunnels started before the beginning of that week and ended
within it. Since the tunnel start dates were still available from
the system, we chose to include the data.)

The median is clearly different between device types,
being much longer for 3G dongles than for mobile phones.
This can probably be expected, as typical dongle sessions
might involve working at a laptop for periods longer than a
few seconds orminutes. Also, for the dongles, we observe less
extremely long tunnels. Again, this could be attributed to a
hypothetical laptop working environment, where the device
is used for a few hours but then shut down and the PDP
Context getting deleted.

Interestingly, the median duration of smartphones is
slightly lower than that of the total distribution. This may
indicate that smartphones more frequently (and perhaps
automatically) cause data traffic and therefore tunnels to
occur in short and more interspersed bursts. We conjecture
this to be a first indication of applications automatically trans-
ferring small amounts of data, for example, weather reports,
stock exchange data, RSS feeds, or email notifications. We
also observe two distinct steps, one at 6.8 seconds for
dongles and one at 30 minutes in the overall and smartphone
distributions.

Influence of the OS. Taking an even closer look at the
smartphone device fraction and differentiating the operating
system to Symbian, Android, and iOS, we can observe
additional differences as depicted in the empirical cumulative
distribution functions of Figure 5.The tunnel duration distri-
bution of the Symbian device fraction behaves much closer
to the regular phones already depicted in Figure 4. A possible
explanation could be the user-base being more traditional or
the devices being feature phones whose capabilities clearly
differ from smartphones.

Again, a number of steps (i.e., accumulations of incidents)
are visible in the distributions. Those that are only visible in
one operating system type point to a source involving the
device rather the network. This especially includes the 30
seconds, 300 seconds, and 1800 seconds steps for Android
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Figure 4: Tunnel duration distribution, separated for 3G dongles,
smartphones, and regular phones.
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Figure 5: Tunnel duration cumulative distribution function, sepa-
rated for Android and iOS devices.

and the 600 seconds step for iOS devices. However, whether
this behavior should be attributed to the operating systems
themselves cannot be decided by just looking at these dis-
tributions. Other influence sources, for example, the device’s
firmware version and user traffic dynamics, need also to be
observed.

A last artifact of note is the large number of iOS devices
with very short tunnel durations. Over 20% of all tunnels
established by these devices are shorter than two seconds.
Our working hypothesis is that this is an interaction between
short regular traffic burst and a formof FastDormancy [25]—
a technique to explicitly release radio resources—which iOS
devices are known to implement. It is deemed to improve
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device battery life, radio signaling, and radio spectrum
efficiency. However, due to the earlier and more frequent
radio state changes, it also could cause an increase in core
network tunnel management signaling, which is probably
what happened in the iOS case depicted in the CDF.

5.3.2. Number of Tunnel Arrivals and Interarrival Time.
While tunnel durations and the involved signaling at the
beginning and end of the duration are one aspect of control
plane load, the number of tunnel arrivals might be another,
which we are looking into in this section.

In addition to describing the arrival process based on
the number of arrivals, we also take a look at the tunnel
interarrival time. Specifically, with this process we mean the
arrival of tunnel requests, that is, GTP CREATE requests, at
the GGSN.This also adds to the foundation of the loadmodel
constructed in the next section.

Figure 6 depicts the number of arrivals per second during
the whole weeklong period. Of note is the clear bimodal
nature with one peak around twelve and the other in the
low thirties. While the distribution is rather compact around
these two peaks, there are some clear outliers up to 107. If
we again hypothesize that the increased number of arrivals
means higher load in the network, we can assume that
load is not constant but rather switches between two modes
with some periods with extraordinary load induced by an
increased number of arrivals.

To find the cause of these two modes we take a peek at
the diurnal arrival pattern. Figure 7 contains a violin plot
showing again the arrivals per second but broken down by
time of day. A violin plot, being conceptionally similar to
a box plot, additionally shows the density of the individual
items on the vertical axis.The nocturnalmedian from around
midnight to 5 a.m. and the daytime median, 8 a.m. to 7 p.m.,
closely resemble the two modes found in the histogram. In
between are short transition phases. Notably, during daytime
the arrivals and their densities are spread out on amuch larger
value range. This could be an indication of load fluctuations
in the system, as more active users could lead to an increase
in load variance.

To investigate the arrivals from yet another angle we
take a look at interarrival time of the tunnels in Figure 8.
This metric is more suited to describe the arrival process in
the toy queuing model we propose. The empirical CDFs are
again broken down by time of day, and the same diurnal
load oscillation can be observed.Themedians range between
about 20 and 60 milliseconds. Figure 8(a) represents all
tunnel requests that the GGSN handled. It shows wave-like
steps in 20ms intervals in the plot. Because this is happening
in regular intervals at every time of the day, we believe that
this effect must originate from a source inside the mobile
network and is not induced from the outside, for example,
through mobile devices.

This becomes even more peculiar when we further
evaluate the tunnel arrivals. We now distinguish between
active tunnels—that is, tunnels that actually transported user
traffic during their lifetime (cf. Figure 8(b))—and even more
specifically, active tunnels created during GPRS (Figure 8(c))
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Figure 7: Violin plot of tunnel arrivals in one second per time of
day.

or UMTS (Figure 8(d)) connectivity. Note that only about
86% of requested and created tunnels were actually used for
user data transmissions in their lifetime. The 20ms steps
occur strongest when observing all tunnel arrivals, and in a
weaker form it is also present in the active and UMTS tunnel
portion.

Our working hypothesis as to the origin of the effect
is the Transmission Time Interval (TTI). It determines the
duration of a radio transmission and is usually either 10 or
20 milliseconds in length. It is also in sync for the whole
network of base stations making the TTI noticeable even
when not measuring directly at the radio link. The observed
step-width of 20ms therefore indicates that the signaling
procedure the GTP Create is part of includes at least one
trip from the mobile device over the radio interface. This
makes sense, as the tunnel is typically created during the
GPRSAttach procedure, which is indeed initiated at the user’s
device. Unfortunately, this also makes the tunnels arrive in
batches, which could momentarily increase the load at the
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Figure 8: Empirical cumulative distribution function of the tunnel interarrival time in seconds by time of day.



10 Journal of Computer Networks and Communications

GGSN that then would need to process more requests at once
than if the arrivals followed a smooth stochastic distribution.

5.3.3. Tunnel Event Processing Time. This brings us to another
and potentially more direct measure of GGSN load, namely,
the processing time of update events, meaning the time it
takes for the GGSN to fulfill a GTP request (Unfortunately,
issues with the dataset did not allow the investigation of
the processing time of create or delete messages.). This is
calculated from the requested and finished timestamps of
every GTP update event in our dataset. As the measurement
is conducted at the Gn interface these timestamps represent
the time the GTP signaling request moves to the GGSN and
the time the response transitions through the link.

As stated in the previous section, it would be of special
interest to know if the setup time of tunnels is influenced by
anything, as this is one of theGGSN’smost time-sensitive jobs
and can impact the time a user has to wait before being able
to actually transfer data.

However, we could investigate the processing time of
GTP update messages. The core network transmits roughly
two orders of magnitude more update than either Create
or Delete events and therefore the number of usable events
exceeded the significance level. While no direct investigation
of the setup and deletion procedures was possible with these
events, a rough overall picture of load can still be attained
through this. Figure 9 depicts a band of empirical cumulative
distribution functions for the processing time of Update
events broken down by time of day. The processing time is
almost uniformly distributed between 2 and 22 milliseconds,
with a slightly longer duration during the evening,making for
a continuous uniform distribution.This is rather unexpected
as uniform distributions do not usually occur in computing
processes. According to the central limit theorem one would
rather expect to see a normal distribution influenced by, for
example, cascaded scheduling or queuing artifacts. In the
future we hope to investigate these features more closely,
including a proper investigation of the tunnel setup and
teardown processing time, if the dataset allows it.

6. Load Modeling

Drawing conclusions from statistical analysis alone is a
difficult task. The next logical step lies therefore in the
creation of models abstracting this real system, making them
easier to calculate with the loss of some precision. This and
future improved models should support network operators
in predicting the signaling load in their core network with
the benefit of improved network engineering and correctly
scaling core components.

6.1. Creating a Simple Toy QueuingModel. To begin themod-
eling process we attempt to represent the tunnel management
as a queuing system, specifically as a 𝐺/𝐺/𝑛 − 0 system in
Kendall’s notation. Figure 10 shows this model for the case
of our proposed tunnel load metric. Here, tunnels enter the
system by a general random distribution, are then “served”
at the GGSN for the duration of their existence, which also
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Figure 9: Empirical CDFs of the time it takes a GGSN to process a
GTP update event, plotted for each hour of the day.
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Figure 10: Simple toy model for tunnel-induced load on the core
network.

follows a general distribution, and leave the system, that is, are
torn down, afterwards. If the serving units are filled, blocking
occurs and arriving tunnel requests are rejected.

In this case “servers” correspond to available resources
at one or more GGSN, making the maximum number of
tunnels hard to guess and depend on a number of factors.This
could include soft-limits like the specific configuration, and
hard-limits, for example, theGGSN’s processing andmemory
constraints. Unfortunately, all of these are unknown to us.

For the purpose of creating a toy model we simplify the
𝐺/𝐺/𝑛 − 0 to a𝑀/𝑀/∞ system. As stated, no actual limit to
the number of concurrent tunnels is known and the data also
does not show any obvious limits.Thus, we can safely assume
an unlimited system and do not have to handle blocking or
queuing explicitly.
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Furthermore, we fitted univariate distributions to the
experimental data for the tunnel interarrivals and durations
and tested the goodness of the fit both numerically, using
Pearson’s 𝜒2 test, and visually for the density and CDF plots.
No standard random distribution reaches the significance
level for either process. We attribute this fact largely to
the various artifacts in the data, for example, the described
wave effect every 20 milliseconds in the interarrival time.
Matching them visually (confer also the empirical CDF plot
in Figure 11) we find that the exponential fit is reasonably
close to the experimental data in both the arrival and duration
cases. Again, these distribution fits are just for a toy model to
lay the groundwork for future and improved modeling.

Now, assuming both a Poisson arrival and an exponential
serving process, a Markov chain representing the queue
can be set up (cf. Figure 12) and stationary analysis can be
conducted. From the measured data an arrival rate of 𝜆 =
25.64123 and the parameter 𝜇 = 0.0001586728 for the service
time distribution are calculated.Using Little’s law this gives an
estimate for the mean number of concurrent tunnels at the
GGSN of

𝐿 =
𝜆

𝜇
≈ 161 599. (1)

As stated, the amount of state held at the node and
propagated through the network is directly related to the
number of tunnels. Therefore, we propose this metric as an
initial estimate of the load at the GGSN.

6.2. Modeling Outlook. On the basis of this toy model better
fitting models can now be constructed. Those should also
factor in more of the core network’s properties and specified
parameters omitted in this model. Specifically, this means
shifting from𝑀/𝑀/∞ to the more generalized 𝐺/𝐺/𝑛 and
therefore finding better distribution fits for the involved
processes.

It is also entirely possible that the single queue approach
is not the best way to describe control plane load. Several load
influencing factors discussed earlier have direct influence
on the tunnel arrivals and duration, for example, the device
type or the Radio Access Technology. Therefore, amongst
other approaches, multidimensional queuing networks or
fluid flow could be a better fit. Our plan is to conduct further
investigations into the modeling of mobile core network
signaling. This also includes a rough simulative approach,
which could also be used to validate our models against
experimental data.

7. Conclusion

In this paper, we took a look at the signaling behavior of
devices in an operational Third Generation (3G) mobile
network providing Internet access. Our focus does not lie
on the wireless or user-oriented parts of the network, but on
signaling in the core network. To the best of our knowledge,
this paper is the first to offer an in-depth core network
perspective on signaling. We gave a General Packet Radio
System (GPRS) and Universal Mobile Telecommunications
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Figure 11: Empirical CDFs of the sampled interarrival time and
fitted theoretical distributions.

System (UMTS) network primer, introduced GPRS Tun-
neling Protocol (GTP) tunnel management, and evaluated
a weeklong dataset recorded in a mobile operator’s core
network.

In our observation of core network signaling involving
Packet Data Protocol (PDP) Contexts and theirmanagement,
we looked at the effect of device types and operating systems
on the duration of GTP tunnels. We can conclude that the
distribution of tunnel durations in our evaluated dataset
is dominated by smartphones. Conventionally, one would
assume that there is a direct correlation between user-plane
traffic and signaling. Our investigation shows and gives initial
indications that this is not the case. Rather, our paper shows
that network operators can determine load-inducing factors,
for example, mobile device types, much better by looking
at and comparing tunnel duration distributions and tunnel
arrival signaling characteristics.

For additional load investigations we also look at the
interarrival and processing time of tunnels and found further
evidence of radio and diurnal effects influencing the core
network. With this data in mind, an initial𝑀/𝑀/∞ queue
was created to model load occurring at the Gateway GPRS
Support Node (GGSN) with simple stationary analysis. This
also serves as a basis for future more detailed models.

We think that this investigation and load modeling
can lead to better network planning. Being more aware of
the control plane provides the necessary tools to identify
probable causes for control plane activity. We would also like
to expand our evaluations, as there are several angles not
investigated so far that could prove worthwhile.This includes
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Figure 12: Markov chain model for the tunnel serving process.

an examination of the exact number and size of signaling
messages flowing through the core, a more detailed picture of
the processing load these messages induce at the GGSN, and
an evolved model. Furthermore, a differential analysis of our
data compared to a newer dataset (potentially including Long
Term Evolution (LTE) access) could really prove worthwhile.
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