
Empirical Evaluation of the Understandability of
Architectural Component Diagrams

Srdjan Stevanetic, Muhammad Atif Javed and Uwe Zdun
Software Architecture Research Group

University of Vienna, Austria
srdjan.stevanetic|muhammad.atif.javed|uwe.zdun@univie.ac.at

ABSTRACT
The architecture of a software system plays a crucial role
during evolution and maintenance, as it provides the means
to cope with the inherent system complexity by abstract-
ing from implementation and design details. Architectural
component models represent high level designs and are fre-
quently used as a central view of architectural descriptions of
software systems. Hence, understandability of those models
is crucial as they play a key role in supporting the archi-
tectural understanding of a software system. In this paper
we present the results from a study we carried out to ex-
amine to which extent the software architecture could be
conveyed through architectural component diagrams. The
statistical evaluation of the results shows that metrics such
as the number of components, number of connectors, num-
ber of elements, and number of symbols used in the dia-
grams can significantly decrease architectural understand-
ability when they are above and below a certain, roughly
predicted threshold. Also, our results indicate that architec-
tural understandability is linearly correlated with the per-
ceived precision and general understandability of the dia-
grams.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures;
D.2.8 [Software Engineering]: Metrics

Keywords
Software Architectures, Architectural Component Models,
Software Metrics, Empirical Evaluation.

1. INTRODUCTION
The architecture of a software system plays a crucial role

in the system’s lifecycle since it guides its evolution and
maintenance. That is, the software architecture is a means
to cope with the inherent system complexity and to coor-
dinate different maintenance tasks (e.g., assigning the right

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WICSA ’14, April 07 - 11 2014, Sydney, NSW, Australia
Copyright 2014 ACM 978-1-4503-2523-3/14/04 ...$15.00.

people to the right problems or planning and monitoring the
activities). In order to successfully evolve large-scale sys-
tems it is essential to understand their architecture before
delving into details of the implementation, which is a time
and effort consuming activity. In particular, large amounts
of data (e.g., several millions lines of code) have to be anal-
ysed and abstracted to an architectural level and important
information is often hidden among irrelevant data.
How complex or simple the structure of the system is de-

pends essentially on the way we describe it. Architectural
component and connector models (or component models for
short) are frequently used as a central view of the architec-
tural descriptions of software systems. Component models
used in software architecture represent high-level abstrac-
tions of the software system and concern only the critical
design decisions about the software system [8].
Understandability is a critical aspect of architectural mod-

els because of their focus on abstraction and conveying the
“big picture” of the system. However, so far in the soft-
ware architecture literature we find only a very few studies
that provide empirical evidence regarding the architectural
understandability or the measurement of understandability
(see e.g. [6, 4]). To the best of our knowledge, there is no
existing empirical study on the understandability of archi-
tectural component diagrams (the two previously mentioned
studies [6, 4] examined understandability at the package
level).
In this paper we present the results of a study we carried

out to examine to which extent the software architecture can
be conveyed through architectural component diagrams. In
particular, we conducted an empirical study based on a sur-
vey with participants of the SHARK 2012 workshop1 (33
participants) and an identical replication in our Advanced
Software Engineering master course (35 participants). In the
study the participants were asked to study and rate 16 ar-
chitectural component diagrams from existing software sys-
tems. We explore if it is possible to evaluate the subjects’
ratings of the understandability of the given architectures
using some simple size metrics (below referred to as vari-
ables) we collected from the component diagrams.
This paper is organized as follows: In Section 2, we briefly

discuss the related work. In Section 3 we describe the study
design. Section 4 describes the statistical methods we ap-

1Seventh Workshop on SHAring and Reusing architectural
Knowledge (SHARK 2012). Hosted at Joint 10th Work-
ing Conference on Software Architecture & 6th European
Conference on Software Architecture (WICSA/ECSA 2012),
Helsinki, Finland, August 20, 2012.

plied and the analysis of our data. In Section 5 we discuss
the threats to validity of the study. In Section 6 we conclude
and discuss future directions of our research.

2. RELATED WORK
As we mentioned before, so far in the software architec-

ture literature we find only a very few studies that provide
empirical evidence regarding architectural understandabil-
ity. In particular, one existing study examines the influence
of package coupling on the understandability of the software
systems [6], while another one examines the relationships be-
tween some package-level metrics and package understand-
ability [4].

Model understandability has been studied by a number of
authors in the field of data models. In that context, model
understandability has been defined as the ease with which
the model can be understood [13]. Moody proposes three
metrics for model understandability: the model user rating
of model understandability, the ability of users to interpret
the model correctly, and the model developer rating of model
understandability [13]. In our study we use the model user
rating of model understandability.

Even though so far there are no rigorous empirical studies
of architectural component model understandability, aspects
like fault density and reuse of components have been stud-
ied before. Fenton and Ohlsson have studied the relations
of fault density and component size [5]. Mohagheghi et al.
have studied the comparison between software reuse and de-
fect density and stability [12]. Their study is based on the
historical data on defects, modification rate, and software
size. Malaiya and Denton identify the component partition-
ing and implementation as influencing factors to determine
the “optimal” component size with regard to fault density
[11].

A number of authors proposed ways to improve the un-
derstandability of architectural models through additional
models or documentation artefacts. A major research di-
rection deals with documenting architectural decisions and
architectural knowledge in addition to component models [2,
8, 17]. Another major research direction deals with architec-
tural views [3, 7, 10] which enable different stakeholders to
view the architectures from different perspectives. Both re-
search directions only complement component models with
additional knowledge, but neither of them can fully resolve
understandability issues related to the component models
themselves.

3. EMPIRICAL STUDY DESCRIPTION
For the study design we have followed the experimental

process guidelines proposed by Kitchenham et al. [9] and
Wohlin et al. [16]. The former was primarily used in the
planning phase of the study while the later was used for the
analysis and the interpretation of the results.

3.1 Goals, variables, and hypotheses
The main idea of this study is to explore to which ex-

tent the software systems architecture could be conveyed
through architectural component diagrams. In order to bet-
ter explain the hypothesis and the main goal of the study
we will firstly explain the variables that we used. We can
differentiate two groups of variables. The first group of vari-
ables was collected from the participants of the study, and

it represents the subjects’ rating variables, while the sec-
ond group of variables was collected from the component
diagrams. The first group of variables includes five inde-
pendent variables: demographic information (programming
experience, software design experience, professional expe-
rience, and affiliation) and the subjects’ expertise for the
application domain of the diagrams. It also includes the
three dependent variables: precision/accuracy, general un-
derstandability, and architectural understandability of the
diagrams:

• The precision/accuracy variable measures in how far
the given diagram is precise compared to other poten-
tial illustrations of the same system. For instance, is
it necessary to add some elements (entities) in the dia-
gram to increase the precision with respect to the sys-
tem description, are the names of the architectural en-
tities coherent and informative (for instance like Load-
Balancer and unlike ServerProcess which might be too
plain), are the links between components informative
(e.g., giving clear interface/connector descriptions)?
Also, very abstract model representations with few el-
ements might not carry enough information about the
system.

• The general understandability variable measures the
readability of the diagrams and reasonable use of
graphical elements. For instance, is the meaning
of text and names recognizable and clear to the
reader, are the elements and their connections placed
according to a reasonable law (random placement
distract readers), are the symbols used in the diagram
understandable and clear, is the diagram too complex
(e.g. because of a large number of elements and
symbols that will cause problems with regard to hu-
man perception limits)? All mentioned aspects affect
building a mental model of the architecture of the
given software system. This process is based on the
information present in the diagram and information
from already seen diagrams and previous experiences
(prior knowledge).

• The architectural understandability variable measures
in how far the given diagram supports architectural
(“big picture”) understanding of the system. For ex-
ample, it is related to questions like is the diagram suf-
ficient to describe all relevant architectural concepts of
the system gained from the system description and the
reader’s previous knowledge, or are the system’s ma-
jor services appropriately mapped to the components
working in the collaboration to deliver those services?
When the system consists of some architectural pat-
terns, are they reflected (e.g. conveyed) in an appro-
priate way in the diagram?

As this is the initial study among a series of studies we
plan to conduct in establishing empirically grounded guide-
lines supporting the design of architectural component di-
agrams the idea of this study is to try to evaluate some
general concepts of the software architecture representation
that users face with in the process of diagram comprehen-
sion. On the one hand, the user is faced with a visual repre-
sentation of the diagram trying to build a mental model of
the system. Here, the appropriate use of graphical elements

and diagram readability plays an important role. The se-
mantics of the elements and the text in the diagram are
captured through the users previous knowledge and famil-
iarity with a domain semantics of the system. These factors
are captured by the general understandability variable in our
study. On the other hand, redundant information as well as
not enough information makes the diagrams imprecise (i.e.,
relevant information remains hidden). This might hamper
the comprehension of the diagram. Thus, the precision of
the diagrams, captured by the level of abstraction and the
amount of information contained in the diagrams, also plays
an important role and is captured by the precision variable
in our study. Both variables contribute to the architectural
understandability that aims to capture the “big picture” of
the system referring to all architecturally relevant aspects.
The explained understandability concept used in our study
can be coarsely mapped to the understandability of the soft-
ware architecture explained in the work by Anderson et al.
[1]. The authors indicated two important views for the soft-
ware architecture understanding: semantic view and cogni-
tive view. In the semantic view the importance of diagram
notations that carry the semantics about the system’s ap-
plication domain is emphasised and it is captured by the
general understandability variable in our study. In the cog-
nitive view the appropriate matching between the diagram
representations and the solving tasks is emphasized and it
is captured by the precision variable in our study.

To illustrate the relations between these three variables,
consider a diagram with only a few elements which repre-
sents a very high level of abstraction of the system imple-
mentation. This diagram can be understandable in general
(simple visual representation, clear elements’ semantics) but
imprecise because of the lack of information in the diagram
and its inability to model all relevant details of the system.
On the other hand, the diagram might also be very precise
(informative names and appropriate abstraction level that
capture the system key concerns well) but less understand-
able in general because of its confusing visual representation
and the participant’s lack of knowledge about the diagram’s
domain. Both, the lack of precision in the first example
and the problems regarding general understandability in the
second example, will likely deteriorate architectural under-
standability of the diagrams.

All these dependent variables have been explained to the
participants before the study execution in order to avoid pos-
sible confusions. During the discussion phase of the study
(see Section 3.3) further qualitative data was gathered from
group discussions among the participants to confirm and
help understanding the participants’ answers to the study
questions related to the dependent variables (see Section
3.2.3).

The second group of variables includes four size variables.
They include 3 independent variables number of components
(NCOMP), number of connections between the compo-
nents (NCONN), and number of symbols (NSYM) in the
diagram, and the fourth variable, total number of elements,
summing up number of components and number of connec-
tions (NELEM). For the NCONN variable, regardless
whether the connection between the components is one-way,
two-way, or without a specific direction, we counted either
case as one connection, assuming that the difference between
a one-way or two-way connections does not have a big in-
fluence on the architectural understandability. The NSYM

variable is calculated by taking into account different sym-
bols that can affect the architectural understandability like
different component symbols (e.g., boxes for components or
special symbols such as databases, clients, protocols), sym-
bols for the connections between the components (e.g., dif-
ferent kinds of lines), symbols for interfaces (e.g., required,
provided interfaces), UML stereotypes, and so on.
This second group of variables is used to evaluate the

three dependent variables (precision/accuracy, general un-
derstandability, and architectural understandability). Re-
garding general understandability we expect that high values
of the size variables lead to lower general understandability
because of the higher cognitive load of large models and the
human perception limits. Regarding precision, those higher
values can lead to less precise diagrams because of redun-
dant information presented in the diagrams that makes them
more imprecise. Generally, it is not feasible to capture ev-
erything we want to model in a single model. This model
would be too big and confusing with no clearly delimited
concerns. Diagrams with high/very high numbers of enti-
ties usually do not focus on particular issues or concerns
and/or they mix different issues or concerns. For example,
one diagram might clarify how to decompose and implement
the system (for programmers), and another one might con-
centrate on external services that a platform provides or on
a view for non-technical stakeholders. However, mixing all
three aspects in one diagram is expected to have a negative
effect on our dependent variables. For low levels of the size
variables we expect that they also affect imprecise diagrams
because of their high abstraction level and inability to model
all relevant details of the system. Having these two facts in
mind we expect that middle values of the size variables will
lead to higher levels of architectural understandability than
low or high values.
The dependent variables together with their scale types,

units, and ranges are shown in Figure 1. All these vari-
ables are measured using a ten point Likert-scale [15]. The
independent variables are shown in Figure 2.

Description Scale type Range
Precision of the diagrams Interval Ten point Likert-scale: 1-the lowest,

10-the highest
General understandability of the diagrams Interval Ten point Likert-scale: 1-the lowest,

10-the highest
Architectural understandability of the diagrams Interval Ten point Likert-scale: 1-the lowest,

10-the highest

Figure 1: Dependent variables

Description Scale type Unit Range
Programming experience Ordinal Years 4 categories: 0,1-3,3-7, >7
Software design experience Ordinal Years 4 categories: 0,1-3,3-7, >7
Professional experience Ordinal Years 4 categories: 0,1-3,3-7, >7
Affiliation Nominal - Categories: academia, industry, other
Expertise for the diagram’s
application domain

Interval - Ten point Likert-scale: 1- the lowest,
10 - the highest

Number of components Ratio Component Positive natural numbers including 0
Number of connectors Ratio Connector Positive natural numbers including 0
Number of symbols Ratio Symbol Positive natural numbers including 0

Figure 2: Independent variables

Based on previous considerations we formulate the follow-
ing set of hypotheses:
H01: There is a significant positive correlation between

the general understandability and precision of the diagrams
on one side and the architectural understandability on the
other side.

H02: There is a significant negative correlation between
one or more of the size variables NCOMP , NCONN ,
NELEM , and NSYM and the general understandability
variable.

H03: There is a significant positive correlation between
the subject’s expertise for the diagrams application domain
and the general understandability of the diagrams.

H04: Middle values of the size variables (NCOMP ,
NCONN , NELEM , and NSYM) significantly increase
the architectural understandability compared to low or high
values.

3.2 Study design
To test the hypotheses, we conducted two executions of

the study using exactly the same design. The first execution
took place at the 7th Workshop on SHAring and Reusing
Architectural Knowledge (SHARK 2012). The second exe-
cution took place as part of the Advanced Software Engi-
neering (ASE) master lecture at the University of Vienna in
the Winter Semester 2012.

3.2.1 Subjects
The subjects of the study are the 33 attendees of the

SHARK 2012 workshop and the 35 master students of the
ASE lecture.

3.2.2 Objects
The objects of the study are 16 architectural component

diagrams that vary with respect to 3 factors: size and level of
detail (number of components, connectors, modelling sym-
bols used), diagrams’ application domain (to capture the
domain knowledge of the participants we used diagrams of
different application domains), and diagrams’ representation
(UML diagrams versus informal box-and-line diagrams).
Please note that the domain of the diagrams is more or less

known to the participants where some of them have more,
some less experience with the systems (see the participants
expertise for diagrams’ application domain shown in Figure
5).

3.2.3 Instrumentation
Each subject of our study received one questionnaire in

which a number of variables were measured through the
subject’s ratings. All ratings were given on paper and no
other materials or computer access were provided. On the
first page of the questionnaire, they had to rate their ex-
perience, i.e. the independent variables programming expe-
rience, software design experience, professional experience,
and affiliation. On the following pages of the questionnaire,
the 16 component diagrams described in Section 3.2.2 were
shown, each together with four questions about the indepen-
dent variable expertise for the diagram’s application domain
and the dependent variables:

• How do you rate the expertise for the application do-
main of the system documented here?

• How understandable is the component diagram in gen-
eral?

• How accurate/precise is the component diagram com-
pared to other potential illustrations of the same sys-
tem?

• In how far does this component diagram support ar-
chitectural (i.e., “big picture”) understanding?

The size variables NCOMP , NCONN , and NELEM
are calculated automatically through a tool that we have
developed, while NSYM variable is obtained manually.

3.3 Execution

3.3.1 Preparation
The variables we collected from the diagrams (as ex-

plained before) are shown in Figure 3. The tasks for the
participants consisted of three steps. The total time limit
for the whole study was 2 hours.

• Individual completion of the questionnaire. No time
limit was given for this task. All participants con-
cluded the task in a time between 40 and 60 minutes.

• Group discussion (5-10 people in each group). The
group discussion started when all members of the
group were ready with Task 1. The group discussion
time was for all groups between 40 and 60 minutes.

• Reporting results in front of the other groups. Each
group reported their discussion results in a 5-10 min-
utes presentation.

Metrics Diagrams
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16

NCOMP 13 23 9 4 14 146 5 5 11 10 9 16 22 15 42 9
NCONN 12 16 9 3 4 0 5 5 20 12 11 10 18 13 17 3
NSYM 3 4 4 4 6 1 7 5 3 3 6 10 7 4 11 6
NELEM 25 39 18 7 18 146 10 10 31 22 20 26 40 28 59 12

Figure 3: Variables obtained from the component
diagrams

During the group discussion the groups discussed about
different topics regarding categories of the diagrams, how to
improve the architectural understandability of the diagrams
and so on. Those results will not be presented in this paper
due to space reasons.

3.3.2 Data collection
The data collection was performed as planned in the de-

sign. At least one observer was present in the room during
the whole study execution time to assure that participants
did not use forbidden materials and did not talk to each
other. After execution, all materials were collected before
any of the participants left the room. There were no situa-
tions in which participants behaved unexpectedly.
The relevant data regarding the participants’ demographic

information and experience are shown in Figure 4. Accord-
ing to the experience of the participants we can say that
the participants of the SHARK workshop have substantially
more programming and architecture experience than the
participants of the ASE lecture, but the students also have
a significant level of experience. (A large number of our
master students have a number of years of part-time or even
full-time working experience in industry, which is confirmed
by these numbers.)
Based on the questions for the diagrams we collected

four subject rating variables: expertise for the application
domain of the diagrams, general understandability of
the diagrams, accuracy/precision of the diagrams, and
architectural understandability of the diagrams. Answering

Shark 2012 ASE lecture

0 years
1−3 years
3−7 years
7+ years

Programming experience
0

5
10

15
20

25
30

Shark 2012 ASE lecture

0 years
1−3 years
3−7 years
7+ years

Architecture experience

0
5

10
15

20
25

30

Shark 2012 ASE lecture

Academia
Industry
Other

Affiliation

0
5

10
15

20
25

30

Figure 4: Experience and affiliation of the partici-
pants (Shark 2012 and ASE lecture)

the questions was based on a 10 point Likert scale in
which “1” corresponds to “imprecise/not understandable”
diagrams while “10” corresponds to “very precise/easily
understandable” diagrams. Figure 5 shows the medians of
those variables (medianExp, medianPrec, medianUndGen
and medianUndArch) for both groups of participants.

0
1
2
3
4
5
6
7
8
9

10

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16

medianPrec medianUndGen medianUndArch medianExp

SHARK 2012

0
1
2
3
4
5
6
7
8
9

10

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16

ASE lecture

Figure 5: Medians of the subjects’ rating variables

3.3.3 Validation
We collected all the answers from participants, checking if

they were complete. As all of them were complete and the
participants had at least medium experience in program-
ming and software architecture/design, we consider their
evaluation reliable.

4. ANALYSIS
Because the data obtained from the questionnaire

are ordinal or rank variables we applied the following,
non-parametric statistical tests.

• The Spearman rank correlation test for testing the cor-
relation between two variables

• The Kruskal–Wallis test for comparison of a location
shift between more than two variables

There is not much to be gained from formally combining
the results because both executions produced significant re-

sults. Also, simply combining the data into one big analysis
does not make much sense because there is a significant dif-
ference in medians between some of the observed variables of
the different groups. For statistical analysis of the obtained
data, we used the programming language R [14].

4.1 Testing Hypotheses

4.1.1 Testing the Correlation Between the Variables
In order to test the first 3 hypotheses the Spearman rank

correlation test is used with a level of significance α = 0.05.
It examines whether there is a linear correlation between the
tested variables. Figure 6 shows the Spearman’s coefficients
and the corresponding p-values for both study executions (I:
Shark 2012, II: ASE course).

 NCOMP NCONN NELEM NSYM Study

medianPrec

rho=0.082,
 p=0.763

rho=0.126,
 p=0.642

rho=0.089,
 p=0.742

rho=-0.070,
 p=0.796

I

rho=0.482,
 p=0.059

rho=0.107,
 p=0.6934

rho=0.469,
 p=0.067

rho=-0.366,
 p=0.163

II

medianUndGen

rho=-0.628,
 p=0.009

rho=-0.320,
 p=0.227

rho=-0.656,
 p=0.005

rho=-0.197,
 p=0.464

I

rho=-0.49
, p=0.054

rho=-0.241,
 p=0.368

rho=-0.507,
 p=0.045

rho=-0.145,
 p=0.591

II

medianUndArch

rho=-0.121,
 p=0.656

rho=0.117,
 p=0.669

rho=-0.152,
 p=0.554

rho=-0.085,
 p= 0.755

I

rho=-0.052,
 p=0.847

rho=0.204,
 p=0.448

rho=-0.057,
 p=0.834

rho=-0.108,
 p=0.692

II

 medianExp medianPrec medianUndGen medianUndArch Study

medianExp

-- rho=0.1270,
 p= 0.6394

rho=0.7700,
 p= 0.0005

rho=0.4977,
 p= 0.0498

I

-- rho=0.1848,
 p= 0.4931

rho=0.9121,
 p= 8.62e-07

rho=0.5668,
 p= 0.0220

II

medianPrec

rho=0.1270,
 p= 0.6394

-- rho=0.3373,
 p=0.2014

rho=0.7197,
 p=0.002

I

rho=0.1848,
 p= 0.4931

-- rho=0.0496,
 p=0.8551

rho=0.5749,
 p=0.0198

II

medianUndGen

rho=0.7700,
 p= 0.0005

rho=0.337,
 p=0.201

-- rho=0.6728,
 p=0.0043

I

rho=0.9121,
 p= 8.6e-07

rho=0.049,
 p=0.8551

-- rho=0.5246,
 p=0.037

II

medianUndArch

rho=0.4977,
 p= 0.0498

rho=0.7197,
 p=0.002

rho=0.6728,
 p=0.0043

-- I

rho=0.5668,
 p= 0.0220

rho=0.5749,
 p=0.0198

rho=0.5246,
 p=0.037

-- II

Figure 6: The Spearman correlation coefficients and
corresponding p-values

Regarding the hypothesis H01, there is a significant posi-
tive correlation between the precision and the general under-
standability on one side and the architectural understand-
ability of the diagrams on the other side, for both study
executions. Regarding the hypothesis H02, the number of
elements in the diagram has significant negative correlation
with the general understandability (for both study execu-
tions) as well as the number of components in the diagram
(for the first study execution while for the second execu-
tion the value is just below the threshold). The number of
symbols and the number of connections in the diagrams also
have negative correlation with the general understandability
but it is not significant.
Actually, the total number of elements in the diagram is

the most convenient indicator in terms of the affected cog-
nitive load in the human perception. For our set of dia-
grams the total number of elements is mostly determined
by the number of components in the diagrams (that is the
reason why NCOMP variable also shows significant correla-
tion with the general understandability), while the number
of links varies significantly. For instance, for the diagram
D6 we have 146 components and 0 links, for the diagram D5
we have 14 components and 4 links, for the diagram D15 we
have 42 components and 17 links. Regarding the number of

symbols, the most numbers lie in the range [3, 6] so it hardly
affects any cognitive load.

Regarding the hypothesis H03, there is a significant cor-
relation between the subjects’ expertise for the diagrams
application domain and the general understandability of the
diagrams for both study executions (see Figure 6) which
proves that domain knowledge plays an important role in
the diagrams comprehension.

Based on the results of the Spearman rank correlation test
we accept the hypotheses H01, H02, and H03 of our study.

4.1.2 Comparison of a Location Shift Between More
Than Two Variables

To test the hypothesis H04 we applied the Kruskal-Wallis
test. The first question is which values of the size vari-
ables are low, middle and high. Some intuition might be
that more than 20 or 30 elements in the diagram can affect
human perception limits and high cognitive load as well as
imprecision in terms of mixing different issues with the main
concepts of the system. We first observed the distribution
of the architectural understandability variable with respect
to NCOMP , NCONN , NELEM , and NSYM variables
obtained from the component diagrams in order to roughly
find possible levels (groups) of those variables that can effect
a significant difference in the distribution of architectural
understandability variable with respect to the discussion in
Section 3.1. After roughly distinguishing those groups we
applied the Kruskal-Wallis test and the corresponding post-
hoc tests in order to find if there is a significant difference
between some of those groups. As a post-hoc test we used
the Mann-Whitney test with Holm correction. We distin-
guished 3 groups for the NCOMP , NCONN and NELEM
variables while for the NSYM variable we distinguished 2
groups (in this case we applied Wilcoxon rank-sum test).
The resulting p-values obtained after applying the post-hoc
tests for both executions of the study for the NCOMP ,
NCONN and NELEM variables are shown in Figure 7.

NCOMP
groups

1
(≤5)

2
(>5 & <15)

3
(≥15)

Study

1
(≤5)

_ _ _ I
II

2
(>5 & <15)

3.1e-05
2.9e-05

_ _ I
II

3
(≥15)

0.20
0.85

6.0e-06
8.4e-08

_ I
II

NCONN
groups

1
(≤3)

2
(>3 & ≤17)

3
(>17)

Study

1
(≤3)

_ _ _ I
II

2
(>3 & ≤17)

0.020
0.002

_ _ I
II

3
(>17)

0.640
0.604

0.007
0.014

_ I
II

NELEM
groups

1
(≤11)

2
(>11 & ≤25)

3
(>25)

Study

1
(≤11)

_ _ _ I
II

2
(>11 & ≤25)

8.8e-06
2.3e-06

_ _ I
II

3
(>25)

0.16
0.81

2.8e-07
5.3e-10

_ I
II

Figure 7: Kruskal-Wallis post-hoc test p-values with
respect to the architectural understandability

Regarding the NSYM variable we distinguished two
groups (NSYM≤6 and NSYM>6). The Wilcoxon rank
sum test shows a significant difference for the architectural
understandability variable for both executions of the study
with the p-values 0.001 for SHARK 2012 and 0.033 for the
ASE lecture.

The selected levels (groups) of each variable shown in Fig-
ure 7 and for the NSYM variable are the levels for which we
obtained the most significant difference in a location shift
of the architectural understandability variable. If we in-
crease/decrease the thresholds we obtain less significant dif-
ferences in the distribution. These thresholds between low,
middle and high values should be considered as rough re-
sults and more empirical evaluation is needed to precisely
determine them and to create guidelines based on them.
By drawing boxplot diagrams for the selected levels

(groups) we can see that the architectural understandabil-
ity variable significantly decreases for low/very low and
high/very high values of the NCOMP , NCONN , and
NELEM variables (1st and 3rd group) as well as for high
values of NSYM (NSYM>6). As we discussed in Section
3.1 low/very low values of those variables are not sufficient
to precisely model all architectural concepts of the system,
while high/very high values can lead to a higher cognitive
load as well as potential mixing of different concerns in
the diagram and therefore deteriorate the architectural
understandability. This can also be confirmed by looking
at the distribution of the general understandability and
precision variables. The general understandability variable
significantly decreases for high values of all four variables
(for both study executions) leading to higher cognitive
load. The precision variable also significantly decreases for
low/very low and high/very high values of the size variables
(for both study executions).
If we take a closer look at the diagrams, we can observe

that the diagrams with low number of elements (D4, D7,
D8) are very abstract and as a result imprecise. Also, dia-
grams with high number of elements (D6, D13, D14) suffer
from a lot of visual information and imprecision. For in-
stance, Diagram D6 is very detailed and mixes a lot of views:
UI application high level view (UI Framework component),
APIs and lower level functionalities such as codecs (Mul-
timedia Framework component), lower level system config-
uration data and tools (Core component). Diagram D13
which models the Web service middleware shows detailed
message content paths in the system through all the lay-
ers rather than showing the main interactions between the
client, server and Apache Axis processing framework. It
also consists two cases of interactions, client- and server-side
of Apache Axis as two diagrams which increases the visual
complexity of the diagram. Diagram D14 shows a number
of main components plus components that deal with lower
level interactions like rendering APIs and network context
processing. Mixing different concerns in the diagrams was
an issue reported from the participants in the discussion part
of the study. As shown in Figure 5, all three systems have
a low precision and general understandability.
Based on the results of the Kruskal-Wallis test we accept

hypothesis H04 of our study.

5. VALIDITY EVALUATION
In this section we discuss the various threats to validity

and how we tried to minimize them:

Conclusion validity.
The conclusion validity defines the extent to which the

conclusion is statistically valid. While the number of partic-
ipants in the study is quite fair the number of diagrams can
be increased in replications of the study in order to be able

to generalize the results. We plan to add more diagrams as
well as to engage more experts who work in industry in our
future work.

Another aspect of the conclusion validity might be con-
sidered for the hypotheses H02 and H03. Actually, for the
hypothesis H02, decreasing of the general understandability
variable due to the high number of elements in the diagrams
can be also affected by the other 2 factors in the diagrams,
diagrams’ representation and diagrams’ application domain
(see Section 3.2.2). In order to reduce the threat to the con-
clusion validity affected by these two factors we performed
the correlation separately for both diagram representations
(UML and box-and-line) and in both cases we considered
just the diagrams where the subject’s expertise for the di-
agrams’ application domain is above the adopted threshold
(6 in this case). The correlations were significant for all
cases. Regarding the hypothesis H03 we did almost the
same procedure. We pursued the correlation separately for
both diagram representations and in both cases we identified
2 groups of the diagrams with respect to the number of ele-
ments in the diagrams (in order to keep the size factor more-
less constant). For the UML diagrams we considered sep-
arately the diagrams with [7,12] and [22,31] elements while
for the box-and-line diagrams the two groups were [18,26]
and [39,146]. In all cases we obtained the significant corre-
lation. Therefore, our conclusion regarding the hypotheses
H02 and H03 is considered as valid. By taking into account
that the architectural understandability variable is directly
correlated with the precision and the general understand-
ability variables, as well as the previously explained threats
to the validity of the hypotheses H02 and H03, the threat
to the conclusion validity of the hypothesis H04 affected by
the other factors in the diagrams is minimized.

Construct validity.
The construct validity is the degree to which the collected

variables are accurately measured by their appropriated in-
struments. Our dependent variables and the expertise for
the diagrams’ application domain are measured as linguis-
tic levels using subjects’ rating. As the subjects involved in
this study have at least medium experience in the area of
programming and software design/architecture we suppose
their ratings could be considered valid. Size variables like
NCOMP , NCONN , and NELEM are collected automat-
ically, using the tool, while NSYM variable is calculated
manually for each diagram. There is a low threat to valid-
ity that our interpretations for NSYM (which symbols to
count) and NCONN (counting uni- and bi-directional links
the same way) are not valid.

Internal validity.
The internal validity is the degree to which conclusions

can be drawn about cause-effect of independent variables on
the dependent variables. We dealt with the following issues:

• Differences among subjects. The subjects ex-
perience has approximately the same degree with
regard to programming and software architecture
design/modelling since most of them have at least
medium experience in those areas.

• Accuracy of subject responses. The general
and architectural understandability as well as the
precision of the diagrams are rated by each subject.

The responses are then subjective which represents
a threat to their accuracy. But the subjects have at
least medium experience in architectural design and
modelling, so we consider their responses valid. We
plan to consider other understandability concepts
(e.g., ability of users to interpret the model correctly)
in the future studies.

From the subjects’ responses it is also possible to ex-
tract some information showing that subjects did not
simply tied the concepts of precision and general un-
derstandability even though we explained it in details
before the study executions. Actually, there is a sig-
nificant difference in precision between low and middle
values of the size variables (obtained using the Kruskal-
Wallis test) while the difference in the general under-
standability is negligible. It is also proved by signif-
icant negative linear correlation between the general
understandability and the number of elements in the
diagrams and its positive correlation with the exper-
tise for the diagrams’ application domain, while it is
not the case with the precision. Architectural under-
standability deteriorates when either precision or gen-
eral understandability deteriorate.

• Other important factors. Influence among subjects
could not really be controlled. However, the study was
carried out under supervision of a human observer. As
know interactions between the participants have been
observed, we assume that this potential threat did not
affect the validity of the study.

External validity.
The external validity is the degree to which the results

of the study can be generalized to the broader population
under study. The following facts are identified:

• Architectural diagrams used. For the purpose of
the study we used the architectural diagrams of differ-
ent open source and industrial systems. However, even
though we tried to cover different types of diagrams,
our selection might be too limited or biased into a cer-
tain direction (e.g., not enough industrial systems, too
much focus on UML, etc.). Again, we will address this
threat to validity in our future work by replicating the
study with other sets of diagrams.

• Subjects. In order to solve the difficulties about
obtaining well-qualified subjects we used the attendees
of the SHARK 2012 workshop and master students
at Faculty of Computer Science of the University of
Vienna. While it is possible to show that both groups
have substantial experience (and also industrial back-
grounds), we are aware that more empirical studies
with professionals and seasoned software architects
must be carried out.

6. CONCLUSIONS AND FUTURE WORK
In this paper we presented the results obtained from a

study we carried out to examine to which extent the soft-
ware architecture could be conveyed through architectural
component diagrams, especially in relation to the precision,
general understandability and architectural understandabil-
ity of the diagrams. From the analysis of the data we can
draw the following conclusions:

• From the correlation tests we can conclude that there
is a strong linear dependency between the precision
and the general understandability of the diagrams on
the one hand and the architectural understandability
on the other hand. That is, we can conclude that any
measures that increase the general understandability
and precision of architectural models directly help to
improve the architectural understandability.

• The expertise for the diagrams’ application domain
shows a strong positive correlation with the general
understandability variable. It indicates that measures
to increase the domain knowledge are really helpful
to increase the understanding of component models in
general.

• There is a significant negative correlation between the
number of elements and general understandability.
This indicates that from a certain size on (in terms of
number of elements), component models get hard to
understand in general because of the high cognitive
load and human perception limits.

• Our study also indicates that middle values of the num-
ber of components, links, elements, and symbols in the
diagram significantly increase the architectural under-
standability compared to high or low values. The dia-
grams with very high numbers of elements usually suf-
fer from mixing of several concerns which might lead
to ambiguity and less precision. Very low numbers of
components, links, and elements are not sufficient to
model all relevant concerns of the architecture. These
dependencies might also deserve to be investigated fur-
ther, especially it would be interesting to indicate the
thresholds of maximum (minimum) numbers of com-
ponents, links, elements, and symbols that should be
depicted in one diagram more precisely. So far, we
consider the thresholds we found as rough indicators.

Even though this study was conducted using subjective
ratings and has some other flaws indicated in the previous
section, applied statistical tests and considerations are ap-
propriate and show its feasibility. In our future work we
will consider other understandability concepts (e.g., ability
of users to interpret the model correctly) as well as other
more complex metrics through new experiments that will
help us in establishing empirically grounded guidelines sup-
porting the design of architectural component diagrams and
their evolution and maintenance in correspondence with the
implemented software system.

7. ACKNOWLEDGEMENTS
This work is supported by the Austrian Science Fund

(FWF), under project P24345-N23.

8. REFERENCES
[1] S. Anderson and C. Gurr. Understanding software

architecture: A semantic and cognitive approach.
WICSA1, 1999.

[2] M. A. Babar and P. Lago. Editorial: Design decisions
and design rationale in software architecture. J. Syst.
Softw., 82(8):1195–1197, Aug. 2009.

[3] P. Clements, D. Garlan, L. Bass, J. Stafford, R. Nord,
J. Ivers, and R. Little. Documenting Software
Architectures: Views and Beyond. Pearson Education,
2002.

[4] M. O. Elish. Exploring the relationships between
design metrics and package understandability: A case
study. In ICPC, pages 144–147. IEEE Computer
Society, 2010.

[5] N. E. Fenton and N. Ohlsson. Quantitative analysis of
faults and failures in a complex software system. IEEE
Trans. Softw. Eng., 26(8):797–814, Aug. 2000.

[6] V. Gupta and J. K. Chhabra. Package coupling
measurement in object-oriented software. J. Comput.
Sci. Technol., 24(2):273–283, Mar. 2009.

[7] C. Hofmeister, R. Nord, and D. Soni. Applied Software
Architecture. Addison-Wesley Professional, 2000.

[8] A. Jansen and J. Bosch. Software architecture as a set
of architectural design decisions. In Proceedings of the
5th Working IEEE/IFIP Conference on Software
Architecture, WICSA ’05, pages 109–120, Washington,
DC, USA, 2005. IEEE Computer Society.

[9] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard,
P. W. Jones, D. C. Hoaglin, K. El Emam, and
J. Rosenberg. Preliminary guidelines for empirical
research in software engineering. Software Engineering,
IEEE Transactions on, 28(8):721–734, Aug. 2002.

[10] P. Kruchten. The 4+1 view model of architecture.
IEEE Softw., 12(6):42–50, Nov. 1995.

[11] Y. K. Malaiya and J. Denton. Module size distribution
and defect density. In Proceedings of the 11th
International Symposium on Software Reliability
Engineering, ISSRE ’00, pages 62–, Washington, DC,
USA, 2000. IEEE Computer Society.

[12] P. Mohagheghi, R. Conradi, O. M. Killi, and
H. Schwarz. An empirical study of software reuse vs.
defect-density and stability. In Proceedings of the 26th
International Conference on Software Engineering,
ICSE ’04, pages 282–292, Washington, DC, USA,
2004. IEEE Computer Society.

[13] D. L. Moody. Metrics for evaluating the quality of
entity relationship models. In Proceedings of the 17th
International Conference on Conceptual Modeling, ER
’98, pages 211–225, London, UK, UK, 1998.
Springer-Verlag.

[14] R Core Team. R: A Language and Environment for
Statistical Computing. R Foundation for Statistical
Computing, 2013.

[15] W. Trochim and J. P. Donnelly. The Research
Methods Knowledge Base. Atomic Dog, Dec. 2006.

[16] C. Wohlin. Experimentation in Software Engineering:
An Introduction: An Introduction. The Kluwer
International Series in Software Engineering. Kluwer
Academic, 2000.

[17] O. Zimmermann, T. Gschwind, J. Küster,
F. Leymann, and N. Schuster. Reusable architectural
decision models for enterprise application
development. In Proceedings of the Quality of software
architectures 3rd international conference on Software
architectures, components, and applications, QoSA’07,
pages 15–32, Berlin, Heidelberg, 2007. Springer-Verlag.

