
Deriving executable BPEL from UMM Business Transactions

Birgit Hofreiter1, Christian Huemer2, Philipp Liegl3, Rainer Schuster3 and Marco Zapletal2

1University of Technology Sydney, Australia
2Institute of Software Technology, Vienna University of Technology, Austria

3Research Studios Austria, Austrian Research Centers GmbH - ARC
birgith@it.uts.edu.au, huemer@big.tuwien.ac.at

marco@ec.tuwien.ac.at, {pliegl, rschuster}@researchstudio.at

Abstract

UN/CEFACT’s Modeling Methodology (UMM) is a UML
profile for modeling global B2B choreographies. The basic
building blocks of UMM are business transactions, which
describe the exchange of a business document and an op-
tional response. In addition to these business document
exchanges, UMM business transactions mandate business
signals that acknowledge the correctness of business docu-
ments. It is expected that a business service interface (BSI)
on each business partner’s side reacts on incoming mes-
sages and on messages expected but not received. However
the internal orchestration of the BSI is open to interpreta-
tions. In this paper we demonstrate an unambiguous map-
ping from global choreographies described by UMM trans-
actions to a BPEL-based orchestration of the business ser-
vice interface. It becomes obvious that rather simple look-
ing UMM transactions lead to a more complex message ex-
change mechanism when implemented on top of Web Ser-
vices.

1 Motivation

Service-oriented computing is considered as an enabler
of inter-organizational systems overcoming the limitations
of traditional electronic data interchange (EDI) standards
[2]. It results in a shift towards the services exchanging the
business document types and towards specifying the flow
of these services. The flow of services is described by the
concepts of orchestration and choreography [11]. An or-
chestration defines the sequence and conditions in which
one service invokes other services to realize some goal.
The interactions between the services are described at mes-
sage level, including the business logic and the execution
order of the interactions. Choreography is used to define

the flow of message exchanges in peer-to-peer systems like
inter-organizational systems. Thereby we distinguish local
choreography from a public choreography. A global chore-
ography describes the interaction between the business part-
ners from a global and neutral perspective. It follows that a
single process description is used for all partners. A local
choreography describes the interactions between the busi-
ness partners from the perspective of a certain business part-
ner. It follows, a different process description is created for
each business partner. Interoperability requires that these
process descriptions are complementary, e.g. if one busi-
ness partner invokes a service the other business partner
must receive the call of the same service.

A global choreography has the potential to achieve an
agreement between the partners. Local choreographies de-
rived from the global UMM model enable the configura-
tion of each partners system. Thus, business experts have
a greater interest in the global choreography, whereas soft-
ware engineers are purely interested in the local choreogra-
phies. The United Nation’s Centre of Trade Facilitation
and e-Business (UN/CEFACT) became known for main-
taining the UN/EDIFACT standards in first place. How-
ever, their mission is rather to develop trade procedures than
to develop IT-platform specific solutions. Consequently,
UN/CEFACT has started to standardize business scenar-
ios independent of the IT platform. Core Components are
business document building blocks specified independent of
any transfer syntax realizing the exchange. UN/CEFACT’s
Modeling Methodology enables capturing business knowl-
edge independent of the underlying implementation tech-
nology in order to model the choreography and data ex-
change commitments to be agreed between partners.

In order to implement a B2B system the UMM mod-
els must be transformed into platform specific solutions.
A candidate platform are Web Services. However, Web
Services have a general infrastructure purpose and are not
specifically dedicated to e-business. As a consequence con-

cepts implicitly interwoven into UMM must be explicitly
revealed when implementing the system by Web Services.

In this paper we concentrate on UMM business trans-
actions which are the basic building blocks in the global
UMM choreography. In UMM, a business transaction in-
volves not only the exchange of business documents, but
also the exchange of business signals for acknowledging
the correctness of documents. These business signals must
not be mixed up with acknowledgments in reliable messag-
ing, since business signals confirm/disconfirm the appropri-
ateness of the business content rather than the receipt of a
message. On each partner’s side a business service inter-
face is responsible for the correct handling of business doc-
uments and signals. If this business service interface is im-
plemented by means of Web Services, it must explicitly in-
voke and provide services for the correct message handling.
The correct orchestration of the business service interface
is then best described by BPEL. In this paper we present
a mapping from the global UMM transactions to BPEL 2.0
[9] orchestrations representing the local business service in-
terfaces on each partner’s side.

2 UMM Business Transactions

UN/CEFACT’s Modeling Methodology (UMM) is a
holistic approach for modeling the collaborative space be-
tween enterprises. It provides a graphical modeling lan-
guage that is defined as a UML profile - i.e., as a set of
stereotypes, tagged values and constraints [15] - which we
co-authored. It customizes the rather general UML to the
specific needs of B2B. The goal of the UMM is to define
business collaborations between two or more business part-
ners. A UML business collaboration model consists of three
views - the business domain view (BDV), the business re-
quirements view (BRV) and the business transaction view
(BTV). In the business domain view existing business pro-
cesses and business domain knowledge is captured. The
BRV gathers the requirements of the to-be designed busi-
ness collaborations. Finally, in the BTV the business pro-
cess analyst designs the flow of the business collaboration
based on the requirements collected before. In this paper,
we concentrate on the business transaction view. A business
collaboration is modeled by means of a business collabora-
tion protocol, which is based on a UML activity diagram.
A business collaboration protocol choreographs a flow of
business transaction. A business transaction describes the
exchange of a business document and an optional response
between exactly two participants.

A business transaction is responsible for aligning the
business information systems of the collaborating business
partners. Aligning the business information systems means
that all business entities (e.g. purchase order, line items,
etc.) are in the same state in each information system.

In case of a state change of a business entity, a business
transaction is initiated to synchronize with the collaborating
business partner. It follows, that a business transaction is an
atomic unit responsible for the synchronization between ex-
actly two business partners’ information systems.

Basically there are two different types of business trans-
actions. The first one describes the synchronization process
in a uni-directional way. In this case the business informa-
tion only flows from the initiating business partner to the
responding business partner. After the initiating business
partner reports an already effective and irreversible state
change, the reacting business partner has to accept it with-
out giving a response back that could affect the final state.
Thus, this type of business transaction is called one-way
business transaction (e.g. the notification of shipment, the
update of a product in a catalog, etc.). In contrast, the sec-
ond type provides the possibility for the reacting business
partner to change the final state by sending business in-
formation back to the initiating business partner. Having
a deeper look at this scenario, the initiating business part-
ner sets the business entity to an interim state and the fi-
nal and irreversible state is decided by the responding busi-
ness partner. This type of business transaction is called two-
way business transaction (e.g., request for quote, search for
products, etc.). Figure 1 shows an example of a two-way
business transaction dealing with a request for a quote.

A

B C

D

E
F

G
H

I
J

Figure 1. Business Transaction in UMM

In UMM, a business transaction is represented as a UML
activity graph following always the same pattern. UN/CE-
FACT strictly defines this pattern by specifying a certain
set of stereotypes a modeler must use in order to create a
UMM compliant business transaction. The activity graph
of a business transaction consists of exactly two business

transaction swimlanes each of them representing an autho-
rized role performed by a business partner. The initiating
business partner performs exactly one requesting business
activity and the responding business partner performs ex-
actly one responding business activity. While the object
flow from the requesting to the responding business activity
is mandatory, the object flow vice versa is optional. The ex-
changed business information is represented by a requesting
or a responding information envelope.

In respect to special business needs, UMM distinguishes
two types of one-way business transactions and four types
of two-way business transactions. Regarding the distinc-
tion of a one-way business transaction: if the business in-
formation sent is a formal non-repudiable notification, the
transaction is called notification. Otherwise the business
transaction is called information distribution. Regarding
the distinction of a two-way business transaction: the trans-
action is called query/response, if the responder already is
able to provide the information beforehand. If the respon-
der does not have the information, but no pre-editor con-
text validation is required before processing, the transac-
tion is a request/confirm one. If the latter is required and
the transaction results in a residual obligation between the
business partners to fulfill terms of a contract, it is called a
commercial transaction. Otherwise the transaction is called
request/response. The mentioned types of business trans-
actions in this paragraph cover all known legally binding
interactions between two decision making applications as
defined in Open-edi reference model [6]. They differ in the
default values of the tagged values characterizing a request-
ing/responding business activity: is authorization required,
is non-repudiation required, time to acknowledge receipt,
time to acknowledge acceptance, and is non-repudiation of
receipt required. In addition, only the requesting business
activity specifies the time to respond and a retry count. Be-
cause of their nomenclature, these tagged values are consid-
ered to be self-explanatory. Furthermore the business trans-
action types and their tagged values have proven to be useful
in RosettaNet [12].

Figure 1 shows an example of a two-way business
transaction, which serves as the basis for our proposed
mapping to executable BPEL processes. In this exam-
ple, the Buyer performs the requesting role and requests
a business document - a QuoteEnvelope - from the
Seller who takes on the reacting role. The buyer starts
an ObtainQuote activity and creates a requesting busi-
ness document - the QuoteRequestEnvelope - that trig-
gers the CalculateQuote activity of the Seller. Hav-
ing reached this point of the business transaction, the
ObtainQuote activity is still alive, because it is wait-
ing for a response from the Seller. Afterwards, the
CalculateQuote activity generates a responding informa-
tion envelope - the QuoteEnvelope - that is returned to the

Buyer. Finally, the ObtainQuote activity on the Buyer’s
side processes the response. If a quote was provided in the
QuoteEnvelope the business transaction is considered as
successful. Otherwise, if no quote was provided, the busi-
ness transaction resulted in a failure. The modeling of the
exchanged business documents plays a major role in our ap-
proach and is described in more detail in section 3.1. If one
of the participants encounters a time-out - i.e., an acknowl-
edgement or the QuoteEnvelope is not received in time
- he must signalize his partner a time-out exception. If a
message is scrambled during the exchange and hence is not
processible, a failed business control exception must be is-
sued. Similarly, a failed business control exception is sent
if the retry count is elapsed and all attempts to execute the
business transaction failed.

3 Mapping Business Transactions to BPEL

For the business transaction depicted in figure 1 we iden-
tify four participating entities namely the buyer, the buyer’s
business application, the seller and the seller’s business ap-
plication. For each of the entities a WSDL is generated. On
the buyer’s and the seller’s side a BPEL process orchestrates
the different service invocations. In the following section
we will first show how core components are used to derive
XML schemas for business documents and then elaborate
the generation of WSDL 1.1 [18] and BPEL 2.0 [9] arti-
facts.

3.1 Generating Business Documents

In UMM the so called business information view is
used to model the business documents exchanged dur-
ing a business transaction. Figure 2 shows an ex-
ample for a business information view depicting the
QuoteEnvelope exchanged in the business transaction
in figure 1. The QuoteEnvelope is of type in-
formation envelope and contains two information enti-
ties namely StandardBusinessDocumentHeader and
QuoteDocument. The header of the information envelope
contains auxiliary information and the body holds the actual
workload information. In order to model the actual informa-
tion in the body we use the concept of so-called core compo-
nents [17]. Core components are reusable building blocks to
assemble business documents. If core components are used
in a specific context they are referred to as business infor-
mation entities (BIE). In figure 2 the business information
entity Quote is depicted, stereotyped as ABIE (aggregate
business information entity). Underneath the body informa-
tion entity (in our case QuoteDocument) the modeler uses
business information entities to structure the business doc-
ument.

«InformationEnvelope»
QuoteEnvelope

«InformationEntity»
StandardBusinessDocumentHeader

«InformationEntity»
QuoteDocument

+ Creation: Date
+ Identification: String

«ABIE»
BIELibrary::Quote

«BBIE»
+ Description: String
+ Price: double

+header

+quote

+body

Figure 2. Business Information in UMM

Together with the core components standard UN/CE-
FACT has released so called Naming and Design Rules for
Core Components (NDR) [16]. The NDR are guidelines for
generating an XSD schema out of a core components model
as depicted in figure 2. In order to support the modeler in
establishing valid UMM models we have developed the so
called UMM Add-In [7]. The UMM Add-In is an extension
of the UML modeling tool Enterprise Architect [14] and
supports the modeler with the semi-automatic generation of
artifacts or a model validation feature. We have extended
our UMM Add-In with a generation feature and the mod-
eler is now given the possibility to automatically generate
an XSD schema out of a given core components model [4].
The generated XSD schema is then used to validate the ac-
tual information exchanged in the business process.

Listing 1 shows the XML schema, which is generated
from the business information view in figure 2.

Listing 1. Business information view schema
0 <xsd : schema xmlns : inView =” u r n : e x : i n f V i e w ” x m l n s : b i e =” u r n : e x : b I n f E n t ”
1 x m l n s : x s d =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema” t a r g e t N a m e s p a c e =” u r n : e x : i n f V i e w ”
2 e l e m e n t F o r m D e f a u l t =” q u a l i f i e d ” a t t r i b u t e F o r m D e f a u l t =” u n q u a l i f i e d ”>
3 <x s d : i m p o r t namespace=” u r n : e x : b I n f E n t ” schemaLoca t i on =”ABIEs . xsd ” />
4 <x s d : e l e m e n t name=” QuoteEnve lope ” t y p e =” inView:QuoteEnve lopeType ” />
5 <xsd :complexType name=” QuoteEnvelopeType ”>
6 <x s d : s e q u e n c e>
7 <x s d : e l e m e n t name=” S tanda rdBus ines sDocumen tHeade r ” t y p e =” x s d : s t r i n g ” />
8 <x s d : e l e m e n t name=” QuoteDocument ” t y p e =” inView:QuoteDocumentType ” />
9 </ x s d : s e q u e n c e>

10 </ xsd :complexType>
11 <xsd :complexType name=” QuoteDocumentType ”>
12 <x s d : s e q u e n c e>
13 <x s d : e l e m e n t name=” C r e a t i o n ” t y p e =” x s d : d a t e ” />
14 <x s d : e l e m e n t name=” I d e n t i f i c a t i o n ” t y p e =” x s d : s t r i n g ” />
15 <x s d : e l e m e n t name=” Quote ” t y p e =” b i e : Q u o t e T y p e ” />
16 </ x s d : s e q u e n c e>
17 </ xsd :complexType>
18 </ x sd : schema>

The business information entities are generated sepa-
rately and imported into the business information view
schema (Line 3 of listing 1). Listing 2 shows the XML
schema for the business information entity Quote, which

is imported in line 3 of listing 1.

Listing 2. Business information entity
schema

18 <xsd : schema x m l n s : b i e =” u r n : e x : b I n f E n t ” x m l n s : x s d =” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema”
19 t a r g e t N a m e s p a c e =” u r n : e x : b I n f E n t ” e l e m e n t F o r m D e f a u l t =” q u a l i f i e d ”
20 a t t r i b u t e F o r m D e f a u l t =” u n q u a l i f i e d ”>
21 <xsd :complexType name=” QuoteType ”>
22 <x s d : s e q u e n c e>
23 <x s d : e l e m e n t name=” D e s c r i p t i o n ” t y p e =” x s d : s t r i n g ” />
24 <x s d : e l e m e n t name=” P r i c e ” t y p e =” x s d : d o u b l e ” />
25 </ x s d : s e q u e n c e>
26 </ xsd :complexType>
27 </ x sd : schema>

The business transaction depicted in figure 1 is success-
ful if a Quote is returned within the QuoteEnvelope.
Hence, if the element Quote shown in line 15 of listing 1
is not present, the business transaction fails - if a quote is
given the business transaction is successful. The XPath ex-
pression is used in our mappings to decide on the business
transaction’s success or failure. Given the generated XML
schema of the exchanged quote information we derive the
following XPath expression:

/QuoteEnvelope/QuoteDocument/Quote

Given the current status the modeler is required to write
the XPath expression manually. A future extension of the
UMM Add-In will allow the modeler to generate the XPath
expression with the support of a graphical user interface.

3.2 Generating WSDL

The business transaction depicted in figure 1 describes
how the business process is coordinated between the two
business partners. In a Web Service environment, this coor-
dination is done using BPEL specifications where each ser-
vice interface is described by means of WSDL. In our exam-
ple the generation of BPEL from the UMM model results in
four WSDL files for the following entities: business appli-
cation buyer, buyer, seller and business application seller.
Each WSDL file specifies the operations a party offers, the
messages and data types which are exchanged as well as the
services the operations are bound to. In the WSDL file of
the buyer and the seller the partner link types are specified
too, representing the interaction between the BPEL process
and the involved parties. As an example, listing 3 shows the
WSDL file of the buyer. Due to space limitations parts of
the WSDL have been left out.

Listing 3. WSDL file of the buyer
27 <? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>
28 <w s d l : d e f i n i t i o n s name=” Buyer ” t a r g e t N a m e s p a c e =” h t t p : / / buye r . a t ”
29 [. . .]
30 <w s d l : t y p e s>
31 [. . .]
32 </ w s d l : t y p e s>
33 <w s d l : m e s s a g e name=” Quo teReques tEnve lope ”>
34 <w s d l : p a r t name=” p a r a m e t e r s ” e l e m e n t =” x s d 1 : Q u o t e R e q u e s t E n v e l o p e ” />
35 </ w s d l : m e s s a g e>
36 <w s d l : m e s s a g e name=” r e c e i v e A c k R e q u e s t ”>
37 <w s d l : p a r t name=” p a r a m e t e r s ” e l e m e n t =” bas :Acknowledgement ” />
38 </ w s d l : m e s s a g e>
39 [. . .]

40 <w s d l : p o r t T y p e name=” Buyer ”>
41 <w s d l : o p e r a t i o n name=” rece iveQuoteReques tFromBA ”>
42 <w s d l : i n p u t message=” t n s : Q u o t e R e q u e s t E n v e l o p e ” />
43 </ w s d l : o p e r a t i o n>
44 <w s d l : o p e r a t i o n name=” r e c e i v e A c k ”>
45 <w s d l : i n p u t message=” t n s : r e c e i v e A c k R e q u e s t ” />
46 </ w s d l : o p e r a t i o n>
47 [. . .]
48 </ w s d l : p o r t T y p e>
49 <w s d l : b i n d i n g name=”BuyerSOAP” t y p e =” t n s : B u y e r ”>
50 [. . .]
51 </ w s d l : b i n d i n g>
52 <w s d l : s e r v i c e name=” Buyer ”>
53 [. . .]
54 </ w s d l : s e r v i c e>
55 <p l n k : p a r t n e r L i n k T y p e
56 x m l n s : p l n k =” h t t p : / / docs . o a s i s−open . o rg / wsbpel / 2 . 0 / p l n k t y p e ”
57 name=” Buyer−B u s i n e s s A p p l i c a t i o n−PLNKT”>
58 <p l n k : r o l e name=” B u s i n e s s A p p l i c a t i o n ”
59 p o r t T y p e =” b a : B u y e r B u s i n e s s A p p l i c a t i o n ” />
60 <p l n k : r o l e name=” Buyer ” p o r t T y p e =” t n s : B u y e r ” />
61 </ p l n k : p a r t n e r L i n k T y p e>
62 <p l n k : p a r t n e r L i n k T y p e
63 x m l n s : p l n k =” h t t p : / / docs . o a s i s−open . o rg / wsbpel / 2 . 0 / p l n k t y p e ”
64 name=” Buyer−S e l l e r−PLNKT”>
65 <p l n k : r o l e name=” Buyer ” p o r t T y p e =” t n s : B u y e r ” />
66 <p l n k : r o l e name=” S e l l e r ” p o r t T y p e =” w s d l 1 : S e l l e r ” />
67 </ p l n k : p a r t n e r L i n k T y p e>
68 </ w s d l : d e f i n i t i o n s>

In the WSDL file above the data types used and messages
exchanged during the process are described between line
28 and 38. The different operations of the buyer are spec-
ified between line 40 and 48. The actual web service end-
point through which the buyer is accessible and the bind-
ing to specific operations are specified between line 49 and
54. The UMM process per se requires different acknowl-
edgement messages exchanged between the participating
business partners - i.e., acknowledgements of receipt or ac-
knowledgements of processing. The operation receiveAck
specified in line 44 handles the different acknowledgements
received by the buyer. The distinction which type of ac-
knowledgement has currently been received is made via
the exchanged acknowledgement type. Listing 4 shows
a simplified example XML type of an acknowledgement.
Through the element in line 70 a reference to the respec-
tive message is made and the element in line 72 specifies
the type of acknowledgement - e.g., acknowledgement of
receipt.

Listing 4. XSD schema of the buyer
68 <xsd :complexType name=” AcknowledgementType ”>
69 <x s d : s e q u e n c e>
70 <x s d : e l e m e n t name=” R e f e r e n c e ” t y p e =” x s d : s t r i n g ” />
71 </ x s d : s e q u e n c e>
72 <x s d : a t t r i b u t e name=” t y p e ” t y p e =” x s d : s t r i n g ” />
73 </ xsd :complexType>

3.3 Generating Partner Link Types

Partner link types represent the relationship between two
services and their roles within. Each role refers to a specific
port type of the WSDL file. In our example the buyer inter-
acts with his business application (line 55 of listing 3) and
with the seller (line 62 of listing 3). The seller has also two
partner link types - one for the interaction with the buyer
and one for the interaction with his business application.

The UMM model describes the transaction from an over-
all point of view. However, BPEL describes a process from
the point of view of a specific business partner. Hence,

the UMM model results in two different BPEL files - one
for the buyer and one for the seller. In order for these
BPEL processes to be compliant to each other the partner
links define the relationship of the process with its part-
ners. Listing 5 shows a cut-out from the BPEL process
of the buyer. In line 77 of listing 5 the partner link to
the seller is specified by referencing the partner link type
Buyer-Seller-PLNKT (specified in line 62 of listing 3).
Since the buyer is the owner of the process the attribute
myRole refers to the buyer role of the partner link type and
the attribute partnerRole to the seller role. The same con-
stellation is stated in the BPEL file of the seller with the
roles specified vice versa.

Listing 5. Partner Link example
73 <b p e l : p a r t n e r L i n k s>
74 <b p e l : p a r t n e r L i n k myRole=” Buyer ” name=” Buyer−B u s i n e s s A p p l i c a t i o n−PLNKT”
75 p a r t n e r L i n k T y p e =” ns1 :Buyer−B u s i n e s s A p p l i c a t i o n−PLNKT”
76 p a r t n e r R o l e =” B u s i n e s s A p p l i c a t i o n ” />
77 <b p e l : p a r t n e r L i n k myRole=” Buyer ” name=” Buyer−S e l l e r−Link ”
78 p a r t n e r L i n k T y p e =” ns1 :Buyer−S e l l e r−PLNKT” p a r t n e r R o l e =” S e l l e r ” />
79 </ b p e l : p a r t n e r L i n k s>

3.4 Generating BPEL

In the following two sub sections we show the deriva-
tion of executable BPEL processes specifying the business
service interfaces of both partners. At first, we elaborate
the buyer’s local choreography. Afterwards, we discuss the
differences in terms of the seller’s process. In order to vi-
sualize the processes we use the graphical notation of a
tool named ActiveBPEL Designer [1] since it allows a more
thorough understanding than showing the BPEL code list-
ings directly.

3.4.1 Generating the Buyer’s local Choreography

The buyer’s process is shown in figure 3.4.1. The first ac-
tivity is a receive called ReceiveQuoteRequestFromBA

(1 in figure 3.4.1) awaiting input - the
QuoteRequestEnvelope (B in figure 1) - from the
business application. Since it is the first activity, it creates a
new BPEL process instance upon receipt of the document.
In a UMM business transaction, this action - performed
within the buyer’s system - is carried out as part of the
requesting business activity (A).

As we learned, a business transaction is a unit of work
that may be re-initiated due to time-out exceptions. In
case of a time-out - that is actuated if an acknowledge-
ment or a business document is not received within the
agreed time - the buyer has to re-start the business trans-
action. The number of allowed retries is specified by
the retry count (E). In order to allow possible re-starts of
the business transaction we use the repeat until activity -
CheckRetryCount (2) - containing the actual process flow.
If a TimeOutException occurs, the CheckRetryCount

activity starts a new iteration - until its condition evaluates
true. A new iteration is only started if the retry count is
greater than zero and a variable ProcessEnded is false.
For representing the retry count, we use a BPEL variable
that is decremented each time a TimeOutException oc-
curs.

According to our example, the request for quote

transaction may be re-initiated three times - which amounts
to four runs in total. Within CheckRetryCount, a scope
(3) is used to structure the business process. As shown in
figure 3.4.1 the scope consists of a sequence carrying out
the regular process (4), fault handlers (5) and event han-
dlers (6). At first, however, we concentrate on the regular
process:

Regular process The buyer starts the actual business
transaction by an invoke (7) calling the seller’s opera-
tion CalculateQuote (C). According to our example,
CalculateQuote consumes a QuoteRequestEnvelope

(B). Since the seller needs some time to calculate the quote,
the invoke is performed asynchronously and the buyer’s
process is continued immediately. Next, the assign activity
(8, SaveTimestampQuoteRequestSend) saves the cur-
rent time to a BPEL variable. Based on the time the quote
request was sent, we calculate the time limits within ac-
knowledgements and the QuoteEnvelope are expected.

In the next step, the buyer’s business service interface
waits for an acknowledgement from the seller confirming
the receipt of the QuoteRequestEnvelope. It must be
received within two hours - the agreed time to acknowl-
edgement receipt (G). Therefore, we use a pick activity (9,
WaitForAckReceipt) that waits for the occurrence of one
event from a set of events. According to the semantics of a
UMM business transaction, there are two possible scenar-
ios in this step:

Firstly, the acknowledgement is received, which is mod-
eled using an on message branch (10). In this case, the
acknowledgement is handed over to the business applica-
tion to check the acknowledgement’s content. The com-
munication with the buyer’s business application is defined
with a synchronous invoke called CheckAckReceipt (11).
Its result is evaluated by the following if activity (12).
In case the checks fail, the throw activity (13) raises a
FailedBusinessControlException. The handling of
exceptions is outlined at the end of this sub section.

Secondly, if no acknowledgement of receipt is received
in time, the on alarm event (14) is actuated. On alarm
corresponds to a timer-based alarm - either specified by a
deadline (in terms of a timestamp) or by a duration. In our
example, we define the time limit as a deadline that equals
to the TimeQuoteRequestSent (saved before in the as-
sign activity (8)) plus time to acknowledge receipt. In case
the deadline is met, a TimeOutException is thrown (15).

As outlined later, handling the TimeOutException results
in decrementing the retry count and terminates the current
attempt by going back to CheckRetryCount.

If an acknowledgement of receipt was properly received
the buyer expects an acknowledgement of processing. It in-
dicates that the seller’s business application is able to pro-
cess the QuoteRequestEnvelope. Handling an acknowl-
edgement of processing (16) is similar to handling an ac-
knowledgement of receipt, except that the agreed time limit
may differ. According to our example, the seller must send
the acknowledgement within 6 hours (F) - i.e., the dead-
line amounts to TimeQuoteRequestSent plus time to ac-
knowledge processing. Again if the message is not received
on time (17), a TimeOutException is thrown. Otherwise,
upon receipt of the acknowledgement of processing it is de-
livered to the buyer’s business application for checking its
content (18, CheckAckProcessing). If the check was suc-
cessful, the process expects the QuoteEnvelope (D) to be
received.

Similar to the wait for acknowledgements a pick activity
(19, WaitForQuote) is used to specify the time constraint.
In case the deadline (TimeQuoteRequestSent plus time
to respond) (H) is elapsed a TimeOutException is thrown
(20). Otherwise, receiving the QuoteEnvelope activates
on the on message branch. In a first step, the current time
is stored (21) into a variable (TimeQuoteReceived) for
further processing. In case an intelligible check - i.e., gram-
mar, sequence and schema validation - of the document is
required (22), it is sent to the business application via a syn-
chronous invoke (23, CheckQuote). Given an erroneous
QuoteEnvelope reported by the business application (24)
a FailedBusinessControlException is raised.

If the QuoteEnvelope is properly received the pro-
cess proceeds to SendAckReceipt (25). This asyn-
chronous invoke confirms the successful receipt of the
QuoteEnvelope to the seller. Subsequently, the
QuoteEnvelope is handed over to the buyer’s business
application for further processing (26, SendQuoteToBA).
The business application synchronously returns whether the
QuoteEnvelope can be processed or not. In the latter case,
a FailedBusinessControlException is thrown (27).
In the former case, the seller is provided with an acknowl-
edgement of processing (28, SendAckProcessing).

The business transaction must be kept alive to allow the
seller to issue a failure if he does not receive the acknowl-
edgement (TimeOutException) or is not able to process
it accordingly (FailedBusinessControlException).
Receiving failures from the seller is detailed in the para-
graph about event handlers. The time until the buyer has to
wait corresponds to TimeQuoteEnvelopeReceived plus
the time to acknowledge processing (I) of the document.
Keeping the business transaction alive is specified by a wait
activity (29) with the given deadline.

Rethrow

Rethrow

(1)

(2)

(3)(4)

(5) (6)

(7) (8) (9)
(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)
(18)

(19)

(20)
(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42) (43)

Figure 3. Buyer’s BPEL Process

After waiting the process has to check if the business
transaction succeeded in a business sense (30) - i.e., if the
product was quoted or not. The checking is done by using
the XPath expression as discussed above. In other words,
we examine the QuoteEnvlope if the element Quote is
present. In case of success, a boolean variable is set true
by the assign activity BusinessSuccess. On the level of
a business collaboration, the flow of the process is gov-
erned based on this information. Afterwards, the vari-
able ProcessEnded is set true to prevent further runs
of the repeat until activity CheckRetryCount (2). Fi-
nally, an if activity (31) checks if the retry count equals
zero. A retry count of zero indicates that all attempts
to execute the business transaction failed. In this case, a
FailedBusinessControlException is thrown.

Fault handlers During the execution of the business pro-
cess abnormal behavior is represented by exceptions. In
UMM business transactions we distinguish between two
types of exceptions: time-out exceptions and failed business
control exceptions. The former ones, indicate that a cer-
tain message is not received on time. The latter ones signal
that a message’s integrity is violated or that the maximum
amount of attempts to re-initiate the business transactions is
reached. Exceptions are either raised internally if abnormal
behavior is encountered or are signalized by the business
partner.

In BPEL, exceptions are managed by so-called fault han-
dlers (5). As figure 3.4.1 shows, the actual process flow is
modeled in a scope (3), which is the only activity within the
repeat until container (2). The fault handlers are attached
to the scope. If an exception is encountered, the current
execution of the scope is terminated and the correspond-
ing fault handler is activated. In our example, we installed
four different fault handlers: The first one (32) is activated
if a FailedBusinessControlException is thrown in-
ternally. In this case, the buyer communicates the seller
the failure via the invoke SendFailedBusinessControl
(33) including a reason of failure. Subsequently, the excep-
tion is re-thrown (34) to the enclosing owner of the busi-
ness transaction. The second one (35) handles an inter-
nally raised TimeOutException. It decreases the avail-
able retries by an assign activity (36) and communicates
the TimeOutException (37) referencing the missing mes-
sage to the seller. Activating a fault handler skips the cur-
rent execution of the scope. Since the scope is contained in
the repeat until activity, the loop condition is re-evaluated
after fault handling. Thus, it is possible to re-initiate a
business transaction. The third fault handler (38) treats
TimeOutExceptions signaled by the seller. The retry
count is again decremented (39) and the control flow is
handed back to the repeat until activity. The last fault han-
dler (40) catches a FailedBusinessControlException

that was received from the seller. In this case, the exception
is handed over to the process owner (41).

One should note, that the
FailedBusinessControlException that is raised
at the end of the process if the retry count is zero (31) is
not handled by the fault handlers (5) attached to the scope
(3). Instead, we install a fault handler - working similar as
the first one described above - to the scope of the BPEL
process.

Event handlers As we learned, the buyer
may receive a TimeOutException or a
FailedBusinessControlException at any time during
the process execution. To implement this requirement, we
use the concept of event handlers provided by BPEL. Event
handlers listen to events concurrently with the regular
process execution. We attach two event handlers (6) to the
scope (3) representing a run of a business transaction: The
first event handler (42) deals with a TimeOutException

signaled by the seller. Once it is received, an internal
TimeOutException is raised that is managed by the
corresponding fault handler (38). The second one (43) is
responsible for FailedBusinessControlExceptions.
Similarly, it re-throws the exception to be further treated by
the fourth fault handler (40).

3.4.2 Generating the seller’s local choreography

The concepts used in the seller’s process are widely ana-
log to those described with respect to the buyer’s pro-
cess. Since, the buyer’s and the seller’s process must
be complementary, the order of receiving and sending the
QuoteRequestEnvelope and the QuoteEnvelope, re-
spectively, is reversed. This also includes the handling of
the acknowledgements.

The major difference between the two processes results
from the fact that the seller does not control the retry count.
If the seller does not receive an acknowledgement on time,
a TimeOutException is issued back to the buyer but no
retry count is decreased. Hence, no loop activity is required
in the seller’s process. Due to space limitations we do not
depict a diagram visualizing the seller’s process.

4 Related Work

A first theoretical examination of the interdependencies
of UMM and BPEL has been done by Hofreiter et al. in [3].
The subject of the paper was to scrutinize whether BPEL
is appropriate for capturing the process modeled in UMM.
However, the BPEL derived in their paper is not executable
and the mappings shown are very simplified.

Several approaches have taken up the idea of compos-
ing services with the help of UML diagrams. Skogan et

al. propose a method using UML activity diagrams to de-
sign web services and OMG’s Model Driven Architectures
(MDA) to generate executable specifications in BPEL [13].
Their model allows to import existing web service descrip-
tions stored in WSDL files into a UML diagram. Unlike the
UMM approach the idea pursued by Skogan et al. does not
take the business context into account.

A model driven approach to BPEL specifications has
also been proposed in [10] by using BPMN process mod-
els. The solution presented uses business process diagrams
and splits them up into components. Using a rule based
and an activity based translation these components are then
transformed into BPEL code. Similar to the first approach
presented, this methodology also does not take into account
the business context.

Another approach based on the UMM has been shown
in [5]. The model presented focuses on how each partner
has to realize the message exchanges to support an agreed
choreography. The resulting model is based on UML state
machines and shows how each business partner has to react
on incoming messages and on messages missing.

An approach using global choreographies to derive local
choreographies has been presented in [8]. The work uses
WS-CDL specifications representing global choreographies
to generate local BPEL specifications. Similar to BPEL,
WS-CDL is intended to be processed by machines. How-
ever, for implementing a successful B2B solution, first a
conceptual modeling approach considering the specifics of
B2B - like UMM - is required to capture the collaborative
space between enterprises.

5 Conclusion and Outlook

In this paper we proposed a mapping from UMM busi-
ness transactions to executable BPEL processes. The log-
ical flow of the process corresponds to the UML activity
graph of a business transaction. As we showed, the rather
simple looking UMM business transaction results in a com-
plex BPEL process. With the use of scopes, event handlers
and fault handlers the different types of business signals
which are exchanged during the process are managed.

This work provides a holistic approach by integrating
both, the process flow based on UMM and the exchanged
business documents based on core components. For gener-
ating the XML schemas out of the core components model
we built our solution on top of the work done in [4]. As
we outlined, our holistic approach allows to decide if the
business transaction resulted in a business success or in a
business failure.

In terms of future work we will focus on the mapping
of whole UMM business collaborations to BPEL. As we
know, a business collaboration choreographs a flow of busi-
ness transactions. Thus, the work achieved in this paper

will serve as a foundation for the future work on business
collaborations. Furthermore we will focus on the elabora-
tion of meaningful correlation sets in order to manage the
exchange of business documents.

References

[1] Active Endpoints. ActiveBPEL Designer.
[2] N. C. Hill and D. M. Ferguson. Electronic Data Interchange:

A Definition and Perspective. EDI Forum: The Journal of
Electronic Data Interchange, 1(1):5–12, 1989.

[3] B. Hofreiter and C. Huemer. Transforming UMM Business
Collaboration Models to BPEL. In Proceedings of the Inter-
national Workshop on Modeling Inter-Organizational Sys-
tems (MIOS), 2004.

[4] C. Huemer and P. Liegl. A UML Profile for Core Com-
ponents and their Transformation to XSD. accepted at the
Second International Workshop on Services Engineering, Is-
tanbul, Turkey, 2007.

[5] C. Huemer and M. Zapletal. A State Machine executing
UMM Business Transactions. In Proceedings of the IEEE
International Conference on Digital Ecosystems and Tech-
nologies. IEEE, 2007.

[6] ISO. Open-edi Reference Model, 1995. ISO/IEC JTC
1/SC30 ISO Standard 14662.

[7] P. Liegl, R. Schuster, and M. Zapletal. UMM Add-
In. Research Studios Austria, 2007. Version 0.8.2,
http://ummaddin.researchstudio.at.

[8] J. Mendling and M. Hafner. From WS-CDL Choreography
to BPEL Process Orchestration. In Journal of Enterprise In-
formation Management (JEIM). Special Issue on MIOS Best
Papers.

[9] OASIS Web Services Business Process Execution Language
(WSBPEL) TC. Web Services Business Process Execution
Language Version 2.0, Jan. 2007. Version 2.0, Commitee
Specification.

[10] C. Ouyang, M. Dumas, A. H. ter Hofstede, and W. M.
van der Aalst. From BPMN Process Models to BPEL Web
Services. In Proceedings of the International Conference on
Web Services, pages 285–292. IEEE, 2006.

[11] C. Peltz. Web Services Orchestration and Choreography.
Computer, 36(10):46–52, 2003.

[12] RosettaNet. RosettaNet Implementation Framework: Core
Specification, Dec. 2002. V02.00.01.

[13] D. Skogan, R. Gronmo, and I. Solheim. Web Service Com-
position in UML. In Proceedings of the 8th IEEE Enter-
prise Distributed Object Computing Conference, pages 47–
57. IEEE, 2004.

[14] Sparx Systems. Enterprise Architect.
[15] UN/CEFACT. UN/CEFACT’s Modeling Method-

ology (UMM), UMM Meta Model - Foundation
Module, Sept. 2006. Technical Specification V1.0,
http://www.unece.org/cefact/umm/UMM Foundation Module.pdf.

[16] UN/CEFACT Applied Technology Group (ATG). XML
Naming and Design Rules, February 2006. 2.0.

[17] UN/CEFACT TMG. Core Components Technical Specifica-
tion, November 2003. v2.01.

[18] World Wide Web Consortium (W3C). Web Services De-
scription Language (WSDL), Mar. 2001. Version 1.1.

