

Chapter 7. Implementation

������ � � 	
 �
�

��

��

����

������ �	
��������

��

� �
���

���
��

Figure 7.1.: Speedup analysis with 25 service classes

������ � � 	
 �
�

��

��

����
����
����

��������	�
��������

�
�

��
��

��
�

�
�

��

Figure 7.2.: Speedup analysis with 28 service classes

������ � � 	
 �
�

���
����
����
����
����

��������	�
��������

�
�

��
��

��
�

�
�

��

Figure 7.3.: Speedup analysis with 30 service classes

������ � � 	

�

����

���
����

���

number of processes

ti
m

e
 (

s
e
c
o

n
d

s
)

Figure 7.4.: Speedup analysis with 32 service classes

116

7.1. Optimization of SLA-Based Service Selection

7.1.3.1.2. Results Figure 7.1 summarizes the results with 25 service classes. Unfortu-

nately, in this case the overhead from CORBA made parallelization worthless. This e�ect

is even stronger with smaller test cases. However, luckily, it disappears as one increases

the dimension.

The results for the test cases with 28, 30 and 32 service classes are shown in �gures

7.2, 7.3 and 7.4 respectively. The fact that the 30-node test case is solved faster than the

28-node one in some con�gurations is not a measurement glitch: the computation time

strongly depends on the individual test case, including the bounds for K and T , and the

distributed implementation is also not completely deterministic due to process scheduling

and network latency e�ect. One can see that once we reach a su�ciently large computation

time, the distributed implementation overtakes the serial one and a signi�cant speedup can

be measured. The trend shows that as the problem size grows, the performance behavior

appears to converge to a practically linear speedup.

It shall be noted that once the exact optimum is computed, it is possible to react to

dynamic changes producing near-optimal solutions within a few milliseconds by using the

heuristic update we sketched.

7.1.3.2. Branch and Bound vs Heuristics

7.1.3.2.1. Test Method The branch and bound implementation was compared with the

updating heuristics to see how much faster the heuristics are.

Feasible but otherwise random synthetic testcases were generated with a pseudorandom

number generator. Tests with 10, 12, 15, 20, 25 and 30 work�ow nodes were made, each

of which was mapped to a di�erent service class. The timings reported for the branch

and bound algorithm are from a sequential breadth-�rst implementation, which proved

the most e�cient on a single CPU.

For each testcase, a series of tests was run with constant services and user requirements,

changing only the values of K and T (one at a time), and the results of the heuristics were

compared with repeated runs of the branch and bound, looking at both the execution time

of the optimization process and the quality of the solution (i.e. how close to the optimum

it is).

The tests were run on a single-core 2.6 GHz Pentium 4 with HyperThreading disabled.

The following pairs (K,T) were used for each testcase:

10 nodes: (350, 500), (400, 500), (400, 550), (400, 500), (380, 500), (350, 500),

12 nodes: (400, 600), (450, 600), (450, 650), (450, 600), (430, 600), (400, 600),

15 nodes: (550, 700), (600, 700), (600, 750), (600, 700), (580, 700), (550, 700),

20 nodes: (800, 850), (850, 850), (850, 900), (850, 850), (830, 850), (800, 850),

25 nodes: (900, 1200), (950, 1200), (950, 1250), (950, 1200), (930, 1200), (900, 1200),

30 nodes: (950, 1500), (1000, 1500), (980, 1500), (950, 1500).

7.1.3.2.2. Results Figure 7.5 shows the results of the performance measurements. Al-

most invisible bars in the �gures mean the value is very small or zero. The results show

117

Chapter 7. Implementation

0
100
200
300
400
500
600
700

m
p

u
ta

ti
o

n
 t

im
e

(m
s)

15 workflow nodes

no heuristics heuristics

0
10
20
30
40
50
60
70
80

m
p

u
ta

ti
o

n
 t

im
e

(m
s)

12 workflow nodes

no heuristics heuristics

0
0.5

1
1.5

2
2.5

3

m
p

u
ta

ti
o

n
 t

im
e

(m
s)

10 workflow nodes

no heuristics heuristics

100
120

m
e

(s
)

30 workflow nodes

no heuristics heuristics

70
80
90

m
e

(s
)

25 workflow nodes

no heuristics heuristics

1 5

2

m
e

(s
)

20 workflow nodes

no heuristics heuristics

0
100
200
300
400
500
600
700

co
m

p
u

ta
ti

o
n

 t
im

e
(m

s)

testcase

15 workflow nodes

no heuristics heuristics

0
10
20
30
40
50
60
70
80

co
m

p
u

ta
ti

o
n

 t
im

e
(m

s)
testcase

12 workflow nodes

no heuristics heuristics

0
0.5

1
1.5

2
2.5

3

co
m

p
u

ta
ti

o
n

 t
im

e
(m

s)

testcase

10 workflow nodes

no heuristics heuristics

0
20
40
60
80

100
120

co
m

p
u

ta
ti

o
n

 t
im

e
(s

)
testcase

30 workflow nodes

no heuristics heuristics

0
10
20
30
40
50
60
70
80
90

co
m

p
u

ta
ti

o
n

 t
im

e
(s

)

testcase

25 workflow nodes

no heuristics heuristics

0

0.5

1

1.5

2

co
m

p
u

ta
ti

o
n

 t
im

e
(s

)

testcase

20 workflow nodes

no heuristics heuristics

0
100
200
300
400
500
600
700

co
m

p
u

ta
ti

o
n

 t
im

e
(m

s)

testcase

15 workflow nodes

no heuristics heuristics

0
10
20
30
40
50
60
70
80

co
m

p
u

ta
ti

o
n

 t
im

e
(m

s)
testcase

12 workflow nodes

no heuristics heuristics

0
0.5

1
1.5

2
2.5

3

co
m

p
u

ta
ti

o
n

 t
im

e
(m

s)

testcase

10 workflow nodes

no heuristics heuristics

0
20
40
60
80

100
120

co
m

p
u

ta
ti

o
n

 t
im

e
(s

)
testcase

30 workflow nodes

no heuristics heuristics

0
10
20
30
40
50
60
70
80
90

co
m

p
u

ta
ti

o
n

 t
im

e
(s

)

testcase

25 workflow nodes

no heuristics heuristics

0

0.5

1

1.5

2

co
m

p
u

ta
ti

o
n

 t
im

e
(s

)

testcase

20 workflow nodes

no heuristics heuristics

0
100
200
300
400
500
600
700

co
m

p
u

ta
ti

o
n

 t
im

e
(m

s)

testcase

15 workflow nodes

no heuristics heuristics

0
10
20
30
40
50
60
70
80

co
m

p
u

ta
ti

o
n

 t
im

e
(m

s)
testcase

12 workflow nodes

no heuristics heuristics

0
0.5

1
1.5

2
2.5

3

co
m

p
u

ta
ti

o
n

 t
im

e
(m

s)

testcase

10 workflow nodes

no heuristics heuristics

* . . . failsafe heuristics

Figure 7.5.: Performance comparison branch and bound vs. heuristic update

that the branch and bound algorithm scales up to problem sizes in the order of 30 work-

�ow nodes with acceptable performance, but that the heuristic update is several orders of

magnitude faster. Note that the �rst testcase of each set is the initial solution, which is

always computed using branch and bound.

It was also found that in the testcases with 10 and 12 work�ow nodes, the heuristic

updates always found the optimum solution. This is not always guaranteed, because the

update is only a heuristic. Indeed, for the testcases with 15 or more work�ow nodes, the

solutions found by the heuristic approach were not always optimal, but they came very

close (within 98% of the happiness) to the optimum. Figure 7.6 shows the ratios between

the happiness values for the solutions found by the heuristics and the optimum happiness

values as found by branch and bound.

An experiment was also tried using only the heuristics instead of the branch and bound

process, using the solution without constraints for K and T as the starting solution. This

turned out to be much faster than branch and bound, which matches the expectations, as

the heuristics are polynomial, whereas the branch and bound is exponential. The initial

heuristic updates are as fast as the subsequent ones. Unfortunately, this is only preliminary

due to the problem that the heuristic update can fail if the update to reduce the value of

118

7.1. Optimization of SLA-Based Service Selection

(5
50

,7
00

)

(6
00

,7
00

)

(6
00

,7
50

)*

(6
00

,7
00

)

(5
80

,7
00

)

(5
50

,7
00

)
99.0%

99.2%

99.4%

99.6%

99.8%

100.0%

15 workflow nodes

testcase

h
a
p
p
in
e
s
s
 r
a
ti
o

(8
00

,8
50

)

(8
50

,8
50

)*

(8
50

,9
00

)*

(8
50

,8
50

)

(8
30

,8
50

)

(8
00

,8
50

)
99.0%

99.2%

99.4%

99.6%

99.8%

100.0%

20 workflow nodes

testcase

h
a
p
p
in
e
s
s
 r
a
ti
o

(9
00

,1
20

0)

(9
50

,1
20

0)

(9
50

,1
25

0)
*

(9
50

,1
20

0)

(9
30

,1
20

0)

(9
00

,1
20

0)
99.0%

99.2%

99.4%

99.6%

99.8%

100.0%

25 workflow nodes

testcase

h
a
p
p
in
e
s
s
 r
a
ti
o

(9
50

,1
50

0)

(1
00

0,
15

00
)

(9
80

,1
50

0)
*

(9
50

,1
50

0)
98.0%

98.5%

99.0%

99.5%

100.0%

30 workflow nodes

testcase

h
a
p
p
in
e
s
s
 r
a
ti
o

* . . . failsafe heuristics

Figure 7.6.: Happiness ratio between heuristic solution and optimum

one constraint makes it exceed the bound for the other one, the �failsafe� version can fail if

a more expensive service needs to be picked to reduce the computation time or vice-versa,

and there is no guarantee of optimality. However, these problems are inherent to heuristics.

A solution was also presented to the well-known problem of user-centric optimization of

service composition and our approach shows its qualities in the second phase by demon-

strating very promising results for real-time response to changing user requirements. Even

more, in practical use the two-phase algorithm as a whole showed an acceptable runtime

behavior, justifying it to be a working solution to the work�ow optimization problem.

7.1.3.3. Runtime Service Failures

7.1.3.3.1. Test Method The testcase with 10 service classes was reused with 5 services

per service class and 10 attributes per service class. The services and user requirements

were kept constant, including the bounds K = 350 and T = 500 and the design-time

optimum was computed using the sequential branch and bound algorithm. In the testcase,

the node number n is assumed to require the service class number n (without loss of

generality, as one can number the service classes in any arbitrary way � also please note

that this is not a requirement of the algorithm, in fact it is also possible to use the same

service class for more than one node, or any other arbitrary assignment).

The successive failure of several services were then simulated. It was also assumed in

119

Chapter 7. Implementation

this testcase that the work�ow is linear, which means that the services before (i.e. with

a lower node number than) the failed service have already completed and cannot change

anymore, whereas the nodes with a higher number can still be changed to use a di�erent

service of the requested class. (This is not a requirement of the algorithm, it is possible

to de�ne an arbitrary set of immutable work�ow nodes at the point of the service failure.)

The �rst number is for 0 failures, i.e. all services work. Then the failures of the services

were simulated in the following order:

1. service 1 from class 1, i.e. for node 1 (the second node, as the counting starts at 0)

2. service 3 also from class 1 (thus there are only 3 choices left for node 1)

3. service 3 from class 3, i.e. for node 3

4. service 4 from class 5, i.e. for node 5

5. service 2 from class 8, i.e. for node 8

The �rst 4 failures were chosen such that the service to be dropped was used in the optimum

solution, for the last one, an arbitrary one was picked to check that the heuristic will not

try to change the solution if there is no need. So this leads to the following lists of �xed

nodes (i.e. nodes one cannot touch anymore because the services have already completed):

0 failures:

1 failure: 0

2 failures: 0

3 failures: 0, 1, 2

4 failures: 0, 1, 2, 3, 4

5 failures: 0, 1, 2, 3, 4, 5, 6, 7

and the following lists of failed services (class,service pairs): 0 failures:

1 failure: 1, 1

2 failures: 1, 1, 1, 3

3 failures: 1, 1, 1, 3, 3, 3

4 failures: 1, 1, 1, 3, 3, 3, 5, 4

5 failures: 1, 1, 1, 3, 3, 3, 5, 4, 8, 2.

The updating heuristic was used for the updates.

7.1.3.3.2. Results The graph shown in Figure 7.1.3.3.1 presents the results obtained.

In the graph, the dashed horizontal lines are the K and t constraints, the continuous

lines are the total cost, the total time and the happiness for the solution. The happiness

must be read on the right axis, everything else on the left one. (Separate axes are used

because otherwise the happiness curve would be too �at to be able to see anything.) The

computation time is less than 2 ms for each of the updates.

It must be noted that, as the updates were done using a heuristic approach, optimality

is not guaranteed, only approximated. That explains why the happiness actually goes

slightly up with the fourth failure: This means the solution which was computed after the

third failure was suboptimal.

120

7.2. Validation of SLA Choreographies

failures happiness cost time K t
0 23.453121 349.08014 457.269835 350 500
1 22.787904 340.240413 467.319084 350 500
2 21.889761 331.958092 482.282088 350 500
3 19.630979 343.473266 488.363885 350 500
4 20.073241 349.925362 472.993888 350 500
5 20.073241 349.925362 472.993888 350 500

19

19.5

20

20.5

21

21.5

22

22.5

23

23.5

24

300

320

340

360

380

400

420

440

460

480

500

0 1 2 3 4 5
Failures

cost

time

K

t

happiness

Ha
pp

in
es
s

Co
st
 o
r T

im
e

Figure 7.7.: E�ects of Service Failures

7.2. Validation of SLA Choreographies

7.2.1. Use Case Scenario

Moving forward with the running example, the user needs to carry out hi-tech multi-media

operations such as rendering and hosting videos. She plans to utilize online services to

accomplish these tasks. The SLA-Choreography resulting from this simple scenario has

already been described in Figure 6.8. Typical SLOs relevant to the use case concern the

availability, bandwidth, resolution and response time.

7.2.2. Assumptions

The prototype for the validation of SLA Choreographies has been designed on the basis of

following assumptions.

� The aggregation of the SLA Choreography is already complete and the aggregated

SLAs are represented as distributed set of rules, whose di�erent parts are scattered

across respective partners.

� A third party trust manager is assumed to foster trust among interacting partners.

In this context, the third party root trust manager has been assumed to construct a

121

Chapter 7. Implementation

Virtual Enterprize Organization (VEO), which will be considered as the root of the

distributed system.

� In the prototype implementation of the scenario, only some of the SLA parame-

ters have been considered, out of which, selected SLOs have been picked up for the

simulation.

� There are multiple layers or agents with their rule-bases. These rule-bases consist of

rules representing di�erent SLOs to provide a proof of concept that heterogeneous

knowledge-bases can work together. The �nal layer actually implements an elaborate

version of the rules expressed in Prova.

� The overall system is a prototype for proof of concept of the proposed framework. A

detailed implementation can be carried out, moving forward on the same lines.

� The SLA information including exact facts and rules are hidden within the knowledge-

bases of their respective agents. The actual validation and penalty enforcement is

done locally within agent's premises but to highlight the hierarchical nature of query

processing, a uni�ed interface has been developed for this prototype. This uni�ed in-

terface is just for the sake of demonstration and does not imply the actual realization

of the validation framework.

7.2.3. Simulation Setup and Tools

The prototype implementation is based on Rule Responder architecture. Rule Responder

employs a suit of technologies to coordinate among various components within its architec-

ture. In addition to Java Servlets, the technologies used in Rule Responder are described

as follows.

7.2.3.1. Mule ESB

Mule Enterprize Service Bus (ESB) [97] supports various protocols and facilitates many

business topologies for component organization.

7.2.3.2. RuleML

RuleML [32] provides an XML based rule exchange format to exchange rules among dif-

ferent (sub)systems especially on Internet. RuleML can conveniently represent logical

statements in XML format. It is a very extensive language and uses a variety of tags. A

few tags which will be used in the prototype are introduced below.

� For representing relations or predicates it uses <Rel>.

� For implication it uses <Implies>.

� To declare a variable it uses <Var>.

122

7.2. Validation of SLA Choreographies

� Constants are represented using <Ind>

� A combination of <Expr> and <Fun> tags, is used to build complex terms, for

instance for building a data structure for the hierarchical arrangement of various

SLOs. <Fun> denotes a function and <Expr> is interpreted as an expression in this

regard.

� A logical sentence is wrapped between <Implies> tags and has two parts i.e., head

of the logical statement and the body of the logical rule represented by <head> and

<body> tags.

� A predicate is enclosed between <atom> tags

As an example with a body 'and-ing' two atoms, consider the English sentence:

"The discount for a client renting a service is 20 percent if the client is also a business

partner and the service is basic."

It can be marked up as the following RuleML (implication) rule:

<Implies>

<head>

<Atom>

<Rel>discount</Rel>

<Var>client</Var>

<Var>service</Var>

<Ind>20 percent</Ind>

</Atom>

</head>

<body>

<And>

<Atom>

<Rel>partner</Rel>

<Var>client</Var>

</Atom>

<Atom>

<Rel>basic</Rel>

<Var>service</Var>

</Atom>

</And>

</body>

</Implies>

RuleML is used a standard rule exchange format in the prototype. The queries are

exchanged among the client and various components in RuleML format. Even if the rules

are represented in some other format, for exchange they must be transformed in RuleML.

For example the functions for Prova-to-RuleML and RuleML-to-Prova are used inside OA.

123

Chapter 7. Implementation

7.2.3.3. POSL

POSL [13] integrates Prolog's positional and F-logic's slotted syntaxes for representing

knowledge (facts and rules) in the Semantic Web. The same logical statement, which was

chosen as an example represented in RulML format can be written in POSL as follows:

discount(?client,?service,percent20) :- partner(?client), basic(?service).

In Rule Responder, POSL uses OOJDrew rule engine [28] to execute its rules.

7.2.3.4. Prova

Prova [82] is an open source rule language for reactive agents and event processing in

Java and is designed to work with Enterprize Service Bus (ESB). Prova can integrate with

Java. This has made it a very attractive choice to design agents in Rule Responder. In

the presented prototype several PAs have been implemented as Java servlets with their

knowledge-bases programmed in Prova and POSL.

A sample Prova rule stored in the knowledge-base of OA for sorting out the right PA,

sending it message and receiving its answer in order to validate an SLO is shown below.

getBandWidth(XID,Topic,Request,Contact):-

% Retrieve the responsible PA (Agent) for the Topic

assigned(XID,Agent,Topic,veo_responsible),

% Send the query to the PA

sendMsg(XID,esb,Agent, "query", slo(BandWidth)),

% Receive the answer(s)

rcvMult(XID,esb,Agent,"answer",Contact).

7.2.4. Architecture

The architecture of the system has been depicted in Figure 7.8.

In Figure 7.8, three types of agents i.e., the External Agent (EA), the Organizational

Agent (OA) and (four) Personal Agents (PAs) have been depicted to be connected together.

Mule Enterprize Bus (ESB) perceives di�erent components as end points of the system and

keeps their information in mule-all-con�g.xml �le. The EA is a thin client implemented as

an html �le, which can post a RuleML query whose answer is also wrapped in the RuleML

format. All the four PAs shown in Figure 7.8 are implemented as Java Servlets equipped

with their respective rule-bases. The messaging among the PAs utilizes HTTP protocol and

the RuleML is used as the standard rule exchange format. The PAs Rendering Work�ow

and Hosting form the �rst layer of PAs and have their knowledge-bases implemented in

POSL that uses the OOJDrew rule engine. The second layer of PAs constitute of the Media

Engine and the Computing Infrastructure and their knowledge-bases are implemented in

Prova.

124

7.2. Validation of SLA Choreographies

EA
: C

lie
nt

R
ul

eM
L

B
as

ed

Q
ue

ry

H
TM

L
Fo

rm

O
A

: V
EO

R
es

po
ns

ib
ili

ty

A
ss

ig
nm

en
t M

at
rix

M
ul

e
B

as
ed

 S
er

ve
r

Pr
ov

a
K

no
w

le
dg

e-
B

as
e

PA
: R

en
de

rin
g

W
or

kf
lo

w

Se
rv

le
t

PO
SL

 K
no

w
le

dg
e-

B
as

e

a
M

U
LE

 E
nt

er
pr

iz
e

Se
rv

ic
e

B
us

PA
: H

os
tin

g

Se
rv

le
t

PO
SL

 K
no

w
le

dg
e-

B
as

e

PA
: M

ed
ia

 E
ng

in
e

Se
rv

le
t

Pr
ov

a
K

no
w

le
dg

e-
B

as
e

PA
: C

om
pu

tin
g

In
fr

as
tr

uc
tu

re

Se
rv

le
t

Pr
ov

a
K

no
w

le
dg

e-
B

as
e

1
H

TT
P

2(
a)

H
TT

P
2(

b)
H

TT
P

3(
a)

H
TT

P
3(

b)
H

TT
P

m
ul

e-
al

l-c
on

fig
.x

m
l

F
ig
u
re

7.
8.
:
P
ro
to
ty
p
e
A
rc
h
it
ec
tu
re
)

125

Chapter 7. Implementation

7.2.5. The Validation Process

The query is intercepted by the Mule server and is directed to the OA to be handled

there. The OA works like a post o�ce. It keeps the information about all its directly

subordinate PAs in a �le called Responsibility Assignment Matrix (RAM) implemented

in OWL-lite. RAM maintains the hierarchy of PAs, their responsibilities, accountabilities

etc. Upon receiving any query, OA's knowledge-base (implemented in Prova), determines

by looking in its RAM, which PA this query should be directed to and then sends an

appropriate Prova message to that particular PA. The PA interprets the message with the

help of its knowledge-base and upon �nding out that it can not furnish all the required

information, redirects it to the next layer of PAs. The second layer of PAs consisting

of Media Engine and Computing Infrastructure simulates the validation process through

its Prova based rules. A text �le populated with values plays the role of the monitoring

system. Depending upon these values, penalty enforcement conditions can be invoked and

the penalty can be calculated. All this information is transformed in RuleML and returned,

which goes all the way back to the html based thin client and constitutes the answer of the

query. The sequence of execution has been numbered in Figure 7.8. The step-wise detail

of the validation process is elaborated as follows:

7.2.5.1. Step 1� Distributed Query and its Response

The EA representing the client interface is shown in Figure 7.9. The client can choose from

the given SLO elements namely: Bandwidth, Availability, Resolution, Response Time. The

client can further choose to direct his RuleML based query toward one or both of the service

providers i.e., hosting engine and rendering work�ow. The RuleML query for availability

sent to the rendering work�ow service is given below.

<RuleML xmlns="http://www.ruleml.org/0.91/xsd">

<Message mode="outbound"

directive="query-sync">

<oid>

<Ind>VEO</Ind>

</oid>

<protocol>

<Ind>esb</Ind>

</protocol>

<sender>

<Ind>User</Ind>

</sender>

<content>

<Atom>

<Rel>getAvaibility</Rel>

<Ind>veo_RenderingWorkflow</Ind>

126

7.2. Validation of SLA Choreographies

Figure 7.9.: External Agent with RuleML-Based Query)

<Ind>update</Ind>

<Var>Monitor</Var>

</Atom>

</content>

</Message>

</RuleML>

The query travels the whole branch of the rendering work�ow and brings back the

availabilities of all the PAs involved the service value chain of the rendering work�ow. It

must be noted that steps 2 and 3 must happen before the answer is retrieved. The answer

is shown below:

<?xml version="1.0" encoding="UTF-8"?>

<RuleML xmlns="http://www.ruleml.org/0.91/xsd"

...

<Atom>

127

Chapter 7. Implementation

<Rel>getAvaibility</Rel>

<Ind>veo_RenderingWorkflow</Ind>

<Ind>update</Ind>

<Expr>

<Fun>SLO</Fun>

<Expr>

<Fun>chainAvaibility</Fun>

<Expr>

<Fun>avaibility</Fun>

<Ind>98</Ind>

<Expr>

<Fun>computing_infrastructure</Fun>

<Ind>98.4%</Ind>

<Ind>penalty_is_15</Ind>

<Ind>Available at 2010-1-3,14:10:0?</Ind>

</Expr>

<Expr>

<Fun>media_engine</Fun>

<Ind>98.9%</Ind>

<Ind>penalty_is_10</Ind>

<Ind>Available at 2010-1-3,14:10:0?</Ind>

</Expr>

</Expr>

</Expr>

</Expr>

...

</RuleML>

The construct </Expr> signi�es the hierarchical nature of the query processing in the

above chunk of RuleML based response.

7.2.5.2. Step 2(a) & 2(b)� Distributed Query Processing and Redirection in OA

In these steps the OA has to redirect the query toward the PA addressed in the query. The

OA and the PAs are de�ned as endpoints on the Mule Enterprize Service Bus (ESB). The

IP addresses and port numbers of these end points is given in the mule-all-con�g.xml �le.

A chunk of the �le is shown below.

...

<endpoint-identifiers>

<endpoint-identifier name="SLAValidation" value="jms://topic:slaValidation" />

<!-- service endpoints of the SLAValidation use case -->

<endpoint-identifier name="VEO" value="jms://topic:veo" />

128

7.2. Validation of SLA Choreographies

<endpoint-identifier name="veo_HostingService"

value="http://127.1.1.0:8080/HostingService/" />

<endpoint-identifier name="veo_RenderingWorkflow"

value="http://127.1.1.0:8080/RenderingWorkflow/" />

</endpoint-identifiers>

...

From the RuleML-based query received by the OA, the receiver of the query is de-

termined through an OWL-Lite based ontology called Responsibility Assignment Matrix

(RAM). RAM is used to describe the structure of various divisions of an organization and

the responsibilities assigned to them. A chunk of RAM is shown below.

<?xml version="1.0"?>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

...

<owl:Ontology rdf:about="./Information.owl">

<owl:versionInfo>v 0.01</owl:versionInfo>

<rdfs:comment>Describes the RAM of VEO</rdfs:comment>

</owl:Ontology>

<owl:Class rdf:ID="VEO" />

<!-- Model of the VEO SLOs -->

<owl:Class rdf:ID="SLOs">

<rdfs:subClassOf rdf:resource="#VEO" />

</owl:Class>

<owl:Class rdf:ID="Rendering_Workflow">

<rdfs:subClassOf rdf:resource="#SLOs" />

</owl:Class>

<owl:Class rdf:ID="Hosting_Service">

<rdfs:subClassOf rdf:resource="#SLOs" />

</owl:Class>

<!-- Responsibility Domains -->

<owl:Class rdf:ID="Responsibility">

<rdfs:subClassOf rdf:resource="#VEO" />

129

Chapter 7. Implementation

</owl:Class>

<!-- TODO: extend responsibilities -->

<Responsibility rdf:ID="Validation" />

<Responsibility rdf:ID="PenaltyEnforcement" />

<Responsibility rdf:ID="Monitoring" />

<Responsibility rdf:ID="Policies" />

<Responsibility rdf:ID="Billing" />

<!-- Meta Topics -->

<Responsibility rdf:ID="HostingService" />

<Responsibility rdf:ID="RenderingWorkflow" />

...

<Rendering_Workflow rdf:ID="RenderingWorkflow">

<responsible rdf:resource="#Validation" />

<responsible rdf:ressource="#Monitoring"/>

<responsible rdf:resource="#PenaltyEnforcement" />

<accountable rdf:resource="#Billing" />

<informed rdf:resource="#Policies" />

<responsible rdf:resource="#RenderingWorkflow" />

</Rendering_Workflow>

</rdf:RDF>

After sorting out the appropriate PA, the OA uses the following Prova function to send

the query:

sendMsg(XID,esb,Agent, "query", slo(Avaibility))

then the OA goes into the listening mode and waits for the answer:

rcvMult(XID,esb,Agent, "answer", Contact)

7.2.5.3. Step 3(a) & 3(b)� Distributed Query Processing in PAs

The PAs corresponding to Rendering Work�ow and Hosting are implemented as Java

Servlets having POSL based knowledge-bases. A PA after receiving the answer from OA

makes use of its POSL based rules to come up with the response to the query. A typical

rule invoked in this condition looks like this:

contactRenderingAvaibility(?Avaibility) :-

slo(chainAvaibility[avaibility[?Avaibility]]).

130

7.2. Validation of SLA Choreographies

The variable ?Availability can �nd a value from a local fact. But in the present scenario,

availability and other SLOs depend on the services below in the chain. The rendering

work�ow is a composite service that uses two other services in the chain namely Media

Engine and the Computing Infrastructure. To �nd out about the availability statistics of

these two services, http messages are sent to the servlets of both the services.

The PAs representing Media Engine and the Computing Infrastructure are implemented

as Java Servlets. Upon receiving queries about a speci�c SLO they consult their Prova

based knowledge-base to come up with the answers.

The overall availability of a service is determined by de�ning initiating and terminating

events for unavailability, such as an outage or a restart of the service. These events can be

de�ned as:

initiates (outage (S),unavailable (S),T).

terminates (restart (S),unavailable (S),T).

which just de�nes that an outage event initiates the unavailable state and a restart event

terminates the unavailable state. This detour over unavailability is due to the assumption

that the service is initially running and available. Therefore, the initiating event should

be something that terminates this initial state. The following rule simulates these events:

happens (outage (S), datetime (Y,M,D,H,M,S)).

happens (restart (S), datetime (Y,M,D,H,M,S)).

These rules describe that the outage or restart events happens at a certain point in

time, de�ned by datetime(Y,M,D,H,M,S), thus initiating or terminating the unavailable

state respectively. With this set of rules, one can �nally set up a query, if the service is

available at a given point in time:

:- solve (not(holdsAt (unavailable (S),datetime (2010 ,8 ,30 ,10 ,30 ,0)).

This query tests if the service was unavailable on 30-August-2010 at 10:30:00, negates it

and returns yes, if it was available or no if it was not available.

For the penalty-reward system, the service can be assigned a rank depending on the

average monthly availability:

� good: for an average monthly availability of 98% or more.

� ok: for an average monthly availability of 95% or more but less than 98%.

� bad: for an average monthly availability of less than 95%.

getRank(A,Rank,Penalty) :- less(A,95), Rank = bad,

Penalty = penalty-15.

The SLA validation and penalty enforcement is local decision and the PAs take execute

these functions locally. But for the sake of demo, these statistics are inserted in the RuleML

based stream and are directed back through the same channel to the client.

131

Chapter 7. Implementation

7.2.6. Conclusion

7.2.6.1. SLA Oriented Service Selection

It was found that the branch and bound algorithm scales very badly. It may be worth

optimizing further. More results from the distributed implementation could be interesting

as well. The heuristics proved themselves worthy of further investigation, as even a very

simple heuristic update gives very good results, it is incomparably faster than branch and

bound. It may be useful to pump research into using heuristics for the initial solution. The

updating heuristics can also be extended to other kinds of changes in user requirements

and to changes in service o�erings. Finally, more complex heuristics could be looked into.

7.2.6.2. SLA Choreography Validation

This prototype implementation serves as a basic platform for further exploration of much

more rigorous performance focused simulations of highly distributed large-scale SLA Chore-

ographies. There are a few things needed to be understood regarding the scalability and

fault-tolerance of the system.

� SLA Choreography is an emergent and self-organizing system. The service selection

and negotiation process is independently employed at various levels of the SLA chore-

ography whose result emerges into the formation of SLA connections in a hierarchical

manner and thus an SLA Choreography is created. This emergent behavior allows

the system to be highly scalable. The time taken by validation query to validate a

huge SLA Choreography can be very hard to predict due to the diverse performance

of various local rule-bases. This may not be an issue for most of applications but

would be highly undesirable for time-critical applications. However, a worst case

time can be calculated in advance and can be conveyed to the stake-holders as part

of SLA parameters.

� Organizational Agent (AO) is the biggest hotspot in the system, whose failure can

bring the whole system down therefore there must be some standby mechanism to

keep the system going on even in case of the failure of OA. One strategy is based on

replica management of the information contained by OA so that a new OA can be

re-instantiated, recon�gured and reconnected as soon as such a failure is detected.

A Replica generation of the whole SLA Choreography is neither feasible from space

viewpoint nor sensible from a business perspective. Therefore, it is recommended

to replicate only VOs. A VO contains all the end points of PAs connecting it.

The system remains self-stable even in case of SLA Choreography scattered across

multiple VOs. If a PA X is making a connection to another PA Y located in a

VO other than its own then this X will have to go through the parent VO of Y to

establish a connection. In this way X appears to be an EA to the parent VO of Y

and its end point is maintained as a EA there. Thus replicating all VOs replicates

all the end points of the SLA Choreography. Dual Modular Redundancy (DMR)

[132] replication models can be employed to keep the system self-stable. In case a

132

7.3. Summary

VO adheres to some error-prone functions, depending on the speci�c requirements of

the VO, a Triple Modular Redundancy (TMR) [143] or a pair-and-spare replication

strategy can employed.

� In case of a PA failure, the system can self-organize itself. If a PA located somewhere

in the SLA Choreography just fails then the all the links above in the chain are

a�ected. If the PA can not be recovered then a new service provider is required to be

added in the system. The service consumer of the failing PA can select a new service

provider by using the heuristic updating algorithm. However, as a worst scenario, a

renegotiation of service will be required across all the a�ected links.

7.3. Summary

For implementation, two components of the SLA-centric framework have been simulated

to present a proof of concept of how these parts can be applied to a service-based Utility

Computing infrastructure. The service selection algorithms have been parallelized, imple-

mented and tested using the Kepler work�ow tool and CORBA. The updating heuristic

based service selection shows tremendous e�ciency as compared to the branch and bound

algorithm. The resilience of the algorithm has been tested against failing services and

the approach has been found to be quite stable. For rule-based hierarchical validation

of SLA Choreographies, a Rule Responder based implementation is demonstrated, which

enables a distributed query to traverse across a set of distributed rules representing SLA

aggregations across heterogeneous boundaries and get validated locally. For the sake of

demonstration, the results are aggregated and brought back to client interface re�ecting a

hierarchical nature of the service value chains. This prototype can serve as a platform for

rigorous performance tests of globally scattered large SLA Choreographies.

133

Chapter 7. Implementation

134

Chapter 8.

Extensions and Applications of the

SLA-centric Framework

Its easy to see, hard to foresee.

(Benajmin Franklin)

The proposed SLA-centric framework for service-based Utility Computing is a group of

generic models, which can be applied wherever they are needed in the Utility Computing

based infrastructures. The author of the thesis has already proposed some extensions

[122, 128] of the framework. One of such extension has been proposed for the uni�cation

of the rule based validation framework, SLA monitoring model LoM2HiS [55] and the

cloud infrastructure LAYSI [33]. A summary of these proposed extensions is provided in

the following sections.

8.1. Extension of the Validation Framework

In [122], the author of this thesis brings together three systems i.e., LAYSI [33], LoM2HiS

[55] and the rule-based validation system and weaves a holistic validation framework for

agile Cloud infrastructures. LAYSI - A Layered Approach for Prevention of SLA-Violations

in Self-manageable Cloud Infrastructures, is embedded into the FoSII project (Foundations

of Self-governing ICT Infrastructures) [5], which aims at developing self-adaptable Cloud

services. LAYSI, as shown in Figure 8.1 provides an agile component based architecture

for layered Cloud infrastructure and facilitates SLA-based service discovery, deployment,

orchestration, maintenance and fault tolerance. The layered Cloud architecture utilizes

loosely coupled and replaceable components like negotiator, broker or automatic service

deployer, which are hierarchically glued together through SLAs.

LoM2HiS (Low Level Metrics to High Level SLAs) system provides a means to map

resource metrics to high level service parameters. The service provider in this way uses

this system to maintain the contracted QoS. It is an integral component of the Founda-

tions of Self-governing ICT Infrastructures (FoSII) project [5]. The rule-based validation

framework has been described in detail in Chapter 6.

Although the validation mechanisms of the three systems were already available but

their blended version yields a holistic approach which targets the SLA validation problems

within their speci�c scopes.

The holistic validation framework addresses the issue of validation at three levels:

135

Chapter 8. Extensions and Applications of the SLA-centric Framework

Figure 8.1.: Architecture of LAYSI

1. Infrastructure Level: Adjusting the agile Cloud infrastructure by �ne tuning its build-

ing blocks to prevent the SLA violation threats. This type of validation is a special-

ization of LAYSI [33].

2. Resource Level: Taking proactive actions within the domain of service provider to

prevent the possible SLA violations. For this, all the participating Cloud services

need to implement certain interfaces provided by the LoM2His validation model.

This is an intrinsic functionality of LoM2HiS model.

3. Business Level: Taking reactive measures when the SLA violation has already oc-

curred and has been detected by the client. The violation needs to be localized and

addressed within the service provider's SLA View due to the distributed constraints

of the system.

The validation mechanism at the �rst two levels is proactive in nature i.e., preventive

actions are taken before the violation has taken place. the third level requires a reactive

validation approach i.e., a validation strategy after the SLA violation has occurred.

The proposed holistic validation system has been depicted in Figure 8.2

In the proposed holistic validation framework, di�erent agents from the rule-based val-

idation framework have been merged with various components of LAYSI framework in

such a manner that the components of LAYSI framework has been divided into several

domains, each taken care of by one agent of the rule-based validation framework. In the

extended framework, it is assumed that each VO will be represented by an OA and will

have its own broker. The Meta-broker will be part of the EA and will search services within

various VOs by interacting with their respective brokers. Each services within a VO will

be represented by its corresponding PA and will be required to implement the necessary

136

8.2. Extension of the Negotiation Model

Meta Negotiator

Meta Broker

Broker Broker

Automatic Service
Deployer

Automatic Service
Deployer n

Automatic Service
Deployer 1

Service

Service

Service

Service

Service

Knowledge Base

VO
Policies

Validation
Rules

Facts

Knowledge Base

VO
Policies

Validation
Rules

Facts

Knowledge Base

Business
Rules

Validation
Rules

Facts

Knowledge Base

Business
Rules

Validation
Rules

Facts

LoM2HiS
Monitoring

LoM2HiS
Monitoring

EA

OA OA

PA PA

Figure 8.2.: A holistic SLA validation framework

LoM2HiS interfaces to attain the self-validation functionality for proactive SLA validation.

The details of the proposed extended framework are available in [122]

8.2. Extension of the Negotiation Model

8.2.1. Formal Model

8.2.1.1. Parameter Vector

Both the set F of feasible con�gurations (and thus the renegotiation function g) and

the price function f may depend on additional outside parameters known to the service

provider, such as the amount of idle CPU power currently available on the server infras-

tructure, or such as the number of services from the same provider being purchased by the

client, to be considered for mass purchase rebates. This can be modeled by introducing

an additional parameter vector θ which is added to the de�nition of F , f and g, turning

the set F into a set-valued function F (θ) and adding an additional parameter to f(θ, q0)

and g(θ, q0, w). (In the de�nition of g, one only needs to replace F by F (θ), all the other

quantities do not depend on θ.)

If the vector θ is assumed constant throughout the negotiation process, one can ignore

137

Chapter 8. Extensions and Applications of the SLA-centric Framework

it during computation and just consider F , f and g for a given �xed value of θ.

8.2.1.2. Asymmetric Weights

Due to the symmetricity of the distance relation dw used in the renegotiation function g,

the client has no means to specify it for a given attribute, e.g. the resolution of the video,

getting a higher quality than requested is not a big problem, but getting a lower one is.

Instead, a violation by the same amount in either direction will always be the same.

This limitation can be addressed by introducing asymmetric weights w+ ∈ Rm
+ and

w− ∈ Rm
+ and rede�ning dw as the asymmetric distance

dw(q̂0, q0) =

√√√√ m∑
i=1

{
w+
i
2
(q̂i − qi)2, if q̂i ≥ qi

w−i
2
(q̂i − qi)2, if q̂i < qi.

It shall be noted that this asymmetric distance is no longer a distance relation in the

classical sense, which would require symmetricity, i.e. d(u, v) = d(v, u) ∀u, v.

8.2.2. Negotiation Protocol with Payment

The author of the thesis has proposed a payment model for mobile Grids [125, 77] based

on gSET [135] payment mechanism. The gSET mechanism is based on Secure Electronic

Transaction (SET) protocol [93, 94, 95] initially introduced for credit cards but could not

gain popularity due to an intrinsic requirement of exchange of PKI related certi�cates. As

shown in Figure 8.3, gSET requires an interaction among four parties:

1. Client

2. Service Provider

3. Trust Manager

4. Account Provider

There are two basic requirements of gSET:

� The client and the service provider should have a secure PKI based communication

channel.

� The client and the service provider must trust a trust manager with whom they share

there �nancial credentials.

The proposed framework for SLA-centric service-based Utility Computing has a strong

a�nity to gSET as it ful�lls all the requirements of gSET protocol. The third party hybrid

trust manager fosters PKI based security among the interacting partners, which can be

utilized by the gSET based protocol. The third party trust manager acts as the root of the

system and can very well mediate between service consumer and service consumer during

138

8.3. SLA Oriented Service Selection for Reverse Auction based Systems

Figure 8.3.: gSET Architecture

gSET based transactions. The fourth element i.e., the Account Provider can be smoothly

integrated with the rest of the system.

The proposed negotiation protocol can be extended by integrating it with a gSET based

payment protocal. The gSET steps from [135] can be inserted to ensure payment right

before the SLA is signed by both parties.

8.3. SLA Oriented Service Selection for Reverse Auction

based Systems

The author has proposed [129] a blackboard [42] based system for service selection that

employs branch and bound service selection algorithms and has contributed [115] in a

blackboard system for service selection using A* algorithm. The proposed blackboard

based systems can be extended for reverse auction. In the reverse auction based systems,

service providers bid to sell their services against an advertisement posted by a client.

The winning bid is not necessarily the lowest but usually the one coming from the service

provider with the highest reputation. The blackboard system in this regard is a perfect

place for publishing advertisements. The hybrid trust model can play a crucial role of

reputation management. The proposed blackboard system as shown in Figure 8.4 consists

of several regions where di�erent parts of a work�ow can be mapped. Service providers

shown here as knowledge sources, will be invited to solve the advertised work�ow activities

by providing services to carry out these tasks. A control system will control the access of

the blackboard.

The reverse auction system has huge potential for time e�ciency and cost for the service

consumer due to several reasons:

� It is an absolutely user-directed selection methodology as the consumer itself ad-

139

Chapter 8. Extensions and Applications of the SLA-centric Framework

S1

S2

S3

S4

S5

S6

X1 X5X4

X3

X2 X6

KS1

KS3

KS2

KS4

KS5

Blackboard

Data Flow

Control Flow

Knowledge Sources

Control System

Figure 8.4.: A blackboard architecture for a reverse auction based service selection system

vertises the speci�cations of the required products and has the complete control

throughout the process.

� As it is a user-directed approach, the service providers follow the user requirements

from the very beginning thus saving the consumer useful time.

� The process is advantageous to both the service provider and the service consumer

as it results in reducing marketing costs thus reducing product cost.

A blackboard based reverse auction system for service selection smoothly integrates with

the proposed framework with service selection algorithms, reputation based trust and the

negotiation protocol directly contributing to the system design.

8.4. SLA Aggregation Patterns in Business Processes

The SLA aggregation patterns presented in this thesis are available for application in Busi-

ness Process Management, which expects to generate interesting developments especially

in the sub-domains of architectural and connection patterns. Di�erent types of business

value networks are also an interesting area where the application of SLA aggregation pat-

terns is sought. It must be highlighted that one of the �nal objectives of SLA@SOI [22]

project is to develop SLA aggregation patterns. The contribution through this thesis is

expected to directly complement SLA@SOI's research in this regard.

8.5. Applications in Enterprize 2.0

Enterprize 2.0 [67] is a rapidly evolving concept, which proposes to design new business

models by integrating the technologies of web2.0 such as social networking, blogging, wikis

etc. directly into the business enterprize. This is a very promising vision also for the

development of IT based micro-economy in terms of new business models providing micro-

players an opportunity to actively contribute into web based business initiatives. The

140

8.6. Summary

SLA-centric framework proposed in this thesis can play a very important role in realizing

enterprize 2.0 based business models. One scenario can be a social community of mashup

services having composite mashup services of varying granularity scattered across the vir-

tual space of various members of the community. The social community, also seen as a

Virtual Enterprize Organization, also de�nes a reputation based trust mechanism among

its members. A service consumer with an objective to build a service based application

initiates a search in this social community for highly reputed services having a speci�c

combination of service attributes, rentable within a maximum a�ordable cost etc. As a

result the potential service consumer is suggested a set of services owned by di�erent mem-

bers of this VEO. The service consumer intends to buy the service instances and initiates

the negotiation mechanism. The Personal Agents (PA) of the service provider participate

in the negotiation mechanism on behalf of their respective stakeholders. After a successful

round of negotiation, services are connected together emerging into a business value net-

work underpinned by SLA Choreography. From this scenario it is apparent how various

components of the proposed SLA-centric framework can play a crucial role in order to

realize the vision of Enterprize 2.0.

8.6. Summary

This chapter has presented various possibilities for the extension and the applications of

the proposed SLA-centric framework for service based Utility Computing. The validation

framework has been integrated with a Cloud based infrastructure for service provision.

Several possibilities have been shown to extend and apply the proposed negotiation model.

The trust model has been found equally useful in various roles such as a mediating body

during payments, a uni�cation authority in case of a VEO connecting various mashup

service providers and a reputation manager in case of reverse auction blackboard systems.

Several examples and scenarios have been presented to emphasize the high applicability of

the proposed framework in various domains of service based Utility Computing.

141

Chapter 8. Extensions and Applications of the SLA-centric Framework

142

Chapter 9.

Conclusion

If you want to know the end, look

at the beginning.

(An African proverb)
This body of work elaborates the signi�cance of Service Level Agreements as an enabling

technology for the realization of service-based Utility Computing. The proposed framework

covers the service life cycle and it discusses SLA oriented selection, negotiation, aggregation

and validation and their particular roles in the formation of service value chains. The results

of this research are expected to directly contribute in the materialization of the notion of

service markets and their underlying service value chains. SLA oriented service selection

algorithms provide a generic means to optimize QoS-based selection of service.

The negotiation algorithm for con�gurable services allows service providers and clients

to dynamically tweak the �ne details of their interests through a �exible negotiation algo-

rithm. SLA Aggregation methodology is especially useful to micro-economy players such as

composite service providers and resellers. SLA Choreography and its aggregation formulate

a SLA-based mechanism to realize cross-enterprise business relationships. Several aggre-

gation patterns have been extracted which can be applied in Business Process Modeling

and cooperative work�ows.

The hierarchical validation mechanism introduces a technique based on distributed query

processing to validate SLA Choreographies scattered across multiple heterogeneous do-

mains. Rule-based Systems present the possibility of implementing such a distributed

validation mechanism, keeping the privacy issues of stakeholders intact at the same time.

This research is likely to contribute to the research community by complementing projects

such as SLA@SOI, SLA4DGrid etc. as well as to the industry by providing a basic frame-

work for enabling SLA-based Utility Computing infrastructures.

143

Chapter 9. Conclusion

Personal Re�ections

� The end-user of a Cloud concerned with neither software nor hardware but only

dataware.

� The aggregation of two Clouds is still a Cloud.

� Cross-enterprize business automation inevitably needs of third party trust manage-

ment.

� The notion of SLA Choreography is indispensable for service value chain automation.

� Mashup technologies along with social networks o�er an important role in the progress

of IT-based micro-economy.

� A SLA View can perfectly be realized by an agent equipped with its local knowledge-

base.

� Autonomic Computing, Human-Centered Computing and SOA are the driving philoso-

phies of evolving ICT infrastructures.

� A Thousand unlit lamps are not worthy to illuminate even one whereas one enlight-

ened lamp can illuminate thousands.

� Reality is a function of man's comprehension.

� One of the biggest blunders of science is the assumption of isolated systems.

144

Appendix A.

Installation Guide for the Simulation

Environment for Optimized Service

Selection

A.1. Compiling the Single-Machine Optimization Cores

To compile the non-distributed optimization cores, you need:

� GNU/Linux or a compatible operating system,

� a current version of g++ (the C++ compiler of the GCC suite, http://gcc.gnu.

org/),

� a current version of Qt 4 (http://qt.nokia.com/), at least the QtCore module.

1. To build the sequential optimization core, symlink or copy bnb-optimizer-sequential.cpp

to bnb-optimizer.cpp and run the ./build-optimizer.sh script.

2. To build the threaded optimization core, symlink or copy bnb-optimizer-threaded.cpp

to bnb-optimizer.cpp and run the ./build-optimizer.sh script. (Note that only

one of the sequential or threaded cores can be built at one time.)

3. To build the runtime optimization core (for runtime reaction to failed services), run

the ./build-runtime-optimizer.sh script.

A.2. Compiling and Installing the CORBA Optimization Cores

To compile the distributed optimization core using CORBA, you need all dependencies of

the sequential version plus:

� TAO (The ACE ORB,

http://www.cs.wustl.edu/~schmidt/TAO.html).

1. Change the hardcoded #define NUM_SLAVES 4 near the beginning of bnb-optimizer-corba.cpp.

2. Change the hardcoded IP addresses and hostnames near the end of bnb-optimizer-corba.cpp.

145

http://gcc.gnu.org/
http://gcc.gnu.org/
http://qt.nokia.com/
http://www.cs.wustl.edu/~schmidt/TAO.html

Appendix A. Installation Guide for the Simulation Environment for Optimized Service Selection

3. On the master machine, con�gure the TAO event service, using the provided

tao-cosevent.conf and tao-cosevent.opt �les.

4. On the master machine, make sure the TAO name and event services are running.

The script corba-restart.sh can be used to start or restart those services.

5. To build the master process, run the ./build-optimizer-corba-master.sh script.

6. To build the slave process, run the ./build-optimizer-corba-slave.sh script. The

scp-bin.sh script (in which you will have to change the hardcoded hostnames) may

be used to easily upload the built slave program to all slave machines.

A.3. Unsupported Variants of the Optimization Core

During development, various variants have been experimented with and discarded for vari-

ous reasons. Those experimental variants are included in the unsupported directory. Since

they did not end up working, we do not recommend attempting to build or use them and

cannot provide any support for them. None of the published results were obtained with

those unsupported versions of the code.

A.4. Executing the Optimizer through Kepler

The most straightforward way to run the optimizer is through the provided Kepler (https:

//kepler-project.org/) work�ows (which expect the optimizer core in

~/Praktikum/bnb-optimizer):

1. kepler-workflow.xml allows running any of the optimization cores (except the run-

time optimizer) interactively through a basic dialog interface.

2. kepler-workflow-auto.xml allows running any of the optimization cores (except the

runtime optimizer) automatically, with input coming from the ~/Praktikum/services.txt

and ~/Praktikum/workflows.txt �les.

3. kepler-workflow-runtime.xml does the same as kepler-workflow-auto.xml, but

with the runtime optimizer (~/Praktikum/runtime-optimizer) enabled. It takes

the additional input �les ~/Praktikum/fixed.txt (services which cannot be changed

anymore at the given time) and ~/Praktikum/failed.txt (services which failed at

the given time and must be replaced).

All output is logged to ~/Praktikum/output.log.

All hardcoded �le names can be changed from the Kepler work�ow editor.

146

https://kepler-project.org/
https://kepler-project.org/

A.5. Executing the Optimizer Directly

A.5. Executing the Optimizer Directly

In some setups, it may not be practical to run Kepler on the machine on which the non-

distributed core or the master process of the distributed core will run. For these cases,

the fake-optimizer script is provided: if it is used as the bnb-optimizer executable,

all the input passed by Kepler is logged to the keplertest.txt �le, which can be easily

transported to another machine and fed to the optimizer using a simple ./bnb-optimizer

<keplertest.txt input redirection.

A.6. Testcases

The testcases directory contains testcases to pass to:

� bnb-optimizer (directly) for optimizer-input*.txt and testcase_*.txt

� kepler-workflow-auto.xml for services*.txt and workflows*.txt (pairs with

the same numbering must be used together, copied/symlinked/renamed to just services.txt

and workflows.txt, respectively)

� kepler-workflow-runtime.xml for the single testcase composed of services9.txt

(to rename to services.txt), workflows9.txt (to rename to workflows.txt), fixed.txt

and failed.txt)

147

Appendix A. Installation Guide for the Simulation Environment for Optimized Service Selection

148

Appendix B.

Installation Guide for the Simulation

Environment for Hierarchical SLA

Validation

B.1. Setting Up Eclipse Environment

B.1.1. Prerequisites

� Installation of subclipse: http://subclipse.tigris.org/servlets/ProjectProcess?pageID=p4wYuA

� Installation of Mule IDE: http://www.mulesoft.org/documentation/display/MULEIDE/Home

� Download Mule: http://www.mulesoft.org/download-mule-esb-community-edition

� Add the JAVA HOME environment variable to point to java install directory and

Mule Home to point to Mule installation directory.

B.1.2. Obtaining Source Code

� Windows->Show View->Other->SVN->SVN Repositories

� Right Click->New->Repository Location...

� Add the Rule Repsonder SVN repository:

https://slavalidator.svn.sourceforge.net/svnroot/slavalidator

� Navigate to the root -> Right click on PragmaticAgentWeb -> Checkout

B.1.3. Con�guring Mule

� Open the mule-all-con�g.xml �le

� Change all end-point IP's (which point to PA's) to the IP of your machine.

� Save, and compile the JAR: Select the packages rules, src, repository, src/test/java,

src/main/java, /src/main/resources, conf -> Right click -> Export -> Java -> JAR

File

� Name the jar �le pragmatic-agent-web-1.0-SNAPSHOT.jar and place in lib directory

149

Appendix B. Installation Guide for the Simulation Environment for Hierarchical SLA Validation

B.1.4. Ports Required by SLAValidator

� Apache-HTTP-Server: 80

� Apache-Tomcat: 8080

� Mule: 8888, 60504

� RR OA's: 9995,9996,9997,9998,9999

B.2. Setting Up Apache HTTP Server

The apache HTTP server starts its �le directory under htdocs. This is where you need

to place any websites you wish to be installed. Remember that an HTML �le labeled

index.html located under root will be defaulted to when your IP is navigated to.

� Copy the EA webpage i.e. demo.html, to htdocs. If you wish to have it as default,

rename as index.html

� The page must now be told to direct its message to your PC and not the previous

server. Edit the page and �nd the old IP address (approximately halfway down),

replace it with /local-ip/:8888 with the same port.

B.3. Setting Up TomCat Server

All servlets are located under the webapps folder. All source code for the PA's is located

under /personalAgents. Class �les for the PA's are located under "/target/classes". It

should also be mentioned that there are two levels of PA-s. On the �rst level there are

HostingService and RenderingWork�ow while on the second level there are ComputingIn-

frastructure and MediaEngine.

B.3.1. Con�guring the �rst level PA Source

� Navigate to the PA you wish to Implement (e.g. /personalAgents/HostingService)

� Change the "address" global variable to local-ip

� Save, and now the class �le is located in the directory mentioned above.

B.3.1.1. Creating the Tomcat Directory

� Create a new directory under ".../webapps" which has the same name as the PA

which you are implementing (e.g. "HostingService").

� Create two more directories under the new one: "META-INF" and "WEB-INF"

150

B.3. Setting Up TomCat Server

� Navigate to META-INF and create a new �le "MANIFEST.MF" with the following

contents:

Manifest-Version: 1.0

Ant-Version: Apache Ant 1.6.5

Created-By: 1.5.0_06-b05 (Sun Microsystems Inc.)

Built-By: ...

Main-class:name of the main class

main class name = the name of the PA class (e.g. HostingService.class)

� Navigate to the WEB-INF folder and create the �le "con�x.xml" with the following

contents:

<sign>

<url>local ip</url>

<context>class name</context>

<delay>5000</delay>

<log>yes</log>

</sign>

class-name = The main class name (e.g. HostingService)

� Navigate to the WEB-INF folder and create the �le "web.xml" with the following

contents:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app

PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"

"http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>

<display-name>name of the class</display-name>

<description>Takes incoming messages and excutes queries</description>

<servlet>

<servlet-name>name of the class</servlet-name>

<servlet-class>name of the class</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>name of the class</servlet-name>

<url-pattern>/</url-pattern>

</servlet-mapping>

</web-app>

� Navigate to the WEB-INF folder and create the folders "classes" and "lib"

151

Appendix B. Installation Guide for the Simulation Environment for Hierarchical SLA Validation

� Under the lib folder, copy all contents from "/personalAgents/lib" to it.

� Under the classes folder, copy the PA class you want to use to it (e.g. "/target/class-

es/ HostingService.class")

� Under the classes folder, create a new folder called "resources-PA"

� Under the resources-PA folder, copy all contents from "/target/classes/resources-PA

to it

B.3.2. Con�guring the second level PA Source

It is pretty much the same procedure, the di�erence is just that the PA-s on the second

level need some more �les.

� Navigate to the WEB-INF folder and create the following folder structure ws->prova-

>esb.

� Now you need prova-2.0-SNAPSHOT.jar (or just prova.jar) which you can �nd in

the lib folder of the project

� Open it (with Winrar or Winzip) and navigate to ws->prova.

� There you should look for the �les : reagent.class, RMessageQueue.class and TaskQueue.class.

Copy them in the prova folder which you have created inside of WEB-INF.

� Open again the jar �le, navigate to ws->prova->esb and copy the �le ProvaUmo.class

to the esb folder in WEB-INF.

� Now take the .prova �les (sla-availability, sla-bandwith, sla-resolution, sla-responsetime)

and place them inside of "apache-tomcat-dir/ (the �les with the values (bw.txt,

rtime.txt should also be placed there)

� he last step is to open every prova �le and change the paths in the header to :

"your-project-dir/ rules/ContractLog/math.prova" Repeat with list.prove and list-

math.prova.

B.4. Starting Up

� Start Apache-HTTP-Server: .../bin/httpd.exe

� Start Tomcat Server: .../bin/startUp.bat

� Start Mule Server: .../startUp.bat

152

Bibliography

[1] ASKALON Project, available at http://www.dps.uibk.ac.at/projects/agwl/, last ac-

cessed Nov 2010.

[2] AssessGrid Project, available at http://www.assessgrid.eu/, last accessed Nov 2010.

[3] BREIN Project, available at http://www.eu-brein.com/, last accessed Nov 2010.

[4] Community Scheduler Framework, available at http://www.globus.org/ grid_soft-

ware/ computation/csf.php, last accessed Nov 2010.

[5] FOSII Project, available at http://www.infosys.tuwien.ac.at/linksites/FOSII/index.html,

last accessed Nov 2010.

[6] Libra Project, CloudLab, University of Melbourn, available at:

http://www.cloudbus.org/libra/, last accessed Nov 2010.

[7] MASCHINE Project, available at http://ai.eecs.umich.edu/people/wellman/maschine/,

last accessed Nov, 2010.

[8] MASTER Project, available at http://www.master-fp7.eu/, last accessed Nov 2010.

[9] mOSAIC Project, available at http://www.mosaic-cloud.eu/, last accessed Nov 2010.

[10] NESSI-Grid SRA 3.0, available at http://www.soi-

nwg.org/doku.php?id=sra:description, last accessed Nov 2010.

[11] NEXOF-RA Project, available at http://www.nexof-ra.eu/, last accessed Nov 2010.

[12] Open Grid Forum (OGF), available at http://www.ogf.org/, last accessed Nov 2010.

[13] POSL rule-based language, available at, http://ruleml.org/submission/ruleml-

shortation.html, last accessed Nov 2010.

[14] RBSLA Project, available at http://ibis.in.tum.de/projects/rbsla/, last accessed Nov

2010.

[15] Romulus Project, available at http://www.ict-romulus.eu/web/romulus, last ac-

cessed Nov 2010.

[16] SLA4D-Grid Project, available at http://www.sla4d-grid.de/, last accessed Nov

2010.

153

Bibliography

[17] SOA4ALL Project, available at http://www.soa4all.eu/, last accessed Nov 2010.

[18] The Telemanagement Forum, available at: http://www.tmforum.org/

pages/2016/default.aspx, last accessed: Nov 16, 2010.

[19] TrustCom Project, available at www.eu-trustcom.com, last accessed, Nov 2010.

[20] VIOLA Project.

[21] Virtual Organization Membership Service (VOMS). \url{http://hep-project-grid-
scg.web.cern.ch/hep-project-grid-scg/voms.html}, 2003.

[22] SLA@SOI Project, available at http://www.sla-at-soi.org/index.html, last accessed

Nov 2010., 2008.

[23] Adrian Paschke et al. Rule responder: RuleML-based agents for distributed collab-

oration on the pragmatic web. 2nd int. conference on Pragmatic Web, The Nether-

lands, 2007.

[24] M. Aiello, G. Frankova, and D. Malfatti. What's in an Agreement? A formal analysis

and an extension of WS-Agreement. Lecture Notes in Computer Science, catagory

Security and SLA, Springer Berlin Germany, 2005.

[25] R. AlNemr and C. Meinel. Getting More from Reputation Systems, a Context aware

Reputation Framework Based on Trust Centers and Agent Lists. The Third Interna-

tional Multi-Conference on Computing in the Global Information Technology (iccgi

2008), pages 137�142, July 2008.

[26] I. Altintas, A. Birnbaum, K. K. Baldridge, W. Sudholt, M. Miller, C. Amoreira,

Y. Potier, and B. Ludaescher. A Framework for the Design and Reuse of Grid

WorkFlows. In International Workshop on Scienti�c Aspects of Grid Computing,

pages 120�133. Springer-Verlag, 2005.

[27] R. B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. M. Llorente and

F. G. Montero, Y. Wolfsthal, E. Elmroth, J. Caceres, M. B.-Y., W. Emmerich. The

RESERVOIR Model and Architecture for Open Federated Cloud Computing. IBM

Journal of Research and Development,, 53(4), 2009.

[28] M. Ball, H. Boley, D. Hirtle, J. Mei, and B. Spencer. The OO jDrew Reference

Implementation of RuleML. In RuleML 2005, Galway, 2005.

[29] D. Barry. Web Services and Service-Oriented Architectures: The Savvy Manager's

Guide. Morgan Kaufmann, 2003.

[30] W. Binder, I. Constantinescu, B. Faltings, and N. Heterd. Optimal Work�ow Exe-

cution in Grid Environments. In NODe/GSEM, 2005.

[31] M. B. Blake and D. J. Cunnings. Work�ow Composition of Service Level Agreements.

International Conference on Services Computing (SCC2007), 2007.

154

Bibliography

[32] H. Boley. The Rule-ML Family of Web Rule Languages. In 4th Int. Workshop on

Principles and Practice of Semantic Web Reasoning, Budva, Montenegro, 2006.

[33] I. Brandic, V. C. Emeakaroha, M. Maurer, S. Dustdar, S. Acs, A. Kertesz, and

G. Kecskemeti. LAYSI: A Layered Approach for SLA-Violation Propagation in Self-

Manageable Cloud Infrastructures. 2010 IEEE 34th Annual Computer Software and

Applications Conference Workshops, (i):365�370, July 2010.

[34] I. Brandic, D. Music, P. Leitner, and S. Dustdar. VieSLAF Framework: Enabling

Adaptive and Versatile SLA-Management. In Proceedings of the 6th International

Workshop on Grid Economics and Business Models, GECON '09, pages 60�73,

Berlin, Heidelberg, 2009. Springer-Verlag.

[35] J. Y. Buyya and Rajkumar. A Budget Constrained Scheduling of Work�ow Appli-

cations on Utility Grids using Genetic Algorithms. In Workshop on Work�ows in

Support of Large-Scale Science, Proceedings of the 15th IEEE International Sympo-

sium on High Performance Distributed Computing (HPDC 2006), Paris, 2006.

[36] R. Buyyaa, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud computing

and emerging IT platforms: Vision, hype, and reality for delivering computing as the

5th utility . Future Generation Computer Systems, Volume, 25:599�616, 2010.

[37] I. Chebbi, S. Dustdar, and S. Tata. The view based approach to dynamic inter-

organizational work�ow cooperation. Data and Knowledge Engineering, 56:139�173,

2006.

[38] J. Chen and Y. Yang. Activity Completion Duration based Checkpoint Selection

for Dynamic Veri�cation of Temporal Constraints in Grid Work�ow. International

Journal of High Performance Computing Applications,, 319-329:22(3), 2008.

[39] J. Chen and Y. Yang. Temporal Dependency based Checkpoint Selection for Dynamic

Veri�cation of Temporal Constraints in Scienti�c Work�ow Systems. In accepted in

ACM Transactions on Software Engineering and Methodology, 2009.

[40] D. Chiu, S. Cheung, S. Till, K. Karalapalem, Q. Li, and E. Kafeza. Work�ow view

driven cross-organisational interoperability in a web service environment. Informa-

tion Technology and Management, 5:221�250, 2004.

[41] D. Chiu, K. K. Q. Li, and E. Kafeza. Work�ow view based e-contracts in a cross-

organisational e-services environment. Distributed and Parallel Databases, 12:193�

216, 2002.

[42] D. D. Corkill. Blackboard systems Craig, I D AI Review Vol 2 No 2 (1988) pp 103.

Knowledge-Based Systems, 2(3):197, Sept. 1989.

[43] K. Czajkowski, I. Foster, C. Kesselman, V. Sander, and S. Tuecke. SNAP : A Protocol

for Negotiating Service Level Agreements and Coordinating Resource Management

in Distributed Systems. LNCS Springer, 2537/2002:153�183, 2002.

155

Bibliography

[44] D. D. Nurmi, R. Wolski, Ch. Grzegorczyk, G. Obertelli, S. Soman, L. Youse� and

Zagorodnov. No TitleThe Eucalyptus Open-source Cloud-computing System. In

Proceedings of Cloud Computing and Its Applications 2008, Chicago, Illinois,, 2008.

[45] A. Dan and et Al. Web services on demand: WSLA-driven automated management.

IBM Systems Journal Volume 43, Pages: 136 - 158, Issue 1, Jan. 2004.

[46] G. Decker, O. Kopp, and A. Barros. An Introduction to Service Choreographies.

Information Technology, 50(2):122�127, 2008.

[47] E. Deelman, J. Blythe, A. Gil, C. Kesselman, G. Mehta, K. Vahi, K. Blackburn,

A. Lazzarini, A. Arbree, R. Cavanaugh, and S. Kor. Mapping Abstract Complex

Work�ows onto Grid Environments, 2003.

[48] M. S. Deun Ren Liu. Work�ow Modeling for Virtual Processes: an order-preserving

process-view approach. Information Systems, 28:505�532, 2002.

[49] D.G.A.Mobach B.J. Overeinder and F. M. T. Brazier. A ws-agreement based re-

source negotiation framework for mobile agents. Scalable Computing: Practice and

Experience, 7 (1):23 ï¾½ 36, 2006.

[50] T. Dierks and E. Rescorla. The TLS Protocol Version 1.1. RFC 2246. Technical

report, 2004.

[51] R. Duan, R. Prodan, and T. Fahringer. Run-time Optimisation of Grid Work�ow

Applications. 2006 7th IEEE/ACM International Conference on Grid Computing,

pages 33�40, Sept. 2006.

[52] M. S. Duen-Ren Liu. Business-to-business work�ow interoperation based on process-

views. Decision Support Systems, 38:399�419, 2004.

[53] J. Eder and A. Tahamatan. Temporal Consistency of View based Interorganizational

work�ows. 2nd International United Information Systems Conference, Austria, 2008.

[54] A. Edgardo, , B. Laura, , and F. A. Tiziana. Grid Work�ow Optimization with

Inferential Reasoning. in Proceedings of CoreGRID Workshop, Poznan, Poland,,

2005.

[55] V. C. Emeakaroha, I. Brandic, M. Maurer, and S. Dustdar. Low Level Metrics to High

Level SLAs - LoM2HiS Framework : Bridging the Gap Between Monitored Metrics

and SLA Parameters in Cloud Environments. In Proc. International Conference on

High Performance Computing and Simulation (HPCS), 2010, pages 48�54, 2010.

[56] L. et al. Web Service Agreement (WS-Agreement). GFD.107 proposed recommen-

dation.

[57] S. et al. Automated SLA monitoring for web services. Technical report, HP research

report, HPL-2002-191, 2002.

156

Bibliography

[58] C. et. al. Cappiello. On Automated Generation of Web Service Level Agreements.

LNCS: Advanced Information Systems Engineering, pages 264�278, 2007.

[59] FIPA. FIPA Agent Communication Language, http://www.�pa.org/, accessed Dec.

2001, 2000.

[60] I. Foster. What is the Grid? A Three Point Checklist. Grid Today, 2002.

[61] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scalable

Virtual Organizations. International J. Supercomputer Applications, 15(3), 2001.

[62] G. Frankova. {Service Level Agreements}: Web Services and Security. Springer

Verlag, Berlin Heidelberg, pages 556�562, 2007.

[63] A. Frier, P. Karlton, and P. Kocher. The SSL 3.0 Protocol. Technical report, Netscape

Communications Corp., 1996.

[64] The Globus Security Team. Globus Toolkit Version 4 Grid Security Infrastructure:

A Standards Perspective, Dec. 2004.

[65] I. U. Haq, R. Alnemr, A. Paschke, E. Schikuta, H. Boley, and C. Meinel. Distributed

Trust Management for Validating SLA Choreographies. In SLAs in Grids workshop,

CoreGRID Springer series, 2009.

[66] I. U. Haq, A. A. Huqqani, and E. Schikuta. Aggregating Hierarchical Service Level

Agreements in Business Value Networks. In Lecture Notes in Computer Science,

volume Volume 5701/2009, pages 176�192. Springer Berlin-Heidelberg, 2009.

[67] D. Hinchcli�e and H. Consulting. Enterprise 2 . 0 : How Business is transforming

in the 21st Century. Springer Enterprise 2.0, unternehmen zwichen hierarchie und

selbstorganisation, (2):21�45.

[68] R. Housley, W. Polk, W. Ford, and D. Solo. Internet X.509 Public Key Infrastructure:

Certi�cate and CRL Pro�le. Technical report, RFC 3280.

[69] L. Huang, D. W. Walker, Y. Huang, and O. F. Rana. Dynamic Web Service Selection

for Work�ow Optimisation. in Proceedings of 4th UK e-Science Programme All Hands

Meeting (AHM), Nottingham, UK,, 2005.

[70] M. Humphrey, M. R. Thompson, and K. R. Jackson. Security for Grids. Proceeding

of the IEEE, VOL. 93, NO. 3.

[71] W. E. James Skene D. Davide Lamanna. Precise Service Level Agreements. 26th

International Conference on Software Engineering (ICSE'04), 2004.

[72] W. Z. P. W. Jan Seidel Oliver Waldrich and R. Yahyapour. Using SLA for resource

management and scheduling - a survey. Technical report, Institute on Resource

Management and Scheduling, CoreGRID - Network of Excellence, Aug. 2007.

157

Bibliography

[73] K. Je�ery and B. Neidecker. The Future of Cloud Computing, Opportunities for

European Cloud Computing Beyond 2010, 2010.

[74] R. B. Jia Yu and C.-K. Tham. Cost-based Scheduling of Work�ow Applications on

Utility Grids. In 1st IEEE International Conference on e-Science and Grid Comput-

ing , Melbourne, Australia.

[75] L.-j. Jin, V. Machiraju, and A. Sahai. Analysis on Service Level Agree-

ment of Web Services, HP Technical Report: HPL-2002-180, available at

:http://www.hpl.hp.com/techreports/2002/HPL-2002-180.html.

[76] S. Jones. TRUST-EC: Requirements for Trust and Con�dence in E-Commerce. Tech-

nical report, European Commission Joint Research Centre, 1999.

[77] M. Juergen, W. Christoph, J. Oliver, S. Erich, W. Helmut, and H. I. Ul. Mobile gSET

- secure business work�ows for Mobile-Grid clients. Concurrency and Computation:

Practice and Experience, 22(14), 2010.

[78] M. E. O. Karsten. A. Schulz. Facilitating cross-organisational work�ows with a

work�ow view approache. Data and Knowledge Engineering, 51:109�147, 2004.

[79] L. H. Keller A. The WSLA Framework: Specifying and Monitoring Service Level

Agreements for Web Services. Journal of Network and Systems Management, Vol.

11, No.1,.

[80] K. Ko�er, I. Ul Haq, and E. Schikuta. A Parallel Branch and Bound Algorithm for

Work�ow QoS Optimization. 2009 International Conference on Parallel Processing,

pages 478�485, Sept. 2009.

[81] K. Ko�er, I. Ul Haq, and E. Schikuta. User-Centric , Heuristic Optimization of

Service Composition in Clouds. Lecture Notes in Computer Science, 6271/2010:405�

417, 2010.

[82] A. Kozlenkov, A. Paschke, and M. Schroeder. Prova, http://prova.ws, accessed Jan.

2006, 2006.

[83] S. J. E. Lamanna D.D. SLAng: A Language for De�ning Service Level Agreements.

In Proc. of the 9th IEEE Workshop on Future Trends in Distributed Computing

Systems - FTDCS 2003 (Puerto Rico, May 2003). IEEE-CS Press, 2003.

[84] A. Le�, J. T. Ray�eld, and D. M. Dias. Service-Level Agreements and Commercial

Grids. IEEE Internet Computing, 7 (4):44�50.

[85] Q. Li, D. Chiu, Z. Shan, P. Hung, and S. C. Cheung. Flows and Views for scalable sci-

enti�c process integration. In First International Conference on Scalable Information

Systems, Hong Kong, 2006.

158

Bibliography

[86] A. Lioy, M.Marian, N.Moltchanova, and M. Pala. PKI past, present and future.

International Journal of Information Security, Springer Berlin, page 2006.

[87] B. V. Looy, P. Gemmel, and V. Dierdonck. Services Management: An Integrated

Approach. Financial Times, Prentice Hall, Harlow, England, 2003.

[88] A. Ludwig. COSMA -An Approach for Managing SLAs in Composite Services. In

Lecture Notes in Computer Science. Springer Berlin-Heidelberg, 2008.

[89] H. Ludwig, T. Nakata, O. Waldrich, P. Wieder, and W. Ziegler. Reliable Orchestra-

tion of Resources using WS-Agreement. In LNCS Springer, Munich, Vol. 4208:753

- 762, Sept. 2006.

[90] Marilly, E. Martinot, O. Betge-Brezetz, and S. Delegue. Requirements for service

level agreement management. In IEEE Workshop on IP Operations and Management,

ALCATEL CIT, Marcoussis, France, 2002.

[91] D. Martin, M. Paolucci, S. Mcilraith, M. Burstein, D. Mcdermott, D. Mcguinness,

B. Parsia, T. Payne, M. Sabou, M. Solanki, N. Srinivasan, and K. Sycara. Bring-

ing Semantics to Web Services : The OWL-S Approach. in Proceedings of First

International Workshop on Semantic Web Services and Web Process Composition

(SWSWPC 2004), San Diego, CA.

[92] P. Masche, P. Mckee, and B. Mitchell. THE INCREASING ROLE OF SERVICE

LEVEL AGREEMENTS IN B2B SYSTEMS. Proceedings of the International Con-

ference on Web Information Systems, Setuba, pages 473�478, 2006.

[93] MasterCard, VISA. SET Secure Electronic Transaction Speci�cation, Book 1: Busi-

ness Description, May 1997.

[94] MasterCard, VISA. SET Secure Electronic Transaction Speci�cation, Book 2: Pro-

grammer's Guide, May 1997.

[95] MasterCard, VISA. SET Secure Electronic Transaction Speci�cation, Book 3: Formal

Protocol De�nition, May 1997.

[96] P. McKee, S. Taylor, M. Surridge, R. Lowe, and C. Ragusa. Strategies for the service

market place. In Proceedings of the 4th international conference on Grid economics

and business models, GECON'07, pages 58�70, Berlin, Heidelberg, 2007. Springer-

Verlag.

[97] Mule. Mule Enterprise Service Bus, available at http://www.mulesoft.org/, last ac-

cessed Nov 2010., 2006.

[98] B. Neumann and Et.al. Kerberos: An authentication service for computer networks.

IEEE Commun. Mag, vol. 32, n:pp. 33�38.

159

Bibliography

[99] T. Nurmela and K. Lea. Service level agreement management in federated Virtual

Organizations. In LNCS, Springer Berlin pp. 62-75, 2007.

[100] N. Oldham, K. Verma, A. Sheth, and F. Hakimpour. Semantic {WS-Agreement}

Partner Selection. Proceedings of the 15th international conference on World Wide

Web, Edinburgh, Scotland, 2006.

[101] J. Padgett, K. Djemame, and P. Dew. Grid Service Level Agreements Combining

Resource Reservation and Predictive Run-time Adaptation. In In proceeding of School

of Computing, University of Leeds, LS2 9JT, United Kingdom, 2005.

[102] M. Parkin, P. Hasselmeyer, B. Koller, and P. Wieder. An SLA Re-Negotiation Pro-

tocol. In 2nd Non Functional Properties and Service Level Agreements in Service

Oriented Computing Workshop (NFPSLA-SOC '08), Dublin, Ireland, 2008.

[103] A. Paschke. RBSLA: Rule Based Service Level Agreement,

http://ibis.in.tum.de/projects/rbsla/index.php, accessed Jan. 2006, 2004.

[104] A. Paschke. Reaction RuleML, http://ibis.in.tum.de/research/ReactionRuleML/

events/ReactionRuleMLEvent06.htm, accessed, Nov. 2006. In Special Event on Re-

action RuleML at ISWC'06/RuleML'06, Athens, Georgia, USA, 2006.

[105] A. Paschke. Veri�cation, Validation and Integrity of Distributed and Interchanged

Rule Based Policies and Contracts in the Semantic Web. In Int. Semantic Web and

Policy Workshop (SWPW' 06), Athens, Georgia, USA, 2006.

[106] A. Paschke. Rule-Based Service Level Agreements - Knowledge Representation for

Automated e-Contract, SLA and Policy Management. Idea Verlag GmbH, Munich,

2007.

[107] A. Paschke and M. Bichler. Knowledge Representation Concepts for Automated

{SLA} Management. Int. Journal of Decision Support Systems (DSS).

[108] A. Paschke and M. Bichler. {SLA} Representation Management and Enforce-

ment. The 2005 IEEE International Conference on e-Technology, e-Commerce and

e-Service, 2005.

[109] A. Paschke, B. Harold, A. Kozlenkov, and B. Craig. Rule Responder: A RuleML-

Based Pragmatic Agent Web for Collaborative Teams and Virtual Organizations,

http://ibis.in.tum.de/projects/paw/, 2007.

[110] A. Paschke, A. Kozlenkov, and B. Harold. Reaction RuleML Consensual Presen-

tation, http://ibis.in.tum.de/research/ReactionRuleML/docs/RRCP.pdf, accessed

Nov. 2006. White paper, 2006.

[111] L. Pearlman, V. Welch, I. Foster, C. Kesselman, and S. Tuecke. A Community

Authorization Service for Group Collaboration. In Proceedings of the IEEE 3rd

International Workshop on Policies for Distributed Systems and Networks, 2002.

160

Bibliography

[112] M. Porter. Competitive Advantage: Creating and Sustaining Superior Performance.

Free Press Publishers, 1985.

[113] J. D. Roo. Euler Proof Mechanism.

[114] V. A. Savva. Business Grid Computing Project Activities. Fujitsu Scienti�c and

Technical Journal, 260(December):252�260, 2004.

[115] E. Schikuta, H. Wanek, and I. Ul Haq. Grid work�ow optimization regarding dy-

namically changing resources and conditions. Concurr. Comput. : Pract. Exper.,

20(15):1837�1849, Oct. 2008.

[116] M. Shen and D. R. Liu. Discovering role-relevant process-views for disseminating

process knowledge. Expert Systems with Applications, 26:301�310, 2004.

[117] G. Singh, C. Kesselman, and E. Deelman. Optimizing Grid-Based Work�ow Execu-

tion. Journal of Grid Computing, 3(3-4):201�219, Jan. 2006.

[118] L. Skital, M. Janusz, R. Slota, and J. Kitowski. Service Level Agreement Metrics for

Real-Time State of the Art. LNCS, 4967/2008:798�806, 2008.

[119] W. Sun, Y. Xu, and F. Liu. The role of XML in service level agreements management.

International Conference on Services Systems and Service Management, 2005.

[120] D. I. Taylor, M. Shields, and D. I. Wang. Chapter 1 RESOURCE MANAGEMENT

OF TRIANA P2P SERVICES.

[121] T. Tlhong and J. S. Reeve. Modeling and Management of Service Level Agreements

for Digital Video Broadcasting(DVB) Services. Lecture Notes in Computer Science

Springer, 4725/2007:288�294, 2007.

[122] I. Ul Haq, I. Brandic, and E. Schikuta. SLA Validation in Layered Cloud Infrastruc-

tures. LNCS 6296, pages 153�164, 2010.

[123] I. Ul haq, A. A. Huqqani, and E. Schikuta. A conceptual Model for Aggregation and

Validation of SLAs in Business Value Networks. In The 3rd International Conference

on Adaptive Business Information Systems (ABIS 2009), 2009.

[124] I. Ul Haq, K. Ko�er, and E. Schikuta. Dynamic Service Con�gurations for SLA

Negotiation. In In Proc. CoreGrid 2010, Europar 2010, Ischia, Italy, 2010. Springer

Verlag.

[125] I. Ul Haq, J. Mangler, H. Wanek, O. Jorns, and E. Schikuta. A Gridi�ed, Secure,

Mobile Business Work�ow Using gSET. In Workshop on Economic Models and Al-

gorithms for Grid Systems in conjunction with the 8th IEEE/ACM International

Conference on Grid Computing (Grid 2007), Austin, Texas, 2007.

161

Bibliography

[126] I. Ul Haq, A. Paschke, H. Boley, and E. Schikuta. Rule-Based Work�ow Validation of

Hierarchical Service Level Agreements. In 4th International Workshop on Work�ow

Management (ICWM2009) in conjunction with the The 4th International Conference

on Grid and Pervasive Computing (GPC 2009) - Geneva, Switzerland, 2009.

[127] I. Ul Haq and E. Schikuta. Aggregation Patterns of Service Level Agreements.

In Proc. ACM International Conference on Frontiers of Information Technology

(FIT2010), Islamabad, 2010.

[128] I. Ul Haq, E. Schikuta, I. Brandic, A. Paschke, and H. Boley. SLA Validation

of Service Value Chains. In The 9th International Conference on Grid and Cloud

Computing (GCC 2010), Nanjing, China, 2010.

[129] I. Ul Haq, E. Schikuta, and K. Ko�er. Using Blackboard System to Automate

and Optimize Work�ow Orchestrations. In The 5th IEEE Conference on Emerging

Technologies (ICET 2009), Islamabad, Pakistan, 2009.

[130] I. Ul Haq, E. Schikuta, A. Paschke, and H. Boley. Rule-Based Validation of SLA

Choreographies. to appear in Journal of Super Computing, 55(99), 2011.

[131] T. Unger, F. Leyman, S. Mauchart, and T. Scheibler. Aggregation of Service Level

Agreement in the context of business processes. Enterprise Distributed Object Com-

puting Conference (EDOC '08) Munich, Germany, 2008.

[132] R. Vadlamani, J. Zhao, W. Burleson, and R. Tessier. Multicore Soft Error Rate

Stabilization Using Adaptive Dual Modular Redundancy. In Design, Automation &

Test in Europe Conference & Exhibition (DATE), 2010, 2010.

[133] H. Wanek and E. Schikuta. Using Blackboards to Optimize Grid Work�ows with

Respect to Quality Constraints. Grid and Cooperative Computing Workshops, Inter-

national Conference on, 0:290�295, 2006.

[134] M. Wang, R. Kotagiri, and J. Chen. Trust-based Robust Scheduling and Runtime

Adaptation of Scienti�c Work�ow. Concurrency and Computation: Practice and

Experience, 21(16):1982�1998, 2009.

[135] T. Weishaeupl, C. Witzany, and E. Schikuta. gSET: Trust Management and Secure

Accounting for Business in the Grid. In Sixth IEEE International Symposium on

Cluster Computing and the Grid (CCGrid 2006), Singapore, May 2006.

[136] J. . I. B. M. C. WSLA Language Speci�cation Version 1.0. No Title, 2003.

[137] J. Yan, R. Kowalczyk, J. Lin, M. B. Chhetri, S. K. Goh, and J. Zhang. Autonomous

service level agreement negotiation for service composition provision. Future Gener.

Comput. Syst., 23(6):748�759, July 2007.

[138] J. Yu and R. Buyya. A Taxonomy of Work�ow Management Systems for Grid

Computing. Journal of Grid Computing, 3(3-4):171�200, Jan. 2006.

162

Bibliography

[139] J. Yu, R. Buyya, and C. K. Tham. QoS-based Scheduling of Work�ow Applica-

tions on Service Grids. Technical Report, GRIDS-TR-2005-8, Grid Computing and

Distributed Systems Laboratory, University of Melbourne, Australia, 2005.

[140] T. Yu and K.-j. Lin. K.: Service selection algorithms for composing complex services

with multiple qos constraints. In In: ICSOC05: 3rd Int. Conf. on Service Oriented

Computing, pages 130�143, 2005.

[141] T. Yu, Y. Zhang, and K.-J. Lin. E�cient algorithms for Web services selection with

end-to-end QoS constraints. ACM Trans. Web, 1(1), May 2007.

[142] R. Yu, J And Buyya. A Novel Architecture for Realizing Grid Work�ow using Tuple

Spaces. In 5th IEEE/ACM International Workshop on Grid Computing (Grid 2004),

2004.

[143] Z. Zhang, D. Liu, Z. Wei, and C. Sun. Research on Triple Modular Redundancy

Dynamic Fault-Tolerant System Model. First International Multi-Symposiums on

Computer and Computational Sciences (IMSCCS'06), pages 572�576, June 2006.

[144] S. Zhao, A. Aggarwal, and R. D. Kent. PKI-Based Authentication Mechanisms in

Grid Systems. International Conference on Networking, Architecture, and Storage,

2007.

[145] W. Ziegler, S. Birlinghoven, S. Augustin, D. Battr, and W. Ziegler. Extending WS-

Agreement for dynamic negotiation of Service Level Agreements CoreGRID Techni-

cal Report Number TR-0172 Extending WS-Agreement for dynamic negotiation of

Service Level Agreements, 2008.

163

