
Exploring the Relationships between the Understandability
of Components in Architectural Component Models and

Component Level Metrics

Srdjan Stevanetic and Uwe Zdun
Software Architecture Research Group

University of Vienna, Austria
srdjan.stevanetic|uwe.zdun@univie.ac.at

ABSTRACT
Architectural component models represent high level designs
and are frequently used as a central view of architectural de-
scriptions of software systems. The components in those
models represent important high level organization units
that group other components and classes in object-oriented
design views. Hence, understandability of components and
their interactions plays a key role in supporting the archi-
tectural understanding of a software system. In this paper
we present a study we carried out to examine the relation-
ships between the effort required to understand a compo-
nent, measured through the time that participants spent on
studying a component, and component level metrics that de-
scribe component’s size, complexity and coupling in terms
of the number of classes in a component and the classes’ re-
lationships. The participants were 49 master students, and
they had to fully understand the components’ functional-
ities in order to answer 4 true/false questions for each of
the 7 components in the architecture of the Soomla Android
store system. Correlation, collinearity and multivariate re-
gression analysis were performed. The results of the analysis
show a statistically significant correlation between three of
the metrics, number of classes, number of incoming depen-
dencies, and number of internal dependencies, on one side,
and the effort required to understand a component, on the
other side. In a multivariate regression analysis we obtained
3 reasonably well-fitting models that can be used to estimate
the effort required to understand a component. In our fu-
ture work we plan to study more components and investigate
more metrics and their relationships to the understandabil-
ity of components and architectural component models.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures;
D.2.8 [Software Engineering]: Metrics

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EASE ’14, May 13 - 14 2014, London, England, BC, United Kingdom
Copyright 2014 ACM 978-1-4503-2476-2/14/05 ...$15.00.

General Terms
Experimentation, Measurement, Design

Keywords
Architectural Component Models, Understandability, Soft-
ware Metrics, Empirical Evaluation

1. INTRODUCTION
The main idea of software architecture is to concentrate on

a high level view of a software system, i.e. to enable the or-
ganization of the fine-grained implementation artefacts into
higher level organizational units, especially in the case of
large-scale software systems. The software architecture of
the system is defined as: “the structure or structures of the
system, which comprise software components, the externally
visible properties of those components, and the relationships
among them” [3].
Architectural component and connector models (or com-

ponent models for short) are frequently used as a central
view of the architectural descriptions of software systems [6].
The main idea of a component-based software development
is to manage the increasing complexity of software systems
as well as to enable the reuse of software components, and in
that way to facilitate the process of software development.
In the context of object-oriented designs, components rep-
resent important high level organization units that group
classes, as well as other components, and provide one or a
couple of similar system functionalities.
Architectural understanding of a software system plays a

key role in managing and maintaining the overall software
system. Hence, understanding of components and their in-
teractions in component models plays a key role in support-
ing the architectural understanding of a software system.
So far in the software architecture literature we find only
a very few studies that provide empirical evidence regard-
ing the architectural understandability or the measurement
of understandability (see e.g. [11, 8]). To the best of our
knowledge, there is no existing empirical study on the un-
derstandability of architectural component models (the two
previously cited studies [11, 8] examine understandability at
the package level).
In this paper we present a study we carried out to examine

the relationships between the effort required to understand
a component measured through the time that participants
spent on studying a component and component level metrics
that describe the component’s size, complexity and coupling

in terms of the number of classes in a component and the
classes’ relationships. The execution of the study took place
as part of the Advanced Software Engineering (ASE) master
lecture at the University of Vienna in the Winter Semester
2013. The subjects of the study were the 49 master students
of the ASE lecture. The software system to be studied by
participants was the Soomla Android store Version 2.0, an
open source framework for supporting virtual economy in
mobile games. In order to answer 4 true/false questions for
each component the participants had to fully understand the
functionalities of each component by exploring the relation-
ships (together with their roles) between the classes within
each component and the relationships that those classes have
with the classes outside of the given component.

The results of our analysis show a statistically significant
correlation between 3 of the metrics, number of classes, num-
ber of incoming dependencies, and number of internal depen-
dencies, on one side, and the effort required to understand
a component, on the other side. In a multivariate regression
analysis we obtained 3 reasonably well-fitting models that
can be used to estimate the effort required to understand a
component.

This paper is organized as follows: In Section 2, we briefly
discuss the related work. In Section 3 we describe the study
design. Section 4 describes the statistical methods we ap-
plied and the analysis of our data. In Section 5 we discuss
the threats to validity of the study. In Section 6 we conclude
and discuss future directions of our research.

2. RELATED WORK
As we mentioned before, so far in the software architec-

ture literature we find only a very few studies that provide
empirical evidence regarding architectural understandabil-
ity. In particular, one existing study examines the influ-
ence of package coupling on the understandability of the
software systems [11], while another one examines the rela-
tionships between some package-level metrics and package
understandability [8]. None of these studies focuses on un-
derstandability of architectural components, the main focus
of our study.

Model understandability has been studied by a number of
authors in the field of data models. In that context, model
understandability has been defined as the ease with which
the model can be understood [24]. Moody proposes three
metrics for model understandability: the model user rating
of model understandability, the ability of users to interpret
the model correctly, and the model developer rating of model
understandability [24]. In the work by Patig [25] the vari-
ables and tasks that have been proposed by cognitive psy-
chology or applied in computer science to test understand-
ability are extracted. All variables have been theoretically
justified by the authors that used them. In our study we
measured the correctness of the answers and the time that
participants spent on resolving the questions. Furthermore,
our study aims to examine the understandability of com-
ponents functionalities in the system implementation which
can help in designing the component models together with
their corresponding mappings to the implementation with a
sufficient level of understandability.

Even though so far there are no rigorous empirical studies
of architectural component model understandability, aspects
like fault density and reuse of components have been stud-
ied before. Fenton and Ohlsson have studied the relations

of fault density and component size [10]. Mohagheghi et al.
have studied the comparison between software reuse and de-
fect density and stability [23]. Their study is based on the
historical data on defects, modification rate, and software
size. Malaiya and Denton identify the component partition-
ing and implementation as influencing factors to determine
the “optimal” component size with regard to fault density
[21].
Many different software metrics for measuring the sys-

tem’s architecture, components as its constituting parts, and
structures similar to architectural component models, such
as other higher-level software structures (package, module,
graph-based structures) have been proposed. Metrics re-
lated to components and the corresponding architectures
[15, 31, 29, 28] measure size, coupling, cohesion, and de-
pendencies of individual components but also the complex-
ity of the whole architecture when all the components and
their interactions are taken into account. Different authors
have proposed different package level metrics that measure
their size, coupling, stability, and cohesion [8, 11, 22, 12,
32]. Module level metrics [27, 18, 14] measure coupling, co-
hesion, and size of modules, their hierarchical structure, the
quality of modularization in the system, etc. Graph-based
metrics measure different interactions between the nodes in
the graph [13, 5, 19, 20, 2]. Some of the graph-based met-
rics have been shown to be useful in measuring large scale
software systems in the sense that those systems share some
properties that are common for complex networks across
many fields of science [19]. All the mentioned metrics can
be applied or can be more-less easily adapted to be applica-
ble for the component models. However, none of the metrics
is empirical validated regarding understandability of archi-
tectural components or architectural component models so
far.

3. EMPIRICAL STUDY DESCRIPTION
For the study design we have followed the experimental

process guidelines proposed by Kitchenham et al. [16] and
Wohlin et al. [30]. The former was primarily used in the
planning phase of the study while the later was used for the
analysis and the interpretation of the results.

3.1 Goals, variables, and hypotheses
The main idea of this study is to explore the relation-

ships between the understandability of the components in
architectural component models and component level met-
rics that can be used to characterize their size, complexity
and coupling to the other components in the system. The
metrics that we used in this study are:

• Number of Classes (NC): The NC metric for a com-
ponent is defined as a total number of classes inside a
component.

• Number of Incoming Dependencies (NID): The
NID metric for a component is defined as a total num-
ber of dependencies between the classes outside of a
component and the classes inside a component that
are used by those outside classes.

• Number of Outgoing Dependencies (NOD): The
NOD metric for a component is defined as a total num-
ber of dependencies between the classes inside a com-

ponent and the classes outside of a component that are
used by those inside classes.

• Number of Internal Dependencies (NIntD): The
NIntD metric for a component is defined as a total
number of dependencies between the classes within a
component.

The first three metrics are adapted from the corresponding
package level metrics (number of classes for a package, pack-
age afferent coupling and package efferent coupling) defined
by Martin [22]. We consider the dependencies between the
components in terms of the dependencies between the classes
while in the work by Martin the dependencies between pack-
ages are considered through the number of packages that are
related to the given package. The first three metrics char-
acterize the coupling and the size of a component and the
fourth metric is introduced to model the internal complexity
of the component in terms of the number of dependencies
between classes within a component.

We can differentiate two groups of variables in our study.
The first group of variables was collected from the partici-
pants of the study while the second group of variables was
collected from the studied system. The first group of vari-
ables includes three independent variables related to demo-
graphic information: programming experience, commercial
programming experience, and experience in programming
computer games. It also includes the two dependent vari-
ables, time required to study a component and the percent-
age of the correct answers on the study questions. The time
variable is measured by the time that the participants spent
on studying each component, and it is used to measure the
effort required to understand a component. The percentage
of the correct answers is introduced to help in estimating the
understandability effort in case that the participants do not
spend enough time to deeply study all the components in the
system in order to achieve a high percentage of the correct
answers. Namely, if the participants do not spend enough
time on studying the given component, the percentage of the
correct answers will probably decrease for that component
so there is a dependency relation between these two vari-
ables. Therefore, the percentage of the correct answers can
assist in estimating the time required to fully study the given
component (i.e., to achieve 100 % of the correct answers),
which can be used as an indicator of the effort required to
fully understand a component 1. The second group of vari-
ables include the variables related to the metrics that we
aim to explore: number of classes (NC), number of incom-
ing dependencies (NID), number of outgoing dependencies
(NOD), and number of internal dependencies (NIntD). They
are all independent variables.

Regarding the NC metric, we expect that the bigger the
size of a component in terms of the number of classes the
more effort is required to understand it and therefore the
more time is needed to study it. Regarding the NID met-
ric, we expect that the higher the incoming dependencies
of a component the more effort is required to understand
it. This expectation can be explained as follows: high NID

1Predicting the percentage of the correct answers variable
is also possible but since our focus is on estimating the time
variable that is used as an indicator of the effort required
to understand a component we consider the percentage of
the correct answers as an auxiliary variable for the time
prediction as it is explained in the context.

values for a component indicate that it is a service com-
ponent that offers many services and therefore more effort
is required to understand all its services. Regarding NOD
metric, we expect that higher the outgoing dependencies of
a component the more effort is required to understand it
because it has a lot of dependencies to the outside classes
that need to be understood, too. Finally, we expect for the
NIntD metic that the higher the number of dependencies
between the classes within a component is, the more effort
is required to understand it.
The dependent variables together with their scale types,

units, and ranges are shown in Figure 1. The independent
variables are shown in Figure 2.

Description Scale
type

Unit Range

Time Ratio Minutes Positive natural numbers including 0
Percentage of the correct
answers

Ratio - [0,100]
0 - the lowest, 100 - the highest

Figure 1: Dependent variables

Description Scale
type

Unit Range

Programming experience Ordinal Years 4 categories: [0,1),[1-3),[3-7), >=7
Commercial programming
experience

Ordinal Years 4 categories: [0,1),[1-3),[3-7), >=7

Experience in programming
computer games

Ordinal Years 4 categories: [0,1),[1-3),[3-7), >=7

Number of Classes (NC) Ratio Class Positive natural numbers including 0
Number of Incoming
Dependencies (NID)

Ratio Dependency Positive natural numbers including 0

Number of Outgoing
Dependencies (NOD)

Ratio Dependency Positive natural numbers including 0

Number of Internal Dependencies
(NIntD)

Ratio Dependency Positive natural numbers including 0

Figure 2: Independent variables

Based on previous considerations we formulate the follow-
ing set of hypotheses:
H01: There is a significant positive correlation between

the number of classes (NC) in a component and the effort
required to understand a component measured though the
time spent on studying it.
H02: There is a significant positive correlation between

the number of incoming dependencies (NID) of a component
and the effort required to understand a component measured
though the time spent on studying it.
H03: There is a significant positive correlation between

the number of outgoing dependencies (NOD) of a component
and the effort required to understand a component measured
though the time spent on studying it.
H04: There is a significant positive correlation between

the number of internal dependencies (NIntD) of a compo-
nent and the effort required to understand a component
measured though the time spent on studying it.

3.2 Study design
The execution of the study used to test the hypothesis

took place as part of the Advanced Software Engineering
(ASE) master lecture at the University of Vienna in the
Winter Semester 2013.

3.2.1 Subjects
The subjects of the study are the 49 master students of

the ASE lecture.

3.2.2 Objects
The software system to be studied by participants was the

Soomla Android store2 Version 2.0, an open source frame-
work for supporting virtual economy in mobile games. It
allows mobile game developers to easier implement virtual
currencies (tokens, coins, gems, etc.), virtual goods, and in-
app purchases. The choice of using this particular system is
motivated by the following factors:

• The Soomla Android store is a free open source system,
which enables us to conduct the study and disseminate
its results.

• It is used in real-world games and therefore it has in-
dustrial relevance.

• It addresses a well-known application domain that is
likely known to the subjects from familiar real-world
game applications.

• It is written in the Java programming language with
which the participants were sufficiently familiar.

• The source code of the Soomla Android store adheres
to coding standards and is rather easy to understand
for most potential subjects. The source code classes
are well designed in terms that there are no big devi-
ations in their sizes, i.e. each of them provides one or
a couple of similar functionalities.

• The overall source code of the Soomla Android store
comprises of 54 source code classes distributed across 8
packages, containing a total of 3623 KLOC (excluding
blank lines and commented lines); that is, it is likely
comprehensible for the participants within an study
session, but not too simple.

• The experimenters were familiar with the internals of
the Soomla Android store.

3.2.3 Instrumentation
The following instruments were used to carry out the

study:

Three pages of architectural documentation about the
Soomla Android store version 2.0.

The documentation describes the conceptual architecture
and lists technologies and frameworks used in the implemen-
tation. Besides text, a UML component diagram is used to
illustrate the components in the system, and their inter-
relationships in parts of the architecture. Participants were
also provided with the set of traceability links, showing the
relations between architectural components and their real-
ized code classes.

The architectural design of the Soomla Android store sys-
tem in the form of UML component diagram is shown in
Figure 3. It comprises of seven components, namely Secu-
rity (C1), CryptDecrypt (C2), PriceModel (C3), GooglePlay-
Billing (C4), StoreController (C5), DatabaseServices (C6),
and StoreAssets (C7). In addition, there are two external
components modelled: GooglePlayServer, the REST Web
Services running at Google, and SQLLiteDatabase, the used
database accessed over JDBC. A short description of the
components’ roles in the system is shown in Figure 4.

2see: http://project.soom.la/

«jdbc»

encrypt/decript

obfuscator

sharedPreferences

«rest»

googlePlayBillingAccess

androidBus and storeInfo

storageManager

storeAssets
price

assetsInfo

StoreAssets PriceModel

DatabaseServicesStoreController

GooglePlayBilling

«RESTWebService»
GooglePlayServer

Security

CryptDecrypt

«database»
SQLLiteDatabase

Figure 3: UML component diagram of the Soomla
Android store system

Component Component’s role
Security (C1) Verifies the information during the purchasing process
CryptDecrypt (C2) Provides encrypt/decrypt services to obfuscate the billing information and

to encrypt/decrypt the data stored to or retrieved from the database
PriceModel (C3) Describes the model that explains how the prices of virtual items are

formed
GooglePlayBilling (C4) Simplifies in-app billing API which is a Google play service that lets you

sell virtual goods from inside your applications
StoreController (C5) Provides the runtime functionality of the Android store and contains up-to-

date store information
DatabaseServices (C6) Performs the initialization of the database and implement retrieve, add,

and remove operations for store assets in the database
StoreAssets (C7) Describes the virtual items used in the application (virtual currency, virtual

goods, and their classification)

Figure 4: Soomla Android store components and
their roles in the system

Browser-based source code access.
The Browser-based access to the source code of Soomla

Android store was provided in a Lab environment on pre-
pared computers. All source code classes were grouped in
the corresponding components so that the participants can
easily study the components in the system by studying their
realized source code classes.

A questionnaire to be filled-in by the participants dur-
ing the experiment.
On the first page of the questionnaire, the participants

had to rate their experience, i.e. programming experience,
commercial programming experience, and experience in pro-
gramming computer games. The subsequent pages contain
the understanding questions. In order to answer the ques-
tions correctly the participants had to fully understand the
functionalities of each component by exploring the relation-
ships (together with their roles) between the classes within
each component and the relationships that those classes have
with the classes outside of the given component. There were
4 true/false questions for each component, and the partic-
ipants had to check the right answers among them. In the
case of bigger components, answering the questions requires
studying of more classes than in the case of smaller com-
ponents. We also provided a table where the participants
had to enter the time slots during which they studied each
of the components. Each time slot contains a start and
stop time, indicating the time when the participants started
studying the given component and the time when they fin-
ish it, respectively. There were more time slots in case the
participants wanted to study the component more than one

time. The time is written in the format hour : minute.

3.3 Execution

3.3.1 Preparation
As it is explained in Section 3.2 the study was conducted

at the University of Vienna, Austria in the context of a
lecture on Advanced Software Engineering. The total time
limit for the whole study was 1.5 hours.

3.3.2 Data collection
The data collection was performed as planned in the de-

sign. The relevant data regarding the participants’ demo-
graphic information are shown in Figure 5.

Programming Exp. Industry Programming Exp. Game Programming Exp.

[0,1) years
[1,3) years
[3,7)
>=7 years

Experience of the participants

0
10

20
30

40
50

Figure 5: Experience of the participants

According to the experience of the participants we can say
that the participants have medium to high programming ex-
perience (most of them have [3,7) and more than 7 years of
programming experience). Many of them have industrial
programming experience, while only a very few have expe-
rience in game programming.

 Security
(C1)

Crypt
Decrypt

(C2)

Price
Model
(C3)

GooglePlay
Billing
(C4)

Store
Controller

(C5)

Database
Services

(C6)

Store
Assets
(C7)

Number of excl.
participants

9

8

8

7

23

18

14

Figure 6: Number of excluded participants for each
component

The mean, the median and the standard deviation of the
time and the percentage of the correct answers variables col-
lected from the participants are shown in Figures 7 and 8.
The participants with [0,1) years of programming experi-
ence were excluded from the consideration. Some partic-
ipants did not write the time they spent on studying the
particular components (they did not write the start time or
the stop time or both of them) and those participants were
excluded from the consideration for those particular com-
ponents. Some of them spent very short time in studying
components which is not enough 3 and can just introduce

3We expect that at least 30 seconds is needed to study each
class in the component.

bias in the results and those participants were also excluded
from the consideration for the given component. The num-
ber of excluded participants for each component is shown
in Figure 6. From the rest of the results regarding the time
variable (see Figure 7) we can say that they quite well reflect
our expectations4.

C1 C2 C3 C4 C5 C6 C7

Mean
Median
Std.Dev.

Time

0
5

10
15

20

Figure 7: Time – descriptive statistics

The data related to the component level metrics are shown
in Figure 9.
By looking at Figure 7 we can observe that the time

needed to study the first three components is significantly
decreased comparing to the other components in the system.
This is an expected result because those 3 components are
smaller in terms of the number of classes they contain. It
can be also observed that the time the participants spent on
studying the components C5, C6 and C7 is decreased com-
pared to the component C4. The percentage of the correct
answers (see Figure 8) for the components C5, C6 and C7
is also decreased compared to the component C4 and the
smaller components C1, C2 and C3. Even though it is real-
istic to expect that the percentage of the correct answers for
the bigger components decrease on average (because of the
higher amount of information that need to be studied which
increases the probability of missing some information), it
seems also that the participants needed a bit more time for
studying the components C5, C6 and C7 (or at least for
studying the component C7 which has more classes than
the component C4) in order to achieve the higher percent-
age of the correct answers. Based on this consideration we
obtained some prediction models for the time variable that
use both the component level metrics and the percentage
of the correct answers. Using that models it is possible to

4We tried the same study with a couple of our colleagues
before we tried it within the course in order to estimate how
much time the participants approximately need to study the
components and to ensure that there will be enough time to
study all the components within the study session of 1.5
hours.

predict the time variable in order to achieve the maximum
percentage of the correct answers which represents the effort
required to fully understand a component. Model prediction
analysis is explained in Section 4.3.

C1 C2 C3 C4 C5 C6 C7

Mean
Median
Std.Dev.

Percentage of the correct answers

0
20

40
60

80
10

0

Figure 8: Percentage of the correct answers – de-
scriptive statistics

 Number of
Classes

Number of Incoming
Dependencies

Number of Outgoing
Dependencies

Number of Internal
Dependencies

Security (C1) 2 3 4 1
CryptDecrypt (C2) 5 9 0 5
PriceModel (C3) 3 1 4 2
GooglePlayBilling (C4) 11 4 3 12
StoreController (C5) 8 5 15 5
DatabaseServices (C6) 8 8 8 13
StoreAssets (C7) 13 9 3 14

Figure 9: Component level metrics

3.3.3 Validation
At least one observer was present in the room during the

whole study execution time to enable the participants to
pose clarification questions and assure that participants did
not use forbidden materials and did not talk to each other.
After execution, all materials were collected before any of
the participants left the room. There were no situations in
which participants behaved unexpectedly.

4. ANALYSIS
Based on the data obtained from the questionnaire we

applied the following statistical analyses:

• Normality analysis: The Shapiro-Wilk normality test

• Correlation analysis: The Spearman rank correlation
test

• Collinearity analysis: The Variance Inflation Factor
(VIF) and the Condition Number (CN) calculation

• Multivariate Regression analysis: Construction of mul-
tivariate linear regression models that can predict the
effort required to understand a component

For statistical analysis of the obtained data, we used the
programming language R [26].

4.1 Testing Hypotheses

4.1.1 Testing the Normality
As the first step in analysing the data, we test the nor-

mality of the data by applying the Shapiro-Wilk normality
test in R. The null hypothesis H0 for the test states that
the input data are normally distributed. H0 is tested at the
significance level of α = 0.05 (i.e., the level of confidence is
95%).
After applying the normality tests we found that all vari-

ables do not fit the normal distribution (all p-values are less
than 0.05; that is the null hypothesis can be rejected). Based
on that we decided to pursue the non-parametric Spearman
rank correlation test with our data in the next step of the
analysis. The results of the Shapiro-Wilk test are shown in
Figure 10.

 Shapiro-Wilk Normality Test
Time W = 0.9118, p-value = 3.877e-11
Percentage of the correct answers W = 0.8651, p-value = 3.273e-14
Number of Classes W = 0.8847, p-value = 4.971e-13
Number of Incoming Dependencies W = 0.8451, p-value = 2.667e-15
Number of Outgoing Dependencies W = 0.7617, p-value < 2.2e-16
Number of Internal Dependencies W = 0.8164, p-value < 2.2e-16

Figure 10: Shapiro-Wilk Normality Test

4.1.2 Testing the Correlation Between the Variables
In order to test our hypotheses the Spearman rank corre-

lation test is used with a level of significance α = 0.05. It
examines whether there is a linear correlation between the
tested variables.

 Time
Number of Classes r=0.7350 p-value<2.2e-16
Number of Incoming Dependencies r=0.2575 p-value= 3.0e-05
Number of Outgoing Dependencies r= -0.007 p-value= 0.9058
Number of Internal Dependencies r= 0.6591 p-value<2.2e-16

Figure 11: The Spearman correlation coefficients
and corresponding p-values between the time vari-
able and the component level metrics

Figure 11 shows the Spearman’s coefficients and the cor-
responding p-values between the time that the participants
spent on studying the components and the component level
metrics. There is a significant positive correlation between
the variables number of classes, number of incoming depen-
dencies and number of internal dependencies on one side
and the time variable on the other side. It means that we
can accept the hypotheses H01, H02, and H04 of our study,
i.e. there is a significant positive correlation between the
variables number of classes (NC), number of incoming de-
pendencies of a component (NID), and number of internal
dependencies of a component (NIntD) on one side and the
effort required to understand a component measured though
the time spent on studying it on the other side.
Regarding the hypothesis H03, we found that there is no

significant correlation between the number of outgoing de-
pendencies and the time variable. Hence, we can reject the
hypothesis H03, i.e. there is no significant positive correla-
tion between the number of outgoing dependencies (NOD)
of a component and the effort required to understand a com-
ponent measured though the time spent on studying it. The

correlation coefficient even becomes negative. It is a bit sur-
prising result but can be however explained: high NOD of
a component indicates high reusability of services provided
by other components. If those services are well-understood
they will decrease the time needed to understand the reusing
classes in other components.

These results coincide with the results obtained in the
work by Elish [8]. He studied package level metrics and
found a significant positive correlation between the package
level metrics number of classes in the package and package
afferent coupling (incoming dependencies) with the effort re-
quired to understand a package. Also a non-significant neg-
ative correlation between the metric package efferent cou-
pling (outgoing dependencies) and the time required to un-
derstand a package is found. Our study differs from the
work by Elish in the following: firstly, our focus is on study-
ing the understandability of architectural component models
while he studied the understandability at the package level5.
Secondly, we measure the understandability effort using the
time that participants need to answer the questions related
to the understandability of the components’ functionalities
while in the work by Elish the participants rated the effort
they needed to understand the packages. Finally, we used
the component level metrics that describe their size, cou-
pling and complexity in terms of the number of classes they
have and the classes’ relationships while in the work by Elish
package level metrics are used.

4.2 Collinearity Analysis
To create prediction models that can be used to predict

the time variable, first we have to conduct a collinearity anal-
ysis between the variables that can be the possible predictors
of the time variable and to exclude those variables that are
highly correlated with other possible predictors. All possi-
ble predictors include the component level metrics and the
percentage of the correct answers (according to the discus-
sion in Section 3.3.2). Accordingly, the Condition Number
(CN) and the Variance Inflation Factor (VIF) values for the
metrics were calculated. If the VIF values are higher than
10, multicollinearity is strongly suggested. The acceptable
values for the condition number are the values less than 30
(a threshold suggested in the literature [4]). Figure 12 shows
the CN and VIF analysis results.

Variable VIF VIF (without NIntD)
Percentage of the correct

answers
1.4405 1.4391

Number of Classes (NC) 7.3977 1.6092
Number of Incoming
Dependencies (NID)

1.5776 1.4213

Number of Outgoing
Dependencies (NOD)

1.2432 1.2135

Number of Internal
Dependencies (NintD)

7.9627 N/A

Condition number (CN) 5.72 4.94

Figure 12: Condition Number and Variance Infla-
tion Factor analysis results

As we can see from Figure 12, the VIF results for the
case of all predictors are less than 10 and the greatest VIF
5Architectural component models are more graph based
structures where the nodes are the components that in-
clude realized classes and the edges reflect the communica-
tion between components while package models have more
hierarchical-based structure (sub-packages at different hier-
archical levels).

value is 7.96 (for NIntD). It seems that there is a tendency
of multicollinearity between the variables (not so strong).
Predictor that tends to be highly correlated with some other
predictors (in our case this is NIntD, which has the greatest
VIF value) can be linearly predicted from the others and it
is redundant in the model. Therefore we decided to exclude
the NIntD from our model after which we get acceptable
results for both VIF and CN values (see Figure 12).

4.3 Multivariate Regression Analysis
Multivariate regression analysis is performed to construct

different multivariate regression models that can be used to
predict the effort required to understand a component mea-
sured through the time that participants spent on studying
a component. We used the Mallows’ Cp calculation to cre-
ate reasonably fitting models that prevent over-fitting of the
data [17]. All the models that have Cp ≤ p (p - number of
predictors including the constant predictor, if present) must
be considered reasonably good fits. In Figure 13, the Mal-
lows’ Cp parameter versus the number of predictors includ-
ing the constant predictor (if present) for models with dif-
ferent combinations of the possible predictors (all variables
in Figure 12 except NIntD) are shown. The drawn curve in
the figure is the curve Cp = p. We can see that 3 models fit
the explained criteria (Cp ≤ p), i.e. they lie below or on the
line Cp = p.

2.0 2.5 3.0 3.5 4.0 4.5 5.0

5
10

20
50

10
0

20
0

p

C
p

Figure 13: Mallows’ Cp results

The accuracy of the predicted models is checked using dif-
ferent results in R. The residuals are checked to follow the
normal distribution. The influential points are the points
whose removal will cause a large change in the fit [9]. Those
points can be detected using the Cook’s distance contour
lines. If some points have a distance larger than 1, it sug-
gests the presence of a possible outlier or a poor model.
The obtained models do not have such influential points.
The coefficient of determination (R2) is used to describe
how well the regression fits a set of data. The statistical
test of significance for R2 is the F test [7]. The Mean Mag-
nitude of Relative Error (MMRE) and prediction at level
0.25 (Pred(0.25)) measures are calculated as de facto stan-

dard and commonly used measures for the evaluation of the
accuracy of the predicted models. The models coefficients,
adjusted R2, p-value for the F test, MMRE, and Pred(0.25)
values are shown in Figure 14.

 Adjusted
R-squared

F-statistic:
p-value

MMRE Pred(0.25)

Model 1 0.8801 < 2.2e-16 0.3522 0.4687
Model 2 0.8811 < 2.2e-16 0.3527 0.4921
Model 3 0.8813 < 2.2e-16 0.3579 0.5117

Coefficients

Intercept Percentage of
the correct
answers

Number
of

Classes

Number of
Incoming

Dependencies

Number of
Outgoing

Dependencies
Model 1 x 4.8597 1.5162 -0.5349 x
Model 2 x 4.5754 1.4628 -0.5175 0.1150
Model 3 2.4250 2.8902 1.4200 -0.5795 x

Figure 14: Models’ parameters

For all the models adjusted R2 is around 88 %, MMRE
is around 35 %, and Pred(0.25) is in the range [46,51] %.
Those results suggest that the obtained models fit the data
quite well. The best model in terms of Pred(0.25) is Model
3, which has a value of 51 %. Beside the Mallows’ Cp cal-
culation we also tested our models using the 10-fold cross-
validation technique which is also useful for overcoming the
problem of over-fitting [1]. The results show that the 3 pre-
viously selected models perform the best among the other
models and have almost the same MMRE and Pred(0.25)
values as it is shown in Figure 14. It confirms the validity
and the results of our previous analysis using the Mallows’
Cp criterion.

Using the obtained prediction models we can calculate the
time variable in order to achieve the maximum percentage
of the correct answers (100 %) which represents the effort
required to fully understand a component. In Figure 15 the
predicted time variable using the model with the least num-
ber of predictors and the time variable obtained from the
participants are shown. The predicted time variable slightly
differs from the time variable obtained from the participants.
Just for the component StoreAssets (C7) the difference is
significant. It can be interpreted in the way that the partic-
ipants needed a bit more time for studying the component
StoreAssets (C7) while they spent enough time for studying
the other 6 components in order to be able to answer all the
questions correctly.

In order to obtain more robust prediction models that
can be used in a broader sense we need to study more sys-
tems and to explore other software metrics that can assist
in assessing the understandability of components and archi-
tectural component models.

5. VALIDITY EVALUATION
In this section we discuss the various threats to validity

of our study and how we tried to minimize them:

Conclusion validity.
The conclusion validity defines the extent to which the

conclusion is statistically valid. The statistical validity
might be affected by the size of the sample (49 students
answered the questions for the 7 components).

The maximum number of participants we excluded from
the consideration for some component is 23 (see Figure 6).
This means that the minimum number of participants who
are considered for any component is 26 which is quite fair. In

C1 C2 C3 C4 C5 C6 C7

Time from participants (mean)
Time from the predicted model

Time

0
5

10
15

20
25

30
Figure 15: The time from the participants and the
time from the predicted model where the correct-
ness of the answers is set to 100 %

contrast to this the study is limited to the small-size dataset
that consists of 7 components due to the limited time of the
study session. Also the study is limited to the 4 component
level metrics. However, the appropriate statistical analysis is
performed in the study and some well-fitting models for the
prediction of the effort required to understand a component
are obtained. We plan to increase the number of studied
components and to investigate more metrics in our future
work.

Construct validity.
The construct validity is the degree to which the indepen-

dent and the dependent variables are accurately measured
by the appropriated instruments.
Regarding the dependent variables the percentage of the

correct answers is measured through answering of the pre-
defined set of questions, while the time variable is measured
by entering the start and the stop time from the participants
right before they start and right after they finish studying
the given component. The percentage of the correct answers
is calculated by checking if the answers from the participants
are correct or incorrect. Therefore there are no threats to
its accuracy. In contrast to this, the participants could have
forgotten to write the time right before they start and right
after they finish studying the components which represents
a threat to the accuracy of the time variable. In order to
reduce that threat we wrote a reminder before each compo-
nent to remind the participants to write the stop time in the
previously studied component if they forgot it and the start
time for the given component they intend to study as the
next one.
Independent variables that represent the component level

metrics are calculated with the help of the tool ObjectAid

UML Explorer6. The dependencies between the source code
classes are visualized in the tool and were then counted man-
ually. There is only a very low threat to validity that the
metrics calculations are not valid.

Internal validity.
The internal validity is the degree to which conclusions

can be drawn about cause-effect of independent variables on
the dependent variables. We dealt with the following issues:

• Differences among subjects. The subjects experi-
ence has approximately the same degree with regard to
programming since most of them have at least medium
experience in that area.

• Accuracy of subject responses. The threats for
the accuracy of the variables time and the percentage
of the correct answers are discussed in Section 5.

• Other important factors. Influence among subjects
could not really be controlled. However, the study
was carried out under supervision of a human observer.
As no interactions between the participants have been
observed, we assume that this potential threat did not
affect the validity of the study.

External validity.
The external validity is the degree to which the results

of the study can be generalized to the broader population
under study. The following facts are identified:

• Components and classes that are used. For the
purpose of the study we used small-size dataset that
consists of 7 components of the Soomla Android store
system due to the limited time of the study session.
The number of studied components can be increased
in replications of the study in order to be able to gen-
eralize the results. Another threat to external validity
is the size of the classes in a component. As it is men-
tioned in Section 3.2.2 there are no big deviations in
the sizes of the classes in the Soomla system, i.e. each
of them provides one or a couple of similar functional-
ities. In the general case, there could be some classes
that are much bigger than other classes in the system
and in that case the number of classes in a compo-
nent will not be an appropriate measure of its size.
This case actually is not in accordance with good de-
sign principles, i.e. the big classes should be divided
into smaller classes that encompass one or a couple of
similar functionalities but this case can be examined
in terms of which deviations in the classes’ size are
acceptable and do not violate the performed analysis.

• Subjects. In order to solve the difficulties about ob-
taining well-qualified subjects we used the master stu-
dents at Faculty of Computer Science of the Univer-
sity of Vienna. While it is possible to show that they
have substantial experience (and also industrial back-
grounds), we are aware that more empirical studies

6The ObjectAid UML Explorer is an agile and lightweight
code visualization tool for the Eclipse IDE. It shows a Java
source code and libraries in live UML class and sequence
diagrams that automatically update as the code changes
(www.objectaid.com).

with professionals need to be carried out in order to
generalize the results.

6. CONCLUSIONS AND FUTURE WORK
In this paper we present the results obtained from a study

we carried out to examine the relationships between four
component level metrics that describe the components’ size,
coupling and complexity in terms of the number of classes
they have and the classes’ relationships on one side and the
effort required to understand a component on the other side.
The effort required to understand a component is measured
through the time that the participants spent on studying
each of the components. The study was conducted using
the Soomla Android store system with 7 components in the
architecture. Correlation, collinearity and multivariate re-
gression analysis were performed. The results of the anal-
ysis show statistically significant correlation between 3 of
the metrics (number of classes, number of incoming depen-
dencies, and number of internal dependencies) on one side
and the time obtained from the participants of the study on
the other side. In a multivariate regression analysis we ob-
tained 3 reasonably well-fitting models that can be used to
estimate the effort required to understand a component mea-
sured though the time spent on studying it. In our future
work we plan to study more components and to investigate
more metrics and their relationships to the understandabil-
ity of components and architectural component models.

Acknowledgement
This work was supported by the Austrian Science Fund
(FWF), Project: P24345-N23. We thank Dr. Nina Sen-
itschnig from the Department of Statistics and Operations
Research, University of Vienna, Austria, for valuable sug-
gestions and help related to the statistical analysis pursued
in the study.

7. REFERENCES
[1] Cross Validation techniques in R: A brief overview of

some methods, packages, and functions for assessing
prediction models.

[2] E. B. Allen, S. Gottipati, and R. Govindarajan.
Measuring size, complexity, and coupling of
hypergraph abstractions of software: An
information-theory approach. Software Quality
Control, 15(2):179–212, June 2007.

[3] L. Bass, P. Clements, and R. Kazman. Software
architecture in practice. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1998.

[4] D. A. Belsley, E. Kuh, and R. E. Welsch. Regression
Diagnostics: Identifying Influential Data and Sources
of Collinearity (Wiley Series in Probability and
Statistics). Wiley-Interscience.

[5] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and
M. Faloutsos. Graph-based analysis and prediction for
software evolution. In ICSE’12, pages 419–429, 2012.

[6] P. Clements, F. Bachmann, L. Bass, D. Garlan,
J. Ivers, R. Little, R. Nord, and J. Stafford.
Documenting Software Architectures: Views and
Beyond. Addison-Wesley, Boston, MA, 2003.

[7] P. Dalgaard. Introductory Statistics with R. Springer,
Jan. 2004.

[8] M. O. Elish. Exploring the relationships between
design metrics and package understandability: A case
study. In ICPC, pages 144–147. IEEE Computer
Society, 2010.

[9] J. J. Faraway. Practical Regression and Anova using
R. July 2002.

[10] N. E. Fenton and N. Ohlsson. Quantitative analysis of
faults and failures in a complex software system. IEEE
Trans. Softw. Eng., 26(8):797–814, Aug. 2000.

[11] V. Gupta and J. K. Chhabra. Package coupling
measurement in object-oriented software. J. Comput.
Sci. Technol., 24(2):273–283, Mar. 2009.

[12] V. Gupta and J. K. Chhabra. Package level cohesion
measurement in object-oriented software. J. Braz.
Comp. Soc., 18(3):251–266, 2012.

[13] Z. Haohua, Z. Hai, C. Wei, and A. Jun. The method
for measuring large-scale object-oriented software
system. In Proceedings of the 6th international
conference on Fuzzy systems and knowledge discovery
- Volume 3, FSKD’09, pages 603–606, Piscataway, NJ,
USA, 2009. IEEE Press.

[14] J. Hwa, S. Lee, and Y. R. Kwon. Hierarchical
understandability assessment model for large-scale OO
system. In Proceedings of the 2009 16th Asia-Pacific
Software Engineering Conference, APSEC ’09, pages
11–18, Washington, DC, USA, 2009. IEEE Computer
Society.

[15] A. Kanjilal, S. Sengupta, and S. Bhattacharya. CAG:
A Component Architecture Graph. In TENCON,
IEEE Region 10 International Conference, 2008.

[16] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard,
P. W. Jones, D. C. Hoaglin, K. El Emam, and
J. Rosenberg. Preliminary guidelines for empirical
research in software engineering. Software Engineering,
IEEE Transactions on, 28(8):721–734, Aug. 2002.

[17] M. Kobayashi and S. Sakata. Mallows’ cp criterion
and unbiasedness of model selection. Journal of
Econometrics, (3):385–395.

[18] M. Lindvall, R. Tesoriero, and P. Costa. Avoiding
architectural degeneration: An evaluation process for
software architecture. In Proceedings of the 8th
International Symposium on Software Metrics,
METRICS ’02, pages 77–, Washington, DC, USA,
2002. IEEE Computer Society.

[19] Y. Ma, K. He, D. Du, J. Liu, and Y. Yan. A
complexity metrics set for large-scale object-oriented
software systems. In Proceedings of the Sixth IEEE
International Conference on Computer and
Information Technology, CIT ’06, pages 189–,
Washington, DC, USA, 2006. IEEE Computer Society.

[20] Y. Ma, K. He, B. Li, J. Liu, and X.-Y. Zhou. A hybrid
set of complexity metrics for large-scale
object-oriented software systems. J. Comput. Sci.
Technol., 25(6):1184–1201, 2010.

[21] Y. K. Malaiya and J. Denton. Module size distribution
and defect density. In Proceedings of the 11th
International Symposium on Software Reliability
Engineering, ISSRE ’00, pages 62–, Washington, DC,
USA, 2000. IEEE Computer Society.

[22] R. C. Martin. Agile software development: principles,
patterns, and practices. Prentice Hall PTR, 2003.

[23] P. Mohagheghi, R. Conradi, O. M. Killi, and

H. Schwarz. An empirical study of software reuse vs.
defect-density and stability. In Proceedings of the 26th
International Conference on Software Engineering,
ICSE ’04, pages 282–292, Washington, DC, USA,
2004. IEEE Computer Society.

[24] D. L. Moody. Metrics for evaluating the quality of
entity relationship models. In Proceedings of the 17th
International Conference on Conceptual Modeling, ER
’98, pages 211–225, London, UK, UK, 1998.
Springer-Verlag.

[25] S. Patig. A practical guide to testing the
understandability of notations. In Proceedings of the
Fifth Asia-Pacific Conference on Conceptual
Modelling - Volume 79, APCCM ’08, pages 49–58,
Darlinghurst, Australia, Australia, 2008. Australian
Computer Society, Inc.

[26] R Core Team. R: A Language and Environment for
Statistical Computing. R Foundation for Statistical
Computing, 2013.

[27] S. Sarkar, A. C. Kak, and G. M. Rama. Metrics for
measuring the quality of modularization of large-scale
object-oriented software. IEEE Trans. Softw. Eng.,
34(5):700–720, Sept. 2008.

[28] A. Sharma, P. S. Grover, and R. Kumar. Dependency
analysis for component-based software systems.
SIGSOFT Softw. Eng. Notes, 34(4):1–6, July 2009.

[29] G. Wei, X. Zhong-Wei, and X. Ren-Zuo. Metrics of
graph abstraction for component-based software
architecture. In Proceedings of the 2009 WRI World
Congress on Computer Science and Information
Engineering - Volume 07, CSIE ’09, pages 518–522,
Washington, DC, USA, 2009. IEEE Computer Society.

[30] C. Wohlin. Experimentation in Software Engineering:
An Introduction: An Introduction. The Kluwer
International Series in Software Engineering. Kluwer
Academic, 2000.

[31] L. Yu, K. Chen, and S. Ramaswamy.
Multiple-parameter coupling metrics for layered
component-based software. Software Quality Journal,
17(1):5–24, 2009.

[32] T. Zhou, B. Xu, L. Shi, Y. Zhou, and L. Chen.
Measuring package cohesion based on context. In
Proceedings of the IEEE International Workshop on
Semantic Computing and Systems, WSCS ’08, pages
127–132, Washington, DC, USA, 2008. IEEE
Computer Society.

