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Abstract

The decremental single-source shortest paths (SSSP) problem concerns maintaining the dis-
tances between a given source node s to every node in an n-node m-edge graph G undergoing
edge deletions. While its static counterpart can be easily solved in near-linear time, this decre-
mental problem is much more challenging even in the undirected unweighted case. In this case,
the classic O(mn) total update time of Even and Shiloach (JACM 1981) has been the fastest
known algorithm for three decades. With the loss of a (1+ ε)-approximation factor, the running
time was recently improved to O(n2+o(1)) by Bernstein and Roditty (SODA 2011), and more
recently to O(n1.8+o(1) + m1+o(1)) by Henzinger, Krinninger, and Nanongkai (SODA 2014).
In this paper, we finally bring the running time of this case down to near-linear: We give a
(1 + ε)-approximation algorithm with O(m1+o(1)) total update time, thus obtaining near-linear
time. Moreover, we obtain O(m1+o(1) logW ) time for the weighted case, where the edge weights
are integers from 1 to W . The only prior work on weighted graphs in o(mn logW ) time is the
O(mn0.986 logW )-time algorithm by Henzinger, Krinninger, and Nanongkai (STOC 2014) which
works for the general weighted directed case.

In contrast to the previous results which rely on maintaining a sparse emulator, our algorithm
relies on maintaining a so-called sparse (d, ε)-hop set introduced by Cohen (JACM 2000) in the
PRAM literature. A (d, ε)-hop set of a graph G = (V,E) is a set E′ of weighted edges such
that the distance between any pair of nodes in G can be (1 + ε)-approximated by their d-hop
distance (given by a path containing at most d edges) on G′ = (V,E ∪ E′). Our algorithm can
maintain an (no(1), ε)-hop set of near-linear size in near-linear time under edge deletions. It is
the first of its kind to the best of our knowledge. To maintain the distances on this hop set, we
develop a monotone bounded-hop Even-Shiloach tree. It results from extending and combining
the monotone Even-Shiloach tree of Henzinger, Krinninger, and Nanongkai (FOCS 2013) with
the bounded-hop SSSP technique of Bernstein (STOC 2013). These two new tools might be of
independent interest.
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1 Introduction

Dynamic graph algorithms refer to data structures on a graph that support update and query
operations. They are classified according to what type of update operations they allow: decremental
algorithms allow only edge deletions, incremental algorithms allow only edge insertions, and fully
dynamic algorithms allow both insertions and deletions. In this paper, we consider decremental
algorithms for the single-source shortest paths (SSSP) problem on undirected graphs. The unweighted
case of this problem allows the following operations.

• Delete(u, v): delete the edge (u, v) from the graph, and

• Distance(x): return the distance between node s and node x in the current graph G, denoted
by distG(s, x).

The weighted case allows an additional operation Increase(u, v, i) which increases the weight of the
edge (u, v) by i. We allow positive integer edge weights in the range from 1 toW , for some parameter
W . For any α ≥ 1, we say that an algorithm is an α-approximation algorithm if, for any distance
query Distance(x), it returns δ(s, x) such that such that distG(s, x) ≤ δ(s, x) ≤ α distG(s, x).
There are two time complexity measures associated with this problem: query time denoting the
time needed to answer each distance query, and total update time denoting the time needed to
process all edge deletions. The running time will be in terms of n, the number of nodes in the
graph, and m, the number of edges before the first deletion. For the weighted case, we additionally
have W , the maximum edge weight. We use the Õ-notation to hide O(poly log n) terms. In this
paper, we focus on algorithms with small (O(1) or O(poly log n)) query time, and the main goal is
to minimize the total update time, which will simply referred to as time when the context is clear.

Previous Work. The static version of SSSP can be easily solved in Õ(m) time using, e.g., Dijkstra’s
algorithm. Moreover, due to the deep result of Thorup [22], it can even be solved in linear (O(m))
time. This implies that we can naively solve decremental SSSP in O(m2) time by running the
static algorithm after every deletion. The first non-trivial decremental algorithm is due to Even
and Shiloach [6] from 1981 and takes O(mn) time on unweighted undirected graph. This algorithm
will be referred to as ES-tree throughout this paper. It has many potential applications such as
for decremental strongly-connected components and multicommodity flow problems [17]; yet, the
ES-tree has resisted many attempts to improve it for decades. Roditty and Zwick [20] explained
this phenomenon by showing evidence that the ES-tree is optimal for maintaining exact distances
even on unweighted undirected graphs, unless there is a major breakthrough for Boolean matrix
multiplication and many other long-standing problems [26]. It is thus natural to shift the focus to
approximation algorithms.

The first improvement was due to Bernstein and Roditty [4] who presented a (1+ε)-approximation
algorithm with O(n2+O(1/

√
logn)) expected time for the case of undirected unweighted graphs. This

time bound is only slightly larger than quadratic time and beats the O(mn) time of the ES-tree
unless the input graph is very sparse. Recently, we [10] beat this near-quadratic time with an
O(n1.8+O(1/

√
logn)+m1+O(1/

√
logn))-time algorithm. For the more general cases, Henzinger and King

[11] observed that the ES-tree can be easily adapted to directed graphs. King [13] later extended
the ES-tree to an O(mnW )-time algorithm on directed weighted graphs. The techniques used in
recent algorithms of Bernstein [2, 3] and Mądry [15] give a (1 + ε)-approximate Õ(mn logW )-time
algorithm on directed weighted graphs. Very recently, we extended our insights from [10] to obtain
a (1+ε)-approximation algorithm with roughly Õ(mn0.986) time for decremental approximate SSSP
in directed graphs [9], giving the first o(mn) time algorithm for the directed case, as well as other im-
portant problems such as single-source reachability and strongly-connected components [19, 14, 17].
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This algorithm can also be extended to achieve a total update time of O(mn0.986 log2W ) for the
weighted case. Also very recently, Abboud and Vassilevska Williams [1] showed that “deamortizing”
our algorithms in [9] might not be possible: a combinatorial algorithm with worst case update time
and query time of O(n2−δ) (for some δ > 0) per deletion implies a faster combinatorial algorithm
for Boolean matrix multiplication and, for the more general problem of maintaining the number
of reachable nodes from a source under deletions (which our algorithms in [9] can do) a worst
case update and query time of O(m1−δ) (for some δ > 0) will falsify the strong exponential time
hypothesis.

Our Results. Given the significance of the decremental SSSP problem, it is important to un-
derstand the time complexity of this problem. Recent progress on this problem leads to the hope
for a near-linear time algorithm – as fast as the static case – for the general directed weighted
case and many exciting potential applications. This goal, however, is still far from reality: even in
the undirected unweighted case, we only have an O(n1.8+O(1/

√
logn) +m1+O(1/

√
logn)) time which is

near-linear only when the graph is very dense (m = Ω(n1.8)).
In this paper, we make one step toward this goal. We obtain a near-linear time algorithm for

(1 + ε)-approximate decremental SSSP in undirected graphs. Our algorithm is correct with high
probability and has an expected total update time of O(m1+O(

√
log logn/ logn)) for unweighted graphs

and O(m1+O(
√

log logn/ logn) logW ) for weighted graphs. It maintains an estimate of the distance
between the source node s and every other node, guaranteeing constant query time in the worst
case. In the unweighted case, our algorithm significantly improves our previous algorithm in [10]
as discussed above. There was no previous algorithm designed specifically for weighted undirected
graphs, and the previous best running time for this case come from our O(mn0.986 log2W ) time for
weighted directed graphs [9].

2 Overview of Techniques

2.1 Previous Approach

To motivate our approach, note that previous algorithms [4, 10] rely on maintaining an ES-tree on a
sparse emulator – a sparse graph that preserves the distances of the original graph – and running the
ES-tree or its variants on top of this emulator. The time of the ES-tree is O(m′n) where m′ is the
number of edges ever contained in the emulator. We can maintain an emulator withm′ = O(n1+o(1))
efficiently by using the algorithm of Roditty and Zwick [21] to maintain an emulator of Thorup and
Zwick [23, 24] (TZ-emulator thereafter). This gives the running time of O(n2+o(1)) if we use the
ES-tree [4], and this running time can be improved to O(n1.8+o(1) + m1+o(1)) by using a variant
of the ES-tree we introduced in [8] called lazy ES-tree. (Note that this is an over-simplification.
One difficulty faced by previous algorithms [4, 10] is the fact that the emulator has edge insertions
and the original ES-tree cannot deal with this. This difficulty is also one factor that makes the
present paper fairly technical.) Extending this approach further, especially to get a near-linear-time
algorithm, is seemingly very difficult. Consider, for example, an input graph that is already sparse.
In this case, the above emulator approach does not help at all, and a completely new idea is needed.

2.2 Main Tools

Hop Set. Our algorithm uses a rather different approach based on a so-called sparse hop set. The
d-hop distance between any nodes u and v is the weight of the shortest path among all paths between
u and v containing at most d edges. Given any graph G = (V,E), we say that a set of weighted
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edges E′ is a (d, ε)-hop set if the distance between any two nodes in G can be (1 + ε)-approximated
by a path between them in G′ = (V,E∪E′) containing at most d edges. To be precise, let the d-hop
distance between any nodes u and v in G′, denoted by distdG′(u, v), be the weight of the shortest
path between u and v in G′ containing at most d edges. Then, E′ is a (d, ε)-hop set, if for any u
and v,

distG(u, v) ≤ distdG′(u, v) ≤ (1 + ε) distG(u, v).

We call G′ a (d, ε)-shortcut graph. As a part of our algorithm, we maintain an (no(1), ε)-hop set of
size O(m1+o(1)) in O(m1+o(1)) time. (The situation is actually more complicated than this, as we
will explain later.)

The notion of hop set was first introduced by Cohen [5] in the PRAM literature and is conceptu-
ally related to the notion of emulator. It is also related to the notion of shortest-paths diameter used
in distributed computing (e.g. [12, 16]). To the best of our knowledge, the only place that this hop
set concept was used before in the dynamic algorithm literature (without the name mentioned) is
Bernstein’s fully dynamic (2+ ε)-approximation algorithm for all-pairs shortest paths [2]. There, an
(no(1), ε)-hop set is essentially recomputed from scratch after every edge update, and a single-source
shortest-paths data structure is maintained on top of this hop set.

Monotone Bounded-Hop ES-tree. Suppose that we can maintain a (d, ε)-hop set efficiently. We
now wish to maintain the d-hop distances from s in the corresponding shortcut graph. A tool that
can almost do this job is Bernstein and Mądry’s extension of the ES-tree [2, 3, 15] which we will
call a d-hop ES-tree. This algorithm can maintain the d-hop distance from s in weighted m′-edge
graphs undergoing edge deletions in Õ(m′d) time. We cannot use this algorithm directly because we
sometimes might have to insert edges into the hop set we maintain, which the d-hop ES-tree cannot
handle. Fortunately, this situation has been already encountered many times in the past when we
want to maintain distances on an emulator (e.g. [4, 7, 10]). A powerful idea that usually got us
around this problem is the monotone ES-tree introduced by us in [7]. The idea is quite simple: If
an edge insertion will make the distance between two nodes that we maintain smaller, we simply
ignore it, thus keeping the maintained distance estimate monotonically non-decreasing. Analyzing
the running time of this algorithm is fairly easy (it follows from the monotonicity of the maintained
distance). Analyzing that it gives a good distance estimate is, however, quite challenging.

In this paper, we apply this idea to extend Bernstein’s d-hop ES-tree to a monotone d-hop
ES-tree. We again successfully analyze its distance estimate using the hop set we constructed. To
do this, we need some new (although not groundbreaking) ideas since the previous analyses for
monotone ES-trees only work when we maintain an ES-tree up to some distance value, regardless of
the number of hops. To maintain the distances up to some number of hops, we need to extend the
previous induction-based arguments and use an induction on the number of hops instead. In this
way we can argue that the errors caused from Bernstein’s technique do not aggregate too much.

A Showcase: O(mn1/2+o(1))-Time Algorithm via TZ-Emulator. To illustrate the advantage
of using a hop set, we note that by combining Bernstein’s analysis [2] with the algorithm of Roditty
and Zwick [21], it can be shown that the TZ-emulator is an (Õ(d), ε)-hop set of size O(n1+o(1)) that
can be maintained in O(mn1+o(1)/d) time, for any d ≥ 1. By maintaining d-hop distances between
s and every other node on the corresponding shortcut graph using our monotone d-hop ES-tree, we
can maintain (1 + ε)-approximate single-source shortest-paths in O(mn1+o(1)/d+md) time1 which
is O(mn1/2+o(1)) when we set d = n1/2. This approach already gives a huge improvement over the

1We note one technical detail here: In fact, we cannot maintain (1 + ε)-approximate single-source shortest-paths
on such TZ-emulator in O(mn1+o(1)/d +md) time, and we have to slightly modify the TZ-emulator; see Section 3
for detail.
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Figure 1: How our multi-layer hop set construction conceptually works: The straight thick line (in black)
represents a path in the original graph G0. Thin curved lines (in blue) represent (logO(1) n)-hop paths in an
n1/q-restricted (Õ(1), ε)-hop set of G0. These edges provide a Õ(n1−1/q)-hop path that (1 + ε)-approximate
the original path; they shrink the original path by a factor of Õ(1/n1/q). If we compute an n1/q-restricted
(Õ(1), ε)-hop set of these edges, we get edges like the dashed curved lines (in red). These edges further shrink
the previous path by a factor of Õ(1/n1/q).

previous total update time of O(n1.8+o(1) + m1+o(1)) for sparse graphs. To maintain an (no(1), ε)-
hop set, we unfortunately cannot simply use the TZ-emulator since we have to set d = no(1) which
will make the maintenance time too large (roughly O(mn)). We need some more ideas for this as
explained next.

2.3 Towards Efficient Maintenance of (no(1), ε)-Hop Set

Restricted Hop Set. To get an (no(1), ε)-hop set, we will compute an R-restricted (no(1), ε)-hop set
as a subroutine. The R-restricted hop set is similar to the standard hop set except that the guarantee
holds only for paths containing at most R hops. That is, a shortcut graph G′ corresponding to an
R-restricted (no(1), ε)-hop set of a graph G has the property that for any pair of nodes u and v,

distRG(u, v) ≤ distdG′(u, v) ≤ (1 + ε) distRG(u, v). (1)

In other words, a (d, ε)-hop set is an n-restricted (d, ε)-hop set. (We note that the notion of restricted
hop set was also defined by Cohen [5] and used to construct a hop set. Our definition is different
from Cohen’s in that the guarantee of Cohen’s restricted hop set holds only for paths containing
at most R hops and at least R/2 hops.) Using Bernstein’s proof [2], it can be easily shown that
the TZ-emulator does not only provide a (d, ε)-hop set, but also provide an R-restricted (d, ε)-
hop set. By adapting the algorithm of Roditty and Zwick [21], we can maintain an R-restricted
(d logO(1) n, ε)-hop set in O(mno(1)R/d) total update time.

A Multi-Layer Construction. The above restricted hop set naturally leads to the following idea
for constructing a (no(1), ε)-hop set. Let G0 = (V,E0) be the original graph and set q = log1/2 n (so
1/q = o(1)). We first maintain an R-restricted (logO(1) n, ε)-hop set denoted by E1, where R = n1/q.
This can be done in O(mno(1)) time by maintaining the TZ-emulator. Let G1 = (V,E0 ∪ E1) be
the resulting shortcut graph. Note that G1 has m+ n1+o(1) edges. Intuitively, since G1 contains a
shortcut of length logO(1) n for shortest paths having at most R hops in G0, it “shrinks” the number
hops of every shortest path by a factor of (logO(1) n)/R (with the cost of (1 + ε) multiplicative
error). (See Figure 1 for an illustration.) If we again maintain an R-restricted (logO(1) n, ε)-hop set
on G1, say E2, then we will further shrink the number of hops in paths in G0 by another factor
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of (logO(1) n)/R in G2 = (V,E0 ∪ E1 ∪ E2). If we keep computing an R-restricted (logO(1) n, ε)-
hop set on Gk = (V,E0 ∪ . . . ∪ Ek) to get a shortcut graph Gk+1 = (V,E0 ∪ . . . ∪ Ek+1), we will
eventually arrive at a graph Gq where the number of hops in paths in G0 is shrunk by a factor
of (logO(q) n)/Rq = (logO(q) n)/n with the cost of (1 + ε)q multiplicative error. In other words,
every shortest path in G0 can be (1 + ε)q-approximated by a (logO(q) n)-hop path in Gq. Thus, for
d = logO(q) n,

distG0(u, v) ≤ distdGq(u, v) ≤ (1 + ε)q distG0(u, v).

Figure 1 illustrates the idea of this multi-layer construction. By setting ε small enough, i.e., ε =
ω(1/q), the approximation factor (1 + ε)q will be (1 + ε′) for an arbitrarily small constant ε′.
This implies that Eq is the (no(1), ε′)-hop set that we want. Since computing an n1/q-restricted
(logO(1) n, ε)-hop set on each Gk takes O(mno(1)) time the total update time needed to maintain
this hop set is O(m1+o(1)) as desired.

Beyond the TZ-Emulator. The multi-layer construction explained above almost works perfectly
except for one problem: we do not know how to maintain the TZ-emulator on the shortcut graphs
Gk. One important reason is that each Gk is a dynamic graph with both edge deletions and
insertions (edge insertions are caused by the restricted hop set Ek). We do not have many tools
to deal with this type of change. One exception is the monotone bounded-hop ES-tree that we
explained earlier. It is in fact not clear to us how to modify the decremental algorithm of Roditty
and Zwick to maintain the TZ-emulator in this situation. For this reason, we will abandon the
TZ-emulator and construct our own restricted hop set.

Our hop set has the special property that it can be efficiently maintained simply by maintaining
some monotone bounded-hop ES-trees. It also has properties similar to the TZ-emulator; i.e., it
is an R-restricted (d logO(1) n, ε)-hop set that can be maintained in O(mno(1)R/d) total update
time, and on which we can maintain a monotone bounded-hop ES-tree that provides good distance
estimates. In fact, it is also an emulator that can guarantee some additive error on an unweighted
undirected graph. Its construction is similar to the TZ-emulator; i.e, nodes are assigned priorities
based on some random sampling, and we will have an edge between two nodes if some certain rule is
satisfied. The main difference is that we introduce the notion of active and inactive nodes. Roughly
speaking, inactive nodes are nodes for which it is too expensive to maintain (monotone) ES-trees
rooted at them. Our construction and analysis make sure that the guarantees hold even when
we do not maintain (monotone) ES-trees for inactive nodes. Additionally, to handle errors caused
by monotone bounded-hop ES-trees and shortcut graphs, our hop set needs a more sophisticated
rule for when we will have an edge between two nodes. The description of our hop set is quite
complicated, and the most difficult part of this work is to come up with the right hop set that has
all the properties we want. This hop set is described in Section 5.1.

Note on Some Technical Details. For a technical reason, when we actually implement and
analyze the multi-layer construction, we will not argue that Ek is an R-restricted (logO(1) n, ε)-
hop set of Gk−1 as intuitively explained above. This is hard to argue since Gk might have edge
insertions. Instead, we will directly argue that, for every k, every path in G0 of weight at most
Rk can be (1 + ε)k-approximated by a (logO(k) n)-hop path in the shortcut graph Gk (i.e., they are
shrunk by a factor of logO(k) n/Rk). Moreover, due to errors caused by many parts of the algorithm,
the approximation factor will not be exactly (1 + ε)k.
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3 Warm Up: O(mn1/2+o(1)) Total Update Time

In the following we give a simplified version of our algorithm for unweighted, undirected graphs
with a total update time of O(mn1/2+o(1)). Our goal is to maintain (1 + ε)-approximate SSSP from
a node s in a graph G undergoing edge deletions. We assume that 0 < ε ≤ 1 is a constant. For
technical reasons we further assume in this section that 1/ε is integer.

In the algorithm, we use the following parameters. We set

p =
√

log n/
√

log 9/ε .

With this choice of p we have (9/ε)p = n1/p. Note that p = O(
√

log n) and 1/p = o(1) since ε is a
constant. We set

r(0) =
√
n and r(i) = (9/ε)

∑
0≤j≤i−1

r(j) for 1 ≤ i ≤ p− 1 .

Furthermore, we set
β(i) = 9

∑
i≤j≤p−2

r(j) for all 0 ≤ i ≤ p− 1

(in particular β(p−1) = 0). Note that for each 0 ≤ i ≤ p− 1, we can bound r(i) by r(i) ≤ (9/ε)2i√n.
We also have β(0)/ε ≤ (9/ε)2p√n and by our choice of p this means that β(0)/ε ≤ n2/p√n ≤ n1/2+o(1)

and r(i) ≤ r(p−1) ≤ n1/2+o(1).
The first part of the algorithm is to maintain an ES-tree up to depth β(0)/ε from s, which allows

us to determine distances from s up to β(0)/ε exactly. This takes time O(mβ(0)/ε) = O(mn1/2+o(1)).
We deal with larger distances as follows. Our goal is to dynamically maintain a graph H such
that for every node u with distG(u, s) ≥ β(0)/ε there is a path from u to s in H with at most
p distG(u, s)/

√
n ≤ p

√
n many hops of approximately the same length as distG(u, s). On this graph

we run a variant of the ES-tree from s, called monotone ES-tree, to maintain the approximate
distances for nodes that are at distance more than β(0)/ε from s. As the monotone ES-tree never
underestimates the true distance, we can simply return the minimum of the distance estimates
returned by both trees to obtain a (1 + ε)-approximation for every node.

3.1 Hop Set via Thorup-Zwick

The hop set in this simplified version of our algorithm comes from the construction of Thorup
and Zwick. In [23], Thorup and Zwick provide, for every k ≥ 1 a distance oracle for undirected
weighted graphs of size O(kn1+1/k) and multiplicative stretch 2k−1 that has a preprocessing time of
O(kmn1/k) and a query time of O(k). Their construction immediately implies a (2k−1)-spanner for
weighted graphs with O(kn1+1/k) many edges that can be constructed in time O(kmn1/k). In [24],
they show that in unweighted graphs exactly the same construction provides a spanner with both
a multiplicative error of (1 + ε) and an additive error of 2(1 + 2/ε)k−2. We extend their analysis to
our new setting to give the desired hop set.

We now review their construction and define the hop set we want to use. We define a hierarchy
of sets A0 ⊇ A1 ⊇ . . . ⊇ Ap as follows (where p is as defined above). We let A0 = V and Ap = ∅,
and for 1 ≤ i ≤ p−1 we obtain Ai by picking each node from Ai−1 with probability (lnn/n)1/p. We
say that a node v has priority i if v ∈ Ai \ Ai+1 (for 0 ≤ i ≤ p− 1). The central notion of Thorup
and Zwick is the bunch of a node u. As usual, we denote by distG(u,Ai) = minv∈Ai distG(u, v) the
distance between the node u and the set of nodes Ai and we set distG(u, ∅) = ∞. Now, for every
node u and every 0 ≤ i ≤ p− 1, the i-bunch of u is defined as

Bunchi(u) = {v ∈ Ai \Ai+1 | distG(u, v) < distG(u,Ai+1)}
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and the bunch of u is
Bunch(u) =

⋃
0≤i≤p−1

Bunchi(u) .

Intuitively, a node v of priority i is in the bunch of u if v is closer to u than any node of priority
greater than i. We will only need the following “truncated” version of the bunches:

BunchD(u) = {v ∈ Bunch(v) | distG(u, v) ≤ D} .

In our case we set D = r(p−1) ≤ n1/2+o(1).
Intuitively, we would now like to use the hop set containing all edges (u, v) such that v ∈

BunchD(u). This would give us a hop set of size O(n1+o(1)) providing the desired hop reduction
and approximation guarantee. Note that as edges are deleted from G, distances in G might increase
between certain nodes which results in nodes joining and leaving the bunches. This means that
the edges in the hop set we would like to use might undergo insertions, deletions, and edge weight
increases. However, the only bound on the number of edges inserted into this hop set we are aware
of is O(n1+1/2+o(1)) following the analysis of [4]. This is too inefficient as the number of inserted
edges shows up in the running time of the monotone ES-tree. In the following we show how to avoid
this problem by using a slightly modified definition of the hop set that guarantees that the number
of inserted edges is O(n1+o(1)).

We define the rounded i-bunch of a node u as follows:

Bunchi(u) = {v ∈ Ai \Ai+1 | log distG(u, v) < blog distG(u,Ai+1)c} .

Similarly, we define Bunch(u) =
⋃

0≤i≤p−1 Bunchi(u) and Bunch
D

(u) = {v ∈ Bunch(v) | distG(u, v) ≤
D}. We define the edge (u, v) to be contained in the hop set H if and only if v ∈ Bunch

D
(u). The

weight of such an edge (u, v) ∈ H is w(u, v) = distG(u, v). We slightly abuse notation and denote
by H also the graph that has only the edges of the hop set and the same nodes as G.

Lemma 3.1. The number of edges ever contained in H is O(n1+o(1)) in expectation.

Proof. At any time, the size of Bunchi(u) is n1/p in expectation [23] for every node u and every
0 ≤ i ≤ p − 1. As Bunchi(u) ⊆ Bunchi(u), this also bounds the size of Bunchi(u). The initial
number of edges of H can thus be bounded by O(pn1+1/p).

An edge (u, v) is only inserted into H if v joins Bunch
D

(u) or, symmetrically, if u joins
Bunch

D
(v). For every node u, nodes can only join Bunch

D
(u) by joining Bunchi(u) for some

0 ≤ i ≤ p − 2 when the value blog distG(u,Ai+1)c increases. (Note that by the definition of
Bunchp−1(u) no node will ever join Bunchp−1(u).) This happens at most logD times until the
thresholdD is exceeded. Every time this happens at most n1/p nodes will be contained in Bunchi(u),
which trivially bounds the number of nodes that might join Bunchi(u) by n1/p. It follows that the
number of edges inserted into H is O(pn1+1/p logD). This dominates the number of edges initially
contained in H. Since p ≤ log n, 1/p = o(1), and D ≤ n, the number of edges ever contained in H
is O(n1+o(1)).

The set of edgesH we defined will only be useful if it can be used to provide a good approximation
of shortest paths using only a small number of hops. In Section 3.3 we will show that this goal can
be achieved with H. In our proof the following structural property of H will be essential.

Lemma 3.2. For every node u of priority i and every node v such that distG(u, v) = r(i), H
contains either the edge (u, v) or an edge (u, v′) to a node v′ of priority j′ ≥ i + 1 such that
distG(u, v′) ≤ 2j

′−i−13r(i).
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Proof. Assume that (u, v) is not contained in H and let j denote the priority of v. We first show
that there is some node v′ ∈ Ai+1 such that distG(u, v′) ≤ r(i).

Case 1: j ≥ i + 1. Since H does not contain the edge (u, v), we know that v /∈ Bunch
D

(u).
As distG(u, v) = r(i) ≤ D it follows that v /∈ Bunch(u) and in particular v /∈ Bunchj(u). By the
definition of Bunchj(u) we have blog distG(u,Aj+1)c ≤ log distG(u, v) and thus distG(u,Aj+1) ≤
2 distG(u, v). This means that there is a node v′ ∈ Aj+1 ⊆ Ai+1 such that distG(u, v′) ≤ 2 distG(u, v) =
2r(i).

Case 2: j ≤ i. Following similar arguments as above, we conclude that u /∈ Bunch
D

(v) which
means that there is some node v′ ∈ Ai+1 such that distG(v, v′) ≤ 2r(i). By the triangle inequality
we have distG(u, v′) ≤ distG(u, v) + distG(v, v′) ≤ 3r(i).

Thus, in both cases we have shown that there is some node v′ ∈ Ai+1 such that distG(u, v′) ≤
3r(i). If v′ is contained in the bunch of u, then H contains the edge (u, v′) as desired. Otherwise,
we use the argument from above again and get that there is some node v′′ ∈ Ai+2 such that
distG(u, v′′) ≤ 2 distG(u, v′) ≤ 6r(i). If v′′ is contained in Bunch

D
(u), then H contains the edge

(u, v′) as desired. This argument can be repeated until eventually a node of priority p−1 is reached.
It follows that we will find a node v∗ of priority j∗ ≥ i + 1 contained in Bunch

D
(u) (making the

edge (u, v∗) contained in H) such that distG(u, v∗) ≤ 2j
∗−i−13r(i).

Finally, we argue about the running time needed for maintaining the hop set H. Roditty and
Zwick [21] gave an algorithm for maintaining BunchD(u) for every node u with a total update time
of Õ(mn1/pD). This algorithm also maintains the distances of a node to the nodes in its truncated
bunch as well as distG(v,Ai) for every node v and every 0 ≤ i ≤ p− 1, which allows us to maintain
Bunch

D
(u) for every node u in the same running time. Thus, we can maintain our hop set in time

Õ(mn1/pD) = O(mn1/2+o(1)).

3.2 Static Hop Reduction

We first explain how the set of edges H based on the Thorup-Zwick construction provides a hop set
in the static setting. A hop set based on Thorup-Zwick has implicitly been used already in [2]. Here,
we deviate from the analysis in [2] because we do not know how to transfer it to the decremental
setting. Instead, our analysis mainly follows the argument for proving the approximation guarantee
of the spanner in [24] with the hop reduction being an additional aspect.

Consider a shortest path from some node u to s. We show that in H there is a path from u to s
of total weight at most (1+ε) distG(u, s)+β(0) using at most p distG(u, s)/

√
n edges. Intuitively, we

divide the shortest path into subpaths of length at least
√
n and try to replace each such subpath

by a path that has approximately the same length but uses at most p hops. In the following we
explain how to “walk” from u to s using only few edges of H, similar to the argument used in [24].

Assume that u has priority 0. We first try to walk to the node v at distance r(0) =
√
n from u

on the shortest path from u to s in G. If H contains the edge (u, v) we have replaced the subpath
from u to v by a single edge without any approximation error, reducing the distance to s by r(0).
(In this case we can continue the argument from v). If H does not contain the edge (u, v), then we
know by Lemma 3.2 that H contains an edge (u, u1) where u1 has priority j ≥ 1 and is at distance
at most 3j−1r(0) to u. To understand the intuition behind the argument we assume here that u1 has
priority 1 and is at distance at most 3r(0) to u. Following this edge, we start a detour on our way to
s whose weight we want to compensate. At u1 we try to reduce the distance to s by r(1) = (9/ε)r(0).
Let v1 denote the node at distance r(1) to u1 on the shortest path from u1 to s in G. If H contains
the edge (u1, v1), the path consisting of the edges (u, u1) and (u1, v1) has weight at most 3r(0) + r(1)

and reduces the distance to s by at least r(1) − 3r(0). Note that 3r(0) + r(1) ≤ (1 + ε)(r(1) − 3r(0)),
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thus this detour consisting of two hops gives a multiplicative error of (1 + ε). If H does not contain
the edge (u1, v1), we can again argue that H contains an edge (u1, u2) to a node u2 of priority at
least 2. We can repeat our arguments until we eventually reach a node up−1 of priority p − 1. As
a node of priority p− 1 is contained in the bunch of every node at distance at most r(p−1), we can
guarantee that at this stage the distance to s can be reduced by r(p−1).

In addition to the multiplicative error of (1 + ε), using only the edges of H to reach s also gives
us an additional additive error of β(0). The reason is that the last subpath we replace on the way
to s might not be long enough to compensate the additional weight we have accumulated by using
edges of H.

3.3 Dynamic Hop Reduction

The static analysis we gave above mostly follows the analysis in [24]; the difficulty now comes from
the fact that edges might be inserted into H over time. This usually requires a fully dynamic
algorithm that can handle both insertions and deletions. Using known fully dynamic algorithms
would however be too inefficient and we would like to retain the efficiency of the decremental ES-
tree. We solve this problem by using a monotone ES-tree [7, 10] that can handle certain insertions
of edges. In contrast to previous applications of the monotone ES-tree, this time we want to bound
its running time not in terms of distance from the source, but in terms of the number of hops
used in a weighted graph. For purely decremental ES-trees this can be done by rounding the edge
weights, a technique that has already been used in the context of dynamic shortest paths algorithm
before [2, 15, 3]. In the following we show that the rounding also works for the monotone ES-tree
with the hop set H.

We round every weight of an edge in H up to a multiple of ϕ = ε
√
n/p. Thus, instead of using

the hop set H in which every edge (u, v) has weight w(u, v), we use the hop set H ′ containing the
same edges as H in which every edge (u, v) has weight w′(u, v) = dw(u, v)/ϕe · ϕ. This gives an
additive error of ϕ for every edge we use on the path from s to t. We would like to argue that due
to the hop reduction there are at most pdistG(u, s)/

√
n ≤ p

√
n such edges and thus the error can

be converted into a multiplicative error of ε. Again, this would be simple to argue in the static
setting, but we have to make sure that this is also the case for the monotone ES-tree.

Running Time The rounding makes maintaining the monotone ES-tree more efficient in the fol-
lowing sense. Maintaining a monotone ES-tree [7] on H up to distance R with a multiplicative
approximation of α and an additive approximation of β would take time O(E(H)(αR+β)+W(H)),
where E(H) is the number of edges ever contained in H and W(H) is the number of weight in-
creases of edges in H. As the maximum distance of a node from s in G is n, we would have to
set R = n. However, if we run the algorithm on H ′ we can maintain the monotone ES-tree up to
a smaller depth. As all edge weights in H ′ are multiples of ϕ, scaling them down by dividing by
ϕ yields integer weights again. On this scaled-down version of the graph, we get a more efficient
running time of O(E(H)(αn + β)/ϕ +W(H)) = O(pE(H)(αn + β)/(ε

√
n) +W(H)). Remember

that E(H) = O(n1+o(1)) by Lemma 3.1. Furthermore we have the bound W(H) ≤ E(H)r(p−1) as
r(p−1) is the maximum edge weight we use. Since r(p−1) ≤ n1/2+o(1) we get W(H) ≤ O(n1.5+o(1)).
Using α = (1 + ε) and β = β(0) ≤ n1/2+o(1), the approximation guarantee we will obtain below, we
get total update time of O(n1.5+o(1)) for the monotone ES-tree.

Approximation Guarantee We now argue about the approximation guarantee of the monotone
ES-tree using only the edges of H ′. For every node u, let `(u; s) denote the level of a node u in the
monotone ES-tree with root s.

Without the rounding a similar analysis to the one we gave in [10] would show that `(u; s) ≤
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(1 + ε) distG(u, s) + β(0) ≤ (1 + ε) distG(u, s) + n1/2+o(1). We will show that in the rounded graph
we have `(u; s) ≤ (1 + ε) distG(u, s) + β(0) + ϕpdistG(u, s)/

√
n, where p distG(u, s)/

√
n bounds the

number of edges from H ′ we use, each adding an error of ϕ. To prove this we will use an inductive
argument that needs an explicit upper bound on the number of hops on the path to s in H ′ for
every node u. Intuitively, the number of hops used on the path from a node u to s should depend
on the distance from u to s and on the priority of u. If, for example, the distance from u to s is

√
n

and u has priority i, the analysis from Section 3.2 suggests that the number of edges needed to go
from u to s in H ′ is p− i. It turns out that the following estimate of the hop count works:

h(u, i) =

{
0 if u = s

p ·
⌈

max(distG(u,s)−r(i),0)√
n

⌉
+ p− i otherwise

.

Lemma 3.3. For every node u of priority i we have the following bound on the level of u in the
monotone ES-tree on H ′ with root s:

`(u; s) ≤ (1 + ε) distG(u, s) + β(i) + h(u, i) · ϕ .

Proof. The first case is that `(u; s) ≤ `(v; s) + w′(u, v) for every neighbor v of u, where w′(u, v) is
the weight of the edge (u, v′) after the rounding. If this is not the case, i.e., if there is a neighbor v
of u such that `(u; s) > `(v; s) + w′(u, v), then we know by properties of the monotone ES-tree [7]
that the edge (u, v) has been inserted at some previous point in time and since then the level of u
has not changed. As the desired inequality was fulfilled for u at that time, it is still fulfilled right
now. The more involved case is when `(u; s) ≤ `(v; s) +w′(u, v) for every neighbor v of u, which we
analyze in the following.

Let v be the node on the shortest path from u to s in G that is at distance r(i) to u. We separately
analyze the two cases (u, v) ∈ H and (u, v) /∈ H. In the first case, we further distinguish whether
distG(u, s) ≤ r(i) or distG(u, s) > r(i). If distG(u, s) ≤ r(i), then v = s and it is straightforward
to show that `(u; s) ≤ distG(u, s) + ϕ, which immediately implies `(u; s) ≤ (1 + ε) distG(u, s) +
β(i) + h(u, i)ϕ. If `(u; s) ≤ distG(u, s) + ϕ we apply the induction hypothesis on v, which gives
`(v; s) ≤ (1 + ε) distG(v, s) + β(j) + h(v, j)ϕ. Furthermore we know that `(u; s) ≤ `(v; s) + w′(u, v)
since v is a neighbor of u using the edges of the hop set. Remember also that w′(u, v) ≤ w(u, v) +ϕ
due to the rounding. Following similar arguments as in [10], we get

`(u; s) ≤ `(v; s) + w′(u, v)

≤ `(v; s) + w(u, v) + ϕ

= `(v; s) + distG(u, v) + ϕ

≤ (1 + ε) distG(v, s) + β(j) + h(v, j)ϕ+ distG(u, v) + ϕ

≤ (1 + ε) distG(v, s) + β(0) + distG(u, v) + (h(v, j) + 1)ϕ

= (1 + ε) distG(v, s) + β(i) + εr(i) + distG(u, v) + (h(v, j) + 1)ϕ

= (1 + ε) distG(v, s) + β(i) + εdistG(u, v) + distG(u, v) + (h(v, j) + 1)ϕ

= (1 + ε) distG(u, s) + β(i) + (h(v, j) + 1)ϕ .

Here we have used the fact that β(0) = β(i) + εr(i). We omit the straightforward verification of the
inequality h(v, j) + 1 ≤ h(u, i) and conclude that `(u; s) ≤ (1 + ε) distG(u, s) +β(i) +h(u, i)ϕ in this
case.

Consider now the case (u, v) /∈ H. By Lemma 3.2 we know that there is an edge (u, v′) to a
node v′ of priority j′ ≥ i+ 1 such that distG(u, v′) ≤ 2j

′−i−13r(i). Let us first argue about the case

10



j′ = i+ 1 where distG(u, v′) ≤ 3r(i).

`(u; s) ≤ `(v′; s) + w′(u, v′)

≤ `(v; s) + w(u, v′) + ϕ

= `(v; s) + distG(u, v′) + ϕ

≤ `(v; s) + 3r(i) + ϕ

≤ (1 + ε) distG(v′, s) + β(j′) + h(v′, j′)ϕ+ 3r(i) + ϕ

≤ (1 + ε) distG(u, s) + (1 + ε) distG(u, v′) + β(j′) + 3r(i) + (h(v′, j′) + 1)ϕ

≤ (1 + ε) distG(u, s) + 6r(i) + 3r(i) + β(j′) + (h(v′, j′) + 1)ϕ

= (1 + ε) distG(u, s) + 9r(i) + β(j′) + (h(v′, j′) + 1)ϕ

= (1 + ε) distG(u, s) + 9r(i) + β(i+1) + (h(v′, i+ 1) + 1)ϕ

= (1 + ε) distG(u, s) + β(i) + (h(v′, i+ 1) + 1)ϕ

Here we have used the fact that β(i) = 9r(i) +β(i+1). Again we omit the straightforward verification
of the inequality h(v′, i + 1) + 1 ≤ h(u, i).2 In general, if v′ has priority j′ ≥ i + 1 and we know
that distG(u, v′) ≤ 2j

′−i−13r(i), the same argument requires us to verify the inequality 2j
′−i−19r(i) +

β(j′) ≤ β(i). This is equivalent to 2j
′−i−1r(i) ≤

∑
i≤i′≤j−1 r

(i′) and holds by the exponential growth
of the r(i)’s. Thus, we have proved the inequality `(u; s) ≤ (1 + ε) distG(u, s) + β(i) + h(u, i)ϕ.

Obtaining (1 + ε)-approximation Finally, we explain how to obtain the (1 + ε)-approximation.
In Lemma 3.3 we showed that the monotone ES-tree with root s provides, for every node u, an
approximation guarantee of `(u; s) ≤ (1 + ε) distG(u, s) +β(i) +h(u, i)ϕ, where i is the priority of u.
Note that β(i) ≤ β(0) and h(u, i) ≤ pdistG(u, s)/

√
n. Thus, h(u, i)ϕ ≤ εdistG(u, s) since we have

defined ϕ = ε
√
n/p. Furthermore, we have assumed that distG(u, s) ≥ β(0)/ε, which is equivalent

to β(0) ≤ εdistG(u, s). Thus, in total we get `(u; s) ≤ (1 + ε) distG(u, s) + β(0) + h(u, i)ϕ ≤
(1 + 3ε) distG(u, s). We now run the whole algorithm with ε′ = ε/3 to get the desired (1 + ε)-
approximation. Since we have assumed that ε is a constant, this does not affect the bound of
O(mn1/2+o(1)) on the total update time that we have argued for all parts of our algorithm.

4 Preliminaries

4.1 Notation and Basic Lemmas

We are given an undirected graph G with positive integer edge weights in the range from 1 to W ,
for some parameter W . The graph undergoes a sequence of updates, which might be edge deletions
or edge weight increases. This is called the decremental setting. We denote by V the set of nodes
of G and by E the set of edges of G before the first edge deletion. We set n = |V | and m = |E|.

For every graph H, we denote the weight of an edge (u, v) in H by wH(u, v). The distance
distH(u, v) between a node x and a node y is the weight of the shortest path, i.e., the minimum-
weight path, between u and v inH. If there is no path between x and y inH, we set distH(x, y) =∞.
When we refer to the current version of G (after the last update), we usually omit the index G.
We say that a distance estimate δ(u, v) is an (α, β)-approximation of the true distance dist(u, v)
if dist(u, v) ≤ δ(u, v) ≤ α dist(u, v) + β, i.e., δ(u, v) never underestimates the true distance and

2Technical note: To verify h(v′, i+1)+1 ≤ h(u, i) we need the inequality 2r(i) ≤ r(i+1), which holds by our choice
of the r(i)’s.
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overestimates it with a multiplicative error of at most α and an additive error of at most β. If there
is no additive error, we simply say α-approximation instead of (α, 0)-approximation.

In our algorithms we will use graphs that do not only undergo edge deletions and edge weight
increases, but also edge insertions. For such a graph H, we denote by E(H) the number of edges
ever contained in H, i.e., the number of edges contained in H before any deletion or insertion plus
the number of inserted edges. We denote by W(H) the number of edge weight increases in H.
Similarly, for a set of edges F , we denote by E(F ) the number of edges ever contained in F and
by W(F ) the number of edge weight increases in F . For every set of nodes U , we denote by H|U
the subgraph of H induced by the nodes in U , i.e., H|U contains all edges (u, v) such that (u, v) is
contained in H and u and v are both contained in U . Similarly, for every set of edges F and every
set of nodes U we denote by F |U the subset of F induced by U .

The central data structure in decremental algorithms for exact and approximate shortest paths
is the Even-Shiloach tree (short: ES-tree). This data structure maintains a shortest paths tree from
a root node up to a given depth D.

Lemma 4.1 ([6, 11, 13]). There is a data structure called ES-tree that, given a weighted directed
graph undergoing deletions and edge weight increases, a root node s, and a depth parameter D,
maintains, for every node v a value δ(v, s) such that δ(v, s) = dist(v, s) if dist(v, s) ≤ D and
δ(v, s) =∞ if dist(v, s) > D. It has constant query time and a total update time of O(mD).

Recent approaches for solving approximate decremental SSSP and APSP use special graphs
called emulators. An (α, β)-emulator H of a graph G is a graph containing the nodes of G such that
distG(u, v) ≤ distH(u, v) ≤ α distG(u, v) + β for all nodes u and v.3 Maintaining exact distances
on H provides an (α, β)-approximation of distances in G. As good emulators are sparser than
the original graph this is usually more efficient than maintaining exact distances on G. However,
the edges of H also have to maintained while G undergoes updates. For unweighted, undirected
graphs undergoing edge deletions, the emulator of Thorup and Zwick, which provides a relatively
good approximation, can be maintained quite efficiently. However the definition of this emulator
requires the occasional insertion of edges into the emulator. Thus, it is not possible to run a purely
decremental algorithm on top of it.

There have been approaches to design algorithms that mimic the behavior of the classic ES-
tree when run on an emulator that undergoes insertions. The first approach by Bernstein and
Roditty [4] extends the ES-tree to a fully dynamic algorithm and analyzes the additional work
incurred by the insertions. The second approach was introduced by us in [7] and is called monotone
ES-tree. It basically ignores insertions of edges into H and never decreases the distance estimate
it maintains. However, this algorithm does not provide an (α, β)-approximation on any (α, β)-
approximate emulator as we need to exploit the structure of the emulator. In [10] we gave an
analysis of the monotone ES-tree when run on the Thorup-Zwick emulator and in the current paper
we extend this analysis for our new algorithms. The running time of the monotone ES-tree as
analyzed in [7] is as follows.

Lemma 4.2. For every D ≥ 1, the total update time of a monotone ES-tree up to depth (αD + β)
on a graph H undergoing edge deletions, edge insertions, and edge weight increases is O(E(H)(αD+
β) +W(H)).

Our algorithms will heavily use randomization. It is well-known, and exploited by many other
algorithms for dynamic (approximate) shortest paths and reachability, that by sampling a set of
nodes with a sufficiently large probability we can guarantee that certain sets of nodes contain at

3For the related notion of a spanner we additionally have to require that H is a subgraph of G.
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least one of the sampled nodes whp. To the best of our knowledge, the first use of this technique in
graph algorithms goes back to Ullman and Yannakakis [25].

Lemma 4.3. Let T be a set of size t and let S1, S2, . . . , Sl be subsets of T of size at least s. Let U
be a subset of T that was obtained by choosing each element of T independently with probability
p = (a ln lt)/s, where a is a constant. Then, for every 1 ≤ i ≤ l, the set Si contains a node of U
with high probability (whp), i.e. probability at least 1− 1/ta, and the size of U is O((t log (lt))/s) in
expectation.

4.2 Definition of Variables Used by Our Algorithm

In the following we define how to set the values of the variables used by our algorithm in Section 5.
The right choice of these values is crucial for our approach to work. The algorithm has two param-
eters. The first one is the approximation parameter ε′ which is restricted to 0 < ε′ ≤ 1. The second
one is the multiplier γ which is restricted to γ ≥ 1. Given ε′, the goal of our algorithm is to provide
a (1 + ε′)-approximation for all distances up to nγ. In unweighted graphs we can set γ = 1 and in
weighted graphs we will use a reduction that sets γ = O(1/ε′).

The first value we define for our algorithm is

ε =
ε′

1 + 4
√

log n
.

We will use ε as our “basic unit of multiplicative error”. In particular, the multiplicative error will
sum up to at most 1 + (1 + 4

√
log n)ε which results in 1 + ε′.

Our algorithm uses q − 2 layers where

q =

√
log n

2
√

log
(

4·44
ε

)
which is O(

√
log n). In the k-th layer (where 0 ≤ k ≤ q − 2), the algorithm will provide (αk, βk)-

approximate single-source shortest paths for the distance range from ∆k to ∆k+2. We set

αk = 1 + 4kε

and explain how to set βk below, but in particular we set set α0 = 1 and β0 = 0. Thus, for k = 0
we provide exact distances. Note that αk increases with k (and βk will also show this behavior).
The distance range is defined by

∆k = nk/qγ

Note ∆k increases with k and ∆q = nγ.
To achieve the desired approximation guarantee in every layer, our algorithm constructs and

maintains in the k-th layer (where 1 ≤ k ≤ q− 2) a certain set of edges Ek. For this purpose it will
assign to every node an integer from 0 to p− 1 called the priority of the node. We set

p =

√
log n√

log
(

4·44
ε

) .
Note that this definition guarantees that p = 2q and p = O(

√
log n). We now define a few more

values that are needed in the algorithm for constructing and maintaining Ek. We set

r
(0)
k = ∆k .

13



To define r(i)
k for every for every 1 ≤ i ≤ p− 1, we also need two auxiliary variables s(i,i)

k and w(i,i)
k

for every 0 ≤ i ≤ p− 1. For every 1 ≤ i ≤ p− 1, we set

r
(i)
k = (4/ε)

∑
0≤i′≤i−1

w
(i′,i′+1)
k + βk−1/ε

where βk−1 is the additive term in the approximation provided by the (k− 1)-th layer, a value that
we will define below. For every 0 ≤ i ≤ p− 1 we set

s
(i,i+1)
k = αk−1r

(i)
k + βk−1

and
w

(i,i+1)
k = αk−1(αk−1(r

(i)
k + αk−1(r

(i)
k + s

(i,i+1)
k ) + βk−1) + βk−1) + βk−1 .

Note that these three definitions are not circular since for defining r(i)
k for the k-th layer we need

βk−1 from the previous layer and as r(0)
k = ∆k we can calculate all values in the order r(0)

k , s(0,1)
k ,

w
(0,1)
k , r(1)

k , and so on. Furthermore, r(i)
k increases as the priority i increases, i.e., r(i)

k ≤ r
(i+1)
k for all

0 ≤ i ≤ p− 2 and thus r(i)
k ≥ ∆k for all 0 ≤ i ≤ p− 1. We will show that, for every 0 ≤ i ≤ p− 1,

r
(i)
k ≤ (c/ε)2i∆k for some constant c which will imply r(p−1)

k ≤ n1/q∆k = n(k+1)/qγ. Intuitively, r(i)
k

(for 1 ≤ i ≤ p − 1) tells us for a node v of priority i up to which weight the algorithm will try
to replace paths starting from v by a single edge in Ek. We will show that the choice r(0)

k = ∆k

results in a “hop reduction” that replaces paths of weight ∆k by a paths with O(p) edges and still
guarantees an (αk, βk)-approximation.

We also set, for every 0 ≤ i ≤ p− 1

s
(i,i)
k = 0

and, for all 0 ≤ i < j < p− 1,
s

(i,j)
k =

∑
i≤i′<j

s
(i′,i′+1)
k .

Remember that we have already defined s(i,i+1)
k = αk−1r

(i)
k + βk−1 above. We will use s(i,j)

k as an
estimate of the true distance of a node u of priority i to the node v of priority j > i “dominating”
u. Furthermore, we set, for every 0 ≤ i ≤ p− 1,

w
(i)
k = αk−1r

(i)
k + βk−1

and, for all 0 ≤ i < j ≤ p− 1

w
(i,j)
k = αk−1(αk−1(r

(i)
k + αk−1(r

(i)
k + s

(i,j)
k ) + βk−1) + βk−1) + βk−1

Note that the definition of w(i,i+1)
k we gave above exactly matches the definition here. These two

values bound the weights of edges in Ek. We will show that w(i,j)
k ≤ rjk.

Finally, we set
β

(p−1)
k = βk−1

and, for every 0 ≤ i ≤ p− 2,

β
(i)
k = β

(i+1)
k + 4w

(i,i+1)
k = 4

∑
i≤i′≤p−2

w
(i′,i′+1)
k .
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The value β(i)
k tells us the magnitude of the additive error of a node of priority i in the k-th layer.

Note that β(i)
k increases as the priority i decreases, i.e., β(i)

k ≥ β
(i+1)
k for all 0 ≤ i ≤ p− 2 and thus

β
(i)
k ≥ β

(0)
k for all 0 ≤ i ≤ p− 1. We set βk, the additive approximation guarantee in layer k to

βk = β
(0)
k .

Thus, βk is set to the worst value β(i)
k , namely the one for i = 0. We will show that βk ≤ (c/ε)2p−1∆k

for some constant c. Observe that

r
(i)
k = (β

(0)
k + βk−1 − β

(i)
k )/ε .

4.3 Bounds on Variables Used by Our Algorithm

In the following we state several equations and inequalities that we will later on, in Section 5, need
prove the correctness of our main algorithm and bound its running time.

Lemma 4.4. For all 0 ≤ k ≤ q − 2, αk ≤ 1 + ε′ ≤ 2.

Proof.

αk = 1 + 4kε ≤ 1 + 4qε ≤ 1 +
√

log nε = 1 +

√
log nε′

1 + 4
√

log n
≤ 1 + ε′ ≤ 2

Lemma 4.5. q ≤ p ≤
√

log n

Proof. Since ε′ ≤ 1, we have
4 · 44

ε
≥ 2 .

It follows that
log

(
4 · 44

ε

)
≥ 1 .

and √
log

(
4 · 44

ε

)
≥ 1 .

By multiplying both sides with log n we get

q =
p

2
≤ p =

√
log n√

log
(

4·44
ε

) ≤√log n .

Lemma 4.6. (44(4/ε))p = n1/p

Proof. We only need to simplify both expressions as follows:

n1/p = 21/p·logn = 2

√
log( 4·44

ε )
√
logn

·logn
= 2

√
log( 4·44

ε )·
√

logn

(44(4/ε))p ≤
(

4 · 44

ε

)p
= 2p·log ( 4·44

ε ) = 2

√
logn√

log( 4·44
ε )
·log ( 4·44

ε )
= 2

√
logn·

√
log ( 4·44

ε )
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Lemma 4.7. For every 1 ≤ k ≤ q − 2 and all 0 ≤ i < j ≤ p− 1, w(i,j)
k ≤

∑
i≤i′≤j−1w

(i′,i′+1)
k .

Proof. We simply plug in the definition of w(i,j)
k :

w
(i,j)
k = αk−1(αk−1(r

(i)
k + αk−1(r

(i)
k + s

(i,j)
k ) + βk−1) + βk−1) + βk−1

= αk−1

αk−1

r(i)
k + αk−1

r(i)
k +

∑
i≤i′<j

s
(i′,i′+1)
k

+ βk−1

+ βk−1

+ βk−1

≤
∑
i≤i′<j

(αk−1(αk−1(r
(i′)
k + αk−1(r

(i′)
k + s

(i′,i′+1)
k ) + βk−1) + βk−1) + βk−1)

Lemma 4.8. For every 1 ≤ k ≤ q − 2 and all 0 ≤ i < j ≤ p− 1, w(i,j)
k + r

(i)
k ≤ r

(j)
k .

By Lemma 4.7 we have w(i,j)
k ≤

∑
i≤i′≤j−1w

(i′,i′+1)
k . We therefore get the following chain of

inequalities:

w
(i,j)
k + r

(i)
k ≤

∑
i≤i′≤j−1

w
(i′,i′+1)
k + r

(i)
k

≤
∑

i≤i′≤j−1

w
(i′,i′+1)
k + w

(i,i+1)
k

≤
∑

i≤i′≤j−1

w
(i′,i′+1)
k +

∑
i≤i′≤j−1

w
(i′,i′+1)
k

= 2
∑

i≤i′≤j−1

w
(i′,i′+1)
k

≤ (4/ε)
∑

i≤i′≤j−1

w
(i′,i′+1)
k + βk−1/ε = r

(j)
k .

Lemma 4.9. For every 1 ≤ k ≤ q − 2 and all 0 ≤ i < j ≤ p− 1, β(j)
k + 4w

(i,j)
k ≤ β(i)

k .

Proof. By Lemma 4.7 we have w(i,j)
k ≤

∑
i≤i′≤j−1w

(i′,i′+1)
k . Together with the definitions of β(i)

k

and β(j)
k we get

β
(j)
k + 4w

(i,j)
k = 4

∑
j≤i′≤p−2

w
(i′,i′+1)
k + 4w

(i,j)
k

≤ 4
∑

j≤i′≤p−2

w
(i′,i′+1)
k + 4

∑
i≤i′≤j−1

w
(i′,i′+1)
k

= 4
∑

i≤i′≤p−2

w
(i′,i′+1)
k = β

(i)
k .

Lemma 4.10. For every 1 ≤ k ≤ q − 2 and every 0 ≤ i ≤ p− 1,

s
(i,i+1)
k ≤ 2r

(i)
k + βk−1

and
w

(i,i+1)
k ≤ 28r

(i)
k + 15βk−1 .
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Proof. Remember that αk−1 ≤ 2. Therefore we get

s
(i,i+1)
k = αk−1r

(i)
k + βk−1 ≤ 2r

(i)
k + βk−1

and

w
(i,i+1)
k = αk−1(αk−1(r

(i)
k + αk−1(r

(i)
k + s

(i,i+1)
k ) + βk−1) + βk−1) + βk−1

≤ 2(2(r
(i)
k + 2(r

(i)
k + s

(i,i+1)
k ) + βk−1) + βk−1) + βk−1

≤ 2(2(r
(i)
k + 2(r

(i)
k + 2r

(i)
k + βk−1) + βk−1) + βk−1) + βk−1

= 2(2(7r
(i)
k + 3βk−1) + βk−1) + βk−1

= 28r
(i)
k + 15βk−1 .

Lemma 4.11. For every 1 ≤ k ≤ q − 2, the following inequalities hold:

• r(i)
k ≤ (44(4/ε))2i∆k,

• βk ≤ (44(4/ε))2p−1∆k,

• αk−1r
(p−1)
k + βk−1 ≤ ∆k+1, and

• βk/ε ≤ ∆k+1.

Proof. The proof is by induction on k. We first prove the inequality r(i)
k ≤ (44(4/ε))2i∆k for every

0 ≤ i ≤ p − 1. If k = 1, then trivially r
(i)
k ≥ βk−1/ε because βk−1 = 0. If k > 1, then by the

induction hypothesis we have ∆k ≥ βk−1/ε and since r(i)
k ≥ ∆k we get r(i)

k ≥ βk−1/ε. Therefore we
get

r
(i)
k = (4/ε)

∑
0≤i′≤i−1

w
(i′,i′+1)
k + βk−1/ε

≤ (4/ε)
∑

0≤i′≤i−1

(28r
(i)
k + 15βk−1) + βk−1/ε

≤ (4/ε)
∑

0≤i′≤i−1

(28r
(i)
k + 15βk−1) + (4/ε)βk−1

≤ (4/ε)
∑

0≤i′≤i−1

(28r
(i)
k + 16βk−1)

≤ (4/ε)
∑

0≤i′≤i−1

44r
(i)
k

= (44(4/ε))
∑

0≤i′≤i−1

r
(i)
k

≤ (44(4/ε))
∑

0≤i′≤i−1

(44 + 152/ε)2i′∆k

≤ (44(4/ε))(44(4/ε))2(i−1)+1∆k

= (44(4/ε))2i∆k .
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Now we prove the bound on βk:

βk = β
(0)
k = 4

∑
0≤i≤p−2

r
(i)
k ≤ 4

∑
0≤i≤p−2

(44(4/ε))2i∆k

≤ 4(44(4/ε))2(p−1)∆k

≤ (44(4/ε))2p−1∆k .

Finally we prove the bounds on βk/ε and αk−1r
(p−1)
k + βk. As shown above we have βk =

(44(4/ε))2p−1∆k and by Lemma 4.6 we have (44(4/ε))p ≤ n1/p. Therefore we get

βk/ε ≤
1

ε
(44(4/ε))2p−1∆k

≤ (44(4/ε))2p∆k

= ((44(4/ε))p)2 ∆k

≤
(
n1/p

)2
∆k

= n2/p∆k

= n1/qnk/qγ

= n(k+1)/qγ = ∆k+1 .

Similarly we get

αk−1r
(p−1)
k + βk−1 ≤ 2r

(p−1)
k + ∆k

≤ 2(44(4/ε))2(p−1)∆k + ∆k

≤ (44(4/ε))2p∆k

≤ n2/p∆k

= n1/q∆k

= ∆k+1

5 Maintaining the Hop Set

We now explain our main algorithm which uses q − 2 layers and guarantees that in the k-th layer
we can provide (αk, βk)-approximate single-source shortest paths for distances in the range from ∆k

to ∆k+2. In the range from ∆k+1 to ∆k+2 we can even provide (αk, 0)-approximate single-source
shortest paths, i.e., without any additive error. This approximation guarantee can be achieved by
running a monotone ES-tree on the graph Gk which contains all edges of G and all edges of a hop
set Ek constructed by our algorithm. We need a hop set Ek such that for every path P in G of
weight at most ∆k+2, there is a path P ′ in Gk that provides an (αk, βk)-approximation of P and
has a relatively small number of edges (“hops”). This property will be implied by a certain property
of the edges contained in Ek and allows us to show that the monotone ES-tree provides an (αk, βk)-
approximation of all distances in the range from ∆k to ∆k+2 when we restrict it to a relatively small
depth after some rounding. Since the depth parameter shows up linearly in the running time of the
monotone ES-tree, a small depth is necessary to obtain an almost linear running time.
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An important part of our algorithm are the procedures for constructing and maintaining the hop
set Ek. In particular, the edges of Ek can be maintained by using several (αk−1, βk−1)-approximate
SSSP data structures from the previous layer. As we may only spend almost linear time for main-
taining Ek, we need a careful analysis of the running time of the monotone ES-tree on Gk as well
as the number of edges ever contained in Ek−1, which in turn influences the running time of the
monotone ES-tree on Ek.

Thus, our algorithm consists of two parts as stated in the following two lemmas.

Lemma 5.1. For every 1 ≤ k ≤ q−2, there is an algorithm for maintaining a set of weighted edges
Ek such that:

1. Every node v ∈ V is assigned a number from 0 to p− 1, called the priority of v.

2. For every node u of priority i, Ek contains either

• for every node v such that dist(u, v) ≤ r
(i)
k an edge (u, v) of weight wk(u, v) ≤ w

(i)
k with

dist(u, v) ≤ wk(u, v) ≤ αk−1 dist(u, v) + βk−1 or

• an edge (u, v′) to a node v′ of priority j′ > i of weight wk(u, v′) ≤ w
(i,j′)
k with dist(u, v′) ≤

wk(u, v
′) ≤ αk−1 dist(u, v′) + βk−1.

For every edge (u, v) contained in Ek we have dist(u, v) ≤ wk(u, v) ≤ αk−1 dist(u, v) + βk−1.

3. For every subset Ek|U of Ek induced by a set of nodes U , the number of edges ever contained
in Ek|U is E(Ek|U) = Õ(|U |pm1/p) in expectation.

4. The total time needed for maintaining Ek is Õ(kp3m1+2/pn2/qγ/ε) in expectation.

Lemma 5.2. Let 0 ≤ k ≤ q − 2, let D ≤ ∆k+2, let s be a source node and let U and F be the
following sets of nodes and edges, respectively:

U = {v ∈ V | dist(v, s) ≤ D}
F = {(u, v) ∈ E | dist(u, s) ≤ D or dist(v, s) ≤ D} .

Given an algorithm for maintaining Ek (as in Lemma 5.1), we can maintain a distance estimate
`(v; s) for every node v that satisfies

• `(v; s) ≥ dist(s, v)

• If ∆k ≤ dist(s, v) ≤ D, then `(v; s) ≤ αk dist(s, v) + βk

The total update time is Õ((|F | + p|U |m1/p)pn2/qγ/ε), excluding the time needed for maintaining
Ek.

Note that in Lemma 5.2 we can also bound the sizes of F and U by m and n, respectively and
then obtain a running time of Õ((m + pnm1/p)pn2/qγ/ε). Furthermore, Ek (for 1 ≤ k ≤ q − 2) is
a set of edges that undergoes edge deletions, edge insertions, and edge weight increases. Given a
constant 0 < ε′ ≤ 1 and a parameter α ≥ 1, Ek is a restricted hop set in the following sense (as
follows from the results in Section 5.2): Let Gk be the graph that contains all edges of G and Ek.
Then for all nodes u and v such that ∆k+1 ≤ dist(u, v) ≤ ∆k+2 there is a path from u to v in Gk
of weight at most (1 + ε′) whose number of edges (“hops”) is at most (p+ 1)(∆2 + 2) = O(no(1)γ).

Our strategy for proving Lemmas 5.1 and 5.2 is to prove them simultaneously by induction on
k. The induction base is k = 0, for which we can show that Lemma 5.2 holds by using the classic
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ES-tree. The induction step for 1 ≤ k ≤ q−2 works as follows. We will show that Lemma 5.1 holds
for k assuming that Lemma 5.2 holds for k − 1. Similarly, we will show that Lemma 5.2 holds for
k assuming that Lemma 5.1 holds for k. Sections 5.1 and 5.2 are devoted to proving the first part
and the second part of this induction step, respectively.

5.1 Maintaining Restricted Hop Set

In the following we prove Lemma 5.1 for a fixed value of k (where 1 ≤ k ≤ q − 2) under the
assumption that Lemma 5.2 and Lemma 5.1 itself hold for k − 1. Thus, we show how to maintain
the hop set Ek using (αk−1, βk−1)-approximate SSSP data structures for distances up to ∆k+1.

The algorithm for maintaining Ek is as follows:

1. We set A0 = V and Ap = ∅ and for 1 ≤ i ≤ p− 1, Ai is a set of nodes constructed as follows:

(a) Sample a set of edges from E with probability (a lnn)/mi/p (for a large enough constant
a) and add all endpoints of sampled edges to Ai

(b) Sample a set of nodes from V with probability (a lnn)/ni/p (for a large enough constant
a) and add all sampled nodes to Ai.

(c) Sample a set of nodes from Ai−1 with probability (a lnn)/m1/p (for a large enough
constant a) and add all sampled nodes to Ai.

The number of nodes in Ai is Õ(m1−i/p) in expectation. The priority of a node v is the
maximum i such that v ∈ Ai. Note that Ai+1 might not be a subset of Ai.

2. For 0 ≤ j ≤ p − 1 we maintain a monotone ES-tree up to depth αk−1r
(p−1)
k + βk−1 from an

artificial source node sj that has an edge of weight 0 to every node in Aj . The level of a node u
in this tree is denoted by `(u;Aj). Note that dist(u,Aj) ≤ `(u;Aj) ≤ αk−1 dist(u,Aj) + βk−1

for every node u with dist(u,Aj) ≤ r(p−1)
k .4

For every node u (of priority i) we maintain

• dom(u) which is the maximum j such that i ≤ j ≤ p− 1 and5

`(u;Aj) ≤ αk−1(r
(i)
k + αk−1(r

(i)
k + s

(i,j)
k ) + βk−1) + βk−1

6

and

• for every i′ ≥ i, cov(u, i′) which is the maximum j such that i ≤ j ≤ p− 1 and7

`(u;Aj) ≤ αk−1(r
(i′)
k + s

(i′,j)
k ) + βk−1 .

8

4For every 0 ≤ i ≤ p− 1 we define dist(u,Ai) = minv∈Ai dist(u, v).
5The notation dom(u) comes from “dominates” and intuitively every inactive node is “dominated” by a nearby

node of higher priority.
6By Lemma 4.8 we have αk−1(r

(i)
k + s

(i,j)
k ) + βk−1) + βk−1 ≤ w

(i,j)
k ≤ r

(j)
k ≤ αk−1r

(p−1)
k + βk−1, the depth of the

ES-tree of Aj .
7The notation cov(u, j) comes from “covers” and intuitively, for every j, a node has edges to nodes of the highest

priority by which it is “j-covered”.
8If j = i′, then s(i

′,j)
k = 0 and therefore αk−1(r

(i′)
k + s

(i′,j)
k ) + βk−1 = αk−1r

(j)
k + βk−1, the depth of the ES-tree of

Aj . If j > i, then by Lemma 4.8 αk−1(r
(i′)
k + s

(i′,j)
k ) + βk−1 ≤ w

(i,j)
k ≤ r

(j)
k ≤ αk−1r

(p−1)
k + βk−1, the depth of the

ES-tree of Aj .
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Note that dom(u) and cov(u, i′) (for every i′ ≥ i) are non-increasing over the course of the
algorithm since the levels in monotone ES-trees are non-decreasing. Furthermore, dom(u) ≥ i
and cov(u, i′) ≥ i (for every i′ ≥ i).

We say that a node u of priority i < p− 1 is active if `(u;Ai+1) > s
(i,i+1)
k . Nodes of priority

p − 1 (the highest priority) are always active. Note that when a node is active it remains
active. Furthermore, if u has priority i, then dom(u) = i implies that u is active.

3. For every active node v of priority i, we maintain a monotone ES-tree up to depth αk−1r
(i)
k +

βk−1. The level of a node u in this tree is denoted by `(u; v). Note that dist(u, v) ≤ `(u; v) ≤
αk−1 dist(u, v) + βk−1 for every node u with dist(u, v) ≤ r(i)

k .

4. For every node u of priority i, the edge (u, v) is contained in Ek iff v is active and

(a) there is some j > i such that v ∈ Aj , j ≥ dom(u), and

`(u; v) ≤ w(i,j)
k = αk−1(αk−1(r

(i)
k + αk−1(r

(i)
k + s

(i,j)
k ) + βk−1) + βk−1) + βk−1

9

or
(b) there is some j ≥ i such that v ∈ Aj , j ≥ cov(u, j), and

`(u; v) ≤ w(j)
k = αk−1r

(j)
k + βk−1 .

10

In both cases, we set the weight of the edge (u, v) in Ek to wk(u, v) = `(u; v). In the first
case we have wk(u, v) ≤ w

(i,j)
k and in the second case we have wk(u, v) ≤ w

(j)
k . Furthermore

we have dist(u, v) ≤ wk(u, v) ≤ αk−1 dist(u, v) + βk−1 for every edge (u, v) in Ek due to
wk(u, v) = `(u; v). Edge deletions in G might cause edge deletions, edge weight increases, and
edge insertions in Ek.

In the following we will show that this algorithm for maintaining Ek fulfills the specifications of
Lemma 5.1. First, in Section 5.1.1 we show that the edges in Ek fulfill the desired structural property,
which we will use in Section 5.2 prove the approximation guarantee. Second, in Section 5.1.2 we
show that Ek is sparse, i.e., we can bound the number of edges ever contained in Ek over the
course of the algorithm. Third, in Section 5.1.3 we analyze the running time of our algorithm for
maintaining Ek. Before we give these proofs, we provide a useful lemma that allows us for every
node to find a nearby active node.

Lemma 5.3 (Domination chain). For every node u of priority i there is an active node v ∈ Aj for
some j ≥ i such that dist(u, v) ≤ s(i,j)

k .

Proof. The proof is by induction on i. If u itself is active, then the claim is certainly true. If
i = p − 1, then u is active by definition and the claim is true. If i < p − 1 and u is inactive, then
`(u;Ai+1) ≤ s

(i,i+1)
k by the definition of being active. Since dist(u,Ai+1) ≤ `(u;Ai+1), there is a

node v ∈ Ai+1 such that dist(u, v) = dist(u;Ai+1) ≤ s(i,i+1)
k . Let j ≥ i+ 1 be the priority of v. By

the induction hypothesis we know that there is an active node v ∈ Aj′ for some j′ ≥ j such that
dist(v, v′) ≤ s(j,j′)

k . By the triangle inequality it follows that

dist(u, v′) ≤ dist(u, v) + dist(v, v′) ≤ s(i,i+1)
k + s

(j,j′)
k ≤ s(i,j)

k + s
(j,j′)
k = s

(i,j′)
k

as desired.
9Note that by Lemma 4.8 we have w(i,j)

k ≤ r
(j)
k ≤ αk−1r

(j)
k + βk−1, the depth of the ES-tree of v.

10Note that r(i)k ≤ r
(j)
k and therefore w(i)

k = αk−1r
(i)
k + βk−1 ≤ αk−1r

(j)
k + βk−1 the depth of the ES-tree of v.
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5.1.1 Structural Property

We first show that Ek has a certain structural property that we need for proving the approximation
guarantee of monotone ES-trees in the shortcut graph containing the edges of Ek (as done in
Section 5.2).

Lemma 5.4. Let u be a node of priority i and let v be a node such that dist(u, v) ≤ r(i)
k . Then Ek

contains either

• for every node v such that dist(u, v) ≤ r
(i)
k an edge (u, v) of weight wk(u, v) ≤ w

(i)
k with

dist(u, v) ≤ wk(u, v) ≤ αk−1 dist(u, v) + βk−1 (if dom(u) = i) or

• an edge (u, v′) to a node v′ ∈ Aj′ for some j′ > i of weight wk(u, v) ≤ w(i,j′)
k with dist(u, v′) ≤

wk(u, v
′) ≤ αk−1 dist(u, v′) + βk−1 (if dom(u) > i).

Proof. Let j denote the priority of v. We distinguish two cases: the first case is that dom(u) = i
and the second case is that dom(u) > i.
Case 1: dom(u) = i

In this case u has to be active because if u were inactive, then `(u;Ai+1) ≤ s(i,i+1)
k , which implies

that dom(u) ≥ i+ 1, contradicting the assumption dom(u) = i. Furthermore it has to be the case
that i ≥ j: Suppose that i < j. Then

`(u;Aj) ≤ αk−1 dist(u,Aj) + βk−1 ≤ αk−1 dist(u, v) + βk−1

≤ αk−1r
(i)
k + βk−1 ≤ αk−1s

(i,i+1)
k + βk−1 ≤ αk−1s

(i,j)
k + βk−1

which implies that dom(u) ≥ j > i, contradicting the assumption dom(u) = i.
We now argue that cov(v, i) = i. Note that if cov(v, i) = i, then Ek contains the edge (v, u) of

weight w(i)
k since u is active, i ≥ j, u ∈ Ai, and `(v;u) ≤ αk−1 dist(v, u) +βk−1 ≤ αk−1r

(i)
k +βk−1 =

w
(i)
k . Note that cov(v, i) ≥ i: since dist(u, v) ≤ r(i)

k and u ∈ Ai, we have `(v;Ai) ≤ αk−1 dist(v,Ai)+

βk−1 ≤ αk−1r
(i)
k + βk−1. If i = p− 1 then cov(v, i) = i. If i < p− 1, then suppose that cov(v, i) > i.

It follows that j′ > i such that `(v;Aj′) ≤ αk−1(r
(i)
k + s

(i,j′)
k ) + βk−1. Since dist(v,Aj′) ≤ `(v;Aj′),

there is some node v′ ∈ Aj′ such that dist(v, v′) = dist(v,Aj′) ≤ αk−1(r
(i)
k + s

(i,j′)
k ) + βk−1. By the

triangle inequality we have

dist(u,Aj′) ≤ dist(u, v′) ≤ dist(u, v) + dist(v, v′) ≤ r(i)
k + αk−1(r

(i)
k + s

(i,j)
k ) + βk−1 .

It follows that

`(u;Aj′) ≤ αk−1 dist(u,Aj′) + βk−1 ≤ αk−1(r
(i)
k + αk−1(r

(i)
k + s

(i,j)
k ) + βk−1) + βk−1

and thus dom(u) ≥ j′ > i, which contradicts the assumption dom(u) = i.
Case 2: dom(u) > i

Set j′ = dom(u). By the definition of dom(u) we have

`(u;Aj′) ≤ αk−1(r
(i)
k + αk−1(r

(i)
k + s

(i,j′)
k ) + βk−1) + βk−1 .

Since dist(u,Aj′) ≤ `(u;Aj′), there is a node v′ ∈ Aj′ such that

dist(u, v′) = dist(u,Aj′) ≤ αk−1(r
(i)
k + αk−1(r

(i)
k + s

(i,j′)
k ) + βk−1) + βk−1 .
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By Lemma 5.3 there is an active node v′′ ∈ Aj′′ for some j′′ ≥ j′ such that dist(v′, v′′) ≤ s
(j′,j′′)
k .

By the triangle inequality we have

dist(u, v′′) ≤ dist(u, v′) + dist(v′, v′′)

≤ αk−1(r
(i)
k + αk−1(r

(i)
k + s

(i,j′)
k ) + βk−1) + βk−1 + s

(j′,j′′)
k

≤ αk−1(r
(i)
k + αk−1(r

(i)
k + s

(i,j′)
k + s

(j′,j′′)
k ) + βk−1) + βk−1

= αk−1(r
(i)
k + αk−1(r

(i)
k + s

(i,j′′)
k ) + βk−1) + βk−1

It follows that

`(u; v′′) ≤ αk−1 dist(u, v′′) + βk−1

≤ αk−1(αk−1(r
(i)
k + αk−1(r

(i)
k + s

(i,j′′)
k ) + βk−1) + βk−1) + βk−1 = w

(i,j′′)
k .

Since j′′ ≥ j′ = dom(u) > i, Ek therefore contains the edge (u, v′′) of weight at most w(i,j′′)
k .

5.1.2 Sparsity

We now show that Ek is sparse, which means that we have to bound E(Ek), the number of edges
ever contained in Ek, when edges are deleted from G. We can show that E(Ek) is Õ(pm1+1/p). This
bound however is not sufficient for our purposes. Instead, we show that for every set U ⊆ V of
nodes there are at most Õ(|U |pm1/p) many edges adjacent to the nodes in U over the whole course
of the algorithm. This also allows us to bound the number of edges ever contained in certain subsets
of Ek. For simplicity we view the edges contained in Ek before the first edge deletion in G as being
inserted into Ek at its initialization.

Lemma 5.5. For every node u of priority i and every i < j ≤ p− 2, during the time interval when
dom(u) ≤ j there will be at most m1/p active nodes v ∈ Aj such that `(u; v) ≤ αk−1(αk−1(r

(i)
k +

αk−1(r
(i)
k + s

(i,j)
k ) + βk−1) + βk−1) + βk−1 whp.

Proof. Remember that dom(u) is non-increasing. Let G′ be the earliest graph in the sequence
of graph generated by edge deletions where dom(u) ≤ j. Define U = {v ∈ Aj | distG′(u, v) ≤
αk−1(αk−1(r

(i)
k + αk−1(r

(i)
k + s

(i,j)
k ) + βk−1) + βk−1) + βk−1}. Suppose that there will be more than

m1/p active nodes v ∈ Aj such that `(u; v) ≤ αk−1(αk−1(r
(i)
k +αk−1(r

(i)
k +s

(i,j)
k )+βk−1)+βk−1)+βk−1

during the time interval when dom(u) ≤ j. Since dist(u, v) ≤ `(u; v) at any time and distG′(u, v) ≤
dist(u, v) as distances are non-decreasing under edge deletions, we have distG′(u, v) ≤ `(u; v) ≤
αk−1(αk−1(r

(i)
k + αk−1(r

(i)
k + s

(i,j)
k ) + βk−1) + βk−1) + βk−1 and thus every such node v is contained

in U . Therefore U contains more than m1/p nodes. As U is a subset of Aj it contains some node
v′ ∈ Aj+1 whp by Lemma 4.3. Since w(i,j)

k ≤ r(j)
k by Lemma 4.8 we get

dist(u,Aj+1) ≤ dist(u, v′) ≤ αk−1(αk−1(r
(i)
k + αk−1(r

(i)
k + s

(i,j)
k ) + βk−1) + βk−1) + βk−1 = w

(i,j)
k

≤ r(j)
k ≤ αk−1(αk−1r

(j)
k + βk−1) + βk−1 = s

(j,j+1)
k ≤ s(i,j+1)

k

≤ r(i)
k + αk−1(r

(i)
k + s

(i,j+1)
k ) + βk−1 .

Thus, `(u,Aj+1) ≤ αk−1 dist(u,Aj+1) + βk−1 ≤ αk−1(r
(i)
k + αk−1(r

(i)
k + s

(i,j+1)
k ) + βk−1) + βk−1. It

follows that dom(u) ≥ j + 1 > j which contradicts the assumption dom(u) ≤ j.

23



Lemma 5.6. For every node u of priority i and every i ≤ j ≤ p− 2, during the time interval when
cov(u, j) ≤ j there will be at most m1/p active nodes v ∈ Aj such that `(u; v) ≤ αk−1r

(j)
k + βk−1

whp.

Proof. Remember that cov(u, j) is non-increasing. Let G′ be the earliest graph in the sequence
of graph generated by edge deletions where cov(u, j) ≤ j. Define U = {v ∈ Aj | distG′(u, v) ≤
αk−1r

(j)
k + βk−1}. Suppose that there will be more than m1/p active nodes v ∈ Aj such that

`(u; v) ≤ αk−1r
(j)
k + βk−1 during the time interval when cov(u, j) ≤ j. Since dist(u, v) ≤ `(u; v) at

any time and distG′(u, v) ≤ dist(u, v) as distances are non-decreasing under edge deletions, we have
distG′(u, v) ≤ `(u; v) ≤ αk−1r

(j)
k + βk−1 and thus every such node v is contained in U . Therefore U

contains more than m1/p nodes. As U is a subset of Aj it contains some node v′ ∈ Aj+1 whp by
Lemma 4.3. We therefore get

dist(u,Aj+1) ≤ dist(u, v′) ≤ αk−1r
(j)
k +βk−1 ≤ αk−1(αk−1r

(j)
k +βk−1)+βk−1 = s

(j,j+1)
k ≤ r(j)

k +s
(j,j+1)
k

and thus `(u,Aj+1) ≤ αk−1 dist(u,Aj+1) + βk−1 ≤ αk−1(r
(j)
k + s

(j,j+1)
k ) + βk−1. It follows that

cov(u, j) ≥ j + 1 > j which contradicts the assumption cov(u, j) ≤ j.

We can now bound the number of edges ever contained in Ek and its subsets.

Lemma 5.7. For every subset Ek|U of Ek induced by a set of nodes U , the number of edges ever
contained in Ek|U is E(Ek|U) = Õ(|U |pm1/p) in expectation.

Proof. We want to charge O(pm1/p) insertions to each node of U . To this end we view every
undirected edge (u, v) that we insert as an ordered pair in which u has some priority i and v ∈ Aj
for some j ≥ i. Thus, we need to show that for every node u there are at most O(pm1/p) such pairs
(u, v) over the course of the algorithm.

For every node u of priority i we only insert an edge (u, v) to a node v ∈ Aj (for some j ≥ i) if
v is active and

1. j ≥ dom(u), j > i, and `(u; v) ≤ w(i,j)
k = αk−1(αk−1(r

(i)
k +αk−1(r

(i)
k +s

(i,j)
k )+βk−1)+βk−1)+

βk−1 or

2. j ≥ cov(u, j) and `(u; v) ≤ w(i)
k = αk−1r

(i)
k + βk−1.

If j = p− 1, then the number of insertions of edges adjacent to nodes in Ap−1 is Õ(|U |m1/p) since
|Ap−1| = Õ(m1/p) in expectation. If j < p− 1, then by Lemma 5.5 the number of insertions of the
first type of edges is at most m1/p and by Lemma 5.6 the number of insertions of the second type
of edges is at most m1/p. As there are p possible values for j, we can charge Õ(pm1/p) insertions to
u and thus the desired bound follows.

5.1.3 Running Time

Finally we analyze the running time needed to maintain Ek. By our induction hypotheses we may
assume that Lemmas 5.1 and 5.2 hold for k − 1. Thus, we can maintain Ek−1 in time Õ((k −
1)p3m1+2/pn2/qγ/ε) and using Ek−1 we can maintain (αk−1, βk−1)-approximate SSSP up to depth
∆k+1.

Lemma 5.8. Maintaining the monotone ES-trees of all active nodes takes time Õ(p3m1+2/pn2/qγ/ε)
in expectation.
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Proof. We first bound the time needed for maintaining the monotone ES-trees of active nodes of
priority p− 1, the highest priority. These trees have depth αk−1r

(p−1)
k + βk−1. Since r

(p−1)
k ≤ ∆k+1

by Lemma 4.11, we may apply Lemma 5.2 and get that maintaining one such tree takes time
Õ((m+ pnm1/p)pn2/qγ/ε). As there are Õ(m1/p) nodes of priority p− 1, the total time needed for
maintaining these trees is Õ(p2m1+1/pn2/qγ/ε).

We now bound the time needed for maintaining the monotone ES-trees of active nodes u of
priority i < p− 1. Consider the time when u becomes active and let U be the following set of nodes
and edges, respectively:

U = {v ∈ V | dist(v, u) ≤ r(i)
k }

F = {(v, v′) ∈ E | dist(v, u) ≤ r(i)
k or dist(v′, u) ≤ r(i)

k } .

Since r(i)
k ≤ ∆k+1, maintaining the monotone ES-tree of u takes time Õ((|F |+ p|U |m1/p)pn2/qγ/ε)

by Lemma 5.2.
By the random sampling of nodes and edges we can bound bound |U | and |F | as follows. Suppose

that |U | > n/n1−(i+1)/p = n(i+1)/p or |F | > m/m1−(i+1)/p = m(i+1)/p. If |U | > n(i+1)/p, then U
contains a node v ∈ Ai+1 whp by Lemma 4.3. If |F | > m(i+1)/p, then F contains an edge (v, v′)
such that v and v′ are in Ai+1 whp by Lemma 4.3.. Thus, in both cases we find a node v ∈ Ai+1

such that dist(u, v) ≤ r(i)
k . We therefore get

`(u;Ai+1) ≤ αk−1 dist(u,Ai+1) + βk−1 ≤ αk−1 dist(u, v) + βk−1 ≤ αk−1r
(i)
k + βk−1 = s

(i,i+1)
k .

which implies that u is not active, contradicting our assumption. It follows that |U | = n(i+1)/p ≤
m(i+1)/p and |F | ≤ m(i+1)/p.

Thus, maintaining the monotone ES-tree of an active node of priority i < p− 1 takes time

Õ((m(i+1)/p + pn(i+1)/pm1/p)pn2/qγ/ε) = Õ(p2m(i+1)/p+1/p+2/qγ/ε) .

Remember that there are Õ(m1−i/p) nodes of priority i in expectation. Since m1−i/p ·m(i+1)/p =
m1+1/p, the total time needed for maintaining the ES-trees of active nodes of priority i < p −
1 is Õ(p2m1+2/pn2/qγ/ε) and the total time for maintaining the ES-trees of all active nodes is
Õ(p3m1+2/pn2/qγ/ε).

Lemma 5.9. Maintaining the monotone ES-trees of all sets Ai takes time Õ(p2m1+1/pn2/qγ/ε).

Proof. For every 0 ≤ j ≤ p − 1, we maintain a monotone ES-tree of Aj up to depth αk−1r
(p−1)
k +

βk−1. Since r(p−1)
k ≤ ∆k+1, maintaining the monotone ES-tree of a fixed Aj takes time Õ((m +

pnm1/p)pn2/qγ/ε) by Lemma 5.2. As there are p such trees, maintaining all of them takes time
Õ(p2m1+1/pn2/qγ/ε).

Note that the running time of Lemma 5.9 is dominated by the running time of Lemma 5.8.
It follows that the time needed for maintaining Ek is the sum of Õ((k − 1)p3m1+2/pn2/qγ/ε) (for
maintaining Ek−1) and Õ(p3m1+2/pn2/qγ/ε) (for maintaining approximate SSSP of active nodes),
which is Õ(kp3m1+2/pn2/qγ/ε) in total.

5.2 Monotone ES-tree Using Shortcut Graph

In the following we prove Lemma 5.2 for a fixed value of k (where 1 ≤ k ≤ q − 2) under the
assumption that Lemma 5.1 holds for k. Thus, we show how to maintain (αk, βk)-approximate
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SSSP for distances up to ∆k+2 assuming that we can maintain the hop set Ek. For this purpose, we
will use the monotone ES-tree on the shortcut graph Gk containing all edges of G and Ek. However,
we cannot run the monotone ES-tree on Gk itself as the edge weights in Gk might be relatively
large, which makes the monotone ES-tree inefficient. Instead, we scale down the edge weights and
run the algorithm on the resulting graph.

Remember that w(u, v) denotes the weight of an edge (u, v) in G and wk(u, v) denotes the weight
of an edge (u, v) in Ek. We define G′k to be the graph with the nodes V , all edges from Ek and all
edges from G such that w(u, v) ≤ ∆k+2. We round every edge weight in G′k to the next multiple of
ϕk where

ϕk =
ε∆k

p+ 1
.

Let w′k(u, v) denote the edge weight in G′k. For every edge (u, v) of G with w(u, v) ≤ ∆k+2 we have

w′k(u, v) =

⌈
w(u, v)

ϕk

⌉
ϕk

and for every edge (u, v) of Ek we have

w′k(u, v) =

⌈
wk(u, v)

ϕk

⌉
ϕk .

This kind of rounding guarantees that

w(u, v) ≤ w′k(u, v) ≤ w(u, v) + ϕk .

for every edge (u, v) of G with w(u, v) ≤ ∆k+2 and

wk(u, v) ≤ w′k(u, v) ≤ wk(u, v) + ϕk

for every edge (u, v) of Ek.
We now analyze the approximation error of a monotone ES-tree maintained on G′k. This ap-

proximation error consists of two parts. The first part is an approximation error that comes from
the fact that the monotone ES-tree only considers paths from s with a relatively small number of
edges and therefore has to use edges from Ek. The second part is the approximation error we get
from rounding the edge weights. The analysis of the first part follows arguments in [10], whereas
the analysis of the second part is entirely new to this paper. We first give a formula for the ap-
proximation error that depends on the priority of the nodes and their distance to the root of the
monotone ES-tree.

Before we give the proof we review a few properties of the monotone ES-tree (see [7] for the
full algorithm). Similar to the classic ES-tree, the monotone ES-tree with root s maintains a level
`(v; s) for every node v. Remember that a single deletion or edge weight increase in G might result
in a bunch of deletions, weight increases and insertions in Ek. The monotone ES-tree first processes
the insertions and then the deletions and edge weight increases. It handles deletions and edge
weights increases in the same way as the classic ES-tree. The procedure for handling the insertion
of a node (u, v) is almost trivial and in particular does not change `(u; s) or `(v; s) We say that
an edge (u, v) is stretched if `(u; s) > `(v; s) + w′k(u, v). We say that a node u is stretched if it
is incident to an edge (u, v) that is stretched. Note that for a node u that is not stretched we
have `(u; s) ≤ `(v; s) + w′k(u, v) for every edge (u, v) contained in G′k. In our proof we will use the
following properties of the monotone ES-tree [7]:

26



• The level of a node never decreases.

• An edge can only become stretched when it is inserted.

• As long as a node v is stretched, its level does not change.

• The monotone ES-tree never underestimates the true distance.

Lemma 5.10. For every node u of priority i with dist(u, s) ≤ ∆k+2 in the monotone ES-tree of a
node s in G′k we have

`(u; s) ≤ (αk−1 + ε) dist(u, s) + β
(i)
k +

(
(p+ 1)

⌈
max(dist(u, s)− r(i)

k , 0)

∆k

⌉
+ p+ 1− i

)
ϕk .

Proof. For every node u and every 0 ≤ i ≤ p− 1 we define h(u, i) as follows:

h(u, i) =

0 if u = s

(p+ 1)

⌈
max(dist(u,s)−r(i)k ,0)

∆k

⌉
+ p+ 1− i otherwise

.

The intuition is that h(u, i) bounds the number of hops from u to s, i.e., the number of edges
required to go from u to s while at the same time providing the desired approximation guarantee.
We will now show that, for every node u of priority i,

`(u; s) ≤ (αk−1 + ε) dist(u, s) + β
(i)
k + h(u, i) · ϕk .

This clearly implies the lemma. The proof is by double induction first on the number of deletions
in G and second on h(u, i).

Let u be a node of priority i. If u = s, the claim is trivially true because `(s; s) = 0. Assume
that u 6= s. If u is stretched in the monotone ES-tree, then the level of u has not changed since
the previous deletion in G and thus the claim is true by induction. If u is not stretched, then
`(u; s) ≤ `(v; s) + w′k(u, v) for every edge (u, v) in Ek. Define the nodes v and x as follows. If
dist(u, s) ≤ r

(i)
k , then v = s. If dist(u, s) > r

(i)
k , consider a shortest path from u to s and let

v be the furthest node from u on the shortest path such that dist(u, v) ≤ r
(i)
k (which implies

dist(v, s) ≥ dist(u, s) − r(i)
k ). Furthermore let x be the neighbor of v on the shortest path such

that dist(u, x) ≥ r
(i)
k (and thus dist(x, s) ≤ dist(u, s) − r(i)

k ) and G contains the edge (v, x). Note
that (v, x) is also contained in G′k because for dist(u, s) ≤ ∆k+2 to hold it has to be the case
that w(u, s) ≤ ∆k+2. By Lemma 5.4 we know that Ek either contains an edge (u, v) of weight
wk(u, v) ≤ w(i)

k or an edge (u, v′) to a node v′ ∈ Aj′ for some j′ > i such that wk(u, v′) ≤ w
(i,j′)
k .

Case 1: Ek contains (u, v)

If dist(u, s) ≤ r(i)
k , then we have v = s and therefore get

`(u; s) ≤ `(v; s) + w′k(u, v) (u not stretched)
= `(s; s) + w′k(u, s) (v = s)
= w′k(u, s) (`(s; s) = 0)
≤ wk(u, s) + ϕk (property of w′k(u, v))
≤ wk(u, s) + h(u, i) · ϕk (h(u, i) ≥ 1 since u 6= s)
≤ αk−1 dist(u, s) + βk−1 + h(u, i) · ϕk (property of weight in Ek)
≤ αk dist(u, s) + βk + h(u, i) · ϕk (αk−1 ≤ αk and βk−1 ≤ βk) .
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Consider now the case dist(u, s) > r
(i)
k . Let j denote the priority of x. We first prove the

following inequality, which will allow us among others to use the induction hypothesis on x.

Claim 5.11. If dist(u, s) > r
(i)
k , then h(x, j) + 2 ≤ h(u, i).

Proof. Remember that i ≤ p− 1.
The assumption dist(u, s) > r

(i)
k implies that dist(x, s) ≤ dist(u, s)− r(i)

k . If dist(x, s) < r
(j)
k , we

have

h(x, j) + 2 ≤ p+ 1− j + 2 ≤ p+ 1 + 2 ≤ p+ 1 + p+ 1− i

≤ (p+ 1)

⌈
dist(u, s)− r(i)

k

∆k

⌉
+ p+ 1− i = h(u, i) .

Here we use the inequality d(dist(u, s)−r(j)
k )/∆ke ≥ 1 which follows from the assumption dist(u, s) >

r
(i)
k .

If dist(x, s) ≥ r(j)
k , then, using r(j)

k ≥ r
(0)
k ≥ ∆k, we get

h(x, j) + 2 = (p+ 1)

⌈
dist(x, s)− r(j)

k

∆k

⌉
+ p+ 1− j + 2

≤ (p+ 1)

⌈
dist(x, s)−∆k

∆k

⌉
+ p+ 1 + 2

= (p+ 1)

⌈
dist(x, s)

∆k
− 1

⌉
+ p+ 1 + 2

= (p+ 1)

(⌈
dist(x, s)

∆k

⌉
− 1

)
+ p+ 1 + 2

= (p+ 1)

⌈
dist(x, s)

∆k

⌉
+ 2

≤ (p+ 1)

⌈
dist(x, s)

∆k

⌉
+ p+ 1− i

≤ (p+ 1)

⌈
dist(u, s)− r(i)

k

∆k

⌉
+ p+ 1− i

≤ (p+ 1)

⌈
max(dist(u, s)− r(i)

k , 0)

∆k

⌉
+ p+ 1− i = h(u, i) .

Here the last inequality follows from the trivial observation dist(u, s) − r
(i)
k ≤ max(dist(u, s) −

r
(i)
k , 0).

Having proved this claim, we go on with the proof of the lemma. If dist(u, s) > r
(i)
k , then we

have dist(u, x) ≥ r
(i)
k by the choice of x. Note that the edge (v, x) will never be stretched because

it is contained in G since before the first deletion and therefore is not an inserted edge. Therefore
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we get

`(u; s) ≤ `(v; s) + w′k(u, v) (u not stretched)

≤ `(x; s) + w′k(v, x) + w′k(u, v) (v not stretched)

≤ `(x; s) + w(v, x) + ϕk + wk(u, v) + ϕk (property of w′k)

≤ (αk−1 + ε) dist(x, s) + β
(j)
k + w(v, x) + ϕk + wk(u, v) + ϕk (induction hypothesis)

= (αk−1 + ε) dist(x, s) + β
(j)
k + wk(u, v) + w(v, x) + (h(x, j) + 2) · ϕk (rearranging terms)

≤ (αk−1 + ε) dist(x, s) + β
(j)
k + wk(u, v) + w(v, x) + h(u, i) · ϕk (Claim 5.11)

≤ (αk−1 + ε) dist(x, s) + β
(0)
k + wk(u, v) + w(v, x) + h(u, i) · ϕk (β(j)

k ≤ β(0)
k )

≤ (αk−1 + ε) dist(x, s) + β
(0)
k + αk−1 dist(u, v) + βk−1 + w(v, x) + h(u, i) · ϕk (property of weight in Ek)

= (αk−1 + ε) dist(x, s) + β
(0)
k + αk−1 dist(u, v) + βk−1 + dist(v, x) + h(u, i) · ϕk ((v, x) on shortest path)

≤ (αk−1 + ε) dist(x, s) + β
(0)
k + αk−1 dist(u, v) + βk−1 + αk−1 dist(v, x) + h(u, i) · ϕk (αk−1 ≥ 1)

= (αk−1 + ε) dist(x, s) + αk−1(dist(u, v) + dist(v, x)) + βk−1 + β
(0)
k + h(u, i) · ϕk (rearranging terms)

= (αk−1 + ε) dist(x, s) + αk−1 dist(u, x) + βk−1 + β
(0)
k + h(u, i) · ϕk (v on shortest path)

= (αk−1 + ε) dist(x, s) + αk−1 dist(u, x) + βk−1 + β
(0)
k − β

(i)
k + β

(i)
k + h(u, i) · ϕk (rearranging terms)

= (αk−1 + ε) dist(x, s) + αk−1 dist(u, x) + εr
(i)
k + β

(i)
k + h(u, i) · ϕk (definition of r(i)k )

≤ (αk−1 + ε) dist(x, s) + αk−1 dist(u, x) + εdist(u, x) + β
(i)
k + h(u, i) · ϕk (dist(u, x) ≥ r(i)k )

= (αk−1 + ε)(dist(u, x) + dist(x, s)) + β
(i)
k + h(u, i) · ϕk (rearranging terms)

= (αk−1 + ε) dist(u, s) + β
(i)
k + h(u, i) · ϕk (x on shortest path) .

Case 2: Ek contains (u, v′) (v′ 6= v)
We first prove the following inequality, which will allow us among others to use the induction

hypothesis on x.

Claim 5.12. h(v′, j′) + 1 ≤ h(u, i)

Proof. Remember that j′ ≥ i+ 1. If dist(v′, s) < r
(j′)
k , we get

h(v′, j′) + 1 ≤ p+ 1− j′ + 1 ≤ p+ 1− i ≤ h(u, i) .
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If dist(v′, s) ≥ r(j′)
k , then we use the inequality w(i,j′)

k + r
(i)
k ≤ r

(j′)
k from Lemma 4.8 and get

h(v′, j′) + 1 = (p+ 1)

⌈
dist(v′, s)− r(j′)

k

∆k

⌉
+ p+ 1− j′ + 1

≤ (p+ 1)

⌈
dist(v′, s)− r(j′)

k

∆k

⌉
+ p+ 1− i− 1 + 1

≤ (p+ 1)

⌈
dist(u, s) + dist(v′, u)− r(j′)

k

∆k

⌉
+ p+ 1− i

≤ (p+ 1)

⌈
dist(u, s) + wk(u, v

′)− r(j′)
k

∆k

⌉
+ p+ 1− i

≤ (p+ 1)

⌈
dist(u, s) + w

(i,j′)
k − r(j′)

k

∆k

⌉
+ p+ 1− i

≤ (p+ 1)

⌈
dist(u, s)− r(i)

k

∆k

⌉
+ p− i

≤ (p+ 1)

⌈
max(dist(u, s)− r(i)

k , 0)

∆k

⌉
+ p+ 1− i = h(u, i) .

Here we use the inequality w(i,j′)
k + r

(i)
k ≤ r

(j′)
k we proved above.

Having proved this claim, we go on with the proof of the lemma.

`(u) ≤ `(v′) + w′k(u, v
′) (u not stretched)

≤ `(v′) + wk(u, v
′) + ϕk (property of w′k(u, v

′))

≤ (αk−1 + ε) dist(v′, s) + β
(j′)
k + h(v′, j′) · ϕk + wk(u, v

′) + ϕ (induction hypothesis)

= (αk−1 + ε) dist(v′, s) + β
(j′)
k + wk(u, v

′) + (h(v′, j′) + 1) · ϕk (rearranging terms)

≤ (αk−1 + ε) dist(v′, s) + β
(j′)
k + wk(u, v

′) + h(u, i) · ϕk (Claim 5.12)

≤ (αk−1 + ε)(dist(v′, u) + dist(u, s)) + β
(j′)
k + wk(u, v

′) + h(u, i) · ϕk (triangle inequality)

≤ (αk−1 + ε)(wk(u, v
′) + dist(u, s)) + β

(j′)
k + wk(u, v

′) + h(u, i) · ϕk (property of weight in Ek)

= (αk−1 + ε) dist(u, s) + β
(j′)
k + (αk−1 + ε+ 1)wk(u, v

′) + h(u, i) · ϕk (rearranging terms)

≤ (αk−1 + ε) dist(u, s) + β
(j′)
k + 4wk(u, v

′) + h(u, i) · ϕk (αk−1 ≤ 2 and ε ≤ 1)

≤ (αk−1 + ε) dist(u, s) + β
(j′)
k + 4w

(i,j′)
k + h(u, i) · ϕk (property of weight in Ek, v′ 6= v)

≤ (αk−1 + ε) dist(u, s) + β
(i)
k + h(u, i) · ϕk (Lemma 4.9)

Having analyzed the dependence of approximation error on the priorities of the nodes and their
distances to the root of the monotone ES-tree, the desired general approximation guarantee easily
follows.

Lemma 5.13. For every node u, if ∆k ≤ dist(u, s) ≤ ∆k+2, then `(u; s) ≤ αk dist(u, s) + βk.
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Proof. Let i be the priority of u. By Lemma 5.10 we have

`(u; s) ≤ (αk−1 + ε) dist(u, s) + β
(i)
k +

(
(p+ 1)

⌈
max(dist(u, s)− r(i)

k , 0)

∆k

⌉
+ p+ 1− i

)
ϕk .

Note that β(i)
k ≤ β

(0)
k = βk. Furthermore we have(

(p+ 1)

⌈
max(dist(u, s)− r(i)

k , 0)

∆k

⌉
+ p+ 1− i

)
ϕk ≤

(
(p+ 1)

⌈
dist(u, s)

∆k

⌉
+ p+ 1

)
ϕk

≤
(

(p+ 1)

(
dist(u, s)

∆k
+ 1

)
+ p+ 1

)
ϕk

=

(
(p+ 1) dist(u, s)

∆k
+ 2(p+ 1)

)
ϕk

=

(
(p+ 1) dist(u, s)

∆k
+ 2(p+ 1)

)
· ε∆k

p+ 1

= ε dist(u, s) + 2ε∆k

≤ ε dist(u, s) + 2εdist(u, s)

= 3εdist(u, s) .

By combining these two inequalities we get

`(u; s) ≤ (αk−1 +ε) dist(u, s)+βk+3εdist(u, s) = (αk−1 +4ε) dist(u, s)+βk = αk dist(u, s)+βk .

Finally we provide the running time analysis. We run the algorithm in a graph in which we
scale down the edge weights by a factor of ϕk. This makes the algorithm efficient.

Lemma 5.14. Let D ≤ ∆k+2, let s be a source node and let U and F be the following sets of nodes
and edges, respectively:

U = {v ∈ V | dist(v, s) ≤ D}
F = {(u, v) ∈ E | dist(u, s) ≤ D or dist(v, s) ≤ D} .

Then with a total update time of Õ((|F |+ p|U |m1/p)pn2/qγ/ε) we can maintain a distance estimate
`(v; s) for every node v that satisfies

• `(v; s) ≥ dist(s, v)

• If ∆k ≤ dist(s, v) ≤ D, then `(v; s) ≤ αk dist(s, v) + βk

Proof. Remember that G′k is the graph containing all edges of G of weight at most ∆k+2 and all
edges of Ek with edge weights rounded to multiples of ϕk. Ideally, we would like to maintain a
monotone ES-tree up to depth αkD + βk on the graph G′k to get the desired distance estimates.
However, for efficiency reasons we will maintain the monotone ES-tree only on G′k|U , the subgraph
of G′k induced by U .

Using Dijkstra’s algorithm, we can initially compute the set U in time Õ(|F |) as we only have
to visit edges incident to nodes in U . We maintain a monotone ES-tree from s in the graph G′k|U ,
which is the subgraph of G′k induced by the nodes in U . Since distances in G are non-decreasing
under edge deletions we know for every node v not contained in U that dist(v, s) > D and thus we
can set `(v; s) =∞ for such a node.
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We first consider the case k ≥ 1. We define G′′k to be the graph with the same nodes and edges
as G′k in which the edge weights of G′k are scaled down by a factor of ϕk, i.e., every edge (u, v) in
G′′k has weight

w′′k(u, v) =
w′k(u, v)

ϕk

where w′k(u, v) is the weight of (u, v) in G′k. Maintaining the monotone ES-tree on G′k|U is equivalent
to maintaining it on G′′k|U ; the levels only differ by a factor of ϕk. By the definition of G′k, the edge
weights of G′′k|U are integer. In G′k|U we would have to maintain the monotone ES-tree up to depth
αkD+βk, whereas in G′′k|U we only have to maintain it up to depth (αkD+βk)/ϕk. By Lemma 4.2
the total time needed for maintaining the monotone ES-tree up to depth (αkD + βk)/ϕk on G′′k|U
is

O(E(G′′k|U)(αkD + βk)/ϕk +W(G′′k|U)) (2)

where E(G′′k|U) is the number of edges ever contained in G′′k|U and W(G′′k|U) is the number of edge
weight increases in G′′k|U .

We first bound E(G′′k|U), the number of edges ever contained in G′′k|U . Note that E(G′′k|U) =
E(G′k|U) by the definition of G′′k. Every edge contained in G′k|U is contained in G|U (the subgraph
of G induced by U) or in Ek|U (the subset of Ek induced by U). We never insert any edges into
G and all edges of G|U are contained in F and by Lemma 5.7 we have E(Ek|U) = Õ(p|U |m1/p).
Therefore we get E(G′′k|U) = E(G′k|U) = Õ(|F |+ p|U |m1/p).

We now bound the depth of the monotone ES-tree. Remember that αk ≤ 2. Furthermore
D ≤ ∆k+2 by the assumption and βk ≤ ∆k+1 by Lemma 4.11. Therefore we get

αD + βk
ϕk

≤ 2∆k+2 + ∆k+1

ϕk
≤ 3∆k+2

ϕk
≤ 3∆k+2(p+ 1)

ε∆k

=
3n(k+2)/qγ(p+ 1)

εnk/qγ
=

3(p+ 1)n2/q

ε
= O(pn2/q/ε) .

Finally, we boundW(G′′k|U), the number of edge weight increases inG′′k|U . Note thatW(G′′k|U) =
W(G′k|U) by the definition of G′′k. By the following argument we can show that the maximum edge
weight in G′k|U is at most ∆k+2 + ϕk:

• The edges from G are included in G′k only if they have weight at most ∆k+2

• Every edge (u, v) from Ek that is included in G′k has weight wk(u, v) ≤ w(i)
k for some 0 ≤ i ≤

p− 1 or wk(u, v) ≤ w(i,j)
k for some 0 ≤ i < j ≤ p− 1 by Lemma 5.1. By Lemma 4.11 we have

αk−1r
(p−1)
k + βk−1 ≤ ∆k+1 ≤ ∆k+2 and by Lemma 4.8 we have w(i,j)

k ≤ r(j)
k . Therefore we get

w
(i)
k = αk−1r

(i)
k + βk−1 ≤ αk−1r

(p−1)
k + βk−1 ≤ ∆k+2 and w(i,j)

k ≤ r(j)
k ≤ ∆k+2.

Since all edge weights in G′k|U are multiples of ϕk, it follows that the number of different edge
weights in G′k|U is at most d(∆k+2 +ϕk)/ϕke. We now bound the number of edge weight increases
in G′k|U by that number of different edge weights in G′k|U times the number of edges ever contained
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in G′k|U . Thus, we have

W(G′′k|U) =W(G′k|U) ≤ E(G′k|U) ·
⌈

∆k+2 + ϕk
ϕk

⌉
= E(G′k|U) ·

⌈
(p+ 1)∆k+2

ε∆k
+ 1

⌉
= E(G′k|U) ·

⌈
(p+ 1)n2/q

ε
+ 1

⌉

= Õ(|F |+ p|U |m1/p) ·

⌈
(p+ 1)n2/q

ε
+ 1

⌉
= Õ((|F |+ p|U |m1/p)pn2/q/ε) .

Using the three bounds we just showed in Equation (2), we obtain a total update time of
Õ((|F |+ p|U |m1/p)pn2/q/ε).

Finally, we consider the case k = 0, for which we have α0 = 1 and βk = 0. Thus, we have
to maintain exact distances. We use an exact ES-tree of depth D on G|U for this purpose. It
is well-known that the total time needed for maintaining this ES-tree is O(E(G|U) · D), where
E(G|U) is the number of edges contained in G|U before the first deletion. Note that E(G|U) ⊆ F
and D ≤ ∆2 = n2/qγ. Therefore the time needed for maintaining this tree is O(|F |n2/qγ).

Both running times, Õ((|F | + p|U |m1/p)pn2/q/ε) and O(|F |n2/qγ) are dominated by Õ((|F | +
p|U |m1/p)pn2/qγ/ε).

6 (1 + ε)-approximate SSSP and (O(no(1)), ε)-Hop Set

In this section we explain how to use the hierarchy edge sets of of Section 5 to maintain approxi-
mate SSSP and hop sets in the decremental setting. We first obtain an algorithm that maintains
approximate SSSP up to distance nγ for some parameter γ ≥ 1. Afterwards we reduce the general
problem to this special case. For hop sets we use the same approach.

Theorem 6.1. Given 0 < ε′ ≤ 1, γ ≥ 1, a source node s, and a weighted graph G with positive
integer edge weights undergoing edge deletions and edge weight increases, there is a data structure
that maintains a distance estimate δ(v, s) that satisfies

• δ(v, s) ≥ dist(v, s) and

• if dist(v, s) ≤ nγ, then δ(v, s) ≤ (1 + ε) dist(v, s).

It has constant query time and a total update time of Õ(m1+6/pγ/ε′), where

1

p
=

√
log
(

880
√

logn
ε′

)
√

log n
.

Proof. Let s denote the source node. The algorithm consists of two parts. First, it maintains the
hierarchy of graphs of Lemma 5.1, i.e., for every 1 ≤ k ≤ q − 2 we maintain the set of edges Ek
as in Section 5.1. Second, it maintains the following estimates of the distance to s: For every
0 ≤ k ≤ q − 2, we use the data structure of Lemma 5.2 to maintain a distance estimate `k(v; s) for
every node v that satisfies
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• `k(v; s) ≥ dist(v, s)

• If ∆k ≤ dist(v, s) ≤ ∆k+2, then `k(v; s) ≤ αk dist(s, v) + βk

If dist(v, s) ≤ ∆2, then `0(v; s) ≤ dist(s, v) since α0 = 1 and β0 = 0. If ∆k+1 ≤ dist(v, s) ≤ ∆k+2

for some 1 ≤ k ≤ q − 2, then `k(v; s) provides a (1 + ε′)-approximation of dist(s, v), which follows
from the following chain of inequalities:

`k(v; s) ≤ αk dist(s, v) + βk

≤ αk dist(v, s) + ε∆k+1

≤ αk dist(s, v) + εdist(v, s)

= (1 + 4kε) dist(s, v) + ε dist(v, s)

≤ (1 + 4qε) dist(s, v) + εdist(v, s)

≤ (1 + 4
√

log nε) dist(s, v) + εdist(v, s)

= (1 + (4
√

log n+ 1)ε) dist(s, v)

= (1 + ε′) dist(s, v) .

As the distance estimates never underestimate the true distance, we therefore only have to return
min0≤k≤q−2 `k(v; s) to obtain a (1 + ε′)-approximate estimate of dist(v, s).

We now analyze the running time of the algorithm. Maintaining Ek for some 1 ≤ k ≤ q − 2
takes time Õ(kp3m1+2/pn2/qγ/ε) by Lemma 5.1 and thus maintaining all q of them takes time
Õ(p3q2m1+2/pn2/qγ/ε). Maintaining the distance estimates from s using monotone ES-trees takes
time Õ((m + pnm1/p)pn2/qγ/ε) = Õ(p2m1+1/pn2/qγ/ε) per tree by Lemma 5.2 and thus time
Õ(p2qm1+1/pn2/qγ/ε) in total. Note that the time needed for maintaining the hierarchy of graphs
dominates the running time. Thus, the total update time is Õ(p3q2m1+2/pn2/qγ/ε).

Remember that q ≤
√

log n, p ≤
√

log n, q = p/2, and ε = ε′/(1 + 4
√

log n). Therefore we get
that the running time is Õ(m1+6/pγ/ε′). Now observe that

1/p =

√
log
(

4·44
ε

)
√

log n
=

√
log
(

4·44·(1+4
√

logn)
ε′

)
√

log n
≤

√
log
(

4·44·5
√

logn
ε′

)
√

log n
=

√
log
(

880
√

logn
ε′

)
√

log n
.

The algorithm described above has a query time of O(q) = O(log n) as it has to compute
min0≤k≤q−2 `k(v; s) when asked for the approximate distance from v to s. We can reduce the query
time to O(1) by using a min-heap for every node v that stores `k(v; s) for all 0 ≤ k ≤ q − 2. This
allows us to retrieve the minimum in constant time.

The data structure above only provides a (1 + ε)-approximation for distances up to nγ. Setting
γ = 1 this immediately gives a (1+ε)-approximate decremental SSSP data structure for unweighted
graphs because in unweighted graphs the maximum distance to the root is n− 1. Using Bernstein’s
rounding technique [3], we can also remove the restriction to distance ranges up to nγ for weighted
graphs as we show in the next theorem.

Theorem 6.2. Given an approximation parameter 0 < ε′ ≤ 1 and a weighted graph G with pos-
itive integer edge weights undergoing edge deletions and edge weight increases, there is a (1 + ε′)-
approximate SSSP data structure that maintains a distance estimate δ(v, s) for every node v that
satisfies

dist(v, s) ≤ δ(v, s) ≤ (1 + ε′) dist(v, s) .
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It has constant query time and a total update time of

Õ

m1+6·

√
log

(
2640
√
logn

ε′

)
√
logn logW/(ε′)2


where W is the maximum edge weight in G. If ε′ is a constant, then the total update time is
Õ(m1+o(1) logW ).

Proof. For every 0 ≤ l ≤ blog(nW )c we define

ρl =
ε′2l

n
.

Let G̃l be the graph that has the same nodes and edges as G and in which every edge weight is
rounded to the next multiple of ρl, i.e., every edge (u, v) in G̃l has weight

w̃l(u, v) =

⌈
w(u, v)

ρl

⌉
· ρl

where w(u, v) is the weight of (u, v) in G. This rounding guarantees that

w(u, v) ≤ w̃l(u, v) ≤ w(u, v) + ρl

for every edge (u, v) of G. Furthermore we define Ĝl to be the graph that has the same nodes and
edges as G̃l and in which every edge weight is scaled down by a factor of ρl, i.e., every edge (u, v)
in Ĝl has weight

ŵl(u, v) =
w̃l(u, v)

ρl
=

⌈
w(u, v)

ρl

⌉
.

The algorithm is as follows: For every 0 ≤ l ≤ blog(nW )c we use the data structure of Theo-
rem 6.1 on the graph Ĝl with γ = 4/ε′ to maintain a distance estimate δl(v, s) for every node s that
satisfies

• δl(v, s) ≥ dist
Ĝl

(v, s) and

• if dist
Ĝl

(v, s) ≤ nγ, then δl(v, s) ≤ (1 + ε′) dist
Ĝl

(v, s).

The distance estimate returned by our data structure is

δ(v, s) = min
0≤l≤blognW c

ρlδl(v, s) .

We now show that there is some 0 ≤ l ≤ blog(nW )c such that ρlδl(v, s) ≤ (1 + 3ε′) dist(v, s). As
δ(v, s) is the minimum of all the distance estimates, this implies that δ(v, s) ≤ (1 + 3ε′) dist(v, s).
In particular, we know that there is some 0 ≤ l ≤ blog(nW )c such that 2l ≤ dist(v, s) ≤ 2l+1 since
W is the maximum edge weight and all paths consist of at most n edges. Consider a shortest path
P from v to s in G whose weight is equal to dist(v, s). Let w(P ) and w̃l(P ) denote the weight of the
path P in G and Gl, respectively. Since P consists of at most n edges we have w̃l(P ) ≤ w(P ) +nρl.
Therefore we get

dist
G̃l

(v, s) ≤ w̃l(P ) ≤ w(P ) + nρl = dist(v, s) + ε′2l ≤ dist(v, s) + ε′ dist(v, s) = (1 + ε′) dist(v, s) .
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Now observe the following:

dist
Ĝl

(v, s) =
dist

G̃l
(v, s)

ρl
≤ (1 + ε′) dist(v, s)

ρl
≤ 2 dist(v, s)

ρl
=

2 dist(v, s)n

ε′2l
≤ 2 · 2l+1n

ε′2l
=

4n

ε′
= nγ .

Since dist
Ĝl

(v, s) ≤ nγ we get distl(v, s) ≤ (1 + ε′) dist
Ĝl

(v, s) by Theorem 6.1. Thus, we get

ρlδl(v, s) ≤ ρl((1 + ε′) dist
Ĝl

(v, s)) = (1 + ε′) dist
G̃l

(v, s) ≤ (1 + ε′)2 dist(v, s) ≤ (1 + 3ε′) dist(v, s)

as desired.
We now analyze the running time of this algorithm. By Theorem 6.1, for every 0 ≤ l ≤

blog (nW )c, maintaining δl(v, s) on Ĝl for every node s takes time Õ(m1+6/pγ/ε′), where

1

p
=

√
log
(

880
√

logn
ε′

)
√

log n
.

By our choice of γ = 4/ε′, the total update time for maintaining all these blog (nW )c distance
estimates is Õ(m1+6/p logW/(ε′)2).

To obtain a (1 + ε′) approximation (instead of a (1 + 3ε′)-approximation, we simply run the
whole algorithm with ε′′ = ε′/3. This results in a total update time of

Õ

m1+6·

√
log

(
2640
√
logn

ε′

)
√
logn logW/(ε′)2

 .

If ε′ is a constant, then the total update time is

Õ

(
m

1+O
(√

log logn√
logn

)
logW

)
Since limx→∞(

√
log log n)/(

√
log n) = 0, this is Õ(m1+o(1) logW ).

The query time of the algorithm described above is O(log(nW )) as it has to compute δ(v, s) =
min0≤l≤blognW c ρlδl(v, s) when asked for the approximate distance from v to s. We can reduce
the query time to O(1) by using a min-heap for every node v that stores δl(v, s) for all 0 ≤ l ≤
blog(nW )c. This allows us to compute δ(v, s) in constant time.

In the proof of Lemma 5.1 we did not explicitly state the guarantees of the hop set maintained by
our algorithm. The main reason for this is that we actually had to prove a stronger property, namely
that the monotone ES-tree on the shortcut graph using the hop set gives the desired approximation.
We now explain how to maintain an (O(no(1)), ε′)-hop set, as defined in Section 2.2.

Corollary 6.3. Given a constant 0 < ε′ ≤ 1 and a weighted graph G with positive integer edge
weights undergoing edge deletions and edge weight increases, we can maintain an (O(no(1)), ε′)-hop
set of size O(m1+o(1) logW ) in total time O(m1+o(1) logW ).

Proof. Given some γ ≥ 1, the algorithm of Lemma 5.1 provides an (no(1), ε′)-hop set E∗ for distances
up to nγ, which can be seen as follows. We define E∗ =

⋃
1≤k≤q−2Ek. By Lemma 5.1 and the

definition of q we know that E∗ has size O(m1+o(1)). Let Gk be the shortcut graph that contains all
edges of G and all edges of Ek, and let G∗ be the graph that contains all edges of G and all edges
of E∗.
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For every k (1 ≤ k ≤ q−2), the approximation guarantee of the monotone ES-tree in Lemma 5.10
in particular holds when we initialize the tree, i.e., when there is no dynamic behavior at all.
Furthermore the approximation guarantee also holds for the graph Gk, as in the proof we use the
graph G′k in which we round the edge weights of Gk to the next multiple of some parameter ϕk,
i.e., the edge weights in G′k are never smaller than the edge weights in Gk. The bound on the
additive error introduced by rounding to multiples of ϕk tells us the number of edges (“hops”)
that are necessary to provide the approximation guarantee. Thus, for all nodes u and v such that
∆k ≤ dist(u, v) ≤ ∆k+2, there is a path between u and v in Gk of weight at most αk dist(u, v) + βk
using at most (p+ 1)(∆2 + 2) = O(no(1)) edges (“hops”). If dist(u, v) ≥ ∆k+1, then βk ≤ εdist(u, v)
and by the definition of αk we have αk + ε ≤ 1 + ε′. Thus, for all nodes u and v such that
∆k+1 ≤ dist(u, v) ≤ ∆k+2, there is a path between u and v in Gk of weight at most (1+ε′) dist(u, v)
using at most O(no(1)) edges. Note that for all nodes u and v such that dist(u, v) ≤ ∆2 the shortest
path between u and v in G has at most ∆2 = no(1) edges as the minimum edge weight in G is 1.
This means that E∗ is a hop set restricted to distances up to nγ: For all nodes u and v such that
dist(u, v) ≤ ∆q = nγ, there is a path between u and v in G∗ of weight at most (1 + ε′) dist(u, v)
using at most O(no(1)) edges.

We can now use the same same rounding technique as in the proof of Theorem 6.2. This will
provide us, for every 0 ≤ l ≤ blog(nW )c, with an (O(no(1)), ε′)-hop set E∗l of size O(m1+o(1)) for
all distances in the range from 2l to 2l+1. It follows that

⋃
0≤l≤blog(nW )cE

∗
l is an (O(no(1)), 3ε′)-hop

set of size O(m1+o(1)) for all distances. Thus, we can maintain an (O(no(1)), ε′)-hop set of size
O(m1+o(1) logW ) in total time O(m1+o(1) logW ).

7 Conclusion

In this paper, we show that single-source shortest paths in undirected graphs can be maintained
under edge deletions in near-linear total update time and constant query time. The main approach
is to maintain an (no(1), ε)-hop set of near-linear size in near-linear time. We leave two major open
problems. The first problem is whether the same total update time can be achieved for directed
graphs. This problem is very challenging because such a hop set does not exist even in the static
setting. Moreover, improving the current Õ(mn0.984) total update time by [9] for the decremental
reachability problem is already very interesting. The second major open problem is to derandomize
our algorithm. The major task here is to deterministically maintain our variant of the TZ-emulator,
which is the key to maintaining the hop set. In fact, it is also not known whether the algorithm
of Roditty and Zwick [21] for decrementally maintaining the original distance oracle of Thorup and
Zwick (and the corresponding spanners and emulators) can be derandomized. (Note however that
the distance oracle of Thorup and Zwick can be constructed deterministically in the static setting
[18].)
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