
Decremental Single-Source Shortest Paths on Undirected
Graphs in Near-Linear Total Update Time∗

Monika Henzinger† Sebastian Krinninger† Danupon Nanongkai‡

Abstract

In the decremental single-source shortest paths (SSSP) problem we want to maintain
the distances between a given source node s and every other node in an n-node m-edge
graph G undergoing edge deletions. While its static counterpart can be easily solved
in near-linear time, this decremental problem is much more challenging even in the
undirected unweighted case. In this case, the classic O(mn) total update time of Even and
Shiloach [JACM 1981] has been the fastest known algorithm for three decades. At the cost
of a (1 + ε)-approximation factor, the running time was recently improved to O(n2+o(1))
by Bernstein and Roditty [SODA 2011]. In this paper, we bring the running time down
to near-linear: We give a (1 + ε)-approximation algorithm with O(m1+o(1)) total update
time, thus obtaining near-linear time. Moreover, we obtain O(m1+o(1) logW) time for
the weighted case, where the edge weights are integers from 1 to W . The only prior
work on weighted graphs in o(mn logW) time is the O(mn0.9+o(1))-time algorithm by
Henzinger, Krinninger, and Nanongkai [STOC 2014, ICALP 2015] which works for the
general weighted directed case.

In contrast to the previous results which rely on maintaining a sparse emulator,
our algorithm relies on maintaining a so-called sparse (h, ε)-hop set introduced by
Cohen [JACM 2000] in the PRAM literature. An (h, ε)-hop set of a graph G = (V,E)
is a set F of weighted edges such that the distance between any pair of nodes in G
can be (1 + ε)-approximated by their h-hop distance (given by a path containing at
most h edges) on G′ = (V,E ∪ F). Our algorithm can maintain an (no(1), ε)-hop set of
near-linear size in near-linear time under edge deletions. It is the first of its kind to the
best of our knowledge. To maintain approximate distances using this hop set, we extend
the monotone Even-Shiloach tree of Henzinger, Krinninger, and Nanongkai [FOCS 2013]
and combine it with the bounded-hop SSSP technique of Bernstein [FOCS 2009, STOC
2013] and Mądry [STOC 2010]. These two new tools might be of independent interest.

∗A preliminary version of this paper was presented at the 55th IEEE Symposium on Foundations of
Computer Science (FOCS 2014).
†University of Vienna, Faculty of Computer Science, Austria. Supported by the Austrian Science Fund

(FWF): P23499-N23 and the University of Vienna (IK I049-N). The research leading to these results has
received funding from the European Research Council under the European Union’s Seventh Framework
Programme (FP/2007-2013) / ERC Grant Agreement no. 340506 and from the European Union’s Seventh
Framework Programme (FP7/2007-2013) under grant agreement no. 317532.
‡KTH Royal Institute of Technology. Work partially done while at ICERM, Brown University, USA,

and Nanyang Technological University, Singapore 637371, and while supported in part by the following
research grants: Nanyang Technological University grant M58110000, Singapore Ministry of Education (MOE)
Academic Research Fund (AcRF) Tier 2 grant MOE2010-T2-2-082, and Singapore MOE AcRF Tier 1 grant
MOE2012-T1-001-094.

1

Contents
1 Introduction 3

2 Preliminaries 5

3 Technical Overview 6

4 From Approximate SSSP to Approximate Balls 15
4.1 Relation to Exact Balls . 16
4.2 Properties of Approximate Balls . 18

5 From Approximate Balls to Approximate SSSP 21
5.1 Algorithm Description . 22
5.2 Running Time Analysis . 23
5.3 Definitions of Values for Approximation Guarantee 23
5.4 Analysis of Approximation Guarantee . 27

6 Putting Everything Together 34
6.1 Approximate SSSP . 35
6.2 Approximate APSP . 40

7 Conclusion 42

References 43

2

1 Introduction
Dynamic graph algorithms refer to data structures on graphs that support update and
query operations. They are classified according to the type of update operations they allow:
decremental algorithms allow only edge deletions, incremental algorithms allow only edge
insertions, and fully dynamic algorithms allow both insertions and deletions. In this paper,
we consider decremental algorithms for the single-source shortest paths (SSSP) problem on
undirected graphs. The unweighted case of this problem allows the following operations.

• Delete(u, v): delete the edge (u, v) from the graph, and
• Distance(x): return the distance distG(s, x) between node s and node x in the current
graph G.

The weighted case allows an additional operation Increase(u, v,∆) which increases the
weight of the edge (u, v) by ∆. We allow positive integer edge weights in the range from 1 to
W , for some parameter W . For any α ≥ 1, we say that an algorithm is an α-approximation
algorithm if, for any distance query Distance(x), it returns a distance estimate δ(s, x)
such that distG(s, x) ≤ δ(s, x) ≤ α distG(s, x). There are two time complexity measures
associated with this problem: query time denoting the time needed to answer each distance
query, and total update time denoting the time needed to process all edge deletions. The
running time will be in terms of n, the number of nodes in the graph, and m, the number of
edges before the first deletion. For the weighted case, we additionally have W , the maximum
edge weight. We use Õ-notation to hide O(polylogn) terms. In this paper, we focus on
algorithms with small (O(1) or O(poly logn)) query time, and the main goal is to minimize
the total update time, which will simply be referred to as time when the context is clear.

Related Work. The static version of SSSP can be easily solved in Õ(m) time using, e.g.,
Dijkstra’s algorithm. Moreover, due to the deep result of Thorup [Tho99], it can even
be solved in linear (O(m)) time in undirected graphs with positive integer edge weights.
This implies that in our setting we can naively solve decremental SSSP in O(m2) time
by running the static algorithm after every deletion. The first non-trivial decremental
algorithm is due to Even and Shiloach [ES81] from 1981 and takes O(mn) time in unweighted
undirected graphs. This algorithm will be referred to as ES-tree throughout this paper. It
has many applications such as for decremental strongly-connected components [Rod13] and
multicommodity flow problems [Mad10]; yet, the ES-tree has resisted many attempts of
improving it for decades. Roditty and Zwick [RZ11] explained this phenomenon by providing
evidence that the ES-tree is optimal for maintaining exact distances even on unweighted
undirected graphs, unless there is a major breakthrough for Boolean matrix multiplication
and many other long-standing problems [VWW10]. After the preliminary version of this
work appeared, Henzinger et al. [HKN+15] showed that O(mn) is essentially the best possible
total update time for maintaining exact distances under the assumption that there is no
“truly subcubic” algorithm for a problem called online Boolean matrix-vector multiplication.
It is thus natural to shift the focus to approximation algorithms.

The first improvement for unweighted undirected graphs was due to Bernstein and
Roditty [BR11] who presented a (1 + ε)-approximation algorithm with O(n2+O(1/

√
logn))

3

expected total update time.1 This time bound is only slightly larger than quadratic and
beats the O(mn) time of the ES-tree unless the input graph is very sparse. For the more
general cases, Henzinger and King [HK95] observed that the ES-tree can be easily adapted to
directed graphs. King [Kin99] later extended the ES-tree to an O(mnW)-time algorithm for
weighted directed graphs. A rounding technique used in recent algorithms of Bernstein [Ber09,
Ber13] and Mądry [Mad10], as well as earlier papers on approximate shortest paths [Coh98,
Zwi02], gives a (1 + ε)-approximate Õ(mn logW)-time algorithm for weighted directed
graphs. Very recently, we obtained a (1 + ε)-approximation algorithm with total update time
O(mn0.9+o(1)) for decremental approximate SSSP in weighted directed graphs [HKN14b,
HKN15] if W ≤ 2logc n for some constant c. This gives the first o(mn) time algorithm for
the directed case, as well as other important problems such as single-source reachability
and strongly-connected components [RZ08, Lac13, Rod13]. Also very recently, Abboud and
Vassilevska Williams [AVW14] showed that “deamortizing” our algorithms in [HKN14b]
might not be possible: a combinatorial algorithm with worst case update time and query
time of O(n2−δ) (for some δ > 0) per deletion implies a faster combinatorial algorithm for
Boolean matrix multiplication and, for the more general problem of maintaining the number
of reachable nodes from a source under deletions (which our algorithms in [HKN14b] can
do) a worst case update and query time of O(m1−δ) (for some δ > 0) will falsify the strong
exponential time hypothesis.

Our Results. Given the significance of the decremental SSSP problem, it is important to
understand its time complexity.

In this paper, we obtain a near-linear time algorithm for decremental (1 + ε)-approximate
SSSP in weighted undirected graphs. Its total update time is O(m1+O(

√
log logn/ logn) logW)

and maintains an estimate of the distance between the source node and every other node,
guaranteeing constant worst-case query time. The algorithm is randomized and assumes
an oblivious adversery who fixes the sequence of updates in advance; it is correct with high
probability and the bound on its total update time holds in expectation. In the unweighted
case, our algorithm significantly improves our previous algorithm in [HKN14a] as discussed
above. There was no previous algorithm designed specifically for weighted undirected graphs,
and the previous best running time for this case comes from our O(mn0.9+o(1)) time for
weighted directed graphs [HKN14b, HKN15].

As a consequence of our techniques we also obtain an algorithm for the all-pairs shortest
paths (APSP) problem. For every integer k ≥ 2 and every 0 < ε ≤ 1, we obtain a
decremental ((2 + ε)k − 1)-approximate APSP algorithm with query time O(kk) and total
update time O(m1+1/k+O(log5/4((logn)/ε)/ log1/4 n) log2W). We remark that for k = 2 and
1/ε = O(polylogn) our result gives a (3 + ε)-approximation with constant query time and
total update time O(m1+1/2+o(1) logW). For very sparse graphs with m = Θ(n), this is
almost optimal in the sense that it almost matches the static running time [TZ05] of O(m

√
n),

providing stretch of 3 + ε instead of 3 as in the static setting. Our result on approximate
APSP has to be compared with the following prior work. For weighted directed graphs
Bernstein [Ber13] gave a decremental (1 + ε)-approximate APSP algorithm with constant
query time and total update time Õ(mn logW). For unweighted undirected graphs there are

1To enhance readability we assume that ε is a constant when citing related work, thus omiting the
dependence on ε in the running times.

4

two previous results that improve upon this update time at the cost of larger approximation
error. First, for any fixed integer k ≥ 2, Bernstein and Roditty gave a decremental (2k−1+ε)-
approximate APSP algorithm with constant query time and total update time Õ(mn1/k).
Second, for any integer k ≥ 2, Abraham, Chechik, and Talwar [ACT14] gave a decremental
2O(ρk)-approximate APSP algorithm for unweighted undirected graphs with query time
O(kρ) and total update time Õ(mn1/k), where ρ = (1 + d(logn1−1/k)/ log (m/n1−1/k)e).

2 Preliminaries
In this paper we want to maintain approximate shortest paths in an undirected graph
G = (V,E) with positive integer edge weights in the range from 1 to W , for some parameter
W . The graph undergoes a sequence of updates, which might be edge deletions or edge
weight increases. This is called the decremental setting. We denote by V the set of nodes of
G and by E the set of edges of G before the first edge deletion. We set n = |V | and m = |E|.

For every weigthed undirected graph G = (V,E), we denote the weight of an edge (u, v)
in G by wG(u, v). The distance distG(u, v) between a node u and a node v in G is the weight
of the shortest path, i.e., the minimum-weight path, between u and v in G. If there is no
path between u and v in G, we set distG(x, y) =∞. For every set of nodes U ⊆ V we denote
by E[U] the set of edges incident to the nodes of U , i.e., E[U] = {(u, v) ∈ E | u ∈ U}.2
Furthermore, for every set of nodes U ⊆ V , we denote by G|U the subgraph of G induced by
the nodes in U , i.e., G|U contains all edges (u, v) such that (u, v) is contained in E and u
and v are both contained in U , or short: G|U = (U,E ∩U2). Similarly, for every set of edges
F ⊆ V 2 and every set of nodes U ⊆ V we denote by F |U the subset of F induced by U .

We say that a distance estimate δ(u, v) is an (α, β)-approximation of the true distance
distG(u, v) if distG(u, v) ≤ δ(u, v) ≤ α distG(u, v) + β, i.e., δ(u, v) never underestimates the
true distance and overestimates it with a multiplicative error of at most α and an additive
error of at most β. If there is no additive error, we simply say α-approximation instead of
(α, 0)-approximation.

In our algorithms we will use graphs that do not only undergo edge deletions and edge
weight increases, but also edge insertions. For such a graph H, we denote by E(H) the
number of edges ever contained in H, i.e., the number of edges contained in H before any
deletion or insertion plus the number of inserted edges. We denote by W(H) the number of
edge weight increases in H. Similarly, for a set of edges F , we denote by E(F) the number
of edges ever contained in F and by W(F) the number of edge weight increases in F .

The central data structure in decremental algorithms for exact and approximate shortest
paths is the Even-Shiloach tree (short: ES-tree). This data structure maintains a shortest
paths tree from a root node up to a given depth D.

Lemma 2.1 ([ES81, HK95, Kin99]). There is a data structure called ES-tree that, given a
weighted directed graph G undergoing deletions and edge weight increases, a root node s, and a
depth parameter D, maintains, for every node v a value δ(v, s) such that δ(v, s) = distG(v, s)
if distG(v, s) ≤ D and δ(v, s) =∞ if distG(v, s) > D. It has constant query time and a total
update time of O(mD).

2Since G is an undirected graph, this definition is equivalent to E[U] = {(u, v) ∈ E | u ∈ U or v ∈ U}.

5

Recent approaches for solving approximate decremental SSSP and APSP use special
graphs called emulators. An (α, β)-emulator H of a graph G is a graph containing the
nodes of G such that distG(u, v) ≤ distH(u, v) ≤ α distG(u, v) + β for all nodes u and
v.3 Maintaining exact distances on H provides an (α, β)-approximation of distances in G.
As good emulators are sparser than the original graph this is usually more efficient than
maintaining exact distances on G. However, the edges of H also have to be maintained
while G undergoes updates. For unweighted, undirected graphs undergoing edge deletions,
the emulator of Thorup and Zwick (based on the second spanner construction in [TZ06]),
which provides a relatively good approximation, can be maintained quite efficiently [BR11].
However the definition of this emulator requires the occasional insertion of edges into the
emulator. Thus, it is not possible to run a purely decremental algorithm on top of it.

There have been approaches to design algorithms that mimic the behavior of the classic
ES-tree when run on an emulator that undergoes insertions. The first approach by Bernstein
and Roditty [BR11] extends the ES-tree to a fully dynamic algorithm and analyzes the
additional work incurred by the insertions. The second approach was introduced by us
in [HKN13] and is called monotone ES-tree. It basically ignores insertions of edges into
H and never decreases the distance estimate it maintains. However, this algorithm does
not provide an (α, β)-approximation on any (α, β)-approximate emulator as it needs to
exploit the structure of the emulator. In [HKN13] we gave an analysis of the monotone
ES-tree when run on a specific (1 + ε, 2)-emulator and in the current paper we use a different
analysis for our new algorithms. If we want to use the monotone ES-tree to maintain
(α, β)-approximate distances up to depth D we will set the maximum level in the monotone
ES-tree to L = αD + β. The running time of the monotone ES-tree as analyzed in [HKN13]
is as follows.

Lemma 2.2. For every L ≥ 1, the total update time of a monotone ES-tree up to maximum
level L on a graph H undergoing edge deletions, edge insertions, and edge weight increases
is O(E(H) · L+W(H)).

Our algorithms will heavily use randomization. It is well-known, and exploited by many
other algorithms for dynamic (approximate) shortest paths and reachability, that by sampling
a set of nodes with a sufficiently large probability we can guarantee that certain sets of nodes
contain at least one of the sampled nodes whp. To the best of our knowledge, the first use
of this technique in graph algorithms goes back to Ullman and Yannakakis [UY91].

Lemma 2.3. Let T be a set of size t and let S1, S2, . . . , Sl be subsets of T of size at least
s. Let U be a subset of T that was obtained by choosing each element of T independently
with probability p = (a ln lt)/s, where a is a constant. Then, for every 1 ≤ i ≤ l, the set Si
contains a node of U with high probability (whp), i.e. probability at least 1− 1/ta, and the
size of U is O((t log (lt))/s) in expectation.

3 Technical Overview
In the following we explain the main ideas of this paper, which lead to an algorithm for
maintaining a hop set of a graph undergoing edge deletions.

3For the related notion of a spanner we additionally have to require that H is a subgraph of G.

6

General Idea. With the well-known algorithm of Even and Shiloach we can maintain a
shortest paths tree from a source node up to a given depth D under edge deletions in time
O(mD). In unweighted graphs, all simple paths have length at most n and therefore we can
set D = n to maintain a full shortest paths tree. In weighted graphs with positive integer edge
weights from 1 to W , all simple paths have length at most nW and therefore we can set D =
nW to maintain a full shortest paths tree. Using an established rounding technique [Coh98,
Zwi02, Ber09, Mad10, Ber13, Nan14], one can use this algorithm to maintain (1 + ε)-
approximate single-source shortest paths up to h hops in time O(mh log (nW)/ε). With this
algorithm we can set h = n to maintain a full-length approximate shortest paths tree, even
in weighted graphs. This algorithm would be very efficient if the graph had a small hop
diameter, i.e., if for any pair of nodes there is a shortest path with a small number of edges.
Our idea is to artificially construct such a graph.

To this end we will use a so-called hop set. An (h, ε)- hop set F of a graph G = (V,E) is
a set of weighted edges F ⊆ V 2 such that in the graph H = (V,E ∪F) there exists, for every
pair of nodes u and v, a path from u to v of weight at most (1 + ε) distG(u, v) and with at
most h edges. If we run the approximate SSSP algorithm on H, we obtain a running time
of O((m + |F |)h log (nW)/ε). In our algorithm we will obtain an (O(no(1)), ε)-hop set of
size O(m1+o(1)) and thus the running time will be O(m1+o(1) log (nW)/ε). It is however not
enough to simply construct the hop set at the beginning. We also need a dynamic algorithm
for maintaining the hop set under edge deletions in G. We will present an algorithm that
performs this task also in almost linear time over all deletions.

Roughly speaking, we achieve the following. Given a graph G = (V,E) undergoing
edge deletions, we can maintain a restricted hop set F such that, for all pairs of nodes
u and v if the shortest path from u to v in G has h ≥ n1/q hops, in the shortcut graph
H = (V,E ∪ F) there is a path from u to v of weight at most (1 + ε) distG(u, v) and with at
most dh/n1/qe logn hops. Our high-level idea for maintaining an (unrestricted) (no(1), ε) hop
set is the following hierarchical approach. We start with H0 = G to maintain a hop set F1 of
G, which reduces the number of hops by a factor of logn/n1/q at the cost of a multiplicative
error of 1 + ε. Given F1, we use the shortcut graph H1 = (V,E ∪ F1) to maintain a hop set
F2 of G that reduces the number of hops by another factor of logn/n1/q introducing another
error of 1 + ε. By repeating this process q times we arrive at a hop set that guarantees, for
all pairs of nodes u and v, a path of weight at most (1 + ε)q distG(u, v) and with at most
(logn)qn1/q hops. Figure 1 visualizes this hierarchical approach.

The notion of hop set was first introduced by Cohen [Coh00] in the PRAM literature
and is conceptually related to the notion of emulator. It is also related to the notion of
shortest-paths diameter used in distributed computing (e.g., [KKM+12, Nan14]). To the best
of our knowledge, the only place that this hop set concept was used before in the dynamic
algorithm literature (without the name being mentioned) is Bernstein’s fully dynamic (2 + ε)-
approximation algorithm for all-pairs shortest paths [Ber09]. There, an (no(1), ε)-hop set
is essentially recomputed from scratch after every edge update, and a shortest-paths data
structure is maintained on top of this hop set.

Static Hop Set. We first assume that G = (V,E) is an unweighted undirected graph and
for simplicity we also assume that ε is a constant. We explain how to obtain a hop set of G
using a randomized construction of Thorup and Zwick [TZ06] based on the notion of balls of

7

u v

(1 + ε)n1/q

logn hops

(1 + ε)n1/q

logn hops

(1 + ε)n1/q

logn hops

(1 + ε)2n2/q

log2 n hops

n1/q n1/q n1/q

n2/q

Figure 1: Illustration of the hierarchical approach for maintaining the hop set reduction.
Here q = Θ(

√
logn) and u and v are nodes that are at distance n2/q from each other. In the

first layer we find a hop set that shortcuts all subpaths of weight n1/q by paths of weight at
most (1 + ε)n1/q and with at most logn hops. In the second layer, we use the shortcuts of
the first layer to find a hop set that shortcuts the path from u to v of weight n2/q by a path
of weight at most (1 + ε)2n2/q and with at most log2 n hops.

nodes. We describe this construction and the hop-set analysis in the following.
Let 2 ≤ p ≤ logn be a parameter and consider a sequence of sets of nodes A0, A1, . . . , Ap

obtained as follows. We set A0 = V and Ap = ∅ and for 1 ≤ i ≤ p− 1 we obtain the set Ai
by picking each node of V independently with probability 1/ni/p. The expected size of Ai is
n1−i/p. For every node u we define the priority of u as the maximum i such that u ∈ Ai.
For a node u of priority i we define

Ball(u) = {v ∈ V | distG(u, v) < distG(u,Ai+1)} (1)

where distG(u,Ai+1) = minv∈Ai+1 distG(u, v). Note that distG(u,Ap) = ∞ and thus if
u ∈ Ap−1, then Ball(u) = V . For each node u of priority i the size of Ball(u) is n(i+1)/p in
expectation by the following argument: Order the nodes in non-decreasing distance from u.
Each of these nodes belongs to Ai+1 with probability 1/n(i+1)/p and therefore, in expectation,
we need to see n(i+1)/p nodes until one of them is contained in Ai+1. It follows that the
expected size of all balls of priority i is at most n1+1/p (the expected size of Ai times the
expected size of Ball(u) for each node u of priority i) and the expected size of all balls, i.e.,∑
u∈V |Ball(u)|, is at most pn1+1/p.
Let F be the set of edges F = {(u, v) ∈ V 2 | v ∈ Ball(u)} and give each edge (u, v) ∈ F

the weight wF (u, v) = distG(u, v). By the argument above, the expected size of F is at
most pn1+1/p. An argument of Thorup and Zwick [TZ06] shows that the weighted graph
H = (V, F) has the following property for every pair of nodes u and v and any 0 < ε ≤ 1

8

such that 1/ε is integer:4

distG(u, v) ≤ distH(u, v) ≤ (1 + ε) distG(u, v) + 2
(

2 + 2
ε

)p−2
.

Note that the choice of ε gives a trade-off in the error between the multiplicative part (1 + ε)
and the additive part 2(2 + 2/ε)p−2. In the literature, such a graph H is known as an
emulator of G with multiplicative error (1 + ε) and additive error 2(2 + 2/ε)p−2.5 Roughly
speaking, the strategy in their proof is as follows. Let u′ be the node following u on the
shortest path from u to v in G. If the edge (u, u′) is also contained in H, then we can shorten
the distance to v by 1 without introducing any approximation error (recall that we assume
that G is unweighted). Otherwise, one can show that there is a path π′ with at most p edges
in H from u to a node v′ closer to v than u such that the ratio between the weight of π′
and the distance from u to v′ is at most (1 + ε), and, if v′ = v, then the weight of π′ is at
most 2(2 + 2/ε)p−2. The proof needs the following property of the balls: for every node u of
priority i and every node v either v ∈ Ball(u) or there is some node v′ of priority j > i such
that u ∈ Ball(v′). We illustrate the proof strategy in Figure 2.

Observe that the same strategy can be used to show the following: Given any integer
∆ ≤ n, let u′ be the node that is at distance ∆ from u on the shortest path from u to v in
G. If the edge (u, u′) is contained in H, then we can shorten the distance to v by ∆ without
introducing any approximation error. Otherwise, one can show that there is a path π′ with
at most p edges in H from u to a node v′ closer to v than u such that the ratio between
the weight of π′ and the distance from u to v′ is at most (1 + ε), and, if v′ = v, then the
weight of π′ is at most 2(2 + 2/ε)p−2 ·∆. Every time we repeat this argument the distance
to v is shortened by at least ∆. Therefore there is a path from u to v in H with at most
pddistG(u, v)/∆e edges that has weight at most (1 + ε) distG(u, v) + 2(2 + 2/ε)p−2 ·∆. One
can show that this statement would also be true if we had removed all edges from F of
weight more than (1 + 2/ε)(2 + 2/ε)p−2, which is the maximum weight of the edge to v′
in the proof strategy above outlined in Figure 2. We will need this fact in the dynamic
algorithm as it allows us to limit the depth of the balls.

By a suitable choice of p = Θ(
√

logn) (as a function of n and ε) we can guarantee
that 2(2 + 2/ε)p−2 ≤ εn1/p and n1/p = no(1). Now define q = p and ∆k = nk/q for each
0 ≤ k ≤ q − 2. Then we have, for every 0 ≤ k ≤ q − 2 and all pairs of nodes u and v

distG(u, v) ≤ distH(u, v) ≤ (1 + ε) distG(u, v) + 2
(

2 + 2
ε

)p−2
·∆k

≤ (1 + ε) distG(u, v) + εn1/p ·∆k

= (1 + ε) distG(u, v) + ε∆k+1 .

Thus, if ∆k+1 ≤ distG(u, v) ≤ ∆k+2, then there is a path from u to v in H of weight at most

(1 + ε) distG(u, v) + ε∆k+1 ≤ (1 + ε) distG(u, v) + εdistG(u, v) = (1 + 2ε) distG(u, v)
4The requirement that 1/ε must be integer is not needed in the paper of Thorup and Zwick; we have

added it here to simplify the exposition.
5In their paper, Thorup and Zwick [TZ06] actually define a graph H ′ whose set of edges is the union of

the shortest paths trees from every node u to all nodes in its ball. This graph has the same approximation
error and the same size as H; since H ′ is a subgraph of G it is called a spanner of G.

9

u0

u1

u2

v0 v1 v2 v

decreasing distance to v

in
cr
ea
sin

g
pr
io
rit

y

Figure 2: Illustration of the hop reduction for p = 3 priorities. The dotted line is the shortest
path π from u0 to v in G. The thick, blue edges are the edges of F used to shorten the
distance to v. The dashed, blue edges are not contained in F and imply the existence of
edges to nodes of increasing priority. Starting from u0, a node of priority 0, we let v0 be the
node on π such that distG(u0, v0) = r0 := 1, i.e., the neighbor of u0 on π. If the edge (u0, v0)
is not contained in F , then F contains an edge (u0, u1) to a node u1 of priority at least 1
such that distG(u0, u1) ≤ r0. Let v1 be the node on π such that distG(u1, v1) = r1 := 1 + 2/ε.
If the edge (u1, v1) is not contained in F , then F contains an edge (u1, u2) to a node u2
of priority at least 2 such that distG(u1, u2) ≤ r1. Let v2 be the node on π such that
distG(u2, v2) = r2 := (1 + 2/ε)(2 + 2/ε). Since 2 is the highest priority, u2 contains the
edge (u2, v2). Note that the weight of these three edges from F is at most r0 + r1 + r2 and
distG(u0, v2) ≥ r2 − (r0 + r1). Since r2 = (1 + 2/ε)(r0 + r1), the ratio between these two
quantities is (1 + ε).

10

and with at most pddistG(u, v)/∆ke ≤ (p+1)∆k+2/∆k = (p+1)n2/q = no(1) edges. It follows
that F is a (2ε, no(1)) hop set of size O(pn1+1/p) = O(n1+o(1)). By running the algorithm
with ε′ = ε/2 we obtain an (ε, no(1)) hop set of size O(n1+o(1)).

Efficient Construction. So far we have ignored the running time for computing the
balls and thus constructing F , even in the static setting. Thorup and Zwick [TZ06] have
remarked that a naive algorithm for computing the balls takes time O(mn). We can reduce
this running time by sampling edges instead of nodes.

We modify the process for obtaining the sequence of sets A0, A1, . . . , Ap as follows. We
set A0 = V and Ap = ∅ and for 1 ≤ i ≤ p− 1 we obtain the set Ai by picking each edge of
E independently with probability 1/mi/p and adding both endpoints of each sampled edge
to Ai. The priority of a node u is the maximum i such that u ∈ Ai. We define, for every
node u of priority i, Ball(u) just like in Equation (1), but using the new definition of Ai.
Note that the expected size of Ai is O(m1−i/p) for every 1 ≤ i ≤ p− 1.

The balls can now be computed as follows. First, we use the following process to compute
distG(u,Ai) = minv∈Ai distG(u, v) for every node u and every 1 ≤ i ≤ p−1. Using Dijkstra’s
algorithm on a graph where we add an artificial source node si that is connected to every
node in Ai by an edge of weight 0, this takes time O(p(m+ n logn)). Second, we compute
for every node u of priority i a shortest paths tree up to depth distG(u,Ai+1)− 1 to obtain
all nodes contained in Ball(u). Using an implementation of Dijkstra’s algorithm that only
puts nodes into its queue upon their first visit this takes time O(|E[Ball(u)]| logn) where
E[Ball(u)] = {(u, v) ∈ E | u ∈ Ball(u) or v ∈ Ball(u)} is the set of edges incident to Ball(u).
By the sampling of edges we have, using the same ordering argument as before, that the
expected size of Ball(u) is m(i+1)/p. For 0 ≤ i ≤ p− 1 the expected size of Ai is O(m1−i/p)
and thus these Dijkstra computations take time O(m1+1/p logn) for all nodes of priority i.
By choosing p = Θ(

√
logn) as described above we have m1/p = O(mo(1)) and thus the balls

can be computed in time O(m1+o(1)).
We define F as the set of edges F = {(u, v) ∈ V 2 | v ∈ Ball(u)} and give each edge

(u, v) ∈ F the weight wF (u, v) = distG(u, v). The distance-preserving and hop-reducing
properties of F still hold as stated above and its expected size is O(pm1+1/p). Note that F
is not a sparsification of G anymore (as the bound on its size is even more than m). For our
purposes the sparsification aspect is not relevant, we only need the hop reduction. Thus in
the static setting, we can compute an (ε,mo(1))-hop set (which is also an (ε, no(1))-hop set)
of expected size O(m1+o(1)) in expected time O(m1+o(1)).

Maintaining Balls Under Edge Deletions. As the graph G undergoes deletions the
hop set has to be updated as well. We can achieve this by maintaining the balls w.r.t. a
fixed sequence of randomly chosen sets A0, A1, . . . , Ap, where A0 = V and Ap = ∅ and
for 1 ≤ i ≤ p − 1 we obtain Ai by picking each edge of E independently with probability
c lnn/mi/p, for some large enough constant c, and adding both endpoints of each sampled
edge to Ai. Note that now, for every 1 ≤ i ≤ p− 1, the expected size of Ai is O(m1−i/p logn)
and the size of E[Ball(u)] for every node u of priority i is at most m(i+1)/p with high
probability (whp) at any time. This holds because by deleting edges there can only be a
polynomial number of different graphs in the whole sequence of updates. Unfortunately, we
do not know how to maintain the balls efficiently. However we can maintain for all nodes u

11

the approximate ball

Ball(u,D) = {v ∈ V | log distG(u, v) < blog distG(u,Ai+1)c and distG(u, v) ≤ D}

(where u has priority i) in time O(pm1+1/pD logD). Note that Ball(u,D) differs from the
definition of Ball(u) in the following ways. First, we use the inequality log distG(u, v) <
blog distG(u,Ai+1)c instead of the inequality distG(u, v) < distG(u,Ai+1). This alone in-
creases the additive error of the hops set from 2(2 + 2/ε)p−2 to 4(3 + 4/ε)p−2, which can
easily be compensated. Second, we limit the balls to a certain depth D. By using a small
value of D we will only obtain a restricted hop set that provides sufficient hop reduction for
nodes that are relatively close to each other. We will show later that this is enough for our
purposes. Despite of these modifications we clearly have Ball(u,D) ⊆ Ball(u) and therefore
all size bounds still apply.

In the first part of the algorithm for maintaining the balls we maintain distG(u,Ai) every
1 ≤ i ≤ p− 1 and every node u. We do this by adding an artifical source node si that has
an edge of weight 0 to every node in Ai and maintain an ES-tree up to depth D from si.
This step takes time O(pmD).

Now, for every node u of priority i we maintain Ball(u,D) as follows. We maintain an
ES-tree up to depth

min
(
2blog distG(u,Ai+1)c − 1, D

)
and every time 2blog distG(u,Ai+1)c increases, we restart the ES-tree. Naively, we incur a cost
of O(mD) for each instance of the ES-tree. However we can easily implement the ES-tree
in a way that it never looks at edges that are not contained in E[Ball(u)].6 Thus, the cost
of each instance of the ES-tree is O(|Ball(u)|D). Remember that Ball(u,D) ⊆ Ball(u) and
that by the random sampling of edges the size of E[Ball(u)] is at most m(i+1)/p whp. As
2blog distG(u,Ai+1)c can increase at most logD times until it exceeds D, we initialize at most
logD ES-trees for the node u. Therefore the total time needes for maintaining Ball(u,D) is
O(m(i+1)/pD logD). As there are at most Õ(m1−i/p) nodes of priority i in expectation, the
total time needed for maintaining all approximate balls is Õ(pm1+1/pD logD) in expectation.

Decremental Approximate SSSP. Let us first sketch an algorithm for maintaining
shortest paths from a source node s with a running time of O(m1+1/2+o(1)) for which we
use q = 2 layers and p = Θ(

√
logn) priorities. We set ∆ =

√
n, D = 2(3 + 4/ε)p−2∆, and p

such that 2(3 + 4/ε)p−2 ≤ εn1/p and n1/p = O(no(1)). We maintain single-source shortest
paths up to depth D from s using the ES-tree, which takes time O(mD) = O(mn1/2+o(1)).
To maintain approximate shortest paths to nodes that are at distance more than D from s
we use the following approach. We maintain Ball(u,D) for every node u, as sketched above,
which takes time Õ(pm1+1/pD logD) = O(m1+1/2+o(1)) in expectation. At any time, we set
the hop set F to be the set of edges F = {(u, v) ∈ V 2 | ∃v ∈ Ball(u,D)} and give each
edge (u, v) ∈ F the weight wF (u, v) = distG(u, v). By our arguments above, the weighted
graph H = (V, F) has the following property: for every pair of nodes u and v such that

6If we prefer to use the ES-tree as a “black box” we can, in a preprocessing step, find the initial set
Ball(u,D) and only build an ES-tree for this ball. All other nodes will never be contained in Ball(u,D)
anymore as long as the value of 2blog distG(u,Ai+1)c remains unchanged and therefore we can remove them.
This can be done in time O(|E[Ball(u,D)]| logn) by using an implementation of Dijkstra’s algorithm that
only puts nodes into its queue upon their first visit.

12

distG(u, v) ≥ D ≥ ∆ there is a path π in H of weight at most (1 + 2ε) distG(u, v) and with
at most p distG(u, v)/∆ edges.

To maintain approximate shortest paths for nodes at distance more than D from s we
will now use the hop reduction in combination with the following rounding technique. We
set ϕ = ε∆/p and let H ′ be the graph resulting from rounding up every edge weight in H to
the next multiple of ϕ. By using H ′ instead of H we incur an error of ϕ for every edge on
the approximate shortest path path π. Thus in H ′, π has weight at most

(1 + 2ε) distG(u, v) + (p distG(u, v)/∆) · ϕ = (1 + 2ε) distG(u, v) + εdistG(u, v)
≤ (1 + 3ε) distG(u, v) .

The efficiency now comes from the observation that we can run the algorithm on the graph
H ′′ where every edge weight in H ′ is scaled down by a factor of 1/ϕ. The graph H ′′ has
integer weights and the weights of all paths in H ′ and H ′′ differ exactly by the factor 1/ϕ.
Thus, instead of maintaining a shortest paths tree up to depth n in H we only need to
maintain a shortest paths tree in H ′′ up to depth n/ϕ = p

√
n/ε. In this way we obtain a

(1 + 3ε)-approximation for all nodes such that distG(u, v) ≥ D.
However, we cannot simply use the ES-tree on H ′′ because as edges are deleted from G,

nodes might join the approximate balls and therefore edges might be inserted into F and
thus into H ′′. This means that a dynamic shortest paths algorithm running on H ′′ would not
find itself in a purely decremental setting. However the insertions have a “nice” structure.
We can deal with them by using a previously developed technique, called monotone ES-tree.
The main idea of the monotone ES-tree is to ignore the level decreases suggested by inserting
edges. The hop-set proof still goes through, even though we are not arguing about the current
distance in H ′′ anymore, but the level of a node u in the monotone ES-tree. Maintaining
the monotone ES-tree for distances up to D in H ′′ takes time O(|E(H)|D) where E(H ′′)
is the set of edges ever contained in H ′′ (including those that are inserted over time) and
D = O(n1/2+1/p) as explained above. Each insertion of an edge into F corresponds to a node
joining Ball(u,D) for some node u. For a fixed node u of priority i there are at most logD
possibilities for nodes to join Ball(u,D) (namely each time blog distG(u,Ai+1c increases)
and every time at most m(i+1)/p nodes will join whp. It follows that |E(H)| is O(m1+o(1))
whp and the running time of this step is O(m1+1/2+o(1)) in expectation.

The almost linear-time algorithm is just slightly more complicated. Here we use p =
Θ(
√

logn) priorites and q = √p layers and set ∆k = nk/q for each 0 ≤ k ≤ q − 2. In the
algorithm we will maintain, for each 0 ≤ k ≤ q − 2 a hop set Fk such that for every pair of
nodes u and v with ∆k+1 ≤ distG(u, v) ≤ ∆k+2 there is a path from u to v in Hk = (V, Fk)
of weight at most (1 + 2ε) distG(u, v) and with at most pdistG(u, v)/∆k ≤ pn2/q hops. To
achieve this we use the following hierarchical approach. Given the hop set Fk we can maintain
approximate shortest paths up to depth ∆k+2 in time O(m1+o(1)) and given a data structure
for maintaining approximate shortest paths up to depth ∆k we can maintain approximate
balls und thus the hop set Fk+1 in time O(m1+o(1)). The hierarchy “starts” with using the
ES-tree as an algorithm for maintaining an (exact) shortest paths tree up to depth n2/q.
Thus, running efficient monotone ES-trees on top of the hop sets and maintaining the hop
sets (using efficient monotone ES-trees) go hand in hand.

There are two obstacles in implementing this hierarchical approach when we want to
maintain the approximate balls in each layer. First, in our algorithm for maintaining the

13

approximate balls we have used the ES-tree as an exact decremental SSSP algorithm. In
the multilayer approach we have to replace the ES-tree with the monotone ES-tree which
only provides approximate distance estimates. This will lead to approximation errors that
increase with the number of layers. Second, by the arguments above the number of edges in
Fk is O(m1+1/p) for each 0 ≤ k ≤ q − 2. In the algorithm for maintaining the approximate
balls for the next layer, this bound however is not good enough because we run a separate
instance of the monotone ES-tree for each node u. We deal with this issue by running the
monotone ES-tree in the subgraph of G induced by the nodes initially contained in Ball(u).
For a node u of priority i this subgraph contains mi = m(i+1)/p edges whp and we can
recursively run our algorithm on this smaller graph. By this process we incur a factor of
m1/p in the running time each time each time we increase the depth of the recursion. This
results in a total update time of Õ(m1+q/p) which is Õ(m1+1/q) = O(m1+o(1)) since q = √p.

Extension to Weighted Graphs. The hop set construction described above was only
for unweighted graphs. However, the main property that we needed was distG(u, v) ≤ n
for any pair of nodes u and v. Using the rounding technique mentioned above, we can
construct for each 0 ≤ i ≤ blognW c a graph Gi such that for all pairs of nodes u and v with
2i ≤ distG(u, v) ≤ 2i+1 we have distGi(u, v) ≤ 4n/ε for some small γ and the shortest path
in Gi can be turned into a (1 + ε)-approximate shortest path in G by scaling up the edge
weights. We now run O(log (nW)) instances of our algorithm, one for each graph Gi, and
maintain the hop set and approximate SSSP for each of them.

We only need to refine the analysis of the hop-set property in the following way. Remember
that in the analysis we considered the shortest path π from u to v and defined the node u′
that is at distance ∆ from u on π. If the hop set contained the edge (u, u′) we could reduce
the distance to v by ∆. In weighted graphs (even after the scaling), we cannot guarantee
there is a node at distance ∆ from u on π. Therefore we define u′ as the furthest node that
is at distance at most ∆ from u on π. Futhermore we define u′′ as the neighbor of u′ on π,
i.e., u′′ is at distance at least ∆ from u. Now if the hop set contains the edge (u, u′) we first
use the edge (u, u′) from the hop set, and then the edge (u′, u′′) from the original graph to
reduce the distance to v by at least ∆ with only 2 hops. Note that for unweighted graphs it
was sufficient to only use the edges of the hop set. For weighted graphs we really have to
add the edges of the hop set to the original graph in our algorithm.

Outline. As sketched above, our algorithm uses the following hierarchical approach: Given
a decremental approximate SSSP algorithm for distances up to Di with total update time
O(m1+o(1)), we can maintain approximate balls for distances up to Di with total time
O(m1+o(1)) as well. And given a decremental algorithm for maintaining approximate balls
for distances up to Di with total update time O(m1+o(1)) we can use the approximate balls
to define a hop set which allows us to maintain approximate shortest paths for distances up
to Di+1 = no(1)Di with total update time O(m1+o(1)). This scheme is repeated until Di is
large enough to cover the full distance range.

We have formulated the two parts of this scheme as reductions. In Section 4 we give a
decremental algorithm for maintaining approximate balls that internally uses a decremental
approximate SSSP algorithm. In Section 5 we give a decremental approximate SSSP algorithm
that internally uses a decremental algorithm for maintaining approximate balls. In Section 6

14

we explain the hierarchical approach for putting these two parts together and obtain the
decremental (1 + ε)-approximate SSSP algorithm with a total update time of O(m1+o(1)) for
the full distance range. In addition to this result, the algorithm for maintaining approximate
balls, together with a suitable query algorithm, gives us a decremental approximate APSP
algorithm. This algorithm is also given in Section 6.

4 From Approximate SSSP to Approximate Balls
In the following we show how to maintain the approximate balls of every node if we already
have an algorithm for maintaining approximate shortest paths. In our reduction we will use
the algorithm for maintaining approximate shortest paths as a “black box”, requiring only
very few properties. Formally, we prove the following statement in this section.

Proposition 4.1. Assume there is a decremental approximate SSSP algorithm Approx-
SSSP with the following properties, using fixed values α ≥ 1, β ≥ 0, and D ≥ 1: Given a
weighted graph G = (V,E) undergoing edge deletions and edge weight increases and a fixed
source node s ∈ V , ApproxSSSP maintains for every node v ∈ V a distance estimate δ(s, v)
such that:

A1 δ(s, v) ≥ distG(s, v)

A2 If distG(s, v) ≤ D, then δ(s, v) ≤ α distG(s, v) + β. .

A3 After every update in G, ApproxSSSP returns, for every node v such that δ(s, v) has
changed, v together with the new value of δ(s, v).

We denote the total update time of ApproxSSSP by T (m,n).
Then there is a decremental algorithm ApproxBalls for maintaining approximate balls

with the following properties: Given a weighted graph G = (V,E) undergoing edge deletions
and edge weight increases and parameters 2 ≤ k ≤ logn and 0 < ε ≤ 1, it assigns to every
node u ∈ V a number from 0 to k − 1, called the priority of u, and maintains for every node
u ∈ V a set of nodes B(u) and a distance estimate δ(u, v) for every node v ∈ B(u) such that:

B1 For every node u and every node v ∈ B(u) we have distG(u, v) ≤ δ(u, v) ≤ α distG(u, v)+
β.

B2 Let s(·, ·) be a non-decreasing function such that, for all x ≥ 1, and l ≥ 1,

s(x, l) ≥ a(a+ 1)l−1 distG(u, v) + ((a+ 1)l − 1)b/a ,

where a = (1 + ε)α and b = (1 + ε)β + 1. Then for every node u of priority i and every
node v such that s(distG(u, v), p− 1− i) ≤ D, either (1) v ∈ B(u) or (2) there is some
node v′ of priority j > i such that u ∈ B(v′) and distG(u, v′) ≤ s(distG(u, v), j − i).

B3 If, for every node u, B(u) denotes the set of nodes ever contained in B(u), then∑
u∈V |Bu| = Õ(m1+1/k logD/ε) in expectation.

15

B4 The update time of ApproxBalls is

t(m,n, k, ε) = Õ

m1+1/k logD/ε+
∑

0≤i≤k−1
m1−i/k · T (mi, ni) logD/ε+ T (m,n)

 ,

where, for each 0 ≤ i ≤ k − 1, mi = m(i+1)/k and ni = min(mi, n).

B5 After every update in G, ApproxBalls returns all pairs of nodes u and v such that v
joins B(u), v leaves B(u), or δ̂(u, v) changes.

Our algorithm for maintaining the approximate balls B(u) for every node u ∈ V is as
follows:

1. At the initialization we set F0 = E and Fk = ∅ and for 1 ≤ i ≤ k−1, a set of edges Fi is
obtained from sampling each edge of E independently with probability (c lnn)/mi/k (for
a large enough constant c). For every 0 ≤ i ≤ k− 1 we set Ai = {v ∈ V | ∃(v, w) ∈ Fi}
and for every node v ∈ V , we set the priority of u to be the maximum i such that
v ∈ Ai.

2. For each 1 ≤ i ≤ k − 1 we run an instance of ApproxSSSP with depth D from an
artificial source node si that has an edge of weight 0 to every node in Ai. We denote
the distance estimate provided by ApproxSSSP δ(u,Ai) and set δ(u,Ak) = ∞ for
every node u ∈ V .

3. For every 0 ≤ i ≤ k − 1 and every node u ∈ V of priority i, we maintain the value

r(u) = min
(

(1 + ε)blog1+ε (δ(u,Ai+1)−1)c − β
α

,D

)
.

and at the initialization and each time r(u) increases we do the following:

(a) Compute the set of nodes R(u) = {v ∈ V | distG(u, v) ≤ r(u)}.
(b) Run an instance of ApproxSSSP with depth D from u in G|R(u), the subgraph

of G induced by R(u). Let δ(u, v) denote the estimate of the distance between u
and v in G|R(u) maintained by ApproxSSSP.

(c) Maintain B(u) = {v ∈ V | δ(u, v) ≤ αD+β}: every time δ(u, v) changes for some
node v we check whether v is still contained in B(u).

Note that ApproxBalls has Property B5, i.e., it returns changes in the approximate
balls and the distance estimates, which is possible because ApproxSSSP has Property A3.

4.1 Relation to Exact Balls

In the following we compare the approximate balls maintained by our algorithm to the exact
balls, as used by Thorup and Zwick [TZ06]. We show how the main properties of exact balls
translate to approximate balls. We use the following definition of the (exact) ball of a node
u of priority i:

Ball(u) = {v ∈ V | distG(u, v) < distG(u,Ai+1)} .

16

The balls have the following simple property: If v /∈ Ball(u), then there is a node v′ of
priority j > i such that distG(u, v′) ≤ distG(u, v). We show that a relaxed version of this
statement also holds for the approximate balls.

Lemma 4.2. Let u be a node of priority i and let v be a node such that distG(u, v) ≤ D. If
v /∈ B(u), then there is a node v′ of priority j > i such that distG(u, v′) ≤ a distG(u, v) + b,
where a = (1 + ε)α and b = (1 + ε)β + 1.

Proof. We show the following: If distG(u,Ai+1) ≥ adistG(u, v), then v ∈ B(u). The claim
then follows from contraposition: If v /∈ B(u), then distG(u,Ai+1) < a distG(u, v) + b and
thus there exists some node v′ ∈ Ai+1 that has priority j ≥ i+ 1 such that distG(u, v′) <
a distG(u, v) + b.

Assume that distG(u,Ai+1) ≥ a distG(u, v) + b. Remember that we have set

r(u) = min
(

(1 + ε)blog1+ε (δ(u,Ai+1)−1)c − β
α

,D

)
.

Since δ(u,Ai+1) ≥ distG(u,Ai+1) by Property A1 we have

δ(u,Ai+1) ≥ distG(u,Ai+1) ≥ a distG(u, v) + b = (1 + ε)(α distG(u, v) + β) + 1

which is equivalent to

distG(u, v) ≤
δ(u,Ai+1)−1

1+ε − β
α

.

Since (1 + ε)blog1+ε (δ(u,Ai+1)−1)c ≥ (1 + ε)log1+ε (δ(u,Ai+1)−1)−1 = (δ(u,Ai+1) − 1)/(1 + ε) it
follows that

distG(u, v) ≤ (1 + ε)blog1+ε (δ(u,Ai+1)−1)c − β
α

Since we have assumed that distG(u, v) ≤ D we get distG(u, v) ≤ r(u) which implies that
distG|R(u)(u, v) ≤ r(u) ≤ D as well. Thus, by Property A2, it follows that δ(u, v) ≤
α distG|R(u) +β ≤ αD + β and v ∈ B(u) as desired.

We now show that the approximate balls are contained in the exact balls. The exact
balls are useful in our analysis because we can easily bound their size.

Lemma 4.3. At any time B(u) ⊆ Ball(u) for every node u.

Proof. Let R(u) = {v ∈ V | distG(u, v) ≤ r(u)} denote the set of nodes in distance at most
r(u) from u at the last time r(u) has increased. Note that B(u) is a set of nodes of the
graph G|R(u) and therefore B(u) ⊆ R(u). It remains to show that R(u) ⊆ Ball(u).

If i = k − 1, then the claim is trivially true because Ball(u) contains all nodes that are
connected to u in G. In the case 0 ≤ i < k − 1 remember that

r(u) = min
(

(1 + ε)blog1+ε (δ(u,Ai+1)−1)c − β
α

,D

)
.

17

If distG(u,Ai+1) > r(u), we trivially have distG(u, v) ≤ r(u) < distG(u,Ai+1). If on the
other hand distG(u,Ai+1) ≤ r(u), then in particular distG(u,Ai+1) ≤ D and by Property A2
we have δ(u,Ai+1) ≤ α distG(u,Ai+1) + β. It follows that

distG(u, v) ≤ r(u) ≤ (1 + ε)blog1+ε (δ(u,Ai+1)−1)c − β
α

≤ (1 + ε)log1+ε (δ(u,Ai+1)−1) − β
α

≤ δ(u,Ai+1)− 1− β
α

≤ distG(u,Ai+1)− 1
α
.

This is implies that distG(u, v) < distG(u,Ai+1) because the distances are integer and
1/α > 0. In both cases we get distG(u, v) < distG(u,Ai+1) and as this is the defining
property of Ball(u) we have v ∈ Ball(u).

Lemma 4.4. At any time the size of Ball(u) is O(m(i+1)/k) whp for every node u of
priority i.

Proof. Note that the claim is trivially true for i = k − 1. Therefore assume i < k − 1 in the
following. For every edge e = (v, w) ∈ E we define distG(u, e) = min(distG(u, v), distG(v, w)).
Let F ⊆ E be the set consisting of the m(i+1)/k edges that are closest to u according to this
definition of distG(u, e) for each edge e, where ties are broken in an arbitrary but fixed order.
(Note that if less than m(i+1)/k edges are connected to u, then the claim is true anyway).

Let U be the set of nodes U = {v ∈ V | ∃(v, w) ∈ F}. By the random sampling
(Lemma 2.3), F contains an edge (v, w) of Fi+1 with high probability. Assume without loss
of generality that distG(u, v) ≤ distG(v, w), i.e., distG(u, e) = distG(u, v). Let v′ ∈ Ball(u)
and let e′ = (v′, w′) be some edge incident to v′. Since the node v is contained in Ai+1 we
have

distG(u, e′) ≤ distG(u, v′) < distG(u,Ai+1) ≤ distG(u, v) = distG(u, e) .

Therefore we have e′ ∈ F and thus v′ ∈ U . It follows that Ball(u) ⊆ U . Observe that
|U | ≤ 2|F | and thus |Ball(u)| ≤ |U | ≤ 2|F | = 2m(i+1)/k whp.

4.2 Properties of Approximate Balls

We now show that the approximate balls and the corresponding distance estimate have the
Properties B1–B4. We first show that the distance estimates for nodes in the approximate
balls have the desired approximation guarante, although they have been computed in
subgraphs of G.

Lemma 4.5 (Property B1). For every pair of nodes u and v such that v ∈ Ball(u) we have
distG(u, v) ≤ δ(u, v) ≤ α distG(u, v) + β.

Proof. By Property A1 we have δ(u, v) ≥ distG|R(u)(u, v) and since G|R(u) is a subgraph
of G we have distG|R(u)(u, v) ≥ distG(u, v). Therefore the inequality δ(u, v) ≥ distG(u, v)
follows.

Since v ∈ Ball(u) we have δ(u, v) ≤ αD + β. If distG(u, v) ≥ D, then trivially δ(u, v) ≤
αD + β ≤ α distG(u, v) + β. If distG(u, v) ≥ D, then there is a path k from u to v in G of
weight at most D. This path was also contained in previous versions of G, possibly with
smaller weight, and in particular at the time the algorithm has computed R(u), the set of

18

nodes that are in distance at most D from u in G, for the last time. It follows that k is also
contained in G|R(u) and thus distG|R(u)(u, v) = distG(u, v) ≤ D. By Property A2 we then
have δ(u, v) ≤ α distG|R(u) +β = α distG +β.

We show now that the approximate balls have a certain structural property that either
allows us shortcut the path between two nodes or helps us in finding a nearby node of higher
priority.

Lemma 4.6 (Property B2). Let s(·, ·) be a non-decreasing function such that, for all x ≥ 1,
and l ≥ 1,

s(x, l) ≥ a(a+ 1)l−1 distG(u, v) + ((a+ 1)l − 1)b/a ,

where a = (1 + ε)α and b = (1 + ε)β + 1. Then for every node u of priority i and every node
v such that s(distG(u, v), p− 1− i) ≤ D, either (1) v ∈ B(u) or (2) there is some node v′ of
priority j > i such that u ∈ B(v′) and distG(u, v′) ≤ s(distG(u, v), j − i).

Proof. We first define the following series: let f(1) = a distG(u, v) + b and for all l ≥ 1 let
f(l + 1) = f(l) + af(l) + b. It is easy to verify that for all l ≥ 1 we have

f(l) = a2(a+ 1)l−1 distG(u, v) + ((a+ 1)l − 1)b
a

≤ s(distG(u, v), l) .

Note that since s(·, ·) is non-decreasing we have, for all 1 ≤ l ≤ k − 1 − i, f(l) ≤
s(distG(u, v), l) ≤ s(distG(u, v), p− 1− i) ≤ D.

If v ∈ B(u), then we are done. Otherwise, by Lemma 4.2, there is some node v1 of
priority p1 ≥ i+ 1 such that

distG(v1, u) ≤ adistG(u, v) + b = f(1) ≤ D .

Thus, if u ∈ B(v1), then we are done. Otherwise, by Lemma 4.2, there is some node v2 of
priority p2 ≥ p1 + 1 ≥ i+ 2 such that

distG(v2, v1) ≤ a distG(v1, u) + b ≤ af(1) + b .

By the triangle inequality we have

distG(v2, u) ≤ distG(v2, v1) + distG(v1, u) ≤ af(1) + b+ f(1) = f(2) ≤ D .

We now repeat this argument to obtain nodes v1, v2, . . . vl of priorities p1, p2, . . . , pl such that
distG(vl, u) ≤ f(l) ≤ D and pl ≥ i+ l until the inequality distG(vl, Apl+1) ≥ a distG(vl, u)+ b
is fulfilled. This happens eventually since Ak = ∅ and thus distG(u,Ak) =∞.

Next, we bound the size of the system of approximate balls we maintain. Here we use
the fact that we can easily bound the size of the exact ball Ball(u) for every node u and
that by our definitions we ensure that the approximate balls are subsets of the exact balls.

Lemma 4.7 (Size of Approximate Balls (Property B3)).
If, for every node u, B(u) denotes the set of nodes ever contained in B(u), then

∑
u∈V |Bu| =

Õ(m1+1/k logD /ε) in expectation.

19

Proof. We first bound Bu, the number of nodes ever contained in the approximate ball B(u),
of some node u of priority i. Remember that nodes are joining B(u) only when r(u) increases
and that

r(u) = min
(

(1 + ε)blog1+ε (δ(u,Ai+1)−1)c − β
α

,D

)
.

Thus, r(u) can only increase if blog1+ε (δ(u,Ai+1)− 1)c increases and the left term in
the minimum is at most D. Since 1 + ε ≥ 1 and β ≥ 0 it follows that r(u) increases
only O(log1+εD) = O(logD/ε) times. As B(u) ⊆ Ball(u) by Lemma 4.3, after every
increase of r(u) only nodes contained in Ball(u) can join B(u). By Lemma 4.4 the size
of Ball(u) is O(m(i+1)/k) whp. Thus, the number of nodes ever contained in B(u) is
|B(u)| = O(m(i+1)/k logD/ε) whp.

As the number of nodes of priority i is Õ(m/mi/k) in expectation, the number of nodes
ever contained in the approximate balls is

∑
u∈V |B(u)|Õ(m1+1/k logD/ε) in expectation.

Finally, we analyze the running time of our algorithm for maintaining the approximate
balls. Since we use the data structure ApproxSSSP as a black box, the running time of our
algorithm depends on the running time of ApproxSSSP.

Lemma 4.8 (Running Time (Property B4)). The total time needed for maintaining the
sets B(u) for all nodes u ∈ V is

Õ

m1+1/k logD/ε+
∑

0≤i≤k−1
T (mi, ni) logD/ε+ T (m,n)

 ,

where, for each 0 ≤ i ≤ k − 1, mi = m(i+1)/k and ni = min(mi, n).

Proof. The initialization in Step 1 of the algorithm, where we determine the sets A0, . . . , Ap
takes time O(pm). In Step 2, we run for each 1 ≤ i ≤ k−1 an instance of ApproxSSSP with
depth D. This takes time kT (m,n). Step 3, where we maintain for every node u of priority
i the approximate ball and corresponding distance estimates can be analyzed as follows.
Remember that every time r(u) increases we first compute R(u), the set of nodes that are
in distance at most r(u) from u. Using a suitable implementation of Dijkstra’s algorithm,
this takes time O(|E[R(u)]| logn), where E[R(u)] is the set of edges incident to R(u). By
Lemma 4.3 we have R(u) ⊆ Ball(u) and by Lemma 4.4 we have |Ball(u)| = O(m(i+1)/k)
whp. Thus, computing R(u) takes time Õ(m(i+1)/k) whp. We then maintain an instance
of ApproxSSSP up to depth D on G|R(u), the subgraph of G induced by R(u). Note
that G|R(u) has mi = m(i+1)/k edges and ni = min(mi, n) nodes and therefore this takes
time T (mi, ni). As r(u) increases O(logD/ε) times and the number of nodes of priority
i is Õ(m/mi/k) in expectation, maintaining B(u) for all nodes u of priority i (and the
corresponding distance estimates) takes time

∑
0≤i≤k−1

Õ

(
m

mi/k
logD/ε · (m(i+1)/k + T (mi, ni)

)
=

Õ

m1+1/k logD/ε+
∑

0≤i≤k−1
m1−i/k · T (mi, ni) logD/ε

 .

Since k ≤ logn, the claimed running time follows.

20

5 From Approximate Balls to Approximate SSSP
In the following we show how to maintain an approximate shortest paths tree if we already
have an algorithm for maintaining approximate balls. Our main tool in this reduction is a
hop set that we define from the approximate balls. We will add the “shortcut” edges of the
hop set to the graph and scale down the edge weights, maintaining the approximate shortest
paths with a monotone ES-tree. Formally, we prove the following statement in this section.

Proposition 5.1. Assume there is a decremental algorithm ApproxBalls for maintaining
approximate balls with the following properties, using fixed values a ≥ α ≥ 1, b ≥ β ≥ 0,
and D̂ ≥ 1. Given a weighted graph G = (V,E) undergoing edge deletions and edge weight
increases and a parameters 2 ≤ k ≤ logn, it assigns to every node u ∈ V a number from 0
to k − 1, called the priority of u, and maintains for every node u ∈ V a set of nodes B(u)
and, for every node v ∈ B(u), a distance estimate δ̂(u, v) such that:

B1 For every node u and every node v ∈ B(u) we have distG(u, v) ≤ δ̂(u, v) ≤ α distG(u, v)+
β.

B2 There is a function s(·, ·) such that, for all x ≥ 1, s(x, 1) = ax+ b for some a ≥ α and
b ≥ β and, for all l ≥ 1,

s(x, l + 1) ≤ a(α+ 1 + ε)(αs(x, l) + β) + β

ε
+ b .

guaranteeing the following: For every node u of priority i and every node v such that
s(distG(u, v), p− 1− i) ≤ D̂, either (1) v ∈ B(u) or (2) there exist some node v′ ∈ V
of priority j > i such that u ∈ B(v′) and distG(u, v′) ≤ s(distG(u, v′), j − i).

B3 After every update in G, ApproxBalls returns all pairs of nodes u and v such that v
joins B(u), v leaves B(u), or δ̂(u, v) changes.

For every node u, let B(u) denote the set of nodes ever contained in B(u) and let t(m,n, k)
denote the total update time of ApproxBalls.

Then there is an approximate SSSP data structure ApproxSSSP with the following
properties: Given a weighted graph G undergoing edge deletions and edge weight increases, a
fixed source node s, and parameters p, ∆, D, and ε such that

2 ≤ p ≤
√

logn√
log

(
4a3

ε

) ,
∆ ≥ b, n1/p∆ ≤ D̂, D ≥ ∆ and 0 < ε ≤ 1, it maintains a distance estimate δ(s, v) for every
node v ∈ V such that:

A1 δ(s, v) ≥ distG(s, v)

A2 If distG(s, v) ≤ D, then δ(s, v) ≤ (α+ ε) distG(s, v) + εn1/p∆

A3 The total update time of ApproxSSSP is

T (m,n,∆, D, ε) = Õ((αD/∆ + n1/p)
∑
u∈V

(m+ |B(u)|)/ε+ t(m,n, p)) .

21

A4 After every update in G, ApproxSSSP returns, for every node v such that δ(s, v) has
changed, v together with the new value of δ(s, v).

We assume without loss of generality that the distance estimate maintained by Approx-
Balls is non-decreasing. If ApproxBalls ever reports a decrease we can ignore it because
Property B1 will still hold as distances in G are non-decreasing under edge deletions and
edge weight increases.

5.1 Algorithm Description

The algorithm ApproxSSSP maintains the set of edges F = {(u, v) ∈ V 2 | v ∈ B(u)}
such that each edge (u, v) ∈ F has weight wF (u, v) = δ(u, v). We update F every time in
ApproxBalls a node joins or leaves an approximate ball or if the distance estimate δ(u, v)
increases for some pair of nodes u and v. By Property B3 this information is returned
by ApproxBalls after every update in G. Thus the set of edges F undergoes insertions,
deletions, and weight increases.

In the following we will define a shortcut graph H ′′ with scaled-down edge weights and
our algorithm ApproxSSSP will simply run a monotone ES-tree [HKN13] from s in H ′′.
Note that the monotone ES-tree trivially has properties A1 and A4. We denote the weight
of an edge (u, v) in G by wG(u, v) and define H as a graph that has the same nodes as G
and contains all edges of G and F that have weight at most D + n1/p∆. We set the weight
of every edge (u, v) in G to wH = min(wG(u, v), wF (u, v)). We set

ϕ = ε∆
p+ 1

and define H ′ as the graph that has the same nodes and edges as H and in which every edge
(u, v) has weight

wH′(u, v) =
⌈
wH(u, v)

ϕ

⌉
ϕ ,

i.e., we round every edge weight to the next multiple of ϕ. Furthermore, we define H ′′ as the
graph that has the same nodes and edges as H ′ and in which every edge (u, v) has weight

wH′′(u, v) = wH′(u, v)
ϕ

=
⌈
wH(u, v)

ϕ

⌉
,

i.e., we scale down every edge weight by a factor of 1/ϕ. We maintain a monotone ES-tree
with maximum level

L = (α+ 2ε)D/ϕ+ (p+ 1)n1/p

from s and denote the level of a node v in this tree by `(v). For every node v our algorithm
returns the distance estimate δ(s, v) = `(v) · ϕ. Note that the graph H ′′ has integer edge
weights and, as F might undergo insertions, deletions, and edge weight increases, the same
type of updates might occur in H ′′. Furthermore, observe that the rounding guarantees that

wH(u, v) ≤ wH′(u, v) ≤ wH(u, v) + ϕ

for every edge (u, v) of H ′.

22

5.2 Running Time Analysis

We first provide the running time analysis. We run the algorithm in a graph in which we
scale down the edge weights by a factor of ϕ. This makes the algorithm efficient.

Lemma 5.2 (Running Time (Property A3)). The expected total update time of a monotone
ES-tree with maximum level L = (α+ 2ε)D/ϕ+ (p+ 1)n1/p on H ′′ is

Õ

((
αD/∆ + n1/p

)(
m+

∑
u∈V
|B(u)|

)
/ε

)
.

Proof. By Lemma 2.2 the total time needed for maintaining the monotone ES-tree with
maximum level L on H ′′ is

O(E(H ′′) · L+W(H ′′))

where E(H ′′) is the number of edges ever contained in H ′′ and W(H ′′) is the number of
updates (i.e., edge deletions, edge weight increases, and edge insertions) on H ′′.

Remember that ϕ = ε∆/(p+ 1). Since ε ≤ 1 and p ≤ logn we have L = Õ(αD/(ε∆) +
n1/p). We now bound E(H ′′) andW(H ′′). Note that at any time H ′′ has the same edges as H
and each edge of H either is also an edge in G, which contains m edges, or is an edge from F .
As F is defined via the approximate balls (i.e., (u, v) ∈ F if and only v ∈ B(u)), the number
of edges ever contained in F is at most

∑
u∈v |B(u)|, the total number of nodes ever contained

in the approximate balls. It follows that E(H ′′) = Õ(m+
∑
u∈v |B(u)|) in expectation. Note

that every edge contained in H ′′ can be inserted and deleted at most once and its weight can
increase at most (D+ n1/p∆)/ϕ times as we have limited the maximum edge weight in H to
D + n1/p∆. Note that (D + n1/p∆)/ϕ = (D + n1/p∆)(p + 1)/(ε∆) = Õ((D/∆ + n1/p)/ε).
Therefore we have

W(H ′′) ≤ 2E(H ′′) + E(H ′′) · (D + n1/p∆)/ϕ = Õ((m+
∑
u∈v
|B(u)|) · (D/∆ + n1/p)/ε) .

We conclude that

E(H ′′) · L+W(H ′′) = Õ((αD/∆ + n1/p)(m+
∑
u∈v
|B(u)|)/ε)

and thus the claimed running time follows.

5.3 Definitions of Values for Approximation Guarantee

Before we analyze the approximation guarantee we define the following values. We set

r0 = ∆

and for every 0 ≤ i ≤ p− 1 we set

si = ari + b ,

wi = αsi + β , and

ri =
(α+ 1 + ε)

∑
0≤j≤i−1wj + β

ε
(if i ≥ 1) .

23

Finally, we set
γp−1 = β

and, for every 0 ≤ i ≤ p− 2,

γi = γi+1 + (α+ 1 + ε)wi = (α+ 1 + ε)
∑

i≤j≤p−2
wj + β .

We also set
γ = γ0 + 2ε∆ .

Lemma 5.3. For all 0 ≤ i ≤ p− 1, εri = γ0 − γi + β

Proof. First, observe that for all 0 ≤ i ≤ p− 1 we have

γi = (α+ 1 + ε)
∑

i≤j≤p−2
wj + β .

Thus, for all 0 ≤ i ≤ p− 1, we get

γ0−γi+β = (α+1+ε)
∑

0≤j≤p−2
wj−(α+1+ε)

∑
i≤j≤p−2

wj+β = (α+1+ε)
∑

0≤j≤i−1
wj+β = εri .

Lemma 5.4. (4a3/ε)p = n1/p

Proof. Remember that we have

p ≤
√

logn√
log

(
4a3

ε

) .
We only need to simplify both expressions as follows:

n1/p = 21/p·logn ≥ 2

√
log
(

4a3
ε

)
√

logn
·logn

= 2

√
log
(

4a3
ε

)
·
√

logn

(
4a3

ε

)p
= 2

p·log
(

4a3
ε

)
≤ 2

√
logn√

log
(

4a3
ε

) ·log
(

4a3
ε

)
= 2

√
logn·

√
log
(

4a3
ε

)
.

Lemma 5.5. For all 0 ≤ i ≤ p− 1 we have

ri ≤
3 · 4i−1a3i∆ + (9 · 4i−1 − 2)a3i−1b

εi

and ∑
0≤j≤i

wj ≤
4ia3i+2∆ + (3 · 4i − 1)a3i+1b

εi
.

Proof. Remember that ε ≤ 1 ≤ α ≤ a. Now observe that for all 1 ≤ i ≤ p− 1 we have

ri =
(α+ 1 + ε)

∑
0≤j≤i−1wj + β

ε
≤

(a+ 1 + ε)
∑

0≤j≤i−1wj + b

ε
≤

3a
∑

0≤j≤i−1wj + b

ε

24

and for all 0 ≤ i ≤ p− 1 we have

wi = αsi + β ≤ asi + b = a(ari + b) + b = a2ri + ab+ b ≤ a2ri + 2ab .

We now prove the inequalities induction on i. We begin with the base case i = 0 where
r0 = ∆ and

∑
0≤j≤0

wj = w0 ≤ a2r0 + 2ab = a2∆ + 2ab = 40a3·0+2∆ + (3 · 40 − 1)a3·0+1b

ε0
.

In the induction step we assume that i ≥ 1:

ri ≤
3a
∑

0≤j≤i−1wj + b

ε

≤ 3a(4i−1a3(i−1)+2∆ + (3 · 4i−1 − 1)a3(i−1)+1b) + b

εi

= 3 · 4i−1a3i∆ + (9 · 4i−1 − 2)a3i−1b

εi

∑
0≤j≤i

wj =
∑

0≤j≤i−1
wj + wi

≤
∑

0≤j≤i−1
wj + a2ri + 2ab

≤ 4i−1a3(i−1)+2∆ + (3 · 4i−1 − 1)a3(i−1)+1b

εi−1 + a2ri + 2ab

≤ 4i−1a3(i−1)+2∆ + (3 · 4i−1 − 1)a3(i−1)+1b

εi−1 + 3 · 4i−1a3i+2∆ + (9 · 4i−1 − 2)a3i+1b

εi
+ 2ab

≤ 4i−1a3(i−1)+2∆ + (3 · 4i−1 − 1)a3(i−1)+1b+ 3 · 4i−1a3i+2∆ + (9 · 4i−1 − 2)a3i+1b+ 2ab
εi

≤ 4i−1a3i+2∆ + (3 · 4i−1 − 1)a3i+1b+ 3 · 4i−1a3i+2∆ + (9 · 4i−1 − 2)a3i+1b+ 2a3i+1b

εi

= (1 + 3) · 4i−1a3i+2∆ + (3 · 4i−1 − 1 + 9 · 4i−1 − 2 + 2)a3i+1b

εi

= 4ia3i+2∆ + (3 · 4i − 1)a3i+1b

εi
.

Lemma 5.6. aγ + b ≤ εn1/p∆.

Proof. Remember that we have ε ≤ 1 ≤ α ≤ a and β ≤ b ≤ ∆. By Lemma 5.5 we have

∑
0≤j≤p−2

wj ≤
4p−2a3(p−2)+2∆ + (3 · 4p−2 − 1)a3(p−2)+1b

εp−2 ≤ 4p−2a3p−2∆ + 3 · 4p−2a3p−2∆
εp−1

25

We now get:

aγ + b

ε
= aγ0 + 2εa∆ + β

ε

=
a(α+ 1 + ε)

∑
0≤j≤p−2wj + αβ + 2εa∆ + β

ε

≤
a(a+ 1 + ε)

∑
0≤j≤p−2wj + a∆ + 2a∆ + ∆

ε

≤
3a2∑

0≤j≤p−2wj + 4a∆
ε

≤ 3 · 4p−2a3p∆ + 9 · 4p−2a3p∆ + 4a∆
εp

≤ 3 · 4p−2a3p∆ + 9 · 4p−2a3p∆ + 4p−2a3p∆
εp

= (3 + 9 + 1) · 4p−2a3p∆
εp

≤ 4pa3p∆
εp

= (4a3/ε)p∆ ≤ n1/p∆ .

The last inequality follows from Lemma 5.4.

Lemma 5.7. arp−1 + b ≤ n1/p∆.

Proof. By the definitions of rp−1 and γ0 we have rp−1 = γ0/ε. Since γ0 ≤ γ and aγ + b ≤
εn1/p∆ by Lemma 5.6, we have

arp−1 + b = a
γ0
ε

+ b ≤ aγ0 + b

ε
≤ aγ + b

ε
≤ n1/p∆ .

Lemma 5.8. For all 0 ≤ i < j ≤ p− 1, s(ri, j − i) ≤ s(rj−1, 1)

Proof. Fix some 0 ≤ i ≤ p− 2. The proof is by induction on j. In the base case j = i+ 1 the
claim holds trivially. Consider now the induction step where we assume that the inequality
holds for j ≥ i+ 1 and have to show that it also holds for j + 1. First, observe that

rj =
(α+ 1 + ε)

∑
0≤j′≤j−1wj′ + β

ε
≥ (α+ 1 + ε)wj−1 + β

ε
= (α+ 1 + ε)(αsj−1 + β) + β

ε

and thus

s(rj , 1) = arj+b ≥ a(α+ 1 + ε)(αsj−1 + β) + β

ε
+b = a(α+ 1 + ε)(αs(rj−1, 1) + β) + β

ε
+b

By the Property B2 we have

s(ri, j − 1) ≤ a(α+ 1 + ε)(αs(ri, j − i− 1) + β) + β

ε
+ b

and by the induction hypothesis we have s(ri, j − i− 1) ≤ s(rj , j − 1). Therefore it follows
that

s(ri, j − 1) ≤ a(α+ 1 + ε)(αs(rj , j − 1) + β) + β

ε
+ b ≤ s(rj , 1) .

26

5.4 Analysis of Approximation Guarantee

We now analyze the approximation error of a monotone ES-tree maintained on H ′′. This
approximation error consists of two parts. The first part is an approximation error that
comes from the fact that the monotone ES-tree only considers paths from s with a relatively
small number of edges and therefore has to use edges from the hop set F . The second part
is the approximation error we get from rounding the edge weights. We first give a formula
for the approximation error that depends on the priority of the nodes and their distance to
the root of the monotone ES-tree.

Before we give the proof we review a few properties of the monotone ES-tree (see [HKN13]
for the full algorithm). Similar to the classic ES-tree, the monotone ES-tree with root s
maintains a level `(v) for every node v. The monotone ES-tree is initialized by computing a
shortest paths tree up to depth L from s in H ′′ and thus, initially, `(v) = distH′′(s, v). A
single deletion or edge weight increase in G might result in a sequence of deletions, weight
increases and insertions in F , and thus H ′′. The monotone ES-tree first processes the
insertions and then the deletions and edge weight increases. It handles deletions and edge
weights increases in the same way as the classic ES-tree. The procedure for handling the
insertion of an edge (u, v) is trivial: it only stores the new edge and in particular does not
change `(u) or `(v). Once the level `(u) of a node u exceeds the maximum level L, we set
`(u) =∞. For completeness we list the pseudocode of the monotone ES-tree in Algorithm 1.

For the analysis of the monotone ES-tree we will use the following notions. We say that
an edge (u, v) is stretched if `(u) > `(v) + wH′′(u, v). We say that a node u is stretched if it
is incident to an edge (u, v) that is stretched. Note that for a node u that is not stretched
we have `(u) ≤ `(v) + wH′′(u, v) for every edge (u, v) contained in H ′′. In our proof we will
use the following properties of the monotone ES-tree.

Observation 5.9 ([HKN13]). The following holds for the monotone ES-tree:

(1) The level of a node never decreases.

(2) An edge can only become stretched when it is inserted.

(3) As long as a node x is stretched, its level does not change.

(4) For every tree edge (u, v) (where v is the parent of u), `(u) ≥ `(v) + w(u, v).

A second prerequisite from [HKN13] tells us when we may apply a variant of the triangle
inequality to argue about the levels of nodes.

Lemma 5.10 ([HKN13]). Let (u, v) be an edge of H ′′ such that `(v) + wH′′(u, v) ≤ L. If
(u, v) is not stretched and after the previous update in G the level of u was less than ∞, then
for the current level of u we have `(u) ≤ `(v) + wH′′(u, v).

Note that condition (2) simply captures the property of the monotone ES-tree that
once the level of a node exceeds L it is set to ∞ and will never be decreased anymore. At
the initialization (i.e., before the first update in H ′′), conditions (1) and (2) are fulfilled
automatically.

27

Algorithm 1: Monotone ES-tree
// Internal data structures:
// N(u): for every node u a heap N(u) whose intended use is to store

for every neighbor v of u in the current graph the value of
`(v) + wH′′(u, v)

// Q: global heap whose intended use is to store nodes whose levels
might need to be updated

1 Procedure Initialize()
2 Compute shortest paths tree from s in H ′′ up to depth L
3 foreach u ∈ V do
4 Set `(u) = distH′′(s, u)
5 for every edge (u, v) in H ′′ do insert v into heap N(u) of u with key

`(v) + wH′′(u, v)

6 Procedure Delete(u, v)
7 Increase(u, v, ∞)

8 Procedure Increase(u, v, w(u, v))
// Increase weight of edge (u, v) to w(u, v)

9 Insert u and v into heap Q with keys `(u) and `(v) respectively
10 Update key of v in heap N(u) to `(v) + w(u, v) and key of u in heap N(v) to

`(u) + w(u, v)
11 UpdateLevels()

12 Procedure Insert(u, v, w(u, v))
// Increase edge (u, v) of weight w(u, v)

13 Insert v into heap N(u) with key `(v) + w(u, v) and u into heap N(v) with key
`(u) + wH′′(u, v)

14 Procedure UpdateLevels()
15 while heap Q is not empty do
16 Take node u with minimum key `(u) from heap Q and remove it from Q
17 `′(u)← minv(`(v) + wH′′(u, v))

// minv(`(v) + wH′′(u, v)) can be retrieved from the heap N(u).
arg minv(`(v) + wH′′(u, v)) is u’s parent in the ES-tree.

18 if `′(u) > `(u) then
19 `(u)← `′(u)
20 if `′(u) > L then `(u)←∞
21 foreach neighbor v of u do
22 update key of u in heap N(v) to `(u) + wH′′(u, v)
23 insert v into heap Q with key `(v) if Q does not already contain v

28

To count the additive error from rounding the edge weights, we define, for every node u
and every 0 ≤ i ≤ p− 1, the function h(u, i) as follows:

h(u, i) =

0 if u = s

(p+ 1)
⌈

max(distG(u,s)−ri,0)
∆

⌉
+ p+ 1− i otherwise

.

The intuition is that h(u, i) bounds the number of hops from u to s, i.e., the number of
edges required to go from u to s while at the same time providing the desired approximation
guarantee. The approximation guarantee can now formally be stated as follows

Lemma 5.11 (Approximation Guarantee). For every node u of priority i with distG(u, s) ≤
D +

∑
0≤i′≤i−1 si′ we have

δ(s, u) ≤ (α+ ε) distG(u, s) + γi + h(u, i) · ϕ .

Once we have proved this lemma, the desired bound on the aproximation error (Prop-
erty A2) follows easily because h(u, i) · ϕ ≤ εdistG(u, v) + 2ε∆ (as we show below) and
thus

δ(s, u) ≤ (α+ ε) distG(u, s) + γi + h(u, i) · ϕ
≤ (α+ ε) distG(u, s) + γ0 + h(u, i) · ϕ
≤ (α+ ε) distG(u, s) + γ0 + ε distG(u, v) + 2ε∆
= (α+ 2ε) distG(u, s) + γ .

Lemma 5.12. For every node u and every 0 ≤ i ≤ p− 1,

h(u, i) · ϕ ≤ εdistG(u, s) + 2ε∆

Proof.(
(p+ 1)

⌈max(distG(u, s)− ri, 0)
∆

⌉
+ p+ 1− i

)
ϕ ≤

(
(p+ 1)

⌈distG(u, s)
∆

⌉
+ p+ 1

)
ϕ

≤
(

(p+ 1)
(distG(u, s)

∆ + 1
)

+ p+ 1
)
ϕ

=
((p+ 1) distG(u, s)

∆ + 2(p+ 1)
)
ϕ

=
((p+ 1) distG(u, s)

∆ + 2(p+ 1)
)
· ε∆
p+ 1

= εdistG(u, s) + 2ε∆ .

Proof of Lemma 5.11. The proof is by double induction first on the number of updates in G
and second on h(u, i). Let u be a node of priority i such that distG(u, s) ≤ D+

∑
0≤i′≤i−1 si′ .

Remember that δ(u, s) = `(u) · ϕ, where `(u) is the level of u in the monotone ES-tree of s.
We know that after the last previous in G the distance estimate gave an approximation of
the true distance in G. Since distances in G are non-decreasing it must have been the case
that the level of u was less than ∞ after the previous.

29

If u = s, the claim is trivially true because `(s) = 0. Assume that u 6= s. If u is stretched
in the monotone ES-tree, then the level of u has not changed since the previous deletion in
G and thus the claim is true by induction. If u is not stretched, then `(u) ≤ `(v) +wH′′(u, v)
for every edge (u, v) in H ′′. Define the nodes v and x as follows. If distG(u, s) ≤ ri, then
v = s. If distG(u, s) > ri, then consider a shortest path π from u to s in G and let v
be the furthest node from u on π such that distG(u, v) ≤ ri (which implies distG(v, s) ≥
distG(u, s) − ri). Furthermore let x be the neighbor of v on the shortest path π that is
closer to s than v. Note that distG(u, x) ≥ ri (and thus distG(x, s) ≤ distG(u, s)− ri) and
in particular G contains the edge (v, x). Note that (v, x) is also contained in H (and thus in
H ′ and H ′′) because for distG(u, s) ≤ D +

∑
0≤i′≤i−1 si′ to hold it has to be the case that

wG(v, x) ≤ D +
∑

0≤i′≤i−1 si′ . Note that
∑

0≤i′≤i−1 si′ ≤
∑

0≤i′≤i−1wi′ ≤ rp−1 ≤ n1/p∆ by
Lemma 5.7. Thus, wG(v, x) ≤ D+ n1/p∆, which by the definition of H means that the edge
(v, x) is contained in H.

Note that s(distG(u, v), p − 1 − i) ≤ s(ri, p − 1 − i) since the function s(·, ·) is non-
decreasing. By Lemma 5.8 we have s(ri, p − 1 − i) ≤ s(rp−2, 1) and by the definition of
s(·, 1) and Lemma 5.7 we have s(rp−2, 1) = arp−2 + b ≤ arp−1 + b ≤ n1/p∆ ≤ D̂. Thus, by
Property B2 we know that either v ∈ B(u) or there is a node v′ of priority j′ > i such that
distG(u, v′) ≤ s(distG(u, v), j − i). Note that in the first case the set of edges F contains the
edge (u, v) and in the second case it contains the edge (u, v′).
Case 1: v ∈ B(u)

If v ∈ B(u), then F contains an edge (u, v) such that
wF (u, v) = δ̂(u, v) ≤ α distG(u, v) + β (2)

Since distG(u, v) ≤ ri we have wF (u, v) ≤ αri + β ≤ αrp−1 + β ≤ n1/p∆, where the last
inequality holds by Lemma 5.7. Thus, (u, v) is contained in H and thus also in H ′ and H ′′.

If distG(u, s) ≤ ri, then we have v = s. First observe that by the definition of H ′′ we have
wH′′(u, s) = wH′(u, s)/ϕ. Furthermore the rounding of the edge weights in H ′ guarantees
that wH′(u, s) ≤ wH(u, s) + ϕ. We therefore get

wH′′(u, s) ≤
wF (u, s) + ϕ

ϕ

≤ α distG(u, s) + β + ϕ

ϕ

≤
α
(
D +

∑
0≤i′≤i−1 si′

)
+ β + ϕ

ϕ

≤
αD + (α+ 1 + ε)

∑
0≤i′≤p−2wi′ + β + ϕ

ϕ

= αD + γ0 + ϕ

ϕ

=
αD + γ0 + ε∆

p+1
ϕ

≤ αD + γ0 + 2ε∆
ϕ

= αD + γ

ϕ
≤ αD + εn1/p∆

ϕ
≤ (α+ 2ε)D

ϕ
+ (p+ 1)n1/p = L .

30

Here we have used the inequality γ ≤ εn1/p∆ from Lemma 5.6. Since the maximum level
in the monotone ES-tree is L and u is not stretched, it follows from Lemma 5.10 that
`(u) ≤ `(s) + wH′′(u, s) = wH′′(u, s). Together with the observation that h(u, i) ≥ 1 since
u 6= s and β ≤ γ0 we therefore get

δ(s, u) = `(u) · ϕ ≤ wH′′(u, s) · ϕ ≤ α distG(u, s) + β + ϕ

≤ α distG(u, s) + β + h(u, i) · ϕ ≤ (α+ ε) distG(u, s) + γ0 + h(u, i) · ϕ .

Consider now the case distG(u, s) > ri. Let j denote the priority of x. We first prove the
following inequality, which will allow us among other things to use the induction hypothesis
on x.

Claim 5.13. If distG(u, s) > ri, then h(x, j) + 2 ≤ h(u, i).

Proof. Remember that i ≤ p− 1. The assumption distG(u, s) > ri implies that distG(x, s) ≤
distG(u, s)− ri. If distG(x, s) < rj , we have

h(x, j) + 2 ≤ p+ 1− j + 2 ≤ p+ 1 + 2 ≤ p+ 1 + p+ 1− i

≤ (p+ 1)
⌈distG(u, s)− ri

∆

⌉
+ p+ 1− i = h(u, i) .

Here we use the inequality d(distG(u, s) − rj)/∆e ≥ 1 which follows from the assumption
distG(u, s) > ri.

If distG(x, s) ≥ rj , then, using rj ≥ r0 ≥ ∆, we get

h(x, j) + 2 = (p+ 1)
⌈distG(x, s)− rj

∆

⌉
+ p+ 1− j + 2

≤ (p+ 1)
⌈distG(x, s)−∆

∆

⌉
+ p+ 1 + 2

= (p+ 1)
⌈distG(x, s)

∆ − 1
⌉

+ p+ 1 + 2

= (p+ 1)
(⌈distG(x, s)

∆

⌉
− 1

)
+ p+ 1 + 2

= (p+ 1)
⌈distG(x, s)

∆

⌉
+ 2

≤ (p+ 1)
⌈distG(x, s)

∆

⌉
+ p+ 1− i

≤ (p+ 1)
⌈distG(u, s)− ri

∆

⌉
+ p+ 1− i

≤ (p+ 1)
⌈max(distG(u, s)− ri, 0)

∆

⌉
+ p+ 1− i = h(u, i) .

Here the last inequality follows from the trivial observation distG(u, s)−ri ≤ max(distG(u, s)−
ri, 0).

Having proved this claim, we go on with the proof of the lemma. We will now show that

`(x) + wH′′(v, x) + wH′′(u, v) ≤ (α+ ε) distG(u, s) + γi + h(u, i) · ϕ
ϕ

(3)

31

as follows. If distG(u, s) > ri, then we have distG(u, x) ≥ ri by the choice of x. Remember
that the edge (v, x) lies on a shortest path from u to s in G. It is therefore contained in
G since before the first deletion and thus will never be stretched. We also may apply the
induction hypothesis on x since

distG(x, s) = distG(u, s)− distG(u, x) ≤ distG(u, s)− ri ≤ D +
∑

0≤i′≤i−1
si′ − ri ≤ D

due to
∑

0≤i′≤i−1 si′ ≤ ri by the definition of ri. Therefore we get

(`(x) + wH′′(v, x) + wH′′(u, v)) · ϕ
≤ δ(s, x) + wH′′(v, x) · ϕ+ wH′′(u, v) · ϕ (definition of δ(s, x))
= δ(s, x) + wH′(v, x) + wH′(u, v) (definition of H ′)
≤ δ(s, x) + wH(v, x) + ϕ+ wH(u, v) + ϕ (property of wH′)
≤ δ(s, x) + wG(v, x) + ϕ+ wF (u, v) + ϕ ((v, x) ∈ E and (u, v) ∈ F)
≤ (α+ ε) distG(x, s) + γj + h(x, j) · ϕ+ wG(v, x) + ϕ+ wF (u, v) + ϕ (induction hypothesis)
= (α+ ε) distG(x, s) + γj + wF (u, v) + wG(v, x) + (h(x, j) + 2) · ϕ (rearranging terms)
≤ (α+ ε) distG(x, s) + γj + wF (u, v) + wG(v, x) + h(u, i) · ϕ (Claim 5.13)
≤ (α+ ε) distG(x, s) + γ0 + wF (u, v) + wG(v, x) + h(u, i) · ϕ (γj ≤ γ0)
≤ (α+ ε) distG(x, s) + γ0 + α distG(u, v) + β + wG(v, x) + h(u, i) · ϕ (by Inequality (2))
= (α+ ε) distG(x, s) + γ0 + α distG(u, v) + β + distG(v, x) + h(u, i) · ϕ ((v, x) on shortest path)
≤ (α+ ε) distG(x, s) + γ0 + α distG(u, v) + β + α distG(v, x) + h(u, i) · ϕ (α ≥ 1)
= (α+ ε) distG(x, s) + α(distG(u, v) + distG(v, x)) + β + γ0 + h(u, i) · ϕ (rearranging terms)
= (α+ ε) distG(x, s) + α distG(u, x) + β + γ0 + h(u, i) · ϕ (v on shortest path)
= (α+ ε) distG(x, s) + α distG(u, x) + β + γ0 − γi + γi + h(u, i) · ϕ (rearranging terms)
= (α+ ε) distG(x, s) + α distG(u, x) + εri + γi + h(u, i) · ϕ (by Lemma 5.3)
≤ (α+ ε) distG(x, s) + α distG(u, x) + εdistG(u, x) + γi + h(u, i) · ϕ (distG(u, x) ≥ ri)
= (α+ ε)(distG(u, x) + distG(x, s)) + γi + h(u, i) · ϕ (rearranging terms)
= (α+ ε) distG(u, s) + γi + h(u, i) · ϕ (x on shortest path) .

By Lemma 5.12 we have h(u, i) · ϕ ≤ εdistG(u, s) + 2ε∆ and thus Inequality (3) implies
that

`(x) + wH′′(v, x) + wH′′(u, v) ≤ (α+ 2ε) distG(u, s) + γi + 2ε∆
ϕ

≤
(α+ 2ε)

(
D +

∑
0≤i′≤i−1 si′

)
+ γi + 2ε∆

ϕ

≤
(α+ 2ε)D + (α+ 1 + ε)

(∑
0≤i′≤i−1wi′

)
+ γi + 2ε∆

ϕ

≤ (α+ 2ε)D + γi + 2ε∆
ϕ

= (α+ 2ε)D + γ

ϕ

32

≤ (α+ 2ε)D
ϕ

+ (p+ 1)n1/p = L .

As the maximum level in the monotone ES-tree is L and the edge (v, x) is not stretched, it
follows from Lemma 5.10 that `(v) ≤ `(x) + wH′′(v, x) and since u is not stretched, we have

`(u) ≤ `(v) + wH′′(u, v) ≤ `(x) + wH′′(v, x) + wH′′(u, v) .

and thus

δ(s, u) = `(u) · ϕ ≤ (`(x) + wH′′(v, x) + wH′′(u, v)) · ϕ ≤ (α+ ε) distG(u, s) + γi + h(u, i) · ϕ

Case 2: v /∈ B(u)
By Property B2 we know that there is some node v′ of priority j′ > i such that u ∈ B(v′)

and distG(u, v′) ≤ s(distG(u, v), j′ − i). By Lemma 5.8 we therefore have

distG(u, v′) ≤ s(ri, j′ − i) ≤ s(rj′−1, j
′ − 1) = sj′−1 .

From the definition of F and Property B1 it now follows that F contains the edge (u, v′) of
weight

distG(u, v′) ≤ wF (u, v′) = δ̂(u, v′) ≤ α distG(u, v′) + β ≤ αsj′−1 + β = wj′−1

Since j′ ≤ p−1 we have wj′−1 ≤ wp−2 ≤ rp−1. As rp−1 ≤ n1/p∆, by Lemma 5.7, we conclude
that the edge (u, v′) is contained H and thus also in H ′ and H ′′.

We first prove the following inequality, which will allow us among other things to use the
induction hypothesis on x.

Claim 5.14. h(v′, j′) + 1 ≤ h(u, i)

Proof. Remember that j′ ≥ i+ 1. If distG(v′, s) < rj′ , we get

h(v′, j′) + 1 ≤ p+ 1− j′ + 1 ≤ p+ 1− i ≤ h(u, i) .

If distG(v′, s) ≥ rj′ , then we use the inequality ri + sj′−1 ≤ rj′ (which easily follows from
the definition of rj′) and get

h(v′, j′) + 1 = (p+ 1)
⌈distG(v′, s)− rj′

∆

⌉
+ p+ 1− j′ + 1

≤ (p+ 1)
⌈distG(v′, s)− rj′

∆

⌉
+ p+ 1− i− 1 + 1

≤ (p+ 1)
⌈distG(u, s) + distG(v′, u)− rj′

∆

⌉
+ p+ 1− i

≤ (p+ 1)
⌈distG(u, s) + sj′−1 − rj′

∆

⌉
+ p+ 1− i

≤ (p+ 1)
⌈distG(u, s)− ri

∆

⌉
+ p− i

≤ (p+ 1)
⌈max(distG(u, s)− ri, 0)

∆

⌉
+ p+ 1− i = h(u, i) .

33

Having proved this claim, we go on with the proof of the lemma. Note that we may
apply the induction hypothesis on v′ because by the triangle inequality we have

distG(v′, s) ≤ distG(u, s) + distG(v′, u) ≤ D +
∑

0≤i′≤i−1
si′ + distG(v′, u)

≤ D +
∑

0≤i′≤i−1
si′ + sj′−1 ≤ D +

∑
0≤i′≤j′−1

si′ .

We will now show that

`(v′) + wH′′(u, v′) ≤
(α+ ε) distG(u, s) + γi + h(u, i) · ϕ

ϕ
(4)

as follows:

(`(v′) + wH′′(u, v′)) · ϕ (u not stretched)
= δ(v′, s) + wH′′(u, v′) · ϕ (definition of δ(v′, s))
= δ(v′, s) + wH′(u, v′) (definition of H ′′)
≤ δ(v′, s) + wH(u, v′) + ϕ (property of wH′(u, v′))
≤ δ(v′, s) + wF (u, v′) + ϕ (definition of H)
≤ (α+ ε) distG(v′, s) + γj′ + h(v′, j′) · ϕ+ wF (u, v′) + ϕ (induction hypothesis)
= (α+ ε) distG(v′, s) + γj′ + wF (u, v′) + (h(v′, j′) + 1) · ϕ (rearranging terms)
≤ (α+ ε) distG(v′, s) + γj′ + wF (u, v′) + h(u, i) · ϕ (Claim 5.14)
≤ (α+ ε)(distG(v′, u) + distG(u, s)) + γj′ + wF (u, v′) + h(u, i) · ϕ (triangle inequality)
≤ (α+ ε)(wF (u, v′) + distG(u, s)) + γj′ + wF (u, v′) + h(u, i) · ϕ (by Inequality 23)
= (α+ ε) distG(u, s) + γj′ + (α+ ε+ 1)wF (u, v′) + h(u, i) · ϕ (rearranging terms)
≤ (α+ ε) distG(u, s) + γj′ + (α+ ε+ 1)wj′−1 + h(u, i) · ϕ (by Inequality 23)
= (α+ ε) distG(u, s) + γj′−1 + h(u, i) · ϕ (definition of γj′−1)
≤ (α+ ε) distG(u, s) + γi + h(u, i) · ϕ (γi ≥ γj′−1 as j′ ≥ i+ 1) .

By Lemma 5.12 we have h(u, i) · ϕ ≤ εdistG(u, s) + 2ε∆ and thus Inequality (4) implies
that

`(v′) + wH′′(u, v′) ≤
(α+ 2ε) distG(u, s) + γi + 2ε∆

ϕ
≤ (α+ 2ε)D

ϕ
+ (p+ 1)n1/p = L .

As the maximum level in the monotone ES-tree is L and u is not stretched, it follows from
Lemma 5.10 that `(u) ≤ `(v′) + wH′′(u, v′) and thus

δ(s, u) = `(u) · ϕ ≤ (`(v′) + wH′′(u, v′)) · ϕ ≤ (α+ ε) distG(u, s) + γi + h(u, i) · ϕ .

6 Putting Everything Together
In the following we combine our results of Section 4 and Section 5 to obtain decremental
algorithms for approximate SSSP and approximate APSP.

34

6.1 Approximate SSSP

We first show how to obtain an algorithm for approximate SSSP. First, we obtain an
algorithm that provides approximate distance for all nodes that are in distance at most
R from the source, where R is some range parameter. We use a hierarchical approach to
obtain this algorithm: Given an algorithm for maintaining approximate shortest paths, we
obtain an algorithm for maintaining approximate balls, which in turn gives us an algorithm
for maintaining approximate shortest paths for a larger range of distances than the initial
algorithm. This scheme is repeated several times and can be “started” with the (exact)
ES-tree.

Lemma 6.1. For every R ≥ n and every 0 < ε ≤ 1, there is a decremental approximate SSSP
algorithm that, given a fixed source node s, maintains, for every node v, a distance estimate
δ(s, v) such that δ(s, v) ≥ distG(s, v) and if distG(s, v) ≤ R, then δ(s, v) ≤ (1 + ε) distG(s, v).
It has a total update time of Õ(m1+3(log logR)/qR2/q), where

q =


√√√√√√√


√
logn√

log
(

8·43 logn
ε

)



and, after every update in G, returns, for every node v such that δ(s, v) has changed, v
together with the new value of δ(s, v).

Proof. In the proof we will use the following values. We set a = 4,

p =


√

logn√
log

(
8a3 logn

ε

)


and q = b√pc. Furthermore we set ε′ = ε/2(q − 2) and for every 0 ≤ k ≤ q − 2 we set
αk = 1 + 2kε′ ≤ 1 + ε, ∆k = Rk/p, and Dk = R(k+2)/p.

The heart of our proof is the following claim which gives us decremental approximate
SSSP algorithms for larger and larger depths, until finally the full range R is covered.

Claim 6.2. For every 0 ≤ k ≤ q − 2, there is a decremental approximate SSSP algorithm
ApproxSSSPk with the following properties:

A1 δ(s, v) ≥ distG(s, v)

A2 If distG(s, v) ≤ Dk, then δ(s, v) ≤ αk distG(s, v).

A3 The total update time of ApproxSSSPk is

Tk(m) = Õ(2km1+k/pR2/q(logR)k/ε′) .

A4 After every update in G, ApproxSSSPk returns, for every node v such that δ(s, v)
has changed, v together with the new value of δ(s, v).

35

Proof. We prove the claim by induction on k. In the base case k = 0 we use the (exact)
ES-tree, which for distances up to D ≤ D0 has a total update time of O(mD0) = O(mR2/q)
and thus has all claimed properties

We now consider the induction step. We apply Proposition 4.1 to obtain a decremental
algorithm ApproxBallsk (with parameters k̂ = p and ε̂ = 1) that maintains for every node
u ∈ V a set of nodes Bk(u) and a distance estimate δ̂k(u, v) for every node v ∈ B(u) such
that:

B1 For every node u and every node v ∈ Bk(u) we have distG(u, v) ≤ δ̂k(u, v) ≤
αk−1 distG(u, v).

B2 Let s(x, l) = a(a+ 1)lx. For every node u of priority i ≤ k − 1 and every node v such
that s(distG(u, v), p− 1− i) ≤ Dk either v ∈ B(u) or there is some node v′ of priority
j > i such that distG(u, v′) ≤ s(distG(u, v), j − i).

B3 In expectation,
∑
u∈V |Bk(u)| = Õ(m1+1/k logDk), where Bk(u) denotes the set of

nodes ever contained in Bk(u).

B4 The update time of ApproxBallsk is

tk(m) = Õ

m1+1/p logDk +
∑

0≤i≤p−1
m1−i/p · Tk−1(m(i+1)/p) logDk + T (m)

 .

Note that Dk ≤ R and thus logDk ≤ logR and remember that by the induction
hypothesis we have

Tk−1(m) = Õ(2k−1m1+(k−1)/pR2/q(logR)k−1/ε′) .

We now analyzem1−i/p·Tk−1(m(i+1)/p) for each 0 ≤ i ≤ p−1. The algorithm ApproxSSSPk−1
is run on a graph with mi = m(i+1)/p edges and ni = n nodes. Using the parameter pi = p,
it has a total update time of Õ(m1+1/pi

i) = Õ(m1+1/p
i). Furthermore, we have

1−i/p+((i+1)/p)·(1+(k−1)/p) = 1+1/p+((i+1)/p)((k−1)/p) ≤ 1+1/p+(k−1)/p = 1+k/p

Thus, m1−i/p · Tk−1(m(i+1)/p) = Õ(2k−1m1+k/pR2/q(logR)k−1/εk) and since k ≥ 1 it follows
that

tk(m) = Õ(2km1+k/pR2/q(logR)k/ε′) .

We now want to argue that we may apply Proposition 5.1 to obtain an approximate
decremental SSSP algorithm ApproxSSSP′k (with parameters p, ∆k Dk, and ε′). We first
show that

p ≤
√

logn√
log

(
4a3

ε

) ,
First note that q ≤ logn and thus ε′ = ε(2(q − 2) ≥ ε/(2q) ≥ ε/(2 logn). It follows that

√
logn√

log
(

4a3

ε

) ≥ √
logn√

log
(

8a3 logn
ε

) ≥


√
logn√

log
(

8·43 logn
ε

)
 = p .

36

Note also that for all x ≥ 1 and l ≥ 1 we have

sk(x, l + 1) = (a+ 1)sk(x, l) ≥ 2ask(x, l) ≥ a(αk−1 + 1 + ε′)αk−1s(x, l)/ε′ .

We therefore may apply Proposition 5.1 to obtain an approximate decremental SSSP
algorithm ApproxSSSP′k (with parameters p, Dk, and ε′) that maintains, for every node
v ∈ V , a distance estimate δ′(s, v) such that:

A1’ δ′(s, v) ≥ distG(s, v)

A2’ If distG(s, v) ≤ Dk, then δ′(s, v) ≤ (αk + ε′) distG(s, v) + ε′n1/p∆k

A3’ The total update time of ApproxSSSP′k is

T ′k(m) = Õ((αkDk/∆k + n1/p)
∑
u∈V

(m+ |B(u)|)/ε′ + tk(m,n, p, n1/p∆)) .

A4’ After every update in G, ApproxSSSP′k returns, for every node v such that δ(s, v)
has changed, v together with the new value of δ(s, v).

Its total update time is

Tk(m) = Õ((αkDk/∆k + n1/p)
∑
u∈V

(m+ |Bk(u)|)/ε′ + tk(m,n, n1/p∆k))

Note that αk ≤ 1 + ε ≤ 2 and Dk/∆k = R2/q. Since q ≤ p and R ≥ n we have n1/p ≤
R2/q. We also have

∑
u∈V |Bk(u)| = Õ(m1+1/p logR). Therefore the total update time of

ApproxSSSP′k is

T ′k(m) = Õ(m1+1/pR2/q logR/ε′ + 2km1+k/pR2/q(logR)k/ε′)

Since k ≥ 1 it follows that

Tk(m) = Õ(2km1+k/pR2/q(logR)k/ε′) .

Let ApproxSSSPk denote the algorithm that internally runs both ApproxSSSP′k
and ApproxSSSPk−1 and additionally maintains, for every node v, the value δk(s, v) =
min(δ′k(s, v), δk−1(s, v)). Since both ApproxSSSP′k and ApproxSSSPk−1 return, after each
update inG, every node v for which δ(s, v) has changed, and the minimum can be computed in
constant time, ApproxSSSPk has the same asymptotic total update time as ApproxSSSP′k.
It remains to show that δk(s, v) fulfills the desired approximation guarantee for every node
v. Since both δ′k(s, v) ≥ distG(s, v) and δk−1(s, v) ≥ distG(s, v) also δk(s, v) ≥ distG(s, v).
Furthermore, we know that if distG(s, v) ≤ Dk, then δ′k(s, v) ≤ εn1/p∆k. Let v be a node such
that distG(s, v) ≤ Dk. If distG(s, v) ≤ Dk−1, then δk(s, v) ≤ δk−1(s, v) ≤ αk−1 distG(s, v) ≤
αk distG(u, v). If distG(s, v) ≥ Dk−1, then

δk(s, v) ≤ δ′k(s, v) ≤ (αk−1 + ε′) distG(s, v) + ε′n1/p∆k

≤ (αk−1 + ε′) distG(s, v) + ε′Dk−1 ≤ (αk−1 + 2ε′) distG(s, v)
= αk distG(s, v) .

This finishes the proof of the claim.

37

The lemma now follows from the claim by observing that ApproxSSSPq−2 is the desired
decremental approximate SSSP algorithm. The correctness simply follows from Dq−2 = R.
The total update time is

Tq−2(m) = Õ(2q−2m1+(q−2)/pR2/q(logR)q−2/ε′) .

Remember that q = b√pc and thus (q − 2)/p ≤ q/p ≤ 1/√p ≤ 1/q. By the definition
of p we have (2/ε′)p ≤ n1/p and thus (2/ε′)q ≤ (2/ε′)p ≤ n1/p ≤ n1/q and furthermore
(logR)q ≤ (logR)p = (2p)log logR ≤ (n1/p)log logR = n(log logR)/p ≤ n(log logR)/q. It follows
that the total update time is

Tq−2(m) = Õ(m1+3(log logR)/qR2/q) .

We can turn the algorithm above into an algorithm for the full distance range by using
the rounding technique once more.

Theorem 6.3. For every 0 < ε ≤ 1, there is a decremental approximate SSSP algorithm
that, given a fixed source node s, maintains, for every node v, a distance estimate δ(s, v)
such that distG(s, v) ≤ δ(s, v) ≤ (1 + ε) distG(s, v). It has constant query time and a total
update time of

O(m1+O(log5/4((logn)/ε)/ log1/4 n) logW) .

If 1/ε = O(polylogn), then the total update time is O(m1+o(1) logW).

Proof. For every 0 ≤ i ≤ blog(nW)c we define

ϕi = ε2i

n
.

Let G′i be the graph that has the same nodes and edges as G and in which every edge weight
is rounded to the next multiple of ϕi, i.e., every edge (u, v) in G′i has weight

wG′i(u, v) =
⌈
wG(u, v)

ϕi

⌉
· ϕi

where wG(u, v) is the weight of (u, v) in G. This rounding guarantees that

wG(u, v) ≤ wGi(u, v) ≤ wG(u, v) + ϕi

for every edge (u, v) of G. Furthermore we define G′′i to be the graph that has the same
nodes and edges as G′i and in which every edge weight is scaled down by a factor of 1/ϕi,
i.e., every edge (u, v) in G′′i has weight

wG′′i (u, v) =
wG′i(u, v)

ϕi
=
⌈
w(u, v)
ϕi

⌉
.

The algorithm is as follows: For every 0 ≤ i ≤ blog(nW)c we use the algorithm of
Lemma 6.1 on the graph G′′i with R = 4n/ε to maintain a distance estimate δi(s, v) for every
node v that satisfies

• δi(s, v) ≥ distG′′i (s, v) and

38

• if distG′′i (s, v) ≤ R, then δi(s, v) ≤ (1 + ε) distG′′i (s, v).

We let our algorithm return the distance estimate

δ(s, v) = min
0≤i≤blognW c

ϕiδi(s, v) .

We now show that there is some 0 ≤ i ≤ blog(nW)c such that ϕiδi(s, v) ≤ (1 +
3ε) distG(s, v). As δ(s, v) is the minimum of all the distance estimates, this implies that
δ(s, v) ≤ (1 + 3ε) distG(s, v). In particular, we know that there is some 0 ≤ i ≤ blog(nW)c
such that 2i ≤ distG(s, v) ≤ 2i+1 since W is the maximum edge weight and all paths consist
of at most n edges. Consider a shortest path π from v to s in G whose weight is equal to
distG(s, v). Let wG(π) and wG′i(π) denote the weight of the path π in G and G′i, respectively.
Since π consists of at most n edges we have wG′i(π) ≤ w(π) + nϕi. Therefore we get

distG′i(s, v) ≤ wG′i(π) ≤ w(π) + nϕi = distG(s, v) + ε2i ≤ distG(s, v) + εdistG(s, v)
= (1 + ε) distG(s, v) .

Now observe the following:

distG′′i (s, v) =
distG′i(s, v)

ϕi
≤ (1 + ε) distG(s, v)

ϕi
≤ 2 distG(s, v)

ϕi
= 2 distG(s, v)n

ε2i

≤ 2 · 2i+1n

ε2i = 4n
ε

= R .

Since distG′′i (s, v) ≤ R we get δi(s, v) ≤ (1 + ε) distG′′i (s, v) by Lemma 6.1. Thus, we get

ϕiδi(s, v) ≤ ϕi((1+ε) distG′′i (s, v)) = (1+ε) distG′i(s, v) ≤ (1+ε)2 distG(s, v) ≤ (1+3ε) distG(s, v)

as desired.
We now analyze the running time of this algorithm. By Lemma 6.1, for every 0 ≤ i ≤

blog (nW)c, maintaining δi(s, v) on G′′i for every node s takes time Õ(m1+3(log logR)/qR2/q),
where

q =


√√√√√√√


√
logn√

log
(

8·43 logn
ε

)



By our choice of R = 4n/ε, the total update time for maintaining all these blog (nW)c
distance estimates is Õ(m1+5(log log (4n/ε))/q logW/ε), where

q =


√√√√√√√


√
logn√

log
(

8·43 logn
ε

)



To obtain a (1+ε) approximation (instead of a (1+3ε)-approximation, we simply run the whole
algorithm with ε′ = ε/3. This results in a total update time of Õ(m1+5(log log (12n/ε))/q logW/ε),

39

where

q =


√√√√√√√


√
logn√

log
(

24·43 logn
ε

)



Now observe that 1/ε ≤ n1/q and that

5
(
log log

(
12n
ε

))
q

= O


(
log log

(
n
ε

)) (
log

(
logn
ε

))1/4

(logn)1/4

 = O


(
log

(
logn
ε

))5/4

(logn)1/4

 .

Since Õ(1) = O(polylogn) = O(nO(log5/4((logn)) the total update time therefore is

O(m1+O(log5/4((logn)/ε)/ log1/4 n) logW) .

If 1/ε = O(polylogn), then the total update time is O(m1+log5/4 logn/ log1/4 n logW), which is
O(m1+o(1) logW) since limx→∞(log5/4 logn/ log1/4 n) = 0.

The query time of the algorithm described above is O(log(nW)) as it has to compute
δ(s, v) = min0≤i≤blognW c δi(s, v) · ϕi when asked for the approximate distance from v to s.
We can reduce the query time to O(1) by using a min-heap for every node v that stores
δi(s, v) for all 0 ≤ i ≤ blog(nW)c. This allows us to query for δ(s, v) in constant time.

6.2 Approximate APSP

We now show how to use our techniques to obtain a decremental approximate APSP
algorithm. This is conceptually simple now. We simply use the approximate SSSP algorithm
from Theorem 6.3 and plug it into the algorithm for maintaining approximate balls from
Proposition 4.1. By using an adequate query procedure we can use the distance estimates
maintained for the approximate balls to return the approximate distances between any two
nodes.

Theorem 6.4. There is a decremental approximate APSP algorithm that upon a query for
the approximate between any pair of nodes u and v returns a distance estimate δ(u, v) such
that distG(u, v) ≤ δ(u, v) ≤ ((2 + ε)k − 1) distG(u, v). It has a query time of O(kk) and a
total update time of

O(m1+1/k+O(log5/4((logn)/ε)/ log1/4 n) log2W)
If 1/ε = O(polylogn), then the total update time is O(m1+o(1) log2W).

Proof. We use the approximate SSSP algorithm of Theorem 6.3 that provides a (1 + ε)-
approximation and has a total update time of

T (m,n) = O(m1+O(log5/4((logn)/ε)/ log1/4 n) logW)

and if 1/ε = O(polylogn), then the total update time is T (m,n) = O(m1+o(1) logW). By
Proposition 4.1 we can maintain approximate balls with a total update time of

t(m,n, k, ε) = Õ

m1+1/k logD/ε+
∑

0≤i≤k−1
m1−i/k · T (mi, ni) logD/ε+ T (m,n)

 ,

40

where, for each 0 ≤ i ≤ k − 1, mi = m(i+1)/k and ni = min(mi, n). Using similar argu-
ments as above we get that t(m,n, k, ε) = O(m1+1/k+O(log5/4((logn)/ε)/ log1/4 n) log2W) and
O(m1+o(1) log2W) if 1/ε = O(polylogn).

Additionally we maintain, for every node v ∈ V , the node ci(v) which is a node with
minimum δ(u, v) among all nodes u of priority j such that v ∈ B(u). This can be done as
follows. For every node v we maintain a heap containing all nodes u of priority i such that
v ∈ B(u) using the key δ(u, v). Every time v joins or leaves B(u) we insert or remove u from
the heap of v. Every time δ(u, v) changes, we update the key of u in the heap of v. After
each insert, remove, or update in the heap of some node v, we find the minimal element ci(v)
of the heap. As each heap operation takes logarithmic time, the total update time of the
algorithm of Proposition 4.1 only increases by a logarithmic factor.

Procedure 2: Query(u, v)
1 if v ∈ B(u) then
2 δ′(u, v)← δ(u, v)
3 else
4 Set i to the priority of u
5 foreach j = i+ 1 to k − 1 do
6 if cj(u) exists then
7 v′′ ← cj(u)
8 δ′(v′′, v)← Query(v′′, v)
9 δ′j(u, v)← δ(v, v′′) + δ′(v′′, v)

10 else
11 δ′j(u, v)←∞

12 δ′(u, v)← mini+1≤j≤k−1 δ
′
j(u, v)

13 return δ′(u, v)

To answer a query for the approximate distance between a pair of nodes u and v we use
Procedure 2. This procedure first tests whether v ∈ B(u) and if yes returns δ(u, v). Otherwise
it does the following for every j ≥ i+1, where i is the priority of u: It first computes the node
cj(u), which among the nodes v′ of priority j with u ∈ B(v′) is the one with the minimum
value of δ(v′, u). Then it recursively queries for the approximate distance δ′(cj(u), v) from
cj(u) to v and sets the distance estimate via cj(u) to δ′j(u, v) = δ(v, cj(u)) + δ′(cj(u), v).
Finally, it returns the minimum of all distance estimates δ′j(u, v).

Note that in each instance there are O(k) recursive calls and with each recursive call
the priority of u increases by at least one. Thus the running time of the query procedure is
O(kk).

Claim 6.5. For every pair of nodes u and v the distance estimate δ′(u, v) computed by
Procedure 2 satisfies δ′(u, v) ≤ (((1 + ε)2 + 1)k−i − 1) distG(u, v), where i is the priority of u.

Proof. The proof is by induction on the priority i of u. Let δ′(u, v) denote the distance
estimate returned by Procedure 2. If i = k − 1, then we know that v ∈ B(u) and thus
δ′(u, v) = δ(u, v) ≤ (1 + ε) distG(u, v). If i < k − 1 we distinguish between the two cases
v ∈ B(u) and v /∈ B(u). If v ∈ B(u), then δ′(u, v) = δ(u, v) ≤ (1 + ε) distG(u, v). If

41

v /∈ B(u), then by Proposition 4.1 there is a node v′ of priority j > i such that u ∈ B(v′)
and distG(u, v′) ≤ (1 + ε)2((1 + ε)2 + 1)j−i−1 distG(u, v).

We will now argue that δ′j(u, v) ≤ 2((1 + ε)3 + 1)k−1−i − 1) distG(u, v), which implies
the same upper bound for δ′(u, v). Set v′′ ← cj(u). Since both v′′ and v′ have priority j
and u ∈ B(v′) as well as v ∈ B(v′′) we have δ(u, v′′) ≤ δ(u, v′) by the definition of v′′. Since
δ(u, v′) ≤ (1 + ε) distG(u, v′), we have

δ(u, v′′) ≤ (1 + ε) distG(u, v′) ≤ (1 + ε)3((1 + ε)2 + 1)j−i−1 distG(u, v)
≤ (1 + ε)3((1 + ε)3 + 1)j−i−1 distG(u, v) .

To simplify the presentation in the following we set a = (1 + ε)3 and thus have δ(u, v′′) ≤
a(a+ 1)j−i−1 distG(u, v). By the triangle inequality we have

distG(v′′, v) ≤ distG(v′′, u) + distG(u, v) ≤ δ(v′′, u) + distG(u, v)
≤ (a(a+ 1)j−i−1 + 1) distG(u, v)

and by the induction hypothesis we have

δ′(v′′, v) ≤ (2(a+ 1)k−1−j − 1) distG(v′′, v)
≤ (2(a+ 1)k−1−j − 1)(a(a+ 1)j−i−1 + 1) distG(u, v) .

Since j ≥ i+ 1 we get

δ′j(u, v) = δ(u, v′′) + δ′(v′′, v)

≤
(
a(a+ 1)j−i−1 + (2(a+ 1)k−1−j − 1)(a(a+ 1)j−i−1 + 1)

)
distG(u, v)

=
(
2(a+ 1)k−1−j(a(a+ 1)j−i−1 + 1)− 1

)
distG(u, v)

=
(
2a(a+ 1)k−1−(i+1) + 2(a+ 1)k−1−j)− 1

)
distG(u, v)

≤
(
2a(a+ 1)k−1−(i+1) + 2(a+ 1)k−1−(i+1))− 1

)
distG(u, v)

=
(
2(a+ 1)k−1−(i+1)(a+ 1)− 1

)
distG(u, v)

= (2(a+ 1)k−1−i − 1) distG(u, v) .

Note that 2 ≤ ((1+ε)3+1) and therefore we have δ′(u, v) ≤ (((1+ε)3+1)k−i−1) distG(u, v).
Furthermore, (1 + ε)3 ≤ 1 + 7ε and in the worst case i = 0. Thus, by running the whole
algorithm with ε′ = ε/7, we can guarantee that δ′(u, v) ≤ ((2 + ε)k − 1) distG(u, v).

7 Conclusion
In this paper, we show that single-source shortest paths in undirected graphs can be
maintained under edge deletions with near-linear total update time and constant query time.
The main approach is to maintain an (no(1), ε)-hop set of near-linear size in near-linear time.
We leave two major open problems. The first problem is whether the same total update time
can be achieved for directed graphs. This problem is very challenging because such a hop set
is not known even in the static setting. Moreover, improving the current Õ(mn0.9+o(1)) total

42

update time by [HKN14b, HKN15] for the decremental reachability problem is already very
interesting. The second major open problem is to derandomize our algorithm. The major task
here is to deterministically maintain the priorities and corresponding balls of the nodes, which
is the key to maintaining the hop set. A related question is whether the algorithm of Roditty
and Zwick [RZ12] for decrementally maintaining the original distance oracle of Thorup and
Zwick (and the corresponding spanners and emulators) can be derandomized. (Note however
that the distance oracle of Thorup and Zwick can be constructed deterministically in the
static setting [RTZ05].)

Acknowledgement
The authors would like to thank the anonymous reviewers of FOCS 2014 for their valuable
feedback.

References
[ACT14] Ittai Abraham, Shiri Chechik, and Kunal Talwar. “Fully Dynamic All-Pairs

Shortest Paths: Breaking the O(n) Barrier”. In: International Workshop on Ap-
proximation Algorithms for Combinatorial Optimization Problems (APPROX).
2014, pp. 1–16 (cit. on p. 5).

[AVW14] Amir Abboud and Virginia Vassilevska Williams. “Popular conjectures imply
strong lower bounds for dynamic problems”. In: Symposium on Foundations of
Computer Science (FOCS). 2014, pp. 434–443 (cit. on p. 4).

[BR11] Aaron Bernstein and Liam Roditty. “Improved Dynamic Algorithms for Main-
taining Approximate Shortest Paths Under Deletions”. In: Symposium on
Discrete Algorithms (SODA). 2011, pp. 1355–1365 (cit. on pp. 1, 3, 6).

[Ber09] Aaron Bernstein. “Fully Dynamic (2 + ε) Approximate All-Pairs Shortest
Paths with Fast Query and Close to Linear Update Time”. In: Symposium on
Foundations of Computer Science (FOCS). 2009, pp. 693–702 (cit. on pp. 1, 4,
7).

[Ber13] Aaron Bernstein. “Maintaining Shortest Paths Under Deletions in Weighted
Directed Graphs”. In: Symposium on Theory of Computing (STOC). 2013,
pp. 725–734 (cit. on pp. 4, 7).

[Coh00] Edith Cohen. “Polylog-Time and Near-Linear Work Approximation Scheme for
Undirected Shortest Paths”. In: Journal of the ACM 47.1 (2000). Announced
at STOC’94, pp. 132–166 (cit. on pp. 1, 7).

[Coh98] Edith Cohen. “Fast Algorithms for Constructing t-Spanners and Paths with
Stretch t”. In: SIAM Journal on Computing 28.1 (1998). Announced at FOCS’93,
pp. 210–236 (cit. on pp. 4, 7).

[ES81] Shimon Even and Yossi Shiloach. “An On-Line Edge-Deletion Problem”. In:
Journal of the ACM 28.1 (1981), pp. 1–4 (cit. on pp. 1, 3, 5).

43

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.1
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.1
http://dx.doi.org/10.1109/FOCS.2014.53
http://dx.doi.org/10.1109/FOCS.2014.53
http://dx.doi.org/10.1137/1.9781611973082.104
http://dx.doi.org/10.1137/1.9781611973082.104
http://dx.doi.org/10.1109/FOCS.2009.16
http://dx.doi.org/10.1109/FOCS.2009.16
http://dx.doi.org/10.1145/2488608.2488701
http://dx.doi.org/10.1145/2488608.2488701
http://dx.doi.org/10.1145/331605.331610
http://dx.doi.org/10.1145/331605.331610
http://dx.doi.org/10.1137/S0097539794261295
http://dx.doi.org/10.1137/S0097539794261295
http://dx.doi.org/10.1145/322234.322235

[HK95] Monika Henzinger and Valerie King. “Fully Dynamic Biconnectivity and Tran-
sitive Closure”. In: Symposium on Foundations of Computer Science (FOCS).
1995, pp. 664–672 (cit. on pp. 4, 5).

[HKN13] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. “Dynamic
Approximate All-Pairs Shortest Paths: Breaking the O(mn) Barrier and De-
randomization”. In: Symposium on Foundations of Computer Science (FOCS).
2013, pp. 538–547 (cit. on pp. 1, 6, 22, 27).

[HKN14a] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. “A Subquadratic-
Time Algorithm for Dynamic Single-Source Shortest Paths”. In: Symposium on
Discrete Algorithms (SODA). 2014, pp. 1053–1072 (cit. on p. 4).

[HKN14b] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. “Sublinear-
Time Decremental Algorithms for Single-Source Reachability and Shortest
Paths on Directed Graphs”. In: Symposium on Theory of Computing (STOC).
2014, pp. 674–683 (cit. on pp. 1, 4, 43).

[HKN15] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. “Improved
Algorithms for Decremental Single-Source Reachability on Directed Graphs”. In:
International Colloquium on Automata, Languages and Programming (ICALP).
2015, pp. 725–736 (cit. on pp. 4, 43).

[HKN+15] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol
Saranurak. “Unifying and Strengthening Hardness for Dynamic Problems via
the Online Matrix-Vector Multiplication Conjecture”. In: Symposium on Theory
of Computing (STOC). 2015, pp. 21–30 (cit. on p. 3).

[KKM+12] Maleq Khan, Fabian Kuhn, Dahlia Malkhi, Gopal Pandurangan, and Kunal
Talwar. “Efficient distributed approximation algorithms via probabilistic tree
embeddings”. In: Distributed Computing 25.3 (2012). Announced at PODC’08,
pp. 189–205 (cit. on p. 7).

[Kin99] Valerie King. “Fully Dynamic Algorithms for Maintaining All-Pairs Shortest
Paths and Transitive Closure in Digraphs”. In: Symposium on Foundations of
Computer Science (FOCS). 1999, pp. 81–91 (cit. on pp. 4, 5).

[Lac13] Jakub Łącki. “Improved Deterministic Algorithms for Decremental Reachability
and Strongly Connected Components”. In: ACM Transactions on Algorithms
9.3 (2013). Announced at SODA’11, p. 27 (cit. on p. 4).

[Mad10] Aleksander Mądry. “Faster Approximation Schemes for Fractional Multicom-
modity Flow Problems via Dynamic Graph Algorithms”. In: Symposium on
Theory of Computing (STOC). 2010, pp. 121–130 (cit. on pp. 1, 3, 4, 7).

[Nan14] Danupon Nanongkai. “Distributed Approximation Algorithms for Weighted
Shortest Paths”. In: Symposium on Theory of Computing (STOC). 2014, pp. 565–
573 (cit. on p. 7).

[RTZ05] Liam Roditty, Mikkel Thorup, and Uri Zwick. “Deterministic Constructions of
Approximate Distance Oracles and Spanners”. In: International Colloquium on
Automata, Languages and Programming (ICALP). 2005, pp. 261–272 (cit. on
p. 43).

44

http://dx.doi.org/10.1109/SFCS.1995.492668
http://dx.doi.org/10.1109/SFCS.1995.492668
http://dx.doi.org/10.1109/FOCS.2013.64
http://dx.doi.org/10.1109/FOCS.2013.64
http://dx.doi.org/10.1109/FOCS.2013.64
http://dx.doi.org/10.1137/1.9781611973402.79
http://dx.doi.org/10.1137/1.9781611973402.79
http://dx.doi.org/10.1145/2591796.2591869
http://dx.doi.org/10.1145/2591796.2591869
http://dx.doi.org/10.1145/2591796.2591869
http://dx.doi.org/10.1007/978-3-662-47672-7_59
http://dx.doi.org/10.1007/978-3-662-47672-7_59
http://dx.doi.org/10.1145/2746539.2746609
http://dx.doi.org/10.1145/2746539.2746609
http://dx.doi.org/10.1007/s00446-012-0157-9
http://dx.doi.org/10.1007/s00446-012-0157-9
http://dx.doi.org/10.1109/SFFCS.1999.814580
http://dx.doi.org/10.1109/SFFCS.1999.814580
http://dx.doi.org/10.1145/2483699.2483707
http://dx.doi.org/10.1145/2483699.2483707
http://dx.doi.org/10.1145/1806689.1806708
http://dx.doi.org/10.1145/1806689.1806708
http://dx.doi.org/10.1145/2591796.2591850
http://dx.doi.org/10.1145/2591796.2591850
http://dx.doi.org/10.1007/11523468_22
http://dx.doi.org/10.1007/11523468_22

[RZ08] Liam Roditty and Uri Zwick. “Improved Dynamic Reachability Algorithms for
Directed Graphs”. In: SIAM Journal on Computing 37.5 (2008). Announced at
FOCS’02, pp. 1455–1471 (cit. on p. 4).

[RZ11] Liam Roditty and Uri Zwick. “On Dynamic Shortest Paths Problems”. In:
Algorithmica 61.2 (2011). Announced at ESA’04, pp. 389–401 (cit. on p. 3).

[RZ12] Liam Roditty and Uri Zwick. “Dynamic Approximate All-Pairs Shortest Paths in
Undirected Graphs”. In: SIAM Journal on Computing 41.3 (2012). Announced
at FOCS’04, pp. 670–683 (cit. on p. 43).

[Rod13] Liam Roditty. “Decremental maintenance of strongly connected components”.
In: Symposium on Discrete Algorithms (SODA). 2013, pp. 1143–1150 (cit. on
pp. 3, 4).

[TZ05] Mikkel Thorup and Uri Zwick. “Approximate Distance Oracles”. In: Journal of
the ACM 52.1 (2005). Announced at STOC’01, pp. 74–92 (cit. on p. 4).

[TZ06] Mikkel Thorup and Uri Zwick. “Spanners and emulators with sublinear distance
errors”. In: Symposium on Discrete Algorithms (SODA). 2006, pp. 802–809
(cit. on pp. 6–9, 11, 16).

[Tho99] Mikkel Thorup. “Undirected Single-Source Shortest Paths with Positive Integer
Weights in Linear Time”. In: Journal of the ACM 46.3 (1999). Announced at
FOCS’97, pp. 362–394 (cit. on p. 3).

[UY91] Jeffrey D. Ullman and Mihalis Yannakakis. “High-Probability Parallel Transitive-
Closure Algorithms”. In: SIAM Journal on Computing 20.1 (1991). Announced
at SPAA’90, pp. 100–125 (cit. on p. 6).

[VWW10] Virginia Vassilevska Williams and Ryan Williams. “Subcubic Equivalences
between Path, Matrix and Triangle Problems”. In: Symposium on Foundations
of Computer Science (FOCS). 2010, pp. 645–654 (cit. on p. 3).

[Zwi02] Uri Zwick. “All Pairs Shortest Paths using Bridging Sets and Rectangular
Matrix Multiplication”. In: Journal of the ACM 49.3 (2002). Announced at
FOCS’98, pp. 289–317 (cit. on pp. 4, 7).

45

http://dx.doi.org/10.1137/060650271
http://dx.doi.org/10.1137/060650271
http://dx.doi.org/10.1007/s00453-010-9401-5
http://dx.doi.org/10.1137/090776573
http://dx.doi.org/10.1137/090776573
http://dx.doi.org/10.1137/1.9781611973105.82
http://dx.doi.org/10.1145/1044731.1044732
http://dl.acm.org/citation.cfm?id=1109557.1109645
http://dl.acm.org/citation.cfm?id=1109557.1109645
http://dx.doi.org/10.1145/316542.316548
http://dx.doi.org/10.1145/316542.316548
http://dx.doi.org/10.1137/0220006
http://dx.doi.org/10.1137/0220006
http://dx.doi.org/10.1109/FOCS.2010.67
http://dx.doi.org/10.1109/FOCS.2010.67
http://dx.doi.org/10.1145/567112.567114
http://dx.doi.org/10.1145/567112.567114

	1 Introduction
	2 Preliminaries
	3 Technical Overview
	4 From Approximate SSSP to Approximate Balls
	4.1 Relation to Exact Balls
	4.2 Properties of Approximate Balls

	5 From Approximate Balls to Approximate SSSP
	5.1 Algorithm Description
	5.2 Running Time Analysis
	5.3 Definitions of Values for Approximation Guarantee
	5.4 Analysis of Approximation Guarantee

	6 Putting Everything Together
	6.1 Approximate SSSP
	6.2 Approximate APSP

	7 Conclusion
	References

