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Abstract. The documentation of software architecture relations as a kind of
traceability information is considered important to help people understand the
consequences or ripple-effects of architecture evolution. Traceability informa-
tion provides a basis for analysing and evaluating software evolution, and conse-
quently, it can be used for tasks like reuse evaluation and improvement through-
out the evolution of software. To date, however, none of the published empirical
studies on software architecture traceability have examined the validity of these
propositions. In this paper, we hypothesize that impact analysis of changes in
software architecture can be more efficient when supported by traceability links.
To test this hypothesis, we designed two controlled experiments that were con-
ducted to investigate the influence of traceability links on the quantity and quality
of retrieved assets during architecture evolution analysis. The results provide sta-
tistical evidence that a focus on architecture traceability significantly reduces the
quantity of missing and incorrect assets, and increases the overall quality of ar-
chitecture impact analysis for evolution.

Keywords: software architecture traceability, architecture evolution, change im-
pact analysis, empirical software engineering, controlled experiment

1 Introduction

During the last four decades, many investigations on software change impact analysis
techniques and its applications have been performed [17, 19]. Change impact analy-
sis is about determining the consequences or ripple-effects of proposed changes in the
software system. To support software evolution, architectural change impact analysis
is considered of great importance as understanding the architecture and its changes is
a foundation of software evolution analysis at the architectural level [12]. The archi-
tectural level is well suited for software evolution analysis, as the software architecture
allows (early) reasoning on the quality attributes of the system [4] and the software ar-
chitecture not only describes the high-level structure and behaviour of the system, but
also incorporates principles and decisions that determine the system’s development and
its evolution [2].

Software change impact analysis techniques and their applications are based on ei-
ther traceability information or dependence relationships. These techniques do not only
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provide a basis for analysing and evaluating software evolution, but can also be used for
tasks such as reuse evaluation and improvement. For example, the identified impacts of
specific software assets from architecture evolution analysis can be used as a basis to
examine the level of reuse of those assets throughout a number of evolution steps. It is
also pointed out by Selby [13] that, in general, software assets reused without or with
limited revisions have fewer faults than software assets reused with major revisions.
Hence, understanding change impact provides the means to control reuse and evolution
of software assets.

Traceability links between the software architecture and other software assets, such
as the source code or the requirements, are considered important to determine the poten-
tial evolution impacts at the architectural level [8]. However, none of the published em-
pirical studies on software architecture traceability provide quantitative evidence of the
added value of traceability links in the evolution of software architectures. To date, two
empirical studies on architecture traceability have been published [7, 14]. These studies
mainly concern the understanding of architecture designs. The lack of published empir-
ical data on the benefits of architecture traceability is one of the reasons that prevents
the wide adoption of traceability approaches in industrial settings [7, 14]. It is crucial to
conduct more empirical studies on the usefulness of architecture traceability to find out
whether the use of architecture traceability can significantly support the development
activities in order to justify its costs.

The goal of this paper is to empirically validate whether change impact analysis
is more efficient regarding the software architecture evolution activities, if the impact
analysis is supported by traceability links. In particular, we intend to answer the follow-
ing research question: Are the quality and quantity of retrieved assets during software
architecture change impact analysis higher for change impact analysis that is supported
by traceability links than for change impact analysis without traceability links? Note
that the assets to be retrieved during our experiments are source code classes and com-
ponents in a component model that are affected by a change.

To answer the research question, we conducted two controlled experiments at the
University of Vienna, Austria, in May 2014. The first experiment was carried out with
51 students, whereas the other 56 students participated in the second experiment. They
were asked to perform seven impact understanding activities that concern the evolution
at the architectural level. In both experiments, half of the students were asked to perform
the impact analysis of changes in software architecture by using the information from
the architectural documentation and the source code of the system, while the other
half performed the same tasks with the same provided information and additionally
received traceability links between the architectural models and the source code. The
former group is referred to as the control group, the latter as the experiment group. The
data from the experiments was analysed, and the quantity of missing and erroneous
retrieved assets during the architecture evolution analysis and their overall quality were
compared. The results of the experiments provide strong evidence for the benefits of
using traceability links concerning the quantity and quality of the assets retrieved during
change impact analysis activities for evolving software architectures.

The rest of this paper is organized as follows: Section 2 describes the related work.
Section 3 discusses the design of the controlled experiments including the introduction
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of variables and hypotheses, while the subsequent Section 4 explains the details con-
cerning the execution of the experiments. Section 5 presents the hypotheses tested and
the analysis of the results of the study. Section 6 contains the interpretation of the find-
ings and a discussion of threats to validity. Section 7 concludes the study and discusses
future work.

2 Related Work

As mentioned in the introduction, there exist only two earlier studies, one performed by
our research group [7] and one by Shahin et al. [14], that provide quantitative evidence
of the added value of traceability links in understanding of architecture designs.

In our own previous study [7] we conducted a controlled experiment and its replica-
tion to evaluate the support provided by traceability links between architectural models
and the source code. The experiments were conducted with 108 participants. The partic-
ipants were asked to answer twelve typical questions aimed at gaining an architecture-
level understanding of a representative subject system, with and without traceability
information. Our findings show that the use of traceability links significantly increases
the correctness of the answers of the participants, whereas no conclusive evidence con-
cerning the influence of the experience of the participants are observed.

The work by Shahin et al. [15] analyse the support provided by Compendium tool
[14], a tool to visualize architectural design decisions and their rationale, as a kind
of traceability information. The experiment was carried out with 10 participants. The
participants were asked to understand the existing design and to make the new design
according the new requirement, with and without Compendium tool. The results show
that Compendium significantly improves the correctness of understanding architecture
design in architecting process, and does not increase the total time for reading software
architecture documentations and performing design task.

The contribution of this study is novel for two main reasons. First, there exist no
published evidence related to the added value of traceability links in software architec-
ture evolution. Second, most of the earlier works are based on some specific traceabil-
ity tools, which do not enable a distinction between tool support and the usefulness of
traceability links. In our experiments, for practical reasons and to study the foundational
concepts rather than a specific tool, the participants were provided with hyperlink-based
access of traceability links and the source code, to investigate the support provided by
traceability links between architectural models and the source code in evolution of soft-
ware system architectures, rather than the support provided by a specific tool.

3 Design of the Experiment

For the study design, the guidelines for experiments’ conduct by Kitchenham et al. [10]
and Wohlin et al. [18], and reporting by Jedlitschka and Pfahl [9] were used. Kitchen-
ham et al. present preliminary guidelines for experimentation in software engineering
and give some instructions regarding the context, design, data collection, analysis, pre-
sentation, and interpretation of empirical studies without going into detail. Wohlin et
al. present the experiment phases in more detail, and also discuss statistical tests and
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their suitability for different kinds of studies. The former guidelines were primarily
used in the planning phase of our experiments, while the latter was used as a reference
for the analysis and interpretation of the results. Jedlitschka’s and Pfahl’s guidelines
for reporting controlled experiments are used to describe the experiments in this paper.
Please note that the following subsections of the reporting template were omitted, be-
cause they were either not applicable, or their content was already mentioned in other
sections: Relation to existing evidence is presented in Section 2; inferences and lessons
learned are discussed in Section 6; interpretation and general limitations of the study
are described in Section 6.2.

3.1 Goal, hypotheses, parameters, and variables

The goal of the experiments is to empirically investigate, if change impact analysis that
is based on traceability links significantly reduces the quantity of missing and incorrect
retrieved assets, and increases their overall quality during the architecture evolution
analysis. The experiments goal led to the following null hypotheses and corresponding
alternative hypotheses:

Hp1: The use of traceability links does not significantly increase the quantity of cor-
rectly retrieved assets during architecture evolution analysis.

H;: The use of traceability links significantly increases the quantity of correctly re-
trieved assets during architecture evolution analysis.

Hog: The use of traceability links does not significantly reduce the quantity of incor-
rectly retrieved assets during architecture evolution analysis.

H,: The use of traceability links significantly reduces the quantity of incorrectly re-
trieved assets during architecture evolution analysis.

Hos: The use of traceability links does not significantly increase the overall quality of
retrieved assets during architecture evolution analysis.

Hj: The use of traceability links significantly increases the overall quality of retrieved
assets during architecture evolution analysis.

Description Scale Type Unit  Range
Quantity of correctly retrieved assets Interval Points [0 - 1]
Quantity of incorrectly retrieved assets  Interval Points [0 -1]
Overall quality of the retrieved assets Interval Points [0-1]

Table 1: Dependent Variables

Dependent variables Three dependent variables were observed during the experi-
ments, as shown in Table 1: the quantity of correctly and incorrectly retrieved assets, and
their overall quality, in the architecture evolution analysis. They were accessed by using
the standard information retrieval metrics, in particular, recall, precision, and f-measure,
respectively [1, 6]. Because impact analysis of changes in software architecture consists
of a list of system assets, two aspects were specifically taken into consideration to mea-
sure the recall and precision of the retrieved assets:

— The set of correct assets expected in the solution to activity a (C,).
— The set of assets retrieved in the solution to activity a by participant p (R, ).



Effects of Traceability Links in Evolving Architectures 5

C,NR C. NR
Recallp 0= M Precision, , = M
) Ca k] Rp7a

Recall is the percentage of correct matches retrieved by an experiment subject, while
precision is the percentage of retrieved matches that are actually correct. Because recall
and precision measure two different concepts, it can be difficult to balance between
them. Therefore, f-measure, a standard combination of recall and precision, defined

as their harmonic mean, is used to measure the overall quality of architecture change
impact analysis activities from the experiments’ participants.

Description Scale Type Unit Range/Possible Values

Time Ordinal Minutes 90 minutes (Max)

Group Affiliation Nominal N/A Control group, Experiment group
Programming experience  Ordinal Years 4 classes: 0-1, 1-3,3-7,>8
Architecture experience  Ordinal Years 4 classes: 0-1, 1-3,3-7, >8
Affiliation Nominal N/A Academia, Industry, Other

Table 2: Independent Variables

Independent variables Five independent variables were observed during the exper-
iments, as shown in Table 2. They relate to the personal information (programming
experience, architecture experience, affiliation), group affiliation (control group or ex-
periment group) and time spent in the experiments. These variables could have an in-
fluence on the dependent variables, which is eliminated by balancing the characteristics
between the control groups and the experiment groups in the same way, in particular,
through random assignment to the two groups in both experiments.

3.2 Experiment Design

To test the hypotheses, we conducted two controlled experiments [3] at the University
of Vienna, Austria, in May 2014. The experiments were conducted as practical sessions
on architecture evolution analysis.

Participants The participants in the experiments were 107 individual students of the
software architecture course held at University of Vienna. The first experiment was
conducted with 51 students, while the other 56 students had participated in the second
experiment.

Objects The basis for the architecture impact recovery was UltraESB! Version 2.3.0
and PetalsESB? Version 4.2.0. Both systems belong to the enterprise service bus (ESB)
domain, which provides an connectivity infrastructure to integrate the services within a
service-oriented architecture.

Blocking To be able to explicitly analyse the influence of traceability links in change
impact analysis of software architecture evolution, the participants in both experiments
were randomly assigned to the two balanced groups. For each experiment, one group

"http://adroitlogic.org/products/ultraesb.html
2 http://petals.ow2.org
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of participants was asked to determine the impact of architecture evolution activities by
using the information from the architectural documentation and the source code of the
system, whereas the other group performed the same tasks, but additionally received
the traceability links between architectural models and the source code. The first group
is referred to as control group, the latter as experiment group.

Instrumentation To obtain the necessary data related to the influence of traceabil-
ity links in architecture evolution analysis, the instruments discussed in the following
paragraphs were used to carry out the experiments.

Three pages of architectural documentation about the used objects: The participants
in the first experiment were provided with the documentation for UltraESB, while the
participants of the second experiment received the documentation for PetalSESB. The
documentation describes the conceptual architecture and lists technologies and frame-
works used in the implementation. Besides text, a UML component diagram is used to
illustrate the components, and their inter-relationships in parts of the architecture.

Web-based access for the source code: The participants in the first and second ex-
periment were provided with the web-based access of syntax-highlighted source code
for the UltraESB and PetalsESB, respectively. The cover page alphabetically lists the
source code package names and their enclosed code classes, and provides a hyperlink-
based support to ‘jump’ to specific assets (code classes or packages) located in the
Git repository>. The participants in the experiment groups were also provided with the
similar support for traceability links, represented as lists: Each entry in a list contains
information about architectural components and their realized code classes, which rep-
resent individual traceability link.

A questionnaire to be filled-in by the participants during the experiments: At the first
page of the questionnaire, the participants had to rate their programming experience,
architecture experience and affiliation, while the subsequent pages contains the seven
architecture impact analysis activities, as shown in Table 3. In the context of these activ-
ities, two important criteria are applied: (i) the activities should be representative for key
architecture impact analysis and evolution contexts for both UltraESB and PetalsESB,
and (ii) they should be imaginatively constructed to measure the deeper impact under-
standing from participant groups. Note that the same impact evaluation activities listed
in Table 3 were used for both UltraESB and PetalsESB, which was possible as different
ESBs share many similar architectural concerns. The results expected from participants
for each activity were sets of retrieved asset names (i.e., names of source code classes
and components from the provided component models).

Blinding To eliminate subjective bias on the part of both experiments’ participants and
the experimenters, double blinding was applied in the experiments. Although, partici-
pants perceived that there are two different groups for each experiment, they were not
aware about the purpose of group division and their group affiliation.

’ http: //git-scm.com
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ID  Description

Al  Investigate the impact of extensions in the transport senders and listeners

A2 Investigate the consequences of extensions in the traffic monitoring

A3 Determine the ripple-effects of changes in the ESB configuration

A4 Investigate the impact of changes in the message interception

A5  Evaluate the effects of high availability and capacity of ESB server

A6  Investigate the consequences of new message endpoints

A7  Determine the impact of new deployment aspect implementation
Table 3: Impact evaluation activities at the architectural-level (used for both UltraESB
and PetalsESB)

The results of the experiments were handed over to two independent researchers
who did not know the real identity of the participants. This was done to prevent the
experiments from being biased. To be able to compute the results of the change impact
analysis of retrieved assets, the researchers were asked to compute the information re-
trieval statistics by matching the participants’ answers with the original solution model.
This allows us to objectively evaluate the quantity and quality of the retrieved assets
rather than by intuitive or ad-hoc human measures.

Data collection procedure After introduction and grouping, the participants received
the instruments, mentioned in Section 3.2. The provided instruments had to be used to
perform the impact analysis of architecture evolution activities. The participants were
distributed over separate rooms according to their group membership. At least one ex-
perimenter was present in each room to answer the questions related to the instructions
and to restrict the participants from consulting others and using forbidden material.
The participants were given 90 minutes to determine the ripple effects of architecture
evolution activities. After completion of the session, the filled-in questionnaires were
collected by the experimenters and finally a discussion in the wrap-up phase was ar-
ranged to gather further information from the participant groups. All the participants
were present during the discussion.

4 Execution

4.1 Sample and Preparation

As described in Section 3.2, the experiments were conducted in two practical sessions
on architecture evolution analysis at the University of Vienna, Austria. The first ex-
periment took place with 51 students of the software architecture course; the second
experiment was conducted with another 56 students of the same course.

Figure 1 shows the distribution of the participants based on their previous expe-
rience and affiliation, as assigned to the control group and the experiment group. The
data presented in the figures was accumulated from all the participants in the two exper-
iments, but also shows the separate data of the experiments. The Sub-figures (a) and (b)
show the previous experience of the participants concerning programming and software
architecture, while Sub-figure (c) shows the affiliation of the participants. Note that the
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previous experiences in the control groups is slightly better both regarding program-
ming and architecture. In the experiment groups slightly more people with an academic
affiliation and slightly less with an industry affiliation are present. However, overall the
experiences and affiliations are rather well balanced in the two experiments.

4.2 Data collection performed

The data collection procedure was performed as planned in the study design. There were
no participants who dropped out and no deviations from the study design occurred.

4.3 Validity procedure

The experiments were conducted in a controlled environment. The participants in both
experiments were assigned to different rooms according to their group membership
(control group or experiment group). The participants in each rooms were supervised by
at least one experimenter during the whole duration, enabling them to ask clarification
questions and restrict them from talking to each other or using forbidden material. All
the participants had to return the questionnaire before leaving the room. The filled-
in questionnaire were collected from the remaining participants after completion of
experiments’ sessions. No unexpected situation occurred during the experiments.

5 Analysis

5.1 Descriptive statistics

The descriptive statistics shows the results of the experiments as a first step in the analy-
sis. The first two subsections concern the quantity of correctly and incorrectly retrieved
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assets respectively. The last subsection presents an analysis of the overall quality of
retrieved assets during architecture evolution analysis.

Quantity of correctly retrieved assets The descriptive statistics for the quantity of
correctly retrieved assets for the control groups and the experiment groups from the
two experiments are shown in Table 4 and Figure 2. The data in the table is based on
the sum of the recall of the experiments’ activities for each participant, while the figure
concerns the recall for each experiment activity.

Execution Group Affiliation Mean Median Std. Dev.
Experiment 1 Control Group 2.701009 (0.3858584 %)  2.565584 (0.3665121 %)  1.808094 (0.2582992 %)
P Experiment Group ~ 4.439981 (0.634283 %)  4.868956 (0.6955651 %)  1.708463 (0.2440661 %)
Control Group 2.04751 (0.2925014 %) 1.908818 (0.2726883 %)  1.023914 (0.1462735 %)

Experiment 2 — i ment Group _ 4.114883 (0.5878404 %) _ 4.491484 (0.6416406 %) _ 1.421371 (0.203053 %)

Table 4: Descriptive analysis of the quantity of correct retrieved assets

As we see from Table 4, the total quantity of correctly retrieved assets is higher in
the experiment groups than in the control groups. The results in Figure 2 show that the
participants of the experiment group belonging to the first experiment have a higher
number of correctly retrieved assets for all impact analysis activities than the control
group. However, the participants of the control group of the second experiment have
outperformed the participants of the experiment group in Activity 4.

= Control Group - Mean = Experiment Group - Mean = Control Group - Mean = Experiment Group - Mean
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Fig. 2: Quantity of correctly retrieved assets for each experiment activity

Quantity of incorrectly retrieved assets Table 5 and Figure 3 show the comparisons
for the quantity of retrieved assets that are actually correct for the control groups and
the experiment groups in the two experiments. The data in the table is based on the sum
of the precision values of the experiments’ activities for each participant. In total, the
quantity of retrieved assets that are actually correct is higher in the experiment groups
than the control groups. As a consequence, this means that the quantity of incorrectly
retrieved assets is lower in the experiment groups compared to control groups.

Execution Group Affiliation = Mean Median Std. Dev.
Experiment 1 Control Group 3.774333 (0.5391905 %)  3.208333 (0.4583333 %)  1.779565 (0.2542236 %)
P Experiment Group  4.826603 (0.6895147 %)  4.6875 (0.6696429 %) 1.865917 (0.2665595 %)
Control Group 2.278481 (0.3254973 %)  2.242929 (0.3204185 %)  1.191005 (0.1701435 %)

Experiment 2 —5 0 iment Group _4.454726 (0.6363894 %) _ 4.523485 (0.6462121 %) 1593693 (02276704 %)

Table 5: Descriptive analysis of the quantity of actually correctly retrieved assets

The results in the Figure 3 concern the precision for each experiment activity, in
which the participants of the control group only outperformed the participants of the
experiment group in Activity 5 of the first experiment.
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Fig. 3: Quantity of actually correctly retrieved assets for each experiment activity

Overall quality of retrieved assets The descriptive statistics for the overall quality of
retrieved assets for the control groups and the experiment groups from the two experi-
ments is shown in Table 6 and Figure 4. The results in the table are based on the sum of
the overall quality of retrieved assets (i.e., the f-measure) of the experiments’ activities
for each participant, while the figure shows the f-measure results for each experiment
activity. The data in the table and figure show that the average quality of retrieved assets
in the experiment groups seems to be higher than the average quality of retrieved assets
in the control groups.

Execution Group Affiliation Mean Median Std. Dev.
Experiment 1 Control Group 2.767399 (0.3953427 %)  2.516986 (0.3595694 %)  1.624837 (0.2321195 %)
P Experiment Group  4.377607 (0.6253725 %)  4.275092 (0.6107274 %)  1.722879 (0.2461256 %)

Control Group
Experiment Group

1.755936 (0.2508479 %)  1.769355 (0.252765 %) 0.7923499 (0.1131928 %)
3.66901 (0.5241442 %) 3.608125 (0.5154464 %)  1.617311 (0.2310445 %)

Table 6: Descriptive analysis for the overall quality of retrieved assets

Experiment 2
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= Experiment Group - Mean
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Fig. 4: Overall quality of retrieved assets for each experiment activity

Dataset reduction Outliers in the dataset, i.e., data points that are either much lower
or much higher than other data points, are potential candidates for dataset reduction.
Thirteen of the participants from the two experiments did not perform all the activities.
This results in nineteen missing data points in the experiments. As it seems that these
participants have spend sufficiently longer time in exploring the source code, we have
not excluded these data points from the study.

To find potential outliers, we also calculated the quantity and quality of the archi-
tecture evolution activities for each participant. Note that four of the participants from
the experiment groups reached a considerable lower quantity and quality of architecture
evolution analysis activities than the other members of these group. A closer analysis
showed that they could not properly make use of traceability links to perform the ar-
chitecture impact understanding activities. However, their results were not excluded as
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outliers, because the difference to the other participants is not strong enough. Excluding
these data points would have introduced a potential vulnerability of the study results.

5.2 Analysis of the opinion of participants

This subsection summarizes the results of the wrap-up discussion phase which was ar-
ranged after each experiment session to gather further information from the participant
groups.

The participants in the experiment groups from the two experiments and the control
group of the first experiment have acknowledged that they had enough time to perform
the architecture evolution analysis activities. However, the participants in the control
group of the second experiment showed concerns related to the provided time for per-
forming the activities. This is probably because the second experiment was conducted
with a rather large system (PetalSESB) compared to first experiment (UltraESB). The
same happened also for the experience and difficulties of the participants: The partic-
ipants of the control groups experienced more difficulties in performing the activities
than the participants of the experiment groups, in addition, the participants with ‘0-
1 years’ of experience encountered more difficulties than the participants with ‘1-8+
years’ of experience.

The participants were also asked about their familiarity with the application domain.
The answers imply that enterprise service bus, which is the application domain of the
UltraESB and PetalsESB, is well-known to the participants from previous lectures of
the software architecture course.

The next two questions concerned the usage and helpfulness of traceability links for
architecture evolution analysis. First, the participants were asked whether traceability
links are useful in impact analysis of changes in software architecture. The answers
reflect that the participants had knowledge about traceability links. The members of
both groups generally consider traceability links as useful in architecture-level impact
understanding of the software system. In the next question the participants were asked
whether they used traceability links before. The answers show that only a very few
participants have previously used traceability links for understanding of software assets
outside of the lecture in which the experiments took place.

Finally, the participants were asked to briefly describe how the architecture evolu-
tion analysis was performed. This was primarily done to confirm that the experiment
groups used the traceability links and to find out if the control groups used any other
systematic way to perform architecture evolution analysis. The answers of the control
groups reveal a focus on an intuitive approach, which was mainly driven by personal
experience or judgements. The respondents stated that they performed the activities by
reading the textual description in the architecture document and intuitively exploring the
code classes. They acknowledged that it is hard to find the correct links between archi-
tecture and implementation artefacts. This might stem from the fact that software archi-
tecture is not explicitly represented in the code classes, e.g. as packages and classes or
similar code-level abstractions. The answers of the experiment groups show a focus on
the traceability links. The respondents of experiment groups stated that they used trace-
ability links to identify the ripple-effects of architecture artefacts in the code classes
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and vice versa. They confirmed that they primarily used this additional knowledge for
performing architecture impact analysis for evolution.

5.3 Hypothesis testing and results

Quantity of correctly retrieved assets To be able to test the first null hypothesis
H,1, the influence of traceability links on the quantity of correctly retrieved assets is
measured. In the analysis of the experiments, the Shapiro-Wilk normality test [16] and
Wilcoxon Rank-Sum test [11] are used. First, the Shapiro-Wilk normality test is used
to find out whether equal variances of the level of correctness can be assumed. Second,
as a consequence of non-normal distributions, the corresponding non-parametric statis-
tical test, Wilcoxon Rank-Sum test, is used to test the significance of the found results.
Note that the results of tests were interpreted as statistically significant at a = 0.05 (i.e.,
the level of confidence is 95%).

Execution Factor Wilcoxon Rank-Sum Test

Experiment] Control Group vs. Experiment Group W =492, p-value = 0.001332
Experiment 2 Control Group vs. Experiment Group W = 686.5, p-value = 0.000001451

Table 7: Wilcoxon-test for quantity of correct retrieved assets

Table 7 shows the results of the Wilcoxon rank-sum test for the control groups
and the experiment groups. The table shows that both experiments (Experiment 1 and
Experiment 2) provide strong evidence that Hy; can be rejected. This means that in
our two experiments the use of traceability links significantly improved the quantity of
correctly retrieved assets during the architecture evolution analysis.

Quantity of incorrectly retrieved assets Hypothesis H,, was also evaluated with a
Wilcoxon rank-sum test. The results are shown in Table 8. The table shows that the
both experiments (Experiment 1 and Experiment 2) provide strong evidence that Hyo
can be rejected. This means that in our two experiments the use of traceability links
significantly reduces the quantity of incorrectly retrieved assets in the architecture im-
pact analysis for evolution. Note that there is a noticeable difference in the p-values
between the two experiments. The main reason behind this difference probably is the
varying sizes and complexity of the objects (software systems) in the first and second
experiment.

Execution Factor Wilcoxon Rank-Sum Test

Experiment 1 ~ Control Group vs. Experiment Group W =437.5, p-value = 0.03446
Experiment 2 Control Group vs. Experiment Group W = 661, p-value = 0.00001083

Table 8: Wilcoxon-test for quantity of incorrect retrieved assets

Overall quality of retrieved assets The Wilcoxon rank-sum test is also used to evalu-
ate the Hypothesis H,3. The results are shown in Table 9. The table shows that the both
experiments provide strong evidence that Hy3 can be rejected. This means that in our
two experiments the use of traceability links significantly improved the overall quality
of the retrieved assets for architecture evolution analysis.
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Execution Factor Wilcoxon Rank-Sum Test

Execution 1  Control Group vs. Experiment Group W =497, p-value = 0.0009243
Execution 2 Control Group vs. Experiment Group W = 659, p-value = 0.000004097

Table 9: Wilcoxon-test for overall quality of retrieved assets

6 Interpretation

6.1 Evaluation of results and implications

As discussed in the previous section, all three null hypotheses can be rejected and hence
we can deduce the following implications:

— As Hy; can be rejected, according to our experiments, there is evidence that the
quantity of correctly retrieved assets during the architecture evolution analysis is
higher if traceability links are used.

— As Hys can be rejected, according to our experiments, there is evidence that the
quantity of incorrectly retrieved assets during the architecture evolution analysis is
lower if traceability links are used.

— As Hys can be rejected, according to our experiments, there is evidence that the
quality of retrieved assets for architecture evolution analysis is higher if traceability
links are used.

6.2 Threads to validity and limitations of the study

Multiple levels of validity threats have to be considered in the experiments. We have
considered the classification scheme for validity in experiments by Cook and Campbell
[5]. The internal validity concerns the cause effect inferences between the treatment
and the dependent variables measured in the experiments. External validity refers to
the generalizability of the results for a larger population. Construct validity is about the
suitability of the study design for the theory behind the experiments. Finally, conclusion
validity focuses on the relationship between treatment and outcome and on the ability
to draw conclusions from this relationship. All validity threats in the experiments are
categorized based on this classification.

Internal validity

— The architecture evolution analysis activities could have been biased towards the
experiment groups. The threat, however, is mitigated by considering many charac-
teristics of software architecture evolution. As a result, the change impact analysis
activities concerned both architecture recovery and evolution contexts. Therefore,
we do not consider it a highly relevant threat to validity.

— The analysts in the experiments could have graded the retrieved assets incorrectly.
We tried to mitigate this risk by providing the original solution model to the ana-
lysts. The analysts were asked to apply the solution model to the recovered partici-
pants’ solutions. The solution model clearly states the correct assets for each archi-
tecture evolution analysis activity. Furthermore, the results have also been verified
by the authors of this paper.
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— Finally, the analysts could have been biased towards the experiment groups. We
tried to exclude this threat to validity by not revealing the identity of the participants
or in which of the two groups they have participated to the analysts. Hence, it is
rather unlikely that this threat occurred.

External validity

— As discussed in Section 3.2, the experiments were conducted with rather inexperi-
enced participants, the students of a software architecture course. Nevertheless, the
results of our previous study, where we compared the results from two controlled
experiments with students and professionals, imply that the participants’ experience
does not have a significant influence on the external validity of results [7]. There-
fore, we conclude that it is likely the limited level of experience of the participants
in the two experiments does not distort the study results.

— The instrumentation in the experiments might have been unrealistic or old-
fashioned. In this case, the architecture evolution analysis was based on the
hyperlinks. In practice, different tools would be used to support evolution analysis.
These tools are primarily used to formulate and maintain the traceability or de-
pendence relationships between the related software assets. In these experiments,
for practical reasons and to study the foundational concepts rather than a specific
tool, the source code of the software systems and traceability links were readily
provided in a web-based format. We assume that the measured effect of the
experiment groups during traceability recovery is independent of the way in which
a tool would visualize the traceability links, but a threat to validity remains that our
results cannot be 1:1 translated to all existing tools and visualizations.

Construct validity

— The use of one object in the experiment introduces the risk that the cause construct
is under-represented. In this case, the experiments were conducted with different
objects, in particular, the UltraESB and PetalsESB, although the objects belong to
the same domain but represent software systems, of significantly different size (in
terms of number of source code classes). The threat, however, cannot totally be
ignored.

— Another potential threat to validity is the number of measures used to evaluate the
quantity and quality of retrieved assets. In our case we only used standard infor-
mation retrieval metrics, in particular, recall, precision, and f-measure, to measure
the quantity of correctly and incorrectly retrieved assets, and their overall quality,
respectively. This does not allow for cross-checking the results with different mea-
sures.

Conclusion validity

— A threat to validity might result from the interpretation of the architecture evolution
analysis activities because impact of these activities consists of a list of system as-
sets (e.g., architectural components, source code classes). We mitigated this risk by
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calculating the standard information retrieval metrics for retrieved assets from all
architecture evolution analysis activities. We argue that information retrieval mea-
sures allow analysts to objectively evaluate the correctness of architecture evolution
analysis activities rather than intuitive or ad-hoc human measures. We conclude that
this potential threat is mitigated to large degree.

— Finally, the violation of assumptions made by statistical tests could distort the re-
sults of the experiments. In the analysis of the experiments, the Shapiro-Wilk nor-
mality test and Wilcoxon Rank-Sum test are used. First, Shapiro-Wilk normality
test is used to find out whether equal variances of the level of correctness can be
assumed. Second, as a consequence of non-normal distributions, the corresponding
non-parametric statistical test, the Wilcoxon Rank-Sum test, is used to test the sig-
nificance of the found results. Note that the results of the tests were interpreted as
statistically significant at o = 0.05 (i.e., the level of confidence is 95%). Thus, this
factor is not seen as a threat to validity.

7 Conclusions and future work

In this paper, we describe the results of two controlled experiments that were conducted
to find out if traceability links are beneficial for change impact analysis of evolving
architectures. Three aspects were specifically taken into consideration: the quantity of
correctly and incorrectly retrieved assets, and their overall quality. The evaluation of the
experiments shows that using traceability links leads to significantly lower quantity of
missing and incorrect assets, and overall, a higher quality of architecture evolution anal-
ysis. Because the calculation procedure for architecture-centric reuse evaluation, with
the focus on traceability links, is carried out in a similar manner to the calculation of the
architecture evolution analysis, it is likely that the results can be generally applicable
for architecture-centric reuse of the software systems making use of traceability links.

As it is usual for empirical studies, replications in different contexts, with different
objects and participants, are good ways to corroborate our findings. Comparing the
results of the different objects (software systems) in terms of their sizes and complexity
is part of our future work agenda. Another direction for future work is to replicate the
experiment with our evoluation and reusability evaluation tool that is currently under
development.
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