
Towards Flexibility in Transactional Service Compositions

Stefanie Rinderle-Ma
University of Vienna

Faculty of Computer Science
stefanie.rinderle-ma@univie.ac.at

Paul Grefen
Eindhoven University of Technology

School of Industrial Engineering
P.W.P.J.Grefen@tue.nl

Abstract—Complex services can be described by service
compositions and executed by service orchestrations. Changing
service compositions is a frequent requirement in practical set-
tings. Changing the composition must not result in a violation of
its functional or non-functional properties. Whereas functional
aspects such as soundness have been studied quite well, non-
functional properties such as transactionality have been paid
little attention to in the context of change. However, in practical
applications it is impossible to separate the aspects of transac-
tionality and change. In this paper, we investigate the effects
of applying changes in transactional service compositions. For
this we analyze the combination of concepts from the worlds of
transactional service compositions and process change. Based
on the analysis results, we derive algorithms to deal with change
in transactional service compositions. We discuss the algorithm
design and their practical applicability.

Keywords-Web services QoS; Change in Web service com-
position, transactional Web service compositions

I. INTRODUCTION

The system-based support of complex services as imple-
mentation of their primary business processes constitutes
a promising option for enterprises. The use of complex
services requires the application of service composition at
design time and service orchestration at execution time. An
example from the manufacturing domain is the production of
car seats consisting of several steps [1]. Another application
domain is logistics [2]. However, the implementation of
service compositions must not come at the price of rigidity,
i.e., the limitation that the underlying process logic is hard-
wired and cannot be changed without incurring high costs.

Changes may be caused by reasons external to an organi-
zation, such as changing business market conditions or new
regulations. Changes may also be caused by internal reasons
like business process optimizations. Flexibility and change
in business processes have been well researched and several
mature approaches and even commercial tools exist [3].

It is essential that changes in service compositions are
applied in a controlled manner, i.e., without causing any
problems in the subsequent composition execution. Existing
approaches have focused on functional properties of the
composition so far. More precisely, criteria for preserving
structural and behavorial soundness after applying a change
to an composition were introduced along with methods on
how to ensure these criteria.

In turn, non-functional properties have played a minor role
in the context of composition change so far, even though the
importance of considering composition change together with
non-functional requirements is acknowledged in literature
[3]. In this paper, we focus on transactionality as a crucial
non-functional requirement. It has been addressed by a body
of work on transactional workflows [4], [5]. Astonishingly, a
combined consideration of transactional service composition
and change seems to be entirely missing.

In practical applications, however, it is impossible to
separate the aspects of transactionality and change, i.e., a
change can become necessary on a transactional service
composition. Consider the example depicted in Fig. 1. A ser-
vice composition described by schema S1 consists of three
services GetData, SendOffer, and ReceiveNotification that
are sequentially ordered. Transactionality of SendOffer and
ReceiveNotification is handled via a compensation sphere
including SendOffer and ReceiveNotification. In case of an
execution failure during ReceiveNotification, e.g., a timeout
for a not-received incoming message, both SendOffer and
ReceiveNotification are compensated by executing a com-
pensation service CancelOffer.

Get
Data

Send
GiftCard

Send
Offer

Service Composition Schema S1⊕ insertService(S1,SendGiftCard,B,C)

Receive
Notification

Get
Data

Receive
Notification

Send
Offer

Service Composition Schema S1 Activity

Start/End

Compensation event
triggering sub
processes/timer event

Sub Process

Cancel Offer

Figure 1. Service Composition and Change: Example (BPMN)

Assume now that due to a new marketing strategy, a gift
card is to be sent directly after sending the offer. This is
realized by inserting service SendGiftCard between services
SendOffer and ReceiveNotification. The question now is
how to handle the newly inserted service SendGiftCard
with respect to the transactional behavior. Different options
are conceivable, e.g., SendGiftCard becomes part of the
compensation sphere or it stays outside the compensation
sphere, i.e., marketing strategy says to not cancel gift cards.
In any case, the change necessitates a reflection on the
transactional behavior of the underlying service composition.

rinderas8
Schreibmaschinentext
The final version is published: (c) IEEE
S. Rinderle-Ma, P. Grefen: Towards Flexibility in Transactional Service Compositions,
21th IEEE International Conference on Web Services (2014)

To approach the challenge of change in transactional
service compositions, we address the following questions:
(1) Does a systematic classification for transactional service
compositions exist that can be a basis for our work?
(2) How can we bring together the two concepts worlds of
composition change and transactionality?
(3) Which formal criteria are required to control change in
transactional compositions?
(4) What practical implications do arise?

Our approach allows for incremental checking of the
effects of changes on transactional consistency.

To answer these research questions, this paper is struc-
tured as follows. Section II outlines the research method-
ology based on a mapping between the concepts worlds
of transactional compositions and composition change. For
the latter a study on typical change patterns exists [3]. For
transactional compositions such a study is missing, hence
we conduct a literature review. Its findings are analyzed
(cf. Sect. III) resulting in a mapping of transaction and
change concept worlds. The mapping provides the basis
for algorithms which guide the process of change with re-
spect that safeguard transactional properties of compositions
when they are changed. The feasibility of the algorithms is
evaluated by a discussion of the algorithm design and their
applicability to practical scenarios in Sect. IV. Section V
concludes this paper.

II. METHODOLOGY

As motivated by the example in Fig. 1, change and
transactionality in service compositions cannot be handled
in a separated manner. To analyze how both concept worlds,
i.e., change and transactions, fit together in a systematic way,
the basic idea is to map these concept worlds. We build
the cross-product between transaction concepts and change
concepts for a theoretical analysis. In detail, we first reduce
the cross-product based on selection criteria for feasible
combinations. These combinations lead to algorithms to deal
with change in transactional service compositions. This way,
proof of completeness is implied by construction (evaluation
by construction). The applicability of the algorithms is
discussed by means of real-world examples.

Which change and transaction concepts are relevant for
service compositions? Studying literature, we found a col-
lection of 14 typical change patterns that are relevant in the
context of service compositions [3]. For the transactional
concepts we did not find such a survey. Hence in the
following section, we first analyze literature and define a
concept world for transactional service compositions.

A. Transactional Concepts in Service Compositions

Grefen and Vonk [4] provide a structured analysis of how
workflow and transactions can be combined. However, to the
best of our knowledge, a structured catalog of transactional
concepts in the context of service compositions is missing.

Hence, we first analyze literature by collecting transactional
properties in the areas of workflows, processes, and service
compositions. These properties are then aggregated into
transaction concepts such that they can be analyzed together
with the change patterns.

We have conducted a literature search on google scholar
using keywords transactional workflow, transactional pro-
cess, transactional properties, transactional pattern, and
transaction model. In addition, we have included papers from
key projects in the area: Exotica, Meteor, WIDE, WAMO,
ConTracts, and SARN. Finally, we have included papers
found by backward chaining through reference lists. After
filtering, this literature search has resulted in a collection of
66 publications1.

The collection of publications has been analyzed for state-
ments about transactional concepts. A transactional concept
has been included into the result if it cannot be expressed
by a combination of other concepts. An example for the
latter would be the concepts Service and Sub-service for the
granularity property, as they can be expressed by a combina-
tion of the concepts Intra-level for the structure property and
Sphere for the granularity property. The structure concepts
Intra-level and Inter-level also imply structural concepts such
as flat (Intra-level) or hierarchical (Inter-level).

Further on, recovery plays a key role in many approaches
as an operational mechanism to guarantee properties such as
atomicity, isolation and consistency. Recovery mechanisms
are also mentioned as transactional service properties /
transactional patterns in the context of Web Services [6],
[7]. Hence, the result of the literature search also includes
selected recovery measures. Further recovery mechanisms
such as consistent completion [7] can be expressed as
combination of these measures.

Figure 2 illustrates the results of the literature analysis and
puts concepts and recovery measures (as a basis for recovery
mechanisms) into a relation. Specifically, transactional prop-
erties atomicity and isolation occur often in a either strict
or relaxed manner resulting in combined properties relaxed
atomicity, relaxed isolation, strict atomicity, and strict isola-
tion. These concepts can be seen as sub-concepts of concepts
atomicity/isolation and strict/relaxed as they inherit from
these concepts, but extend them based on the combination.
Recovery measures retriable and compensatable can then be
seen as sub concepts of strict atomicity and relaxed atomicity
as well as measures Two-phase locked and Openly locked
as sub concepts of strict and relaxed isolation respectively.
For reasons of clarity we omitted more specialized measures
such as pivot for relaxed atomicity. However, they can be
easily classified into the transaction concept world.

Another transaction concept mentioned in several works
is the concept of spheres. Spheres enable the definition of

1The list of publications is available at http://is.ieis.tue.nl/staff/pgrefen/
research/publications/pdf/ICWS2014 RG LitList.pdf

transactional properties for a set of services. Assume, for
example, that a set of services is included in a sphere and the
transactional measure for the sphere is set to compensatable.
This means that if the execution of one of the services within
the sphere fails, all services within the sphere have to be
compensated. On top of the concept of sphere, regions of
transactional properties can be used within service compo-
sitions. The concept of region is less strict than the concept
of sphere. It allows for referring to parts of the composition
that possess the same or similar transactional pattern.

Atomic Consistent Isolated Durable Strict Relaxed

Strictly
Atomic

Relaxed
Atomic

Strictly
Isolated

Relaxed
Isolated

CompensatableRetriable

Sphere Region Inter‐
Level

Intra‐
Level

Properties Granularity Structure

inherits

Measures

Two‐Phase Locked Openly Locked

Relaxation Degree (RelD)

Figure 2. Transaction Concept World

Definition 1 provides a formalization of transaction con-
cepts as basis for later considerations.

Definition 1 (Transaction Concept): A transaction con-
cept builds upon the following dimensions:
• Properties :={Atomicity, Isolation, Consistency, Dura-

bility }
• RelD := {Strict, Relaxed}
• Granularity := {Sphere, Region}
• Structure := {Intra-Level, Inter-Level}

A transaction concept TC is defined as
TC ∈ Properties × RelD × Granularity × Structure

Examples for transaction concepts are (Atomic, Relaxed,
Sphere, Intra) and (Isolation, Strict, Region, Intra-level).

The concepts discussed above have their origins in the
database domain and the domain of transactional workflows
[8]. They have been mapped to the service-oriented domain,
most specifically the WS Transaction standard [8]. This
standard defines abstract transaction models that inherit from
the concepts in Fig. 2: the Atomic Transaction model inherits
from Strictly Atomic and Strictly Isolated, the Business
Activity model inherits from Relaxed Atomic and Relaxed
Isolated; both inherit from the Sphere granularity concept
to denote transactional scope. The notion of service com-
position is reflected in our Intra-level structure concept, the
notion of service nesting in our Inter-level structure concept.

B. Change Concepts in Service Compositions

Change and flexibility in service composition has been
studied for more than a decade now. In [3], 14 well-
defined change patterns for business processes are described.
We transfer the concepts activity and process fragment as
used in [3] to the corresponding concepts of Service and

ComposedService. We understand a composed service as a
process-oriented composition of services in a, for example,
sequential, parallel, or alternative way. This corresponds to
the concept of process fragment. Note that the considered
change patterns operate on control flow only, i.e., data
flow changes are not considered. Definition 2 provides a
formalization of change concepts in service compositions.

Definition 2 (Change Concept): Change concepts are
classified along the dimensions Change Type and Change
Granularity with the following characteristics [3]:
• ChangeType := {Insert, Delete, Order-changing, Copy,

Hierarchy-changing}
• Change Granularity :={Service, ComposedService}

A change concept CC is defined as com-
bination of characteristics of dimensions
ChangeType and ChangeGranularity. Formally:

CC ∈ ChangeType × ChangeGranularity
An Insert operation adds a new service (Service) or

composed service (ComposedService) into a composition
model. Typical options here include serial insert between two
subsequent services or parallel insert to an existing service or
composed services. A Delete operation removes an service
or composed service from the composition model. Order-
changing operations refer to moving services or composed
services from their old to a new position. Furthermore,
serially ordered services or composed services within a
composition model can be parallelized or vice versa. Finally,
two services or composed services might be swapped.

Hierarchy-changing operations inline or extract composed
services within a composition model, i.e., either a composed
service is lifted up one hierarchy level in the composition
model or a composed service is lifted down one hierarchy
level. The Copy operation duplicates an existing service or
composed service by inserting it at another position within
the composition model. Examples for change concepts are
(Insert, Service) and (Copy, ComposedService).

C. Analysis of Cross-Product between Transactional and
Change Concepts

After summarizing the transactional and change concept
worlds, the next step of the methodology is to map the
concept worlds onto each other. More specifically, a full
mapping between all concepts builds the basis for later con-
siderations. For this, we determine the number of concepts
for each of the worlds. Both worlds are constructed by differ-
ent dimensions. Basically, the number of concepts unfolds by
multiplication of characteristics of the dimensions. In detail:
• Change concepts: we encounter 4 characteristics of

dimension change type (i.e., Insert, Delete, Order-
changing, Copy) that are to be multiplied by the
2 characteristics of dimension change granularity
(i.e., Service and ComposedService). Change operation
Hierarchy-changing only operates on composed ser-

vices such that the number of change concepts turns
out as 8 + 1 = 9.

• Transactional concepts: along the 4 dimensions Proper-
ties, Granularity, Structure with 4, 2, 2, and 2 charac-
teristics, respectively, the number of change concepts
turns out as 4 ∗ 2 ∗ 2 ∗ 2 = 32

In order to reduce the full mapping of 288 combinations,
we apply the following selection criteria:

1) If a concept can be expressed by a combination of
other concepts, we remove it from the mapping. This
results in a removal of change types Order-changing
and Copy since they can be expressed by concepts
Insert and Delete.

2) Regarding change type hierarchy-changing the only
meaningful matching partner at the transactional con-
cept side is Inter-level. We discuss this assumption
further in Sect. III-C.

3) We omit consideration of concepts durable and con-
sistent since we assume that all spheres and regions
(Intra-level/Inter-level) shall deliver consistent and
durable output.

4) We assume that relaxation usually holds likewise for
atomicity and isolation as the case for Sagas [9].

The reduction results in 20 mappings. In Section III, the
reduced mapping is elaborated into algorithms that prevent
violations of transactionality of service compositions when
applying change operations.

III. STRATEGIES FOR PREVENTING TRANSACTIONALITY
VIOLATIONS WHEN APPLYING CHANGES

In this section, we investigate the 20 combinations of
transactional and change concepts for distilling strategies
to safeguard transactional properties when changing ser-
vice compositions. In order to formulate the algorithms for
change in service compositions properly, we first introduce
necessary notions in Sect. III-A and provide the algorithms
in Sect. III-B.

A. Basic Notions: Transactionality, Sphere, Region

We start with definitions for service composition models:
Definition 3 (Service Compositions): A service composi-

tion model is defined as P:=(N, E) with N denotes the set
of services and composed services and E denotes the set of
control edges setting our the execution order between the
services.

How can we transform the mapping between change and
transactional concepts into algorithms? At first, a notion of
transactionality is required. For this, we define transaction-
ality as a projection of a selection of the enumeration of
transactional concepts as in Def. 1. Definition 4 puts this
into a formal frame.

Definition 4 (Atomicity and Isolation Level): Atomicity
level AL and isolation level IL can be defined as cross-

product between the associated transactional concept
dimensions Properties and RelD:

• AL:= {Not Atomic, Relaxed Atomic, Strictly Atomic}
• IL:= {Not Isolated, Relaxed Isolated, Strictly Isolated}
Atomicity and isolation levels can each be ordered:

• Not Atomic ≺ Relaxed Atomic ≺ Strictly Atomic
• Not Isolated ≺ Relaxed Isolated ≺ Strictly Isolated

where a ≺ b means that a measure a is ensuring a less strict
transactional property than b.

In the following, we apply the atomicity and isolation
levels in order to define a transactionality notion for ser-
vices, spheres, and regions. This covers the change concept
dimension change granularity and transaction granularity.

Definition 5 (Transactionality of Services): Let P:=(N,
E) be a service composition model. The transactionality of
a service n ∈ N is defined as: trans : N 7→ AL× IL

• trans(n1) < trans(n2) if n1.AL ≺ n2.AL ∧ n1.IL ≺ n2.IL
• trans(n1) > trans(n2) if n2.AL ≺ n1.AL ∧ n2.IL ≺ n1.IL
• trans(n1) = trans(n2) if n1.AL = n2.AL ∧ n1.IL = n2.IL

Due to the assumption that both levels are either relaxed,
strict, or not transactional, this is the full set of relations
between the transactionality of two services.

As shown in our motivating example (cf. Fig. 1), services
can be combined into spheres to express a transactional
measure that refers to a set of services.

Definition 6 (Sphere): Let P:=(N, E) be a service compo-
sition model. Then a sphere S on P is defined as follows:
S := (NS , transS) with NS ⊆ N and transS ∈ AL×IL
with ∀ n ∈ NS : trans(n) ≥ transS .

We do allow single-service spheres. We assume that
spheres are exclusive, i.e., they do not overlap. In particular,
spheres define transactional patterns.

As an additional concept to spheres, we introduce the
notion of region within a service composition. A region
groups a set of services within a composition with respect
to their transactionality. With respect to the composition,
regions can define transactional patterns. For contracting
processes, for example, a two-phase transactional behavior
is typical. Over the composition, the following transactional
patterns (spheres) occur in sequence: 1) non-transactional
sphere (information phase), 2) relaxed-transactional sphere
(negotiation phase), 3) single-service strict-sphere (contract-
ing phase), 4) relaxed-transactional-sphere (service phase).
In a purchase order composition, for example, the trans-
actionality of the involved services at the beginning of
the composition is rather low, e.g., when searching for
adequate offers no specific measure is necessary. Then the
transactionality increases when customer and provider start
to get into some contractual status by exchanging offers,
notifications, invoices, and even payments. For services re-
flecting such kind of business logic, a higher transactionality
becomes necessary, e.g., by compensating payments in case

of failures. At the end of the composition execution, the
transactionality tends to go down again.

A region R forms a partitioning of a service composition
P and is assigned a transactionality transR ∈ AL × IL.
Spheres form a partitioning of each region. We do allow
single-sphere regions. For all definitions we assume that
each element is at least as transactional as the element it
is contained in.

B. Transactionality of Service Compositions under Change

In the previous section, definitions have been introduced
that cover the concept mapping between change and trans-
actionality. In the following, algorithms are presented for
systematic perusal of the effects on transactional properties
within a service composition after the application of a
change. The algorithms are organized along the change
type and transaction granularity. In the tables we use line
numbering to explain and illustrate the individual steps.

Table I starts with checking insertion of a service n into a
composition P at position pos. A first distinction is whether
n is inserted into a sphere S or a region R. If neither
is the case, no specific action regarding transactionality is
necessary. In case n is inserted into a sphere, it is checked
whether the transactionality of n is greater or equal the
transactionality level of the sphere (1). If yes, n can become
part of the sphere. If n is, for example, retriable and sphere S
is compensatable, n can still be inserted and retried in case of
a failure. If n becomes part of S and transactionality of S is
relaxed, compensation specification of n has to be updated.
If transactionality of n is lower than transactionality of S
(2), n cannot immediately become part of S. The following
checks follow the principle that we want n to become part
of S and that we want to maintain the transactionality of
S. Hence, we check whether transactionality of n could
be lifted up to transS (3) or n could be replaced by
another service n′ with same functional properties and a
minimum transactionality of transS (4). In both cases, n
or n′ respectively can become part of S accompanied with
updates of compensation specification of S (if existing).

If lifting up trans(n) to transS or replacing n
is not possible, it has to be checked whether S can
be split by n into two spheres S1 and S2 (5). For
the example in Fig. 1, we could argue that Send
Gift Card splits sphere S=({Send Offer, Receive
Notification}, (relaxed atomic, relaxed isolated)) into
two spheres.

Note that for a sphere S its transactionality is defined
by the lower bound of the transactionalities of all services
contained with the sphere. Hence, if the transactionality of
S can be decreased to the transactionality of newly inserted
service n, then n can become part of S (by updating S
and possible compensation specifications accordingly) (6).
Otherwise, n is inserted and S and n have to marked
as critical, i.e., in case of a failure during runtime, the

information on S and n can be taken into consideration
for recovery. We follow the premise that transactionality
“problems” do not prevent changes from being executed.

When inserting a service n into a region R, again it is
checked whether transactionality of n is greater or equal
the transactionality of R (8). Then, n can become part of
R. If trans(n) is lower than transR, the business semantics
has to be checked. Assume, for example, that in a region
with strict transactionality a service with relaxed or none
transactionality is inserted. Strict transactionality is required
for business-critical service. It can be desired that within
such business-critical services, e.g., a service is inserted that
collects, customers’ feedback and hence has to be neither
compensated nor handled in a strictly isolated manner.

When deleting a service from a sphere S, it can be
checked whether n is the only service in S with min-
imal transactionality. As the transactionality of a sphere
is constituted by the lower bound of the transactionalities
of all services in S, deleting n leads to an increase of
the transactionality of S to the minimum transactionality
over the services remaining in S (9). Assume, for ex-
ample, sphere S = ({receive request, offer car,
book hotel}, (relaxed atomic, relaxed isolated)) with
trans(remove car offer) = (relaxed atomic, relaxed
isolated) and trans(receive request) = trans(book
hotel) = (strictly atomic, strictly isolated). If now service
offer car is deleted as is not cost-effective anymore,
the service with minimal transactionality is deleted from S
and the transactionality of S can be increased to (strictly
atomic, strictly isolated). A region consists of spheres.
Hence, deleting a service from a region also means to
delete a service from a sphere. In more circumstances the
transactional effects of the deletion of a service is handled
at a sphere level and not at the region level.

Table II summarizes the algorithms for insertion into
spheres and regions at granularity composed service. Note
that changes at granularity service are specializations of
changes at granularity composed service since we can see
a single service as a composed service consisting of a
single service. Hence, we only provide the algorithm for
insertion of composed service here and omit the algorithm
for deletion. How the latter works can be seen from the
deletion of single services.

When inserting composed service CS, the same con-
siderations as for inserting services hold, but for each of
the services contained within CS. Hence, we distinguish
between the following cases: (10) for all services of CS,
their transactionality is greater or equal the transactionality
of the sphere. Then CS can become part of sphere S.
(10) summarizes those cases, for which a subset of services
within CS exists for which their transactionality is lower
than the transactionality of sphere S. In this case, it depends
whether the services of CS can be either lifted up to trans-
actionality of sphere S with respect to their transactionality

InsertService(P, n, pos) inserts service n into composition P = (N,E) at position pos = (pre, post)
resulting in composition schema P ′ := (N ′, E′) with N ′ = N ∪ {n}, E′ = (E ∪ {(pre, n), (n, post)}) \ {(pre, post)}
Sphere S = (NS , transS) switch

with NS ⊆ N (1) trans(n) ≥ transS =⇒ n becomes part of S,
i.e., update S to S’:=(NS ∪{n}, transS) ∧

if transS = (relaxed atomic, relaxed isolated) =⇒ adapt compensation specification of S
(2) trans(n) < transS :
switch
(3) trans(n) can be lifted up to transS =⇒ n becomes part of S, i.e., update S to S’:=(NS ∪{n}, transS);
if transS = (relaxed atomic, relaxed isolated) =⇒ adapt compensation specification of S
(4) n can be replaced by service n’ with trans(n’) ≥ transS =⇒

replace n by n’; n becomes part of S, i.e., update S to S’:=(NS ∪{n}, transS);
if transS = (relaxed atomic, relaxed isolated) =⇒ adapt compensation specification of S

(5) S separable =⇒ n splits S into two spheres S1 and S2 with
S1 := (NS1

= NS ∩ pred∗(P ′, n), transS) and S2 := (NS2
= NS ∩ succ∗(P ′, n), transS)

where pred∗(P, n) / succ∗(P, n) denotes all direct and indirect predecessor/successor services in P.
(6) transactionality of S can be decreased to trans(n) =⇒ n becomes part of S

i.e., update S to S’:=(NS ∪{n}, trans(n)) ∧
if transS′ = (relaxed atomic, relaxed isolated) =⇒ define compensation specification of S′

(7) otherwise =⇒ insert n, mark n and S as critical
Region R (8) trans(n) ≥ trans(R) =⇒ check business semantics

DeleteService(P, n) deletes service n from composition P = (N,E) resulting in composition schema P ′ := (N ′, E′)
with N ′ := N \ {n} and E′ := (E \ {(pred(P, n), n), (n, succ(P, n))}) ∪ {(pred(P, n), succ(P, n))}
where pred(P, n) / succ(P, n) denotes the direct predecessor / successor service of n in P .
Sphere S = (NS , transS) switch

with NS ⊆ N (9) ∀ n′ ∈ N \ {n} : trans(n′) > trans(n)
delete n and increase transactionality of S to transmin := min({trans(n′) | n′ ∈ N \ {n}})

i.e., S is updated to S′ = (N \ {n}, transmin))
otherwise delete n

Table I
ALGORITHMS FOR CHANGE GRANULARITY Service

InsertComposedService(P,CS, pos) inserts composed service CS := (NCS , ECS) into composition P = (N,E) at position pos = (pre, post)
resulting in composition schema P ′ := (N ′, E′) with N ′ = N ∪ NCS , E′ = (E ∪ ECS ∪ {(pre, nstart), (nend, post)}) \ {(pre, post)}
where nstart denotes the initial service of CS and nend the final service†
Sphere S = (NS , transS) switch

with NS ⊆ N (10) ∀ n ∈ NCS : trans(n) ≥ transS =⇒ CS becomes part of S, i.e.,
update S to S’:=(NS ∪ NCS , transS) ∧

if transS = (relaxed atomic, relaxed isolated) =⇒ adapt compensation specification of S
(11) ∃ ˜NCS ⊆ NCS with ∀ n ∈ ˜NCS : trans(n) < transS
switch
(12) ∀ n ∈ ˜NCS : (trans(n) can be lifted up to transS ∨ n can be replaced by service n′ with trans(n′)≥

transS :
=⇒ lift up or replace n; CS becomes part of S, i.e., update S to S’; adapt compensation specification of S

(13) ˜NCS = NCS ∧ S separable =⇒ CS splits S into two spheres S1 and S2 with
S1 := (NS1

= NS ∩ pred∗(P ′, nstart), transS) and S2 = (NS2
:= NS ∩ succ∗(P ′, nend), transS)

(14) transactionality of S can be decreased to min({trans(m) | m ∈ NCS}) =⇒ CS becomes part of S
i.e., update S to S′:=(NS ∪ NCS , min({trans(m) | m ∈ NCS})) ∧

if transS′ = (relaxed atomic, relaxed isolated) =⇒ define compensation specification of S′
(15) otherwise =⇒ Insert CS, mark S and CS as critical

Region R (16) ∃ ˜NCS ⊆ NCS with ∀ n ∈ N ′: trans(n) < transR =⇒ check business semantics
†We assume exactly one initial (on incoming edges) and one final service (no outgoing edges) within a composition.

Table II
ALGORITHMS FOR CHANGE GRANULARITY ComposedService

or replaced by services with minimum transactionality of S.
Consider the scenario displayed in Fig. 3 where composed

service CS is inserted into sphere S with transS = (relaxed
atomic, relaxed isolated). If Receive Notification
fails after a timeout Send Offer is compensated by
executing compensation service Cancel Offer. Both ser-
vices in CS have a lower transactionality than transS ,

hence cannot become part of S instantly. In Case (12), we
assume that transactionality of Send Quiz and Receive
Quiz can be lifted up to transS . Then CS can become
part of S and compensation of S is updated to executing
a sequence of compensation services Cancel Offer,
Cancel Quiz, Send Substitute Gift. In Case

(13), transactionality of services in CS cannot be lifted up
and they cannot be replaced either, but S is separable. Then
S is split into two spheres S1 and S2 and the compensation
specification for S1 and S2 are updated.

Get
Data

Send
Quiz‘

Send
Offer

Service Composition Schema S1⊕ insertComposedService(S1,CS,B,C) with
CS=({Send Quiz, Receive Quiz}, {(Send Quiz, Receive Quiz)}

Receive
Notification

Get
Data

Receive
Notification

Send
Offer

Service Composition Schema S1

Receive
Quiz‘

trans(Send Quiz) = (not atomic, not isolated), trans(Receive Quiz) = ((not atomic, not isolated)

trans(S) = (relaxed atomic, relaxed isolated)Sphere S

Get
Data

Send
Quiz

Send
Offer

Receive
Notification

Receive
Quiz

Case (12) „lifting up“: trans(Send Quiz‘) = trans(Receive Quiz‘) = (relaxed atomic, relaxed isolated)

Case (13): CS splits S into S1 = ({Send Offer}, (relaxed atomic, relaxed isolated)) and
S2 = ({Receive Notification}, (relaxed atomic, relaxed isolated)), update of compensation

Cancel Offer

Cancel Offer, Cancel Quiz

Cancel Receive
NotificationCancel Send Offer

Figure 3. Inserting a Composed Service: Example (in BPMN Notation)

If S is not separable (13), CS is inserted into S and
both are marked as critical. For inserting composed service
CS into region R, if there are services contained in CS
with lower transactionality than transR, it should be checked
whether this contradicts the intended business semantics.

C. Transaction Concept and Hierarchy-changing operations

The algorithms that we have discussed above are focused
on changes that take place at a single service level, i.e.,
relate to the Intra-level concept of Fig. 2. The class not yet
discussed is that of changes that take place at two levels of
a nested service, i.e., hierarchy-changing operations related
to the Inter-level concept of Fig. 2. Conceptually, hierarchy-
changing operations can be modeled by a complex combi-
nation of three insert and delete operations. For example,
an Inline operation requires deleting a placeholder for a
sub-service, inserting the composed service that is the sub-
service at the position of the placeholder, and deleting the
sub-service at the lower level. The complexity is caused
by the fact that these three operations take place within a
multi-level transaction construct. This multi-level transaction
construct can be homogeneous or heterogeneous across the
levels. If it is homogeneous, all levels obey the same trans-
action constructs. We find this for example in the closed and
open nested transaction models from the database world [8],
which cater for strict respectively relaxed transactionality
(cf. Def. 1 and Fig. 2). If it is heterogeneous, each level
has its own transactional constructs (like for example in the
WIDE model, which has two different levels [8]). Obviously,
heterogeneity increases complexity here.

IV. EVALUATION

This paper performs an analysis of flexibility requirements
in transactional service composition and provides algorithms

to fulfill these requirements. To evaluate the contribution of
this paper, we look at both the requirements analysis and
the algorithm design.

For the requirements analysis, we consider its complete-
ness the most important quality aspect: to provide a usable
analysis, we ensure that all relevant cases are indeed covered.
We have guaranteed this quality aspect by construction of
the analysis. As a first step, we have started with full and
independent enumerations of both transaction characteristics
and change patterns as identified in well-recognized litera-
ture. As the next step, we have taken the cross-product of
these two enumerations to find all relevant change primitives
to transactional service composition constructs.

For the design of the provided algorithms, we consider
correctness as the most important quality aspect: the al-
gorithms should indeed guarantee correct transactional be-
havior of service composition when changes are applied.
As this paper makes the design of the algorithms at an
abstract level, we cannot field test them in application
environments (this is for future work). Providing formal
proof of the correctness of the algorithms would require
complex mathematical formalisms (such as dynamic logic),
where the chance of error in the proof would be higher than
chance in the algorithm under scrutiny. Thus, we have so far
resorted to operational desk examination” of the algorithms.

Finally, the application of the approach in real-world
scenarios is a crucial point to discuss. Transactionality
of complex services is generally considered important to
guarantee robustness of the execution of these services.
The ability to easily change complex services is also gen-
erally considered essential to achieve the business agility
required by current volatile markets. The lack of approaches
combining these two aspects, however, currently hampers
broad application in practice. We observe research efforts,
however, that contribute towards the development of this
application.

The CrossFlow project [4] has developed an approach that
combines agility and transactionality, but heavily restricts the
kind of changes allowed to obtain agility (only dynamic sub-
stitution of sub-services for outsourcing is supported). This
project developed applications in the telecom/logistics and
insurance industry domains. Projects like CrossWork [10],
ADVENTURE [1], and GET Service [2] do pay explicit
attention to more advanced kinds of changes (design-time
and/or run-time). They cover manufacturing and logistics
as their application domains. The approaches developed in
CrossWork and ADVENTURE do not cover transactionality
(even though transactionality is considered important in their
domain). The approach currently under development in GET
Service does include transactional constructs, most notably
measures that are indicated as Compensatable in Fig. 2.

Figure 4 sketches different implementation options for
supporting flexibility in transactional service compositions
comparable to the taxonomy of options for transactional

workflow support in [4]. If the process engine does not
support in-built transactionality or flexibility, but enables
the implementation of plug-ins or additional services, it
can be extended by a transactional engine or change ex-
tension respectively. The WIDE project has demonstrated
the feasability of extending an existing process engine with
a transaction engine: the FORO process engine has been
extended with a two-level transaction engine [11]. The Cloud
Process Execution Engine CPEE (cpee.org) is a lightweight
process engine, but with change extensions in terms of,
e.g., a repair service [12]. Systems such as AristaFlow
(www.aristaflow.com) feature built-in change extensions and
can be extended by transaction engines via their API.
In principle, limited forms of transactionality (specifically
measures shown as Retriable and Compensatable in Fig.
2) can be also implemented through exception handling
functionality offered by several commercial systems such as
jBPM, WebSphere, or Oracle BPM and academic tools such
as CPEE. Most commercial systems offer only restricted
support for flexibility in terms of supporting the change
patterns set out in [3]. The CPEE process engine provides
a suitable platform for the concepts presented in this paper
by implementing a combination of flexibility and enhanced
exception handling towards full transactional support.

Process Engine

Transaction
engine

Change
extension

a) Process engine without transaction
and change support

Adaptive
Process Engine

Transaction
engine

b) Adaptive process engine without
transaction support

Transactional
Process Engine

Change
extension

c) Transactional process engine without
change support

Transactional
Adaptive

Process Engine

d) Transactional adaptive process engine

Figure 4. Different architectural options for flexibility and transactionality

V. SUMMARY AND OUTLOOK

In this paper, we have developed the first version of an
approach to combine transactionality and change for com-
posed services. This combination is essential to guarantee
both robustness and agility in the execution of modern-day,
service-oriented business processes. The conceptual core of
the approach is formed by a mapping of concepts from the
transaction world and the process change world, applied to
the service domain. The operational part of the approach
is laid down in algorithms that guarantee transactional cor-
rectness of services under change. Extensions to this paper

can be found in several directions. Firstly, the algorithms
need to be further completed for the hierarchy-related change
operations. Further refinement of described algorithms is
possible to allow for optimizations. Secondly, the algorithms
can be integrated in practical change approaches or even
service/process evolution tools. The detailed level at which
the algorithms are described supports this task. Thirdly,
future work will incorporate transactional concepts durable
and consistent which were not considered in this paper for
simplicity reasons as well as more specific transactional
models, e.g., multi-level transactions. Finally, we will pay
attention to correctness considerations of our approach.

REFERENCES

[1] S. Schulte, D. Schuller, R. Steinmetz, and S. Abels, “Plug-
and-play virtual factories,” IEEE Internet Comp., vol. 16,
no. 5, pp. 78–82, 2012.

[2] P. Grefen and R. Dijkman, “Hybrid control of supply chains:
a structured exploration from a systems perspective,” Int’l J.
of Prod. Mgmt. and Eng., vol. 1, no. 13, pp. 39–54, 2013.

[3] B. Weber, M. Reichert, and S. Rinderle-Ma, “Change patterns
and change support features - enhancing flexibility in process-
aware information systems.” Data and Knowledge Engineer-
ing, vol. 66, no. 3, pp. 438–466, 2008.

[4] P. Grefen and J. Vonk, “A taxonomy of transactional workflow
support,” Int’l Journal of Coop. Information Systems, vol. 15,
no. 01, pp. 87–118, 2006.

[5] A. Sheth and M. Rusinkiewicz, “On transactional workflows,”
Data Engineering Bulletin, pp. 20–25, 1993.

[6] S. Bhiri, K. Gaaloul, O. Perrin, and C. Godart, “Overview
of transactional patterns: Combining workflow flexibility and
transactional reliability for composite web services,” in Busi-
ness Process Management, 2005, pp. 440–445.

[7] K. Hahn and H. Schweppe, “Analysis of non-functional
service properties for transactional workflow management,”
in Workshop Non Functional Prop. and Service Level Agree-
ments in Service Oriented Comp., 2008.

[8] T. Wang, B. Kratz, J. Vonk, and P. Grefen, “A survey on the
history of transaction management,” Distributed and Parallel
Databases, vol. 23, no. 3, pp. 235–270, 2008.

[9] H. Garcia-Molina and K. Salem, “Sagas,” in ACM SIGMOD
Int’l Conf. on Management of data, 1987, pp. 249–259.

[10] P. G. et al., “Internet-based support for process-oriented
instant virtual enterprises,” IEEE Internet Computing, vol. 13,
no. 6, pp. 65–73, 2009.

[11] P. Grefen, J. Vonk, E. Boertjes, and P. Apers, “Two-layer
transaction management for workflow management applica-
tions,” in Database and Exp. Syst. Appls., 1997, pp. 430–439.

[12] G. Stürmer, J. Mangler, and E. Schikuta, “Building a modular
service oriented workflow engine,” in Service-Oriented Comp.
and Appls., 2009 IEEE Int’l Conf. IEEE, 2009, pp. 1–4.

