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Abstract. Assume a seller wants to sell a digital product in a social
network where a buyer’s valuation of the item has positive network ex-
ternalities from her neighbors that already have the item. The goal of
the seller is to maximize his revenue. Previous work on this problem [9]
studies the case where clients are offered the item in sequence and have to
pay personalized prices. This is highly infeasible in large scale networks
such as the Facebook graph: (1) Offering items to the clients one after the
other consumes a large amount of time, and (2) price-discrimination of
clients could appear unfair to them and result in negative client reaction
or could conflict with legal requirements.
We study a setting dealing with these issues. Specifically, the item is
offered in parallel to multiple clients at the same time and at the same
price. This is called a round. We show that with O(logn) rounds, where
n is the number of clients, a constant factor of the revenue with price
discrimination can be achieved and that this is not possible with o(logn)
rounds. Moreover we show that it is APX-hard to maximize the revenue
and we give constant factor approximation algorithms for various further
settings of limited price discrimination.

1 Introduction

With the appearance of online social networks the issue of monetizing network
information arises. Many digital products such as music, movies, apps, e-books,
and computer games are sold via platforms with social network functionality.
Often these products have so called positive network externalities: the valuation
of a client for a product increases (potentially marginal) when a related client
(e.g., a friend) buys the product, i.e., a product appears more valuable for a client
if a friend already owns the same product. In the presence of positive network
externalities, motivating a client to buy a product by lowering the price he has
to pay could incentivize his friends to also buy the product. Consequently, it
could increase future revenue. Thus, when trying to maximize revenue there is
an interesting trade off between the current and the future revenue.

We follow the work of Hartline et al. [9] for modeling network externalities
and (marketing) strategies in social networks with the goal of maximizing the
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seller’s revenue. We model the seller’s information about the clients’ valuations
by using a directed weighted graph or, more generally, by using submodular set
functions. For our positive results we assume that the seller has only incomplete
information about the valuations, i.e., we are in a Bayesian setting where the
seller is given a distribution of each client’s valuation but not the valuation itself.
The seller’s strategy decides (a) when to offer the product to a client and (b) at
which price. Thus each strategy assigns each client a (time, price)-pair.

In [9] a setting with full price discrimination is studied where a seller offers
a product sequentially for a different price to different clients. (See [2, 6, 7] for
further work on settings with full price discrimination.) While it gives a good
baseline to compare with, this approach has multiple drawbacks. First, process-
ing one client after the other and waiting for the earlier client’s decision requires
too much time if the number of clients is large. Second, price-discrimination
could appear unfair to the clients and could result in a negative reaction of some
clients [12]; moreover, it might be in conflict with legal requirements. On the
other side offering all clients the same price (i.e., a uniform price) reduces the
revenue significantly, namely, by a factor of log n, as we show below.

Hence, we introduce rounds such that in a round the product is offered to a
set of clients at the same time and we consider strategies with a limited number
of rounds and/or limited price discrimination. Specifically we study k-round
strategies where the product is offered to the clients in k rounds with 1 ≤
k ≤ n such that only clients that have purchased the product in a previous
round can influence the valuation functions of the clients to whom the product
is offered in the current round. Following [9] the strategies offer the product only
once to each client to avoid that clients behave strategically, i.e., wait for price
decreases in the future. We study two types of k-round strategies: (1) k-PD
strategies where each client has a personalized price (limited number of rounds),
and (2) k-PR strategies where all clients in the same round are offered the
same price (limited number of rounds and limited price discrimination). Thus,
k-PR strategies generalize the simple uniform price setting, where one might
distribute free copies at the beginning and then charge everyone the same price.
The setting in [9] corresponds to the n-PR setting. Throughout the paper we use

R̂ to denote the optimal revenue achievable by an n-PR strategy. To summarize
we study the natural question of how many different prices/rounds are necessary
and sufficient if we want to achieve a constant factor approximation algorithm.

Our main results are: (1) There is a log n-PR strategy that achieves a con-

stant factor approximation of R̂ for very general valuation functions, namely
probabilistic submodular valuation functions. Thus only log n different prices
are necessary. We show that this result is tight (up to constant factors) in two
regards: (a) It cannot be achieved with o(log n) rounds, even for very limited
valuations with deterministic and additive externalities. (b) There exists a con-

stant c such that it is NP-hard to compute a c-approximation of R̂, no matter
how many rounds, i.e., maximizing revenue in k-PR strategies (as well as k-PD
strategies) is APX-hard. (2) There is a 2-PR strategy that achieves an O(log n)-

approximation of R̂. (3) We give (nearly) 1/16-approximation algorithms for
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the maximum revenue achievable by any k-PR strategy when compared to the
optimal k-PR strategy (i.e., not compared with R̂).

All algorithms we present are polynomial in the number of clients. Interest-
ingly, all of them make very limited but also very natural use of the network
structure: They only exploit information about the neighbors of a node and not
any global properties.

Discussion of Related work. In the presence of network externalities two main
types of revenue maximizing strategies have been used in the literature: strate-
gies with price discrimination (each client pays a different price), and strategies
with uniform price (every paying client pays the same price). We have already
mentioned the work of Hartline et al. [9] on price discriminating strategies with n
rounds (n-PD). They study so-called influence-and-exploit strategies consisting
of two steps: (1) the influence step, in which the product is given for free to a
set of influence nodes; and (2) the exploit step, in which clients are approached
sequentially and each client is offered the product at a personalized price. Hart-
line et al. give a randomized influence-and-exploit strategy that gives an e

4e−2 -

approximation of the optimal revenue R̂. Note that the revenue of our general-
ization to k-PD in Section 3 is quite close to this as it gives an e

4e−2+2/(k−1) -

approximation. In particular for k ≥ 10 our strategy k-PD(q) achieves more
than 95% of the revenue of their strategy. Moreover with the improvements of
Theorem 3 and k ≥ 10 we get even better constants than [9]. Additionally, Hart-
line et al. present an algorithm that, together with a novel result on submodular
function maximization [4], 0.5-approximates the optimal influence set.

Later, Fotakis and Siminelakis [7] studied a restricted model of client val-
uations and improved the approximation algorithms of Hartline et al. [9]. Fur-
thermore, they study the ratio between the optimal strategies and the optimal
influence-and-exploit strategies. Babaei et al. [2] experimentally evaluated sev-
eral marketing strategies without an influence step, instead giving the most
influential clients discounts. They conclude that discounts increase the revenue
in the considered artificial and real networks.

Influence-and-exploit strategies with uniform prices have been studied by
Mirrokni et al. [11]. They use generic algorithms for submodular function max-
imization to obtain an influence set with at least 1/2 of the revenue of the

optimal uniform price influence-and-exploit strategy, not of R̂. In both, [9] and
[11], similar graph models with concave influences (CG) are introduced as model
for network externalities.

Akhlaghpour et al. [1] study a different scenario with uniform prices, without
any price discrimination: The product is offered on k consecutive rounds to all
clients for the same price, and a client buys the product when its value exceeds
the price for the day. They present an FPTAS for the Basic scenario, where
a client buying the product immediately influences the valuation of the other
clients who then may also buy the product in the same round. A round ends
(the price changes) when no client is willing to buy the product for the current
price. This model does not fit well to our assumptions of limited time and a large
networks. In the Rapid scenario, where buyers on the same day do not affect
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each other (like in our setting) they show that no constant factor approximation
is possible and give an O(logk n) approximation. The main difference to our
setting is that in [1] the product has to be offered to every client (not having
the product) in each round and thus there is no influence round where clients
get the product for free.

For non-digital goods Ehsani et al. [6] study revenue maximizing strategies
with both price discrimination and uniform prices with full information about
the clients valuations and with production costs per unit in a setting where
clients arrive randomly. They give an FPTAS for the optimal uniform price.
Recall that we are studying digital goods without full information about the
valuation functions.

Haghpanah et al. [8] study submodular network externalities for bidders in
auctions and provide auctions that give a 0.25-approximation of the optimal
revenue. In our models the strategies have to offer items in rounds since the
clients are only influenced by clients, who bought the product in a previous
round; that is an important difference to the auctions in [8].

Structure of the paper. In Section 2, we present our model for networks ex-
ternalities as well as the different kinds of marketing strategies we consider in
this paper. In Section 3, we study the effect of restricting the number of rounds,
i.e., the effect of offering the product to several clients in parallel, but allowing
full price discrimination. In Section 4 we compare the optimal revenue achiev-
able with individual prices against the optimal revenue achievable with uniform
prices. Efficiently computable k-PR strategies are studied in Section 5. In Sec-
tion 6 we discuss several extensions of our model. Finally, in the Appendix we
provide all omitted proofs.

2 Preliminaries

We are given a network G = (V,E) of n clients V and edges E ⊆ V × V that
represent their relationships. Suppose that we want to offer a digital product
(i.e., the unit costs of the product are zero and we can produce an arbitrary
number of copies) to each client i ∈ V for some price pi ∈ R≥0 and maximize
our revenue. We call a client that has bought our product active client or buyer ;
otherwise we call him inactive client. We define the valuation of client i ∈ V by
vi : V \ {i} → R≥0, such that the valuation of i only depends on his neighbors,
i.e., for A being the set of active clients and Ni being the set of neighbors of i in G
holds vi(A) = vi(A∩Ni). We try to exploit this dependency of the valuation on
the status of the neighbors (called externality) by offering the product to clients
in a certain order, i.e., we want to compute an order on the clients. Furthermore,
we restrict ourselves to a single offer to each client. We assume that clients
are individually rational and have quasi-linear utilities. Thus client i buys the
product if and only if the price pi is not larger than the valuation vi(A).
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Valuation functions. We describe the different models for externalities for a
client i ∈ V and his active neighbors B. Our main focus is on submodular1

valuation functions, based on the intuition that the positive influence of a fixed
neighbor does not increase when the set of active neighbors grows. Next we
define the models we consider in the paper:

– Simple Additive Model (SA). There are non-negative weights wi,i and wi,j
for (i, j) ∈ E. The valuation of i is given by vi(B) =

∑
j∈B∪{i} wi,j .

– Deterministic Submodular Model (DS). The valuation of i is given by vi(B) =
gi(B), where gi : V \ {i} → R≥0 is a monotone, submodular set function.

– Probabilistic Submodular Model (SM) [8]. The valuation of i is given by
vi(B) = ṽi ·gi(B) where gi : V \{i} → [0, 1] is a (publicly known) monotone,
submodular function with gi(V \ {i}) = 1 and the private value ṽi ≥ 0 is
drawn from a (publicly known) distribution with the CDF Fi.

In the first two models the seller has full information about the valuation while
in the SM-model she only knows the distribution. We have that the DS-model
generalizes the SA model and the SM-model generalizes both the SA and the
DS-model. To simplify the presentation in this paper we state positive results
for the SM-model and hardness results (whenever possible) for the SA-model.
For all the models we call vi(∅) the intrinsic valuation of client i ∈ V . Note that
vi(V \ {i}) is the maximum valuation of client i ∈ V in each model. We will use
this fact for upper bounds on the revenue any strategy can extract from a client.

Seller information. By the previous definitions the valuation functions model
the information of the seller about the real valuation of the clients. If the seller
has full information, the seller maximizes her revenue by setting pi = vi(B),
where B are the active neighbors of i ∈ V . For the case of incomplete information
price setting is more challenging. In particular, multiple prices could maximize
the expected payment, the so-called myopic prices, and we do not know in general
how likely it is that the client accepts one of those myopic prices.

Definition 1. Given a client i ∈ V , and the set of active clients B ⊆ V \ {i},
the myopic prices of client i are defined as argmaxp∈R≥0

p · P [vi(B) ≥ p]. If
P [vi(B) ≥ 0] = 0 we define zero as the unique myopic price.

The frequently used monotone hazard rate condition implies that there is a

unique myopic price. The hazard rate of a PDF fi,B is defined to be
fi,B(y)

1−Fi,B(y)

for y ≥ 0. If the hazard rate of fi,B is a monotone non-decreasing function of
y ≥ 0 where y satisfies Fi,B(y) < 1 we say that Fi,B has a monotone hazard rate.
In the SM-model with monotone hazard rates we assume that for each i ∈ V
the CDF Fi has monotone hazard rate. Note that for full information models,
Fi,B(y) = 0 and fi,B(y) = 0 for all y < vi(B) and Fi,B(y) = 1 for all y ≥ vi(B).

Lemma 1 ([9]). In the SM-model with monotone hazard rates each client has
a unique myopic price which is accepted with probability at least 1

e . For a set of
active clients B we denote the unique myopic price of client i as p̂i(B).

1 A set function f : 2S → R is called submodular if for all X ⊆ Y ⊆ S and each
x ∈ S \ Y it holds that f(X ∪ {x})− f(X) ≥ f(Y ∪ {x})− f(Y ).
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We will also assume that we can compute this myopic price in polynomial time.

(Marketing) Strategies. A marketing strategy determines in each round to
which clients and at what prices the product is offered in this round. This choice
may depend on the already visited clients, the active clients and the number of
rounds remaining.

Definition 2. A k-round (marketing) strategy is a probabilistic function s that
maps (C,B, j) to (Vj , p), where C ⊆ V are the clients visited so far, B ⊆ C are
the buyers in the previous rounds, j ∈ [k] is the current round, Vj ⊆ V \ C are
the clients in round j, and p : Vj→R≥0 gives the prices for clients in Vj.

2

In the following we consider two classes of k-round strategies, (i) one where
each client gets an individual price, i.e., the rounds only influence the valuations
and place no additional restrictions on the price, and (ii) one where the seller
must set uniform prices in each round, and for each of them also the subclass of
Influence and Exploit (IE)-strategies, where the seller offers the product for free
to the clients of the first round, i.e., the price in the first round is fixed to 0. In
1-round strategies the seller has to offer the product to all clients at the same
time and thus network externalities do not come into play at all.

Price discrimination. [k-PD] This class contains all k-round strategies.
If we set k = |V | we get the class of all possible strategies. For k ≥ 2 we consider
the subclass [k-PDIE] of k-round influence and exploit strategies, where the seller
gives the product for free to the clients selected in the first round.

Uniform prices per round. [k-PR] This class contains all k-round uni-
form price strategies, where all clients visited in the same round are offered the
same price. For k ≥ 2 the k-round uniform price influence and exploit strategies
[k-PRIE] are the k-PR strategies with the first round having uniform price 0.

Given a strategy s we use R(s) to denote the (expected) revenue obtained

by s. By R̂k-PD, R̂IE
k-PD, R̂k-PR and R̂IE

k-PR we denote the optimal revenues

achievable by the above classes of strategies, where R̂ = R̂n-PD is the optimal
revenue achievable by any strategy. Restricted to k-rounds and uniform prices,
our main goals are to achieve constant factor approximations of R̂ and R̂k-PR.

3 Strategies with Individual Prices

In this section we analyze k-PD strategies, i.e., k-round strategies with full price
discrimination. We first show that maximizing the revenue of such strategies is
computationally hard even in the SA-model; in particular, we show that it is NP-
hard to approximate better than within a factor of 34k/(1+34k). The reduction
uses the fact that even in the SA-model, the problem of maximizing the revenue
of k-PD generalizes Maximum k-Cut, and the latter is APX-hard [10].

Theorem 1. Maximizing the revenue of k-PD, resp. k-PDIE, is APX-hard in
the SA-model; it is NP-hard to 34k

1+34k -approximate R̂k-PD, resp. R̂IE
k-PD, for k≥2.

2 In principle it suffices that s(·, ·, j) is defined on the possible outcomes of round j−1.
In particular for j = 1 it has only to be defined for s(∅, ∅, 1).
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On the positive side we generalize the result in [9] to the SM-model with
monotone hazard rates and to k rounds. Specifically, we show that the following
IE strategy gives a constant factor approximation of the optimal k-round revenue
as well as of the optimal revenue R̂ and can be computed in polynomial time.
We will use these results in the following sections as they imply that any k-PR
strategy that is an α-approximation of R̂k-PD is an O(α)-approximation of R̂.

Algorithm 1 (Strategy k-PD(q)). Let q be in [0, 1].

1. Assign clients in V independently with probability q to set V1. Give the
clients in V1 the product for free.

2. Partition the clients in V \ V1 into sets V2, . . . , Vk s.t. each client is in Vj
independently of the other client with probability (1− q)/(k − 1).

3. Offer the clients in Vj the product in parallel for their myopic price.

To analyze the strategy we first consider the expected payment πi(S) = p̂i(S) ·
P [vi(S) ≥ p̂i(S)] we can extract from a client i given the active clients S. By the
definition of the myopic price, we can show that p̂i(S) = p̂i(V \ {i}) · gi(S). The
crucial idea in Lemma 2 is now that we can lower bound the expected revenue
πi(S) collected from client i by the maximum revenue that can be collect from
i, namely πi(V \ {i}), multiplied by the probability β that a client is in S. Note
that β is a function of q. Theorem 2 then determines the value β, which in turn
sets q. Finally we use a well-known property of submodular functions [9] to lower
bound the revenue of k-PD(q).

Lemma 2. Let S ⊆ V \ {i} be the random set of clients and let each client
j ∈ V \ {i} be in S independently with a probability of at least β. Then it holds
that ES [πi(S)] ≥ β · πi(V \ {i}).

Theorem 2. Consider the SM-model with monotone hazard rates. For q = 1−
e·(k−1)

2e(k−1)−k+2 it follows that R(k-PD(q)) ≥ e·(k−1)
4e(k−1)−2k+4 R̂ and thus also R̂k-PD ≥

e·(k−1)
4e(k−1)−2k+4 R̂.

For k = 2, buyers are only influenced by clients in the influence set and The-
orem 2 gives a 2-PD strategy, i.e., 2-PD(0.5), which achieves at least 1

4 of the
optimal revenue (a similar result was given in [9]). However the main challenge in
the above algorithm is to exploit also the externalities from the other preceding
rounds. The 2-round case will be crucial for our k-PR-algorithm in Section 5.

Corollary 1. Given the SM-model with monotone hazard rates, it follows that
R̂k-PD ≥ R̂IE

k-PD ≥ 1
4 · R̂ for k ≥ 2.

Fotakis and Siminelakis [7] show that myopic prices are not necessarily op-
timal for IE-strategies. They provide IE-strategies, using lower prices, that beat
those of [9] if the valuations follow the uniform additive model. In the following
we generalize this idea to (a) submodular valuations with monotone hazard rates
and (b) to the k-round setting. That is, we consider strategies that use different
discount factors αj for different rounds j. To be more precise in each round the
seller charges every client only an αj-fraction of his myopic price. Moreover, we
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also consider different probabilities qj for a client being assigned to round j. The
next theorem shows that charging less than the myopic price can improve the
overall revenue.

Algorithm 2 (Strategy k-PD(q̄, ᾱ)). Let q̄ and ᾱ be vectors of length k with
entries in [0, 1] and let the entries of q̄ sum up to 1.

1. Partition V into sets V1, . . . , Vk s.t. each client i ∈ V is in Vj independently
of the others with probability qj .

2. Offer the clients i ∈ Vj the product in parallel for price αj · p̂i where p̂i is
the myopic price of client i.

Theorem 3. Given the SM-Model with monotone hazard rates, for each k there
exist vectors q̄, ᾱ such that R(k-PD(q̄, ᾱ)) ≥ Ck · R̂, where C3 = 0.279, C5 =
0.298, C8 = 0.308, and C10 = 0.311.

Computing Ck is a multi-parameter optimization problem (with 2k parameters)
that we solved numerically. More details are provided in the appendix. Finally,
note that the Algorithms 1 and 2 use the network structure only in the compu-
tation of the myopic prices, which only requires to know the active neighbors.

4 Comparing Individual Prices to Uniform Prices

In this section we study k-PR strategies where there are k rounds and in each
round we offer the product to a subset of the clients for a uniform price. We first
analyze the impact that restricting the strategies to be uniform price strategies
has on the optimal revenue for a constant number of rounds. We show that in
the SM-model the optimal revenue can decrease in the worst case by a factor of
Θ(1/n). Thus, if we do not make assumptions on the probability distributions
we cannot do better than in each round just selecting the most valuable client
and offer the product to him for his myopic price. However, if we consider the
SM-model with monotone hazard rates the optimal revenue can decrease in the
worst case by a factor of Θ(1/ log n). As a result we will focus on models with
monotone hazard rates in the remainder of the paper.

Theorem 4. Assume that the valuations of the clients follow the SM-model.

1. For every ε > 0 and k ≥ 1 there exists a network and valuations vi such that
R̂k-PR ≤ k+ε

n R̂k-PD.

2. For any network and valuations vi, R̂1-PR ≥ 1
n R̂1-PD.

3. For any network and valuations vi, R̂
IE
2-PR ≥ 1

n R̂
IE
2-PD ≥ 1

4n R̂.

The next theorem shows three points: (1) Even with monotone hazard rates,

no k-PR strategy can be better than a k/Hn-approximation of R̂k-PD and, thus,

also of R̂. Recall, that the SA-model satisfies the monotone hazard rate condition
and is a special case of a DS and an SM-model and thus these negative results
also extend to these models. Thus without price discrimination within a round
no constant factor approximation of R̂ with o(log n) different rounds exists.
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(2) Even with only 2 rounds the optimal 2-PR strategy achieves an O(log n)

approximation of R̂IE
2-PD, which, by Corollary 1, achieves a 4-approximation of

R̂. Thus, the optimal 2-PR strategy achieves an O(log n) approximation of R̂.
This is a large improvement over the negative result from Theorem 4, which
holds for valuations that do not have monotone hazard rates. However, we show
in the next section that computing the optimal 2-PR strategy is NP-hard.

Theorem 5. Assume that valuations of the clients follow the SM-model with
monotone hazard rates.

1. For each k ≥ 1 there exists a network and valuations vi such that R̂k-PR ≤
k
Hn
R̂k-PD (even in the SA-model).

2. For any network and valuations vi, R̂1-PR ≥ 1
e·Hn R̂1-PD.

3. For any network and valuations vi, R̂
IE
2-PR ≥ 1

e·Hn R̂
IE
2-PD.

Recall that we want to achieve a constant approximation of R̂ using a uniform
price strategy. Thus, in the next section we give a polynomial time computable
k-PR strategy, with k ∈ Θ(log n), that achieves a constant factor approximation.

5 Strategies with Uniform Prices

In the analysis of the algorithms in Section 3 we exploited that the expected
revenue from a client i was submodular in the set of active neighbors. This is
not true in the PR setting, as we can only extract revenue from a client if his
valuation is larger than the uniform price. Still we can show the following: (1) We
give a polynomial-time approximation scheme (PTAS) for one round strategies in
the SM-model with monotone hazard rates, i.e., for finding the optimal uniform
price for one round. (2) We show that finding an optimal 2-PR strategy is not
only NP-hard but also APX-hard, even for the DS-model. (3) We give a constant

factor approximation of R̂ with O(log n) rounds for valuations from the SM-
model with monotone hazard rates. (4) From Section 4 we know that k-PR
strategies, where k is a constant, lose a factor of log n of the optimum revenue
when compared to R̂. Thus, in this case the best we can hope for is a constant
factor approximation of R̂k-PR, not of R̂. We have two such results: (4a) We

give a (1/16 − ε) approximation of R̂k-PR for the SM-model with monotone
hazard rates. (4b) We show that under certain conditions we can even give

a (1/4 − ε)-approximation of R̂2-PR. Combined with Theorem 5 this gives an

O(log(n)/k)-approximation of R̂ in k rounds.
We first give a PTAS for computing the optimal price for the one round

setting. This will be a useful tool for the 2-round setting.

Algorithm 3. Let c = (1− ε)−1 and ε > 0.

1. Compute p̂max = maxi∈V p̂i.
2. For all j ∈ {0, . . . , blogc(e · n)c}:

Compute the expected revenue Rj for the uniform price pj = p̂max

cj .
3. Return pj with maximal Rj .
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Theorem 6. Given the SM-model with monotone hazard rates, then for each
ε > 0 Algorithm 3 gives a 1-PR strategy s (i.e., a uniform price), such that

R(s) ≥ (1− ε) · R̂1-PR in polynomial time.

The basic idea of the proof is that the optimal uniform price p∗ cannot be
less than p̂max/(e ·n) and if we pick a price within (1− ε) of p∗ we get a (1− ε)-
approximation of R̂1-PR.

Next we show that for two rounds the problem becomes APX-hard. That is it
is NP-hard to approximate better than within a factor of 259/260. The proof is
via a reduction from the dominated set problem (see Lemma 9 in the appendix).
In this reduction a client has valuation 1 iff at least one of its neighbors is in
the dominating set, and 0 otherwise. This function is not additive and thus the
result requires the DS-model (and not the SA-model).

Theorem 7. Maximizing the revenue of 2-PR, resp. 2-PRIE, is APX-hard for
the DS-model (and also for the concave graph models of [9, 11]), in particular, it
is not approximable within 259/260.

Next we present the constant factor approximation of R̂ for k ∈ Ω(log n). In
the following strategy the set A of clients for the first round is given. We will
then choose A using the 2-PDIE-strategy of Theorem 2 to get the final result.

Algorithm 4 (Strategy k-PR(c, A)). Let A ⊆ V be the influence set and
c > 1 be a constant.

1. Give the product to all clients in A for free in the first round.
2. Set (p̂1, p̂2, . . . , p̂t) to the myopic prices of the clients in V \A for the influence

set A in descending order.

3. Set Sj =
{
i | p̂1

cj−1 ≥ p̂i > p̂1
cj

}
and select the first k − 1 non-empty sets.

4. Each of these sets Sj becomes a set of clients that is offered the product in
one round with uniform price p(j) = mini∈Sj p̂i.

Our analysis of this strategy only collects revenue for clients in V \ A and
only exploits externalities induced by clients in A, i.e., from clients in the first
round. Thus this algorithm would have the same performance if all nodes in
V \A are offered the item in the same round but with k − 1 different prices.

We denote by k-PR∗(c, q) the strategy where the influence set A is chosen
randomly such that each client is in A with probability q, independently of the
other clients. For the clients in the selected sets Sj we extract at least 1/c of the
revenue the optimal 2-PD strategy would extract from them. Additional in each
set there is one client that gets his myopic price (i.e., an additional (1 − 1/c)
factor of his optimal revenue). We show in the proof below that this second
contribution can be used to compensate for the optimal revenue of the clients
which are not in a selected set, resulting in the bound of the next theorem.

Theorem 8. Let c > 1 be a constant. Given valuations from the SM-model with
monotone hazard rates then for every 2-PDIE strategy s with influence set A

the strategy (k+ 1)-PR(c, A) achieves at least min{ 1c ,
(ck−1)

(ck−1)+e(n−k)(c−1)} of the

revenue R(s) of s.
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Proof. Consider the set V \ A = {1, . . . , n} and let p̂ := (p̂1, p̂2, . . . , p̂n) be the
vector of (myopic) prices induced by A. W.l.o.g., we assume that the prices and
the corresponding clients are sorted in a descending order. By the definition
R(s) =

∑n
i=1 p̂i ·P [vi ≥ p̂i].

For each client i we denote the price charged by the strategy (k+1)-PR(c, A)
by p∗i . The uniform price in round j is denoted by p(j). Then the revenue of
(k + 1)-PR(c, A) is given by: R((k + 1)-PR(c, A)) =

∑n
i=1 p

∗
i ·P [vi ≥ p∗i ]

Now, by construction of Sj , either p∗i ≥ p̂i/c in the case where i is in one of the
selected sets (the first k non-empty sets), or p∗i = 0 otherwise.

Let J be the set of the indices of the selected sets and l the largest index
among them. Let m be the number of clients that are offered the product, i.e.,
m is the client with the lowest myopic price in Sl.

Consider suitable chosen α ≤ 1/c. For each client i in a selected set the
algorithm collects at least a revenue of α · p̂iP [vi ≥ p̂i]. Additionally for each
j ∈ J there exists at least one client ij ∈ Sj who is charged his myopic price and
thus the algorithm collects the full revenue p̂ijP

[
vij ≥ p̂ij

]
.

R((k + 1)-PR(c, A)) ≥
∑

1≤i≤m

αp̂i ·P [vi ≥ p̂i] + (1− α)
∑
j∈J

p(j) ·P
[
vij ≥ p(j)

]
The first term is an α-approximation for the revenue of the first m clients. We
next relate the second term to the revenue of the remaining clients and compute
an approximation factor α such that:

(1− α)
∑
j∈J

p(j) ·P
[
vij ≥ p(j)

]
≥ α

∑
m+1≤i≤n

p̂i ·P [vi ≥ p̂i]

By the definition of the sets, p(j) ≥ p̂1
cj and by the monotone hazard rate condi-

tion P
[
vij ≥ p(j)

]
≥ 1/e. Thus

∑
j∈J

p(j) ·P
[
vij ≥ p(j)

]
≥

∑
l−k+1≤j≤l

p̂1c
−j 1

e
= ck−l · p̂1(1− c−k)

(c− 1)e
=
p̂1(ck − 1)

(c− 1)cle
.

Using (a) m ≥ k, (b) P [vi ≥ p̂i] ≤ 1 and (c) p̂i ≤ p̂1 · c−l for all i ≥ m + 1
we get

∑n
i=m+1 p̂i · P [vi ≥ p̂i] ≤ (n − k)p̂1c

−l. When resolving the inequality
(1−α)p̂1(ck−1)

(c−1)cle ≥ α(n−k)p̂1
cl

we obtain α ≤ (ck−1)
(ck−1)+e·(n−k)(c−1) =: β. Now setting

α = min(β, 1/c) yields the claim. ut

If the number of rounds is Ω(log n) and we are using the influence set from the
2-PDIE strategy 2-PD(0.5) in Theorem 2 we get a constant factor approximation.

Corollary 2. Assuming valuations from the SM-model with monotone hazard
rates, R(((logc n) + 1)-PR∗(c, 1/2)) ≥ R̂/(4c · e) for any constant c > 1.

Proof. Consider the 2-PDIE strategy s from Theorem 2, i.e., 2-PD(0.5), which

is a 1/4-approximation of R̂, i.e., R(s) ≥ R̂/4. Using the influence set A from
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s, i.e., randomly pocking nodes with probability 1/2, we get that k-PR(c, A)
is equal to k-PR∗(c, 1/2). If we set k = logc n + 1 then Theorem 8 shows that
R(((logc n) + 1)-PR∗(c, 1/2)) ≥ R(S)/(c · e). Combining the two results we get

a 1
4e·c -approximation of R̂. ut

To obtain a k-PR strategy that matches the bound of Theorem 5 one can
first construct the ((logc n) + 1)-PR∗(c, 1/2) strategy from above. Then for the
k-PR strategy one uses the same influence set for the first round and for the
remaining rounds one picks the k−1 rounds with the highest expected payment
in the strategy ((logc n) + 1)-PR∗(c, 1/2).3

Now let us consider 2-PR strategies. Due to the results in Section 4, the
best we can hope for is a constant factor approximation of R̂2-PR, not of R̂
or of R̂2-PD. We first show that we can restrict ourselves to approximating the
optimal IE strategy, as a revenue optimal IE strategy is within half of the revenue
optimal 2-PR strategies. The proof idea is to design two IE strategies, one for
the case that at least half of the revenue of the optimal k-PR strategy comes
from the first round, and one or the case that it does not. In either case, at most
half of the revenue is lost.

Lemma 3. Given valuations vi from the SM-model, then R̂IE
k-PR ≥ 1

2 R̂k-PR.

Thus it suffices to approximate R̂IE
k-PR. We give a simple 2-round algorithm for

the SM-model that is based on our 1-round strategy from Algorithm 3.

Algorithm 5 (Strategy PR0.5(ε)). Let ε be in R>0.

1. Assign each client in V to an influence set A, s.t. each client is a member of
A independently of the others with probability 1/2. Give the product to the
clients in A for free in the first round.

2. Use Algorithm 3 to compute a (1− ε)-approximation of the optimal revenue
for the given influence set A.

In the analysis of Algorithm 5 we first bound the probability that the valu-
ation of a client is larger than a fixed uniform price. This is different from the
approach in Section 3, where it was sufficient to argue about the expected rev-
enue we collect from a client. Then we use a technique similar to [11] to show

that R(PR0.5(ε)) is a (1/8− ε)-approximation of R̂IE
2-PR.

Theorem 9. Given valuations vi from the SM-model with monotone hazard
rates, then R(PR0.5(ε)) ≥

(
1
8 − ε

)
· R̂IE

2-PR for every ε > 0.

Together with Lemma 3 we then obtain that the above algorithm achieves at
least 1/16 of R̂2-PR in the SM-model with monotone hazard rates. By Theorem 5,

R̂IE
2-PR is a 1

eHn
-approximation of R̂IE

2-PD the above strategy is thus also a Θ( 1
Hn

)-

approximation of R̂.

Corollary 3. Given valuations vi from the SM-model with monotone hazard

rates, then R(PR0.5(ε)) ≥ (1/8−ε)
4Hn

· R̂IE
2-PD ≥

(1/8−ε)
16Hn

· R̂ for every ε > 0.

3 The authors are grateful to an anonymous reviewer for pointing this out.
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The above results can be generalized to k-PR strategies.

Theorem 10. Given valuations vi from the SM-model with monotone hazard
rates, for any k ≥ 2 and ε > 0 there exists a polynomial-time computable k-PR
strategy s such that R(s) ≥

(
1
8 − ε

)
· R̂IE

k-PR and thus R(s) ≥
(

1
16 − ε

)
· R̂k-PR.

The proof of Theorem 10 exploits that (i) we only lose a constant factor when
ignoring the influence between the latter rounds and that (ii) when given the
influence set and an instance without influence between the other clients we can
give an approximation scheme for the optimal uniform prices and compute the
corresponding round assignment.

Mirrokni et al. [11] study a different less general model, called concave graph
model (CG). They give an algorithm that, under certain assumptions, finds an
influence set A which achieves at least 1/2 of the revenue achieved by the optimal
influence set. We extend this result to 2-PRIE strategies in the SM-model. The
key ideas of the proof are that (1) if the seller charges a uniform price sufficiently
close to the optimal price then she only loses an ε of the revenue and (2) once
the seller has fixed the posted price, under the assumptions of the theorem, the
expected revenue is a submodular function of the influence set.

Theorem 11. Let µ > 0, Mv ≥ 0 and Mp ≥ 0 such that Mp ≤ Mv · µ. For
each client, let their valuations follow the SM-model with the following additional
assumptions: gi(∅) ≥ µ > 0, and ṽi is drawn from a probability distribution Fi
whose probability density function fi is positive, differentiable, non-decreasing on
(0,Mv) and for all x ∈ (0,Mv), fi(x) ≤ f̄ for some constant f̄ , and Fi(0) = 0,
Fi(Mv) = 1. Let the price be in the interval 0 ≤ p ≤ Mp. Then for every ε =
o(|V |−1) there is an algorithm finding a 2-PRIE strategy s, i.e., an influence set

A∗ and a uniform price p∗ for the second round, such that R(s) ≥
(
1
2 − ε

)
·R̂IE

2-PR.

By Lemma 3, the algorithm of Theorem 11 achieves at least (1/4− ε) of R̂2-PR.

6 Extensions of the Model

Our models and results can be extended in several directions.
First, one can consider more general classes of externalities. In the General

Monotone Model (GM) the valuation vi(B) of i is drawn from a (known) dis-
tribution with the CDF Fi,B such that P [vi(B) ≥ p] ≥ P [vi(B

′) ≥ p] for all
B′ ⊆ B and p ∈ R≥0. Notice that the proofs of Theorems 5 and 8 do not ex-
ploit the fact that the valuations are from the SM-model and thus extend to the
GM-model.

Second, the monotone hazard rate condition can be relaxed. For all theorems,
except Theorem 3, the crucial part we use is that there is a myopic price with a
certain acceptance probability. The exact approximation bound then depends on
this acceptance probability. If one can guarantee a higher acceptance probability
than 1/e also the presented approximation guarantees improve. For instance, if
one considers only uniform distributions for ṽi then the acceptance probability of
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the myopic price is 1/2 and the approximation guarantee of Theorem 1 improves
to (k − 1)/(3k − 2).

Third, one can consider different classes of marketing strategies. For instance
strategies where clients are split into k groups and l rounds such that (a) each
client belongs to exactly one group and round, (b) all clients in the same group
are offered the same price independent of their round and (c) only clients that
have purchased the product in a previous round can influence the valuation
functions of the clients in the current round, but this influence is independent of
their group. For instance, a group could model all clients that live in the same
country, preferred clients, or an age group. Our results extend to this setting
as well. That is, one can get a constant factor of R̂ using O(log n) different
groups/prices, but not with o(log n) different groups/prices.
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A Proofs of Section 3

We will make use of the following two lemmata.

Lemma 4 ([9]). Consider a monotone submodular function f : 2X → R and
a subset S ⊆ X. Consider a random set S′ by choosing each element of S
independently with probability at least β. Then E [f(S′)] ≥ β · f(S).

Lemma 5. Given the SM-model it holds that p̂i(S) = p̂i(V \ {i}) · gi(S) for all
S ⊆ V \ {i}.

Proof. Note that vi(V \ {i}) = ṽi · gi(V \ {i}) = ṽi and that ṽi = vi(S)/gi(S).
By the definition of the myopic price p̂i(S), we know that setting p = p̂i(S)

maximizes the revenue p · P [vi(S) ≥ p] = gi(S)
(

p
gi(S)

P
[
vi(V \ {i}) ≥ p

gi(S)

])
.

Since gi(S) does not depend on p, it follows that setting p′ = p̂i(S)
gi(S)

maximizes

p′P [vi(V \ {i}) ≥ p′]. Thus, p̂i(V \ {i}) = p̂i(S)
gi(S)

and p̂i(S) = p̂i(V \ {i}) · gi(S).
ut

Proof of Lemma 2. For the random set S it holds that

ES [πi(S)] = (1)

ES [p̂i(S) ·P [vi(S) ≥ p̂i(S)]] = (2)

ES [p̂i(V \ {i}) · gi(S)P [vi(V \ {i}) ≥ p̂i(V \ {i})]] = (3)

ES [gi(S)] · p̂i(V \ {i}) ·P [vi(V \ {i}) ≥ p̂i(V \ {i})]≥ (4)

β · πi(V \ {i}) . (5)

The equality of (3) follows from Lemma 5; the equality of (4) follows since
only gi(S) depends on S (and not on p). From Lemma 4 we get ES [gi(S)] ≥
β · gi(V \ {i}) = β, and thus, (5) follows. ut

Proof of Theorem 2. We use B` to denote the clients that become active in
round ` and `(i) to denote the round in which client i is offered the product. The
probability that for two given clients i 6= j ∈ V it holds that j ∈

⋃
`<`(i)B` under

the condition that i 6∈ V1 is P [j ∈ V1]+P [j 6∈ V1]·P
[
j ∈

⋃
1<`<`(i)B`

∣∣∣ i, j 6∈ V1] .
It holds that P [j ∈ V1] = q and P [j 6∈ V1] = 1−q. P

[
j ∈

⋃
1<`<`(i)B`

∣∣∣ i, j 6∈ V1]
is given by the probability that `(j) < `(i) times by the probability that client j
accepts the offer. Furthermore P [`(j) < `(i) | i, j 6∈ V1] = k−2

k−1
1
2 because `(i) <

`(j) and `(j) < `(i) have equal probability and with probability k−2
k−1 it holds

that i and j are not assigned to the same round. Finally, note that we offer the
product for the myopic price and thus, by the monotone hazard rate condition,
the acceptance probability of j is at least 1/e. Thus, β := q + (1− q) k−2k−1

1
2

1
e is

a lower bound of the probability that j ∈
⋃
`<`(i)B` under the condition that

i 6∈ V1.
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Let Si be
⋃
`<`(i)B` for all i ∈ V . It follows from Lemma 2, the defini-

tion of β, and
∑
i∈V πi(V \ {i}) ≥ R̂ that R(k-PD(q)) =

∑
i∈V P [i 6∈ V1] ·

E [πi(Si) | i 6∈ V1] ≥
∑
i∈V P [i 6∈ V1]·β ·πi(V \{i}) =

∑
i∈V (1−q)·β ·πi(V \{i}) ≥

(1−q) ·β ·R̂; the maximal value of (1−q) ·β is e·(k−1)
4e(k−1)−2k+4 and can be obtained

by setting q = 1− e·(k−1)
2e(k−1)−k+2 . ut

A.1 Proof of Theorem 3

For a proof of Theorem 3 we need the following lemmas.

Lemma 6 ([3]). Given a distribution function F satisfying (i) the monotone

hazard rate condition and (ii) F (0−) = 0 then 1
x log(1− F (x)) and [1− F (x)]

1
x

are non-increasing in x.

The following lemma generalizes Lemma 1 for discounted prices.

Lemma 7. Assume the SM-model with the monotone hazard rates, then
P [vi(B) ≥ α · p̂i(B)] ≥ P [vi(B) ≥ p̂i(B)]

α ≥
(
1
e

)α
.

Proof. Consider the distribution F of valuation vi. Then P [vi(B) ≥ α · p̂i(B)] =

1 − F (α · p̂i(B)). By Lemma 6, (1 − F (α · p̂i(B)))
1
α ≥ (1 − F (pi(B)). Now as

P [vi(B) ≥ p̂i(B)] = (1−F (pi(B)) we obtain the first inequality. For the second
inequality recall that by the monotone hazard rate condition and Lemma 1,
P [vi(B) ≥ p̂i(B)] ≥ 1/e. ut

To analyze the strategy we again consider the expected payment πi,α(S) =
α · p̂i(S) ·P [vi(S) ≥ α · p̂i(S)] the seller gets from client i when giving a discount
factor α. we can extract from a client i given the active clients B. Next we
generalize Lemma 2 for k-PD(q̄, ᾱ) strategies.

Lemma 8. For S ⊆ V \ {i}: πi,α(S) ≥ α · e1−απi(S).

Proof. Consider the expected payment πi,α(S) from client i when getting a dis-
count factor of α. Using Lemma 7 we get πi,α(S) ≥ α · p̂i(S) ·P [vi(S) ≥ p̂i(S)]

α

and by the definition of πi(S) the latter is equal to α·P [vi(S) ≥ p̂i(S)]
α−1

πi(S).
Again applying Lemma 7 results πi,α(S) ≥ α · (1/e)α−1πi(S). ut

Proof of Theorem 3. Let k be the size of the vectors, then R(PD(q̄, ᾱ)) =∑
i∈V

∑k
j=1 P [i ∈ Vj ] ·ESl [πi,α(Sj)] . The probability βj that an arbitrary client

i is active in round j is given by the probability that i is in one of the previous
rounds and buys the product. Thus βj ≥

∑j−1
l=1 ql ·

(
1
e

)αl . Next we use the
presented lemmas and linearity of expectation to relate the revenue of PD(q̄, ᾱ)
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to R̂.

R(PD(q̄, ᾱ)) ≥
∑
i∈V

k∑
j=1

qj ·ESl

[
αj · e1−αj · πi(Sj)

]
≥
∑
i∈V

k∑
j=1

qj ·

(
j−1∑
l=1

ql ·
(

1

e

)αl)
· αj · e1−αj · πi(V \ {i})

≥
k∑
j=1

qj ·

(
j−1∑
l=1

ql ·
(

1

e

)αl)
· αj · e1−αj ·

∑
i∈V

πi(V \ {i})

≥
k∑
j=1

qj ·

(
j−1∑
l=1

ql ·
(

1

e

)αl)
· αj · e1−αj · R̂

Hence to maximize the approximation guarantee we consider

k∑
j=1

qj ·

(
j−1∑
l=1

ql ·
(

1

e

)αl)
· αj · e1−αj−1.

Certain assignments to q̄, ᾱ and the corresponding approximation ratios can be
found in Table 1. ut

Table 1. Optimal values q, α for k-PD(q̄, ᾱ) strategies and the corresponding approx-
imation ratio.

k q̄ ᾱ approx

2 (0.5,0.5) (0,1) 0.25

3 (0.432,0.267,0.299) (0,0.757,1) 0.279

4 (0.399,0.187,0.199,0.213) (0,0.644,0.850,1) 0.291

5 (0.369,0.138,0.151,0.164,0.176) (0,0.5,0.707,0.866,1) 0.298

6 (0.353,0.113,0.120,0.129,0.137,0.145) (0,0.447,0.632,0.774,0.894,1) 0.302

7
(0.342,0.096,0.100,0.106, (0,0.408,0.577,0.707,

0.306
0.112,0.118,0.124) 0.816,0.912,1)

8
(0.333,0.084,0.086,0.090, (0,0.377,0.534,0.654,

0.308
0.0946,0.0992,0.103,0.108) 0.755,0.845,0.925,1)

9
(0.326,0.075,0.075,0.0783,0.081, (0,0.353,0.5,0.612,0.707,

0.310
0.085,0.088,0.092,0.095) 0.790,0.866,0.935,1)

10
(0.320,0.068,0.067,0.069,0.071, (0,0.333,0.471,0.577,0.666,

0.311
0.074, 0.077, 0.080,0.083,0.085) 0.745,0.816,0.881,0.942,1)

B Proofs of Section 4

Proof of Theorem 4. (1) Consider the following example of the marketing
problem. The clients are given by V = {1, . . . , n}, and for given parameter λ
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with 0 < λ < 1, and for each B ⊂ V the valuation functions vi are given by

P [vi(B) ≥ p] =


1 for p ≤ 0,

λi−1 for 0 < p ≤ p̂i,
0 for p > p̂i,

with p̂i := (
∑n
j=i λ

j−1)−1. Thus, the valuations of the clients are not influenced

by the other clients, and R̂k-PD does not depend on k (R̂k-PD = R̂1-PD). Note
that for each client i, p̂i is the optimal myopic price, since for any price p with
0 < p < p̂i it holds that P [vi ≥ p] = P [vi ≥ p̂i], and hence p · P [vi ≥ p] ≤
p̂i ·P [vi ≥ p̂i]. The revenue with price discrimination and parameter λ is then

RλPD :=

n∑
i=1

p̂i ·P [vi ≥ p̂i] =

n∑
i=1

λi−1∑n
j=i λ

j−1 .

As there is no influence between clients we have that R̂k-PR ≤ k · R̂1-PR. Hence,
we first consider R̂1-PR. The optimal uniform prices have to be in the set
{p̂1, p̂2, . . . , p̂n} for the same reason as these are optimal myopic prices: using
a price p such that p̂i−1 < p < p̂i does not increase the probability P [vj ≥ p] for
any client j, but it does decrease the revenue since the price is lower.

The revenue for any uniform price p̂i ∈ {p̂1, p̂2, . . . , p̂n} is

Rp̂i1-PR := p̂i ·
n∑
j=1

P [vj ≥ p̂i] =
1∑n

j=i λ
j−1 ·

n∑
j=i

λj−1 = 1.

Thus, all the prices in the set {p̂1, p̂2, . . . , p̂n} are optimal uniform prices, and

R̂1-PR = Rp̂i1-PR. The limit of the ratio R̂1-PR
RλPD

for λ→ 0+ is

lim
λ→0+

R̂1-PR

RλPD
=

1

limλ→0+

∑n
i=1

λi−1∑n
j=i λ

j−1

=
1

n
.

Hence, for any ε > 0 we can find a λ ∈ (0, 1) and a value n0 such that for n > n0
it holds that

1

k
R̂k-PR ≤ R̂1-PR ≤

1 + ε

n
RλPD =

1 + ε

n
R̂k-PD.

(2) For each i let p̂i denote the myopic price p̂i(∅). The revenue for the optimal

1-PD strategy is given by R̂1-PD =
∑
i∈V p̂i ·P [vi ≥ p̂i]. As uniform price p∗ we

set p∗ = p̂j such that j ∈ argmax
i∈V

p̂i · P [vi ≥ p̂i]. Hence the revenue R̂1-PR is

given by R̂1-PR =
∑
i∈V p

∗ ·P [vi ≥ p∗] ≥ maxi∈V p̂i ·P [vi ≥ p̂i] ≥ 1
|V | · R̂1-PD.

(3) For R̂IE
2-PR ≥ 1

n R̂
IE
2-PD, consider the optimal 2-PDIE strategy with influ-

ence set A and a 2-PRIE strategy with the same influence set. By definition
there is no revenue in the first round and in the second round we are faced with
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the problem of approximating 1-PD with 1-PR, according to (2) we can get a

1/n approximation. Finally for 1
n R̂

IE
2-PD ≥ 1

4n · R̂ recall that, by Corollary 1, we

have R̂IE
2-PD ≥ 1

4 R̂. ut

Proof of Theorem 5. (1) Consider the following example of the marketing
problem with valuations from the SA-model. The clients are given by V =
{1, . . . , n} and, for each B ⊂ V the valuation functions vi are given by vi(B) =

1/i. The total revenue with price discrimination is then R̂1-PD =
∑n
i=1

1
i = Hn.

The optimal uniform price is going to be of the form 1/i: using a price p such
that 1

i < p < 1
i−1 does not increase the number of buyers, but it does decrease

the revenue since the price is lower. The revenue R1-PR(1/j) for a uniform price

1/j is then (1/j) · |{i ∈ V | 1/i ≥ 1/j}| = 1, and thus, R̂1-PR = 1. Moreover, as
there is no influence between the clients we have that

R̂k-PR ≤ k · R̂1-PR ≤
k

Hn
R̂1-PD =

k

Hn
R̂k-PD.

(2) Let p̂ := (p̂1, p̂2, . . . , p̂n) be the vector of optimal myopic prices for the
clients. W.l.o.g., we assume that the prices are sorted in a descending order.
Consider the 1-PR strategy s that selects the myopic price p̂i with probability

1
i·Hn . Note that

∑n
i=1

1
i·Hn = 1

Hn
·
∑n
i=1

1
i = 1.

The expected revenue from using these uniform prices is then

R(s) =

n∑
i=1

1

i ·Hn
·
n∑
j=1

P[vj ≥ p̂i] · p̂i

≥
n∑
i=1

1

i ·Hn
·

i∑
j=1

P[vj ≥ p̂i] · p̂i

≥
n∑
i=1

1

i ·Hn
·

i∑
j=1

1

e
· p̂i =

1

e ·Hn
·
n∑
i=1

p̂i.

At the same time, the revenue with price discrimination R̂1-PD is
∑n
i=1 p̂i ·P[vi ≥

p̂i] ≤
∑n
i=1 p̂i. Therefore, we get R̂1-PR ≥ R(s) ≥ 1

e·Hn R̂1-PD.

(3) Consider the optimal 2-PDIE strategy with influence set A and a 2-PRIE

strategy with the same influence set. By definition there is no revenue in the first
round and in the second round we are faced with the problem of approximating
1-PD with 1-PR, according to (2) we can get a 1

e·Hn approximation. ut

C Proofs of Section 5

Proof of Theorem 6. Consider the optimal uniform price p. Given the mono-
tone hazard rate condition it is easy to show that p ≤ p̂max. We next show that
also p ≥ p̂max

e·n . Towards a contradiction assume that not. Then the revenue is

19



bounded by p ·n < p̂max

e . But using p̂max as unique price gives at least a revenue
p̂max

e , a contradiction to the optimality of p.
Given the above bounds we know that Algorithm 3 considers a price pj such

that p ≥ pj ≥ p · (1− ε). Let R(p′) denote the revenue achieved by the uniform
price p′ then:

R(pj) =
∑
i∈V

pj ·P [vi(∅) ≥ pj ] ≥
∑
i∈V

(1− ε)p ·P [vi(∅) ≥ p] = (1− ε) ·R(p)

Hence, Algorithm 3 gives a (1− ε) of R̂1-PR. ut

Lemma 9 (Maximum dominated set). The Maximum dominated set prob-
lem, i.e., computing a maximum set S ⊆ V s.t. for each b ∈ S there is an
a ∈ V \ S with (a, b) ∈ E, is APX-hard (not approximable within 259/260).

Proof. It is known that the Minimum dominating set problem for graphs with
bounded degree is APX-hard [5]. Let us assume that for each ε > 0 there is an (1−
ε)-approximation algorithm for the Maximum dominated set problem. Consider
an arbitrary graph of degree at most ∆ with OptM being a minimum dominating
set and OptS = V \ OptM being the corresponding maximum dominated set.
Further let AS be the dominated set returned by the approximation algorithm
and AM = V \ AS then |AM | = n− |AS | ≤ n− (1− ε) · |OptS | = n− |OptS |+
ε · |OptS | = |OptM | + ε · |OptS |. Now as the graph has degree ≤ ∆ clearly
|OptS | ≤ ∆|OptM | and thus |AM | ≤ (1 + ∆ε) · |OptM |. With ε = δ/∆, we
would obtain (1 + δ)-approximation algorithms for Minimum Dominating Set,
contradicting the APX-hardness. Using a result from [5], showing that Minimum
dominating set on graphs with degree≤ 5 can not be approximated within 53/52,
we obtain the hardness of the Maximum dominated set problem for constants
< 259/260. ut

Proof of Theorem 7. This is by a reduction from the Maximum dominated
set problem. For an instance G = (V,E) of Maximum dominated set, consider a
social network with the DS-model such that for all clients the valuations vi(B)
are 1 if B ∩Ni 6= ∅ and 0 otherwise, where Ni denotes the neighbors of i in G.
Now as we can extract at most revenue 1 from each client the optimal uniform
price in this setting is always p∗ = 1. Thus maximizing the total revenue is
equivalent to computing a maximum dominated set which is APX-hard. Finally
observe that the valuation functions vi can also be modeled in the convex graph
models by a convex function f(x) = x for x < 1 and f(x) = 1 for x ≥ 1 and
deterministic edge weights wi,j = 1 for (i, j) ∈ E. ut

Proof of Lemma 3 . Consider a k-PR strategy s maximizing the sellers rev-
enue, and let V1 be the set of clients visited in the first round. Let R1 be the
expected revenue from the clients in V1 and R2 the expected revenue of the
clients in V \ V1. If R1 ≤ R2 then consider the k-round IE strategy s1 which
coincides with s except that the uniform price in the first round is zero. Clearly
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s1 has at least revenue R2 and thus R(s1) ≥ 1/2 R(s). Otherwise if R1 > R2

then consider the IE strategy s2 with influence set V \ V1 and as second round
the set V1 with the prices from s. By the monotonicity of the valuation functions
s2 has at least revenue R1 and thus R(s2) ≥ 1/2 R(s). ut

Proof of Theorem 9. Assume that Â is an optimal influence set, B̂ = V \ Â
and p̂∗ is an optimal uniform price. Let A be the influence set chosen by PR0.5(ε)

and B′ := B̂ \A.

We will show the following Claim, for all i ∈ B̂.

P
[
vi(A) ≥ p

2

]
≥ 1

2
·P [vi(V \ {i}) ≥ p] (6)

Recall that vi(A) = ṽi · gi(A) for each i ∈ V . We know that since gi(A) is
submodular, for each A′ ⊆ V , gi(A

′) + gi(V \ (A′ ∪ {i})) ≥ gi(V \ {i}). Thus
∀i ∈ V , max{gi(A′), gi(V \ (A′ ∪ {i}))} ≥ 1

2gi(V \ {i}). It follows that with
probability 1

2 , gi(A) ≥ 1
2gi(V \ {i}). Thus with probability 1

2 a set A was chosen

such that p
g(V \{i}) ≥

p/2
gi(A) and thus:

P
[
vi(A) ≥ p

2

]
= P

[
ṽi ≥

p/2

gi(A)

]
≥ 1

2
P

[
ṽi ≥

p

gi(V \ {i})

]
=

P [vi(V \ {i}) ≥ p]
2

This proves the claim.
We can get positive revenue for i ∈ B′ = B̂ \ A. Now consider the k-PR

strategy s with influence set A and uniform price p̂∗

2 . From the above we get:

R(s) ≥ EA

[∑
i∈B′

p̂∗

2
P

[
vi(A) ≥ p̂∗

2

]]
≥ p̂∗

2 · 2
∑
i∈B̂

1

2
P
[
vi(Â) ≥ p̂∗

]
=
R̂IE

2-PR
8

This bound clearly also holds for the optimal uniform price. Theorem 6 shows
that step 2 computes a uniform price that is within (1−ε) of the optimal strategy.
Thus the bound of the Theorem follows. ut

C.1 Proof of Theorem 10

We first give an algorithm that solves the sub-problem of, given an influence
set for the first round, assigning the remaining clients to the remaining rounds
and setting the corresponding uniform prices. This algorithm is presented as
Algorithm 6 and analyzed in Lemma 10. In particular Algorithm 6 provides an
approximation scheme for this sub-problem.
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Algorithm 6. Let c > 1 and β > 1. Let A ⊆ V be a set of clients having the
product.

1. Compute p̂max = maxi∈V p̂i(A).
2. Compute P = { p̂max

cj | 0 ≤ j ≤ dlogc(β · e · n)e}
3. For each S ⊆ P, |S| = k

(a) For p ∈ S build a round B and set p as uniform price.
(b) For i ∈ V \A assign i to the round with the uniform price that maximizes

the expected payment we get from i, assuming only influence from A.
(c) Compute the expected revenue of this assignment.

4. Pick the set S with the maximal expected revenue.

The algorithm is based on the following ideas: (i) If we know the uniform
prices of the rounds then we can easily assign clients optimally to the rounds.
(ii) If we enumerate all possible price vectors of size k we will eventually consider
the optimal strategy. (iii) We can ignore clients if their myopic prices are much
smaller than the largest myopic price. (iv) We do not have to consider all possible
uniform prices. If we ensure that for each possible price we have one price that
is within a constant factor we only lose a constant factor of the revenue.

Exploiting these ideas we next show that Algorithm 6 provides an approxi-
mation scheme.

Lemma 10. Consider the SM-model with monotone hazard rates and clients
that do not have network externalities, i.e., gi(X) = 1 for all i and X ⊂ V .
Then for each ε > 0 we can set the parameters c and β such that Algorithm 6
with A = ∅ computes a (1− ε)-approximation of the optimal revenue.

Proof. Consider an optimal strategy s with round assignment (B̂1, . . . , B̂k) and
the corresponding uniform prices (p̂∗1, . . . , p̂

∗
k).

We first consider the loss we get by restricting our strategy to prices in the
set P = { p̂max

cj | 0 ≤ j ≤ dlogc(β · e · n)e}. We can transform s to a new strategy

as follows: First we can ignore all rounds with uniform price ≤ p̂max

β·e·n . As the

optimal strategy has at least revenue p̂max

e this gives a factor of (1− 1
β ). Second

we can replace all the other uniform price p̂∗l by the maximal p ∈ P such that
p ≤ p̂∗l . By or choice of P the new uniform prices are within a factor of 1/c of the
original prices. Moreover as the price only goes down the acceptance probability
is at least the same as in the original strategy and thus the revenue is only
decreased by a factor of at most 1/c. Thus, restricting the prices results a loss
of at most 1/c · (1− 1

β ).
Now notice that the size of the set of feasible prices P only increases loga-

rithmically with the input size. Hence the enumeration of all subsets of size k is
in polynomial time. Moreover as we do a full enumeration of all strategies with
prices in P we will find the optimal such strategy and thus get a 1/c · (1 − 1

β )
approximation, which can be made arbitrarily close to 1 by setting c and β ac-
cordingly. ut

Next we present the strategy PR0.5
k (ε) which finally will play the role of

strategy s in Theorem 10.

22



Algorithm 7 (Strategy PR0.5
k (ε)). Let ε be in R>0.

1. Assign each client in V to the influence set A, s.t. each client is a member
of A independently of the others with probability 1/2. Give the product to
the clients in A for free in the first round.

2. Use Algorithm 6 to compute a (1− ε)-approximation of the optimal revenue
for the remaining (k − 1) rounds (given influence set A).

The idea of the below analysis of strategy PR0.5
k (ε) is to only consider influ-

ence from the first round and ignoring influence between the remaining rounds.
This allows to apply Lemma 10 to rounds 2, . . . , k, after fixing the influence set.

Proof of Theorem 10. Consider strategy PR0.5
k (ε). We show that PR0.5

k (ε) is
a (1/8− ε)-approximation of the optimal k-PRIE strategy.

Assume that Â is an optimal influence set, (B̂2, . . . , B̂k) the optimal round

assignment (
⋃k
l=2 B̂l = V \Â), and (p̂∗2, . . . p̂

∗
k) the corresponding optimal uniform

prices. Let A be the influence set chosen by PR0.5
k (ε) and B′i := B̂i \A.

We will show the following claim, for all 2 ≤ l ≤ k, for all i ∈ B̂l, and for all
p ≥ 0.

P
[
vi(A) ≥ p

2

]
≥ 1

2
·P [vi(V \ {i}) ≥ p] (7)

Recall that vi(A) = ṽi · gi(A) for each i ∈ V . We know that since gi(·) is
submodular, for each A′ ⊆ V , gi(A

′) + gi(V \ (A′ ∪ {i})) ≥ gi(V \ {i}). Thus
∀i ∈ V , max{gi(A′), gi(V \ (A′ ∪ {i}))} ≥ 1

2gi(V \ {i}). It follows that with
probability 1

2 , gi(A) ≥ 1
2gi(V \ {i}). Thus with probability 1

2 a set A was chosen

such that p
g(V \{i}) ≥

p/2
gi(A) and thus:

P
[
vi(A) ≥ p

2

]
= P

[
ṽi ≥

p/2

gi(A)

]
≥ 1

2
P

[
ṽi ≥

p

gi(V \ {i})

]
=

P [vi(V \ {i}) ≥ p]
2

This proves the claim.

We can get positive revenue only for i /∈ A. Now consider the k-PR strategy

s′ with influence set A, rounds (B′2, . . . , B
′
k), and uniform prices

p̂∗l
2 . From the

above we get:

R(s′) = EA

 k∑
l=2

∑
i∈B′l

p̂∗l
2

P

[
vi(A) ≥ p̂∗l

2

] ≥ k∑
l=2

p̂∗l
2 · 2

∑
i∈B̂l

1

2
P [vi(V \ {i}) ≥ p̂∗l ] ≥

R̂IE
k-PR
8

Notice that in the above analysis we did not use any influence between the latter
rounds. Hence, while we cannot compute the strategy s′ itself, by Lemma 10,
Algorithm 6 gives us a (1−ε) approximation of it. Thus the bound of the theorem
follows. ut
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C.2 Proof of Theorem 11

Mirrokni et al. [11] show an algorithm which is able to find an influence set A
which achieves at least 1/2 of the revenue achieved by the optimal influence set
Â. The algorithm assumes that the prices are drawn from an interval p ∈ [0,Mp].
The expected revenue function, given the price p and influence set A is defined
as follows:

Rp2-PR(A) := p ·
∑
i∈V \A

P[vi(A) ≥ p].

The algorithm works as follows: It fixes an ε = o(|V |−1).

1. For every integer ρ, 0 ≤ ρ ≤ ε−1, do:
(a) Given that the uniform price in the second round is p = Mp · ρ · ε, using

the approximation algorithm for non-negative submodular maximization
in [4], find the influence set Aρ.

(b) Let Lρ be the revenue from giving the item to set Aρ and setting uniform
price to p = ρε.

2. Output the set Aρ and price ρε for which Lρ is maximized.

In order to prove Theorem 11, we need to prove the following two properties
of the revenue function:

1. The revenue function Rp2-PR(A) is continuous in p for 0 ≤ p ≤ Mp and for
δ > 0, ∣∣∣Rp+δ2-PR(A)−Rp2-PR(A)

∣∣∣ ≤ O(δ ·Mp · |V |) ≤ O(δ) · R̂IE
2-PR,

where R̂IE
2-PR is the optimal revenue for any influence set A and uniform

price p;
2. The function Rp2-PR(A) is submodular and non-negative in A.

The following lemma shows that if we sample the set of prices with a step δ,
we will not lose too much revenue (only revenue proportional to δ).

Lemma 11. Let each client have a valuation function which satisfies the as-
sumptions from Theorem 11. Then for any δ > 0,∣∣∣Rp+δ2-PR(A)−Rp2-PR(A)

∣∣∣ ≤ O(δ ·Mp · |V |) ≤ O(δ) · R̂IE
2-PR.

Proof. Note that:

∣∣∣Rp+δ2-PR(A)−Rp2-PR(A)
∣∣∣=
∣∣∣∣∣∣
∑
i∈V \A

(P[vi(A)≥p+ δ](p+ δ)−P[vi(A)≥p] · p)

∣∣∣∣∣∣
(8)

We know that since vi(A) = ṽi · gi(A),

P[vi(A) ≥ p+ δ]−P[vi(A) ≥ p] = Fi

(
p

gi(A)

)
− Fi

(
p+ δ

gi(A)

)
.
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From the Lagrange mean value theorem, there exists x, p
gi(A) ≤ x ≤ p+δ

gi(A) such

that

Fi

(
p

gi(A)

)
− Fi

(
p+δ
gi(A)

)
δ

gi(A)

= fi(x) ≤ f̄

From the above, the Equation 8 and the triangle inequality, we get∣∣∣Rp+δ2-PR(A)−Rp2-PR(A)
∣∣∣ ≤

1

gi(A)
·
(
|V \A| · pδf̄ + δ · |V \A|

)
= O(δ ·Mp · |V |); (9)

(Recall that gi(A) ≤ 1 for all A ⊆ V ).
Since the probability density function fi of ṽi is non-decreasing on [0,Mv],

clearly P[ṽi ≥ Mv

2 ] ≥ 1
2 . Since Mp ≤ µ ·Mv and gi(∅) ≥ µ, this implies that

P
[
vi(∅) ≥ Mp

2

]
≥ 1

2 . So for the price p :=
Mp

2 and influence set A := ∅, we get

R
Mp
2

2-PR(∅) ≥ Mp

2 · |V |. Therefore, R̂IE
2-PR = Ω(Mp · |V |), and

O(δ ·Mp · |V |) ≤ O(δ) · R̂IE
2-PR.

ut

In order to prove the submodularity of Rp2-PR(A), we will need the following
lemma:

Lemma 12. Let f be a convex function, let a ≥ {b, c} ≥ d and (a−b) ≥ (c−d).
Then

f(a)− f(b) ≥ f(c)− f(d).

Proof. We will first show that for any convex function f and x ≥ y ≥ z, the
following two claims hold:

f(x)− f(z)

x− z
≥ f(y)− f(z)

y − z
; (10)

f(x)− f(y)

x− y
≥ f(x)− f(z)

x− z
. (11)

From the convexity of f , we have

f(y) ≤ y − z
x− z

f(x) +
x− y
x− z

f(z). (12)

Multiplying both sides with (x− z) and subtracting f(z)(x− z) we get

(f(x)− f(z)) · (y − z) ≥ (f(y)− f(z)) · (x− z),

which is exactly Equation 10.
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When we multiply Equation 12 with (x− z) and add f(x) · (x− y)− f(y) ·
(x− z)− f(z) · (x− y), we get

(f(x)− f(y)) · (x− z) ≥ (f(x)− f(z)) · (x− y),

i.e., the Equation 11.
Now if a ≥ b, a ≥ c, b ≥ d, c ≥ d, we can use Equations 10 and 11 to show

f(c)− f(d)

c− d
≤ f(a)− f(d)

a− d
≤ f(a)− f(b)

a− b
.

Since we assume that (a− b) ≥ (c− d), we get that

f(a)− f(b) ≥ f(c)− f(d).

ut

In our proof of submodularity of Rp2-PR(A), we will follow the same scheme
as [11]. We will prove the equivalent of their Lemma 1: the individual revenue
function of client i,

hpi (A) := P[vi(A) ≥ p] · p

is monotone and submodular in A. Applying Lemma 2 of [11], we then get that
Rp2-PR(A) is submodular.

Lemma 13. Let the price and the individual valuation functions vi satisfy the
assumptions from Theorem 11. Then for each client, its revenue function hpi (A)
is monotone and submodular in A.

Proof. From our assumptions on vi(A), we can write the revenue function hpi as

hpi (A) = P[vi(A) ≥ p] · p =

(
1− Fi

(
p

gi(A)

))
· p.

Clearly hpi (A) is monotone, since the function gi(A) is non-decreasing, and
Fi(x) is also non-decreasing. Moreover by the assumptions Mp ≤ Mv · µ and
gi(∅) ≥ µ we have that 0 ≤ p

gi(A) ≤Mv.

To prove the submodularity of hpi (A), we need to show that for any S ⊆ T
and any v /∈ T ,

hpi (T ∪ {v})− h
p
i (T ) ≤ hpi (S ∪ {v})− h

p
i (S).

This is equivalent to

Fi

(
p

gi(T )

)
− Fi

(
p

gi(T ∪ {v})

)
≤ Fi

(
p

gi(S)

)
− Fi

(
p

gi(S ∪ {v})

)
. (13)

We will apply Lemma 12. From our assumption that the second derivative
of Fi is non-negative (fi is differentiable and non-decreasing), we get that Fi is
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convex. From the fact that gi(A) is monotone, clearly p
gi(S)

≥ p
gi(S∪{v}) ,

p
gi(T ) ≥

p
gi(T∪{v}) .

Next we show that also

p

gi(T )
− p

gi(T ∪ {v})
≤ p

gi(S)
− p

gi(S ∪ {v})
.

This is equivalent to

gi(T ∪ {v})− gi(T )

gi(T ∪ {v}) · gi(T )
≤ gi(S ∪ {v})− gi(S)

gi(S ∪ {v}) · gi(S)

This holds from the submodularity of gi(A) and from the fact that gi(T ∪
{v}) · gi(T ) ≥ gi(S ∪ {v}) · gi(S) since gi(A) is monotone.

Therefore, we can apply Lemma 12 to prove Equation 13, and the submod-
ularity of hpi (A). ut

Proof of Theorem 11. Let p̂ be the price and Â the influence set which
maximizes Rp2-PR(A). The algorithm of [11] samples the price space with step ε.
Let ρ be such that p̂ ∈ [ρε, (ρ+ 1)ε). From Lemma 11 we know that

Rρε2-PR(Â) ≥ (1− ε) ·Rp̂2-PR(Â).

From the result of [4] and from the fact that the revenue function Rp2-PR is
non-negative and submodular (Lemma 13), for the fixed price p′ = ρε, we can
find an influence set A′p′ such that

Rp
′

2-PR(A′p′) ≥
1

2
·Rp

′

2-PR(Âp′) ≥
1

2
· (1− ε) ·Rp̂2-PR(Â).

This concludes the proof of Theorem 11. ut
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