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Abstract—In this paper we address the difficult problem of parameter-finding in image segmentation. We replace a tedious manual
process that is often based on guess-work and luck by a principled approach that systematically explores the parameter space. Our
core idea is the following two-stage technique: We start with a sparse sampling of the parameter space and apply a statistical model
to estimate the response of the segmentation algorithm. The statistical model incorporates a model of uncertainty of the estimation
which we use in conjunction with the actual estimate in (visually) guiding the user towards areas that need refinement by placing
additional sample points. In the second stage the user navigates through the parameter space in order to determine areas where the
response value (goodness of segmentation) is high. In our exploration we rely on existing ground-truth images in order to evaluate
the "goodness” of an image segmentation technique. We evaluate its usefulness by demonstrating this technique on two image
segmentation algorithms: a three parameter model to detect microtubules in electron tomograms and an eight parameter model to
identify functional regions in dynamic Positron Emission Tomography scans.

Index Terms—Parameter exploration, Image segmentation, Gaussian Process Model.

1 MOTIVATION

For visual analysis image data often need to be segmented. Segmen-
tation refers to the process of partitioning the image into multiple
segments, i.e. sets of pixels or voxels, that form contiguous and se-
mantically meaningful regions. If each of these regions is marked
by a unique identifier, image segmentation simply means labelling
of pixels or voxels. In biomedical imaging, where images are ac-
quired using some kind of tomography or microscopy, segmented re-
gions might correspond to anatomical structures in the case of non-
functional imaging, and to regions with specific physiological activity
in the case of functional imaging.

In recent years a variety of semi- and fully automatic techniques
have been developed to address the segmentation problem [32]. How-
ever, even the current state-of-the-art approaches fall short of provid-
ing a “silver bullet” for image segmentation. This has several reasons.
One reason is that given some image, the segmentation problem is not
well defined; in fact it depends on the application which regions are se-
mantically meaningful. Another reason is that due to different image
degradation factors such as low signal-to-noise ratio, imaging artifacts,
partial volume effects and shape variability, different kinds of a priori
knowledge need to be included. Additionally, the majority of the exist-
ing segmentation methods rely on and are sensitive to setting a number
of parameters. For example, most of the algorithms contain weighting
parameters between multiple competing image-driven or prior-driven
cost terms in an attempt to mimic the cognitive capabilities of expert
users (e.g. radiologists for medical images).

A good parameter setting is usually found by a manual trial and
error procedure. The segmentation algorithm developer starts with a
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particular parameter configuration and then checks for a quality or re-
sponse measure of the final segmentation measured against a ground
truth image where the correct segmentation is available. If the segmen-
tation quality is not satisfactory, another parameter configuration will
be tested. This is a tedious, time-consuming, and error-prone task.
Furthermore, once a good parameter setting is found the developer
then goes on (using the set of found parameters) to apply the algo-
rithm to images without a ground truth. Because the developer has no
context for the space around these ideal parameters they have no real
idea of the applicability to other datasets.

In this paper, we propose a visual analysis tool to systematically ex-
plore the multi-dimensional parameter space impacting the quality of
image segmentation algorithms. We adopt a statistical model known
as a Gaussian process model to interpolate the response values given a
sampling of the parameter space. We then use an interactive visualiza-
tion to enable the exploration and refinement of the parameter space.
The proposed tool can be applied to any fully automatic segmentation
algorithm controlled by a number of tunable parameters and a quality
measure for the obtained results.

2 PROBLEM STATEMENT

Image segmentation algorithms are typically plagued by a plethora of
different tuning parameters. Conceptually, we differentiate model pa-
rameters from algorithmic parameters.

2.1 Model Parameters

An important class of segmentation methods are variational methods,
see e.g. [30]. They rely on the minimization of an objective (energy)
functional whose minima correspond to “good” segmentations. For
this class, model parameters are the weights of the different terms in
the energy functional. Building an energy functional gives the algo-
rithm designer the ability to allow multiple competing goals to be con-
sidered. The energy functional is generally formulated as follows
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where [ represents the input image to be segmented, ¢ represents a
segmentation, and E,E,,...,E; represent k different energy terms.
Therefore, the parameters 1, 0, . .., 04 represent a weighting of the
importance of every energy term. The final segmentation (E is obtained
by minimizing (Eq. 1) as follows:

¢ =argminE(¢,1). )
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For example, consider the popular Snakes algorithm [21]. Here an
approximate boundary evolves to the desired boundary guided by min-
imizing two competing energy terms. A boundary energy term attracts
the solution to pixels with high gradients. However, since boundaries
optimized with only this condition tend to be jaggy due to noise in
the image, an additional smoothness term is introduced to enforce the
boundary of the segmented object to act like a membrane or thin plate
that is trying the stretch out. Many other energy terms have been con-
sidered in the segmentation literature and we are not trying to provide
a complete list here. For a good overview, see, e.g., Pham et al. [32].

2.2 Algorithmic Parameters

Algorithmic parameters fine-tune different parts of the algorithms.
For variational segmentation, for instance, there exist approaches, like
graph based approaches graph cuts [7] and random walker [16], where
the energy term itself contains parameters to be tuned. We could de-
scribe these terms using E(¢,/,6) where 6 would impact how similar
two nodes are that are connected through an edge.

Algorithms not based on energy minimization also have tuning pa-
rameters. For instance it is quite common to have thresholding param-
eters. One of the fundamental image processing algorithms is edge
detection; the most popular algorithm, the Canny edge detector [10],
uses three parameters, controlling the size of a Gaussian smoothing
function and thresholding with hysteresis (using min/max thresholds).

In addition, almost any segmentation algorithm also includes pa-
rameters like number of iterations, accuracies for termination condi-
tions, etc. Parameter tuning is an integral part of almost any image
processing task.

2.3 Quality Measures

In order to produce an image segmentation, a particular parameter set-
ting is determined and a segmentation algorithm is applied to the im-
age. During algorithm development an expert-segmented image, or
ground truth, is crucial to measure the quality of the segmentation.
Often a visual comparison of the automatic segmentation to the expert-
segmented images is desired, but fine subtleties or 3D images are hard
to inspect properly. Therefore, a number of other quality metrics have
been developed.

One of the most popular metrics is the Dice similarity coeffi-
cient [14]. It measures the overlap between a segmented region and
ground truth, with a value of one corresponding to a perfect overlap.
Precision and Recall are two other widely used quantities to assess the
quality of a classifier. Precision measures the percentage of true posi-
tives, i.e., which of the segmented pixels have the right label relative to
all the pixels labelled with this label by the segmentation algorithm. In
contrast, Recall measures the number of correctly labelled pixels rel-
ative to all the pixels that should carry said label based on the ground
truth. Ideally, both of these measures should come out to one, but of-
ten improved Precision comes at the cost of reduced Recall and vice
versa. Therefore, it is useful to examine these different measures si-
multaneously to ensure better segmentation performance with respect
to different criteria.

Other commonly used tradeoffs include likelihood versus prior in
Bayesian methods [1], loss versus penalty in pattern recognition [47]
and image thresholding algorithms [39].

Our proposed tool is able to work with any segmentation technique
controlled by a set of parameters and associated with a set of numerical
quality measures.

2.4 Finding the Right Parameters

Given a segmentation model, a ground-truth, and one or several quality
measures that evaluate the segmentation output relative to the ground-
truth, an algorithm developer typically enters a time-consuming, te-
dious, and error-prone process to find good parameter values. Experi-
ence often goes a long way to come up with an initial guess. Manual
variation of the parameter settings give a hint to the user of whether an
improved segmentation is possible and whether the segmentation re-
sult changes slowly (i.e. we have a stable parameter region) or quickly
(i.e. the segmentation result is very sensitive to the exact parameter

setting). Often a single segmentation could take minutes if not tens
of minutes or hours and every new parameter combination that needs
to be tested will add to the frustration of the experimenter. Further-
more, keeping track of all the previously tested parameter combina-
tions amounts to a test of patience, good memory, and being well orga-
nized. At no time of the exploration process is one ever sure, whether
all the relevant parameter regions have been found.

To facilitate the parameter exploration process, we identify a set of
tasks that our tool needs to support:

Exploring the full parameter space: A comprehensive and sys-
tematic way is needed to explore the full parameter space efficiently.
This requires a strategy and tools for getting a quick overview and
overall understanding of the parameter space in order to identify inter-
esting regions. Furthermore, it requires means for refining the search
in interesting regions.

Finding optimal parameter settings: The tool should allow the
user to quickly navigate to all local optima in the global parameter
space or in a subregion of it.

Assessing the sensitivity of a parameter region: The tool should
enable the user to quickly assess the sensitivity of segmentation results
to parameter changes.

Simultaneous exploration of multiple quality measures: Trade-
offs between competing quality measures should be made clear and
easy to explore and comprehend.

2.5 Contributions

Given these design constraints, we introduce a two-stage process to
find optimal parameter ranges for image segmentation algorithms.
During the first stage we employ an approach that samples the com-
plete parameter space as densely as the time budget allows and then (in
a batch process) automatically acquires all the corresponding segmen-
tations. While this process is running “’over night” the user can devote
his or her attention to other matters. Our approach also employs an
uncertainty measure based on statistical reasoning to automatically re-
fine regions that have not been sampled well. In the second stage the
researcher explores the results of the first stage in an interactive set-
ting. We use multidimensional navigation tools to find areas of high
interest and to investigate the stability of these regions.

The contributions of this paper can be summarized as follows:
(i) We develop a systematic model to explore the full parameter space
based on a Gaussian process model [20]. (ii) We allow the user to vi-
sually explore the full parameter space using sliced-based navigation
(similar to HyperSlice [43]) of the response function for up-to tens of
parameters. (iii) We allow the user to study the trade-off of up to two
quality measures. (iv) We provide uncertainty visualization of the re-
sponse surface as well as the expected gain in order to facilitate refined
sampling of the parameter space.

3 RELATED WORK

Understanding and analyzing high-dimensional spaces has always
been a challenge in statistical graphics as well as visualization.
Approaches such as scatterplot matrices [12], parallel coordi-
nates [18], and star-glyphs [44] are now common for visualizing high-
dimensional data. Their main purpose, is to understand “point-clouds”
or discrete entities. However, if one needs to understand continuous
high-dimensional spaces, these approaches fail mostly, since they do
not properly convey the continuity of the underlying space. Recently,
Bachthaler and Weiskopf [2] extended scatterplots in order to properly
portray continuous functions. However, the essence of scatterplots and
similar approaches is to separate the data values from its intrinsic em-
bedding in some metric space. This embedding is crucial if we want to
understand the (local) sensitivity of the response surface. Sensitivity
analysis studies the variance of the function to its embedding.

In medical imaging it is common to create a mental model of a 3D
image of a patient by studying three orthogonal axis-aligned slices.
Creating a mental model of a higher-dimensional continuous func-
tion is next to impossible, but the local behavior of a function can
be externalized leading to a cognitive relief of the user. Using a slice-
plane matrix for the understanding of a high-dimensional function had



been suggested by van Wijk and van Liere using a technique which
they coined Hyperslice [43]. This idea was extended by Tweedie and
Spence by what they called the Prosection Matrix [42]. Here, a thick
(n —2)-dimensional slab is being summarized as opposed to a simple
2D slice of the n-dimensional space under study. Since we believe,
that a slice will be a more accurate portrayal of the space, we use the
Hyperslice approach in this paper.

While van Wijk and van Liere were inspired by the study of param-
eter combinations for computational steering in chemical reactions, a
complete system for this study was not proposed. The idea of “seeing”
into a high-dimensional parameter space in order to understand the dis-
tribution of optimal places and their sensitivity has recently found a lot
of attention in the visualization community. Computational steering
has been a known problem for a while, which is addressed by several
researchers in the visualization community, most recently in World-
Lines by Waser et al. [45]. This problem is fundamentally different
from the problem we are trying to solve. In computational steering the
user studies a simulation over time and actually wants to change the
parameters while the simulation is running. In our case, we must set
the parameters at the start of a new simulation with the intention of
optimizing the final output according to some quality measure. This is
closer to the work by Bruckner and Méller in FluidExplorer [9]. How-
ever, one of the major accomplishments of FluidExplorer was dealing
with simulation outputs where temporal behavior is crucial. Further-
more, they did not address optimization of any objective function.

Approaches where an objective function is missing typically require
the user to express their preference after comparing different simula-
tion outputs (see e.g. the work by Brochu et al. [8]). This is an area
also known as active learning. Very recently Pretorius et al. [34] have
been developing a system for the exploration of parameter values for
image segmentation. In their case they are not making use of any qual-
ity measures and don’t assume the availability of any ground truth.
Therefore, their system is quite different from ours.

Alternative approaches to facilitate parameter explorations have
resulted in systems like Design Galleries [25], Image Graphs [23],
spreadsheet-like exploration interfaces [19], and VisTrails [37]. None
of these approaches is utilizing an optimization function nor is the user
able to see a comprehensive overview of which places of the parameter
space have been “looked at” and which have not.

The inspiring work by Piringer et al. [33, 4, 5] is perhaps closest to
our work. Their system, HyperMoVal, was one of the first comprehen-
sive environments for studying the impact of parameters on simulation
experiments. HyperMoVal was also using the ideas of Hyperslice for
navigating through a high-dimensional scalar function as well as fa-
cilitating a sensitivity analysis. However, HyperMoVal was geared
toward industrial applications and was validated in the automobile in-
dustry. Our scope is slightly smaller and we are focused on finding
good parameter combination for image segmentation. Therefore, in
many ways, our problem is more constrained and requires a much less
complex system. The major difference to HyperMoVal is that we use
several different quality metrics in order to judge the goodness of the
parameter settings. These quality measures are the basis of our explo-
ration and simplifies the user interface immensely. In HyperMoVal,
colored contour-plots, representing the model estimation, are overlaid
over scatterplots representing the measured data. Furthermore, their
sensitivity analysis is very different in that it focuses on dimensional
graphs by varying exactly one parameter and one local neighborhood
around a single high-dimensional parameter combination. This has
been improved with the authors current work [5].

3.1 Statistics

Our technique was born out of the work by Box and Wilson [6] in
1951. Their method is to fit gradually more and more complex esti-
mating models to a complex function. One well-established area of
research in statistics employing this idea is known as DACE - the De-
sign and Analysis of Computer Experiments. For a good introduction
we refer the reader to the book by Santner et al. [36]. The particular
model we are using has been well described by Jones et al. [20]. It
has been successfully employed in a variety of computer experiments

such as an ocean circulation model [15], a hazard-effect model for
volcano eruption prediction [3], and an arctic sea ice simulation [11].
However, the typical approach by statisticians is to fit the Gaussian
process model and then evaluate the results of a variance decompo-
sition. Two approaches to this method are discussed by Schonlau et
al. [38] and Oakley and O’Hagan [31]. Our approach is to provide
insight by viewing and interactively exploring the full response space.

3.2 Automatic Parameter Tuning in Image Segmentation

Few papers tackled the automatic parameter estimation in image seg-
mentation as the main focus are effective segmentation models and
efficient algorithms. Kumar et al. [22] applied a pseudo-likelihood
technique to estimate the parameters of a conditional random field
algorithm. Szummer et al. [40] applied graph cuts to do maximum
margin efficient learning of the segmentation parameters. Mcintosh
and Hamarneh [26] optimized a non-convex energy function to find
the optimal parameters. They later extended their technique using a
constrained convex energy function to avoid sensitivity to the initial
parameter settings [27]. The common goal in these algorithms is to
learn the parameters so that the ground truth emerges as the optimal
solution. This is achieved by optimizing yet another energy function.
Therefore, these techniques optimize for one particular quality mea-
sure only. In contrast, our tool provides a way to examine multiple
complex responses simultaneously. In addition, automatic parameter
learning was constrained to a particular form of a segmentation tech-
nique (e.g. conditional random field or deformable model) and could
not handle general algorithms as our method does.

4 GAUSSIAN PROCESS MODEL

The core idea of our approach is to take the known segmentation re-
sults for particular parameter combinations and evaluate a quality met-
ric for these segmentations. The values from this quality metric are
also known as the response. Knowing the response at discrete val-
ues, we build an emulating model that allows us to interpolate from
the known values and to estimate the quality metric at all places of
the parameter space, even though we have not yet computed the actual
segmentation at these places. The continuous function is often referred
to as the response surface and the prediction at new parameter combi-
nations is known as inference in statistics.

In our work, we particularly employ a Gaussian process model for
computing the response surface. This is born out of an area known
as Design and Analysis of Computer Experiments (DACE). We will
only be able to briefly summarize the essential ideas here and refer
the reader for details to the excellent treatment by Jones et al. [20] or
Santner et al. [36].

The Gaussian process model is a well-known technique in statistics.
It assumes that the response surface is governed by some unknown
random function ¥ (x). What “random” means in this case is that we
are not making any assumptions about what the underlying function
looks like. The Gaussian process model interpolates a response value
at an arbitrary point from known sample points (often called design
points). In our case, however, the response to a particular input is
deterministic. However, we don’t know it ahead of time before we
actually compute the segmentation and quality measure at that point.
In that sense, the model of a random function Y (x) encapsulates the
uncertainty we have about a particular predicted response value that
we have not yet computed. Hence, this uncertainty will be zero at the
design points themselves.

4.1 Building the Model

In its most general form the model assumes that the response value
at a particular parameter combination x is governed by some sort of
average response function plus a deviation which is a weighted average
of the response from all known sample points:

-
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The first term, fo:] fi(x)Bi, is the regression term and the second
term, €(x), is the error term. The various basis functions fj(x) can
be any continuous function (often low-order polynomials) of the input
variable x. While the choice of regression functions is often not further
restricted, a common choice is to simply select the constant function
only, which captures the mean behavior, u, of the response surface.
This may seem overly restrictive but it turns out that the error term is
so effective that the restriction of the regression to the mean only does
not inhibit the power of the method [36].

Assuming n design points, the error term relies on the fact, that our
confidence in our estimation decreases as we move farther away from
the design sites. The error at the design sites is assumed to be zero
representing complete confidence in the output of a computer model.
An alternative way to put this is that the error at an arbitrary location
Xnew 18 correlated with the design sites by some n-dimensional func-
tion ¢(xnew,X ) where X is an n X d matrix representing all the design
sites at which we have taken samples. Again, there are a number of
choices for this correlation function but a popular and effective one is
the Gaussian correlation function which, for a d dimensional input, is
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Each of the 6y, factors in the above equation are known either as cor-
relation parameters or hyperparameters. These hyperparameters are
modeled through an appropriately chosen likelihood function (which
properly predicts the measured responses). The typical way to deter-
mine these hyperparameters is by maximizing this likelihood function.
This can be done numerically through an optimization procedure such
as Simulated Annealing or Newton’s Method. In practice this opti-
mization converges very quickly. In our test cases this process only
took a few seconds for 8 factors and up to 250 design sites. Once these
Ok hyperparameters are calibrated with the design sites we generate an
n x n correlation matrix R with entries r; ; = c¢(x',x/), the correlation
between design sites x; and x;.

4.2 Prediction

Once we have the correlation matrix R computed we can predict the
response at an arbitrary point. It works out that the best linear unbiased
predictor of ¥ (x) is

)A/(xnew):ﬂ+c(xneW7X)R71(Y_.al)7 ()

where Y is a vector of length n of the response values for each design
site. We can find closed form solutions for fi and 62, the values for
the mean and variance of the response surface given our correlation
matrix. These are given by
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The Gaussian process model is a statistical extension of traditional
interpolation schemes, which allows the assignment of an uncertainty
to the predicted value. There is no restriction to the type of basis func-
tion used, hence, spline models work just as well. It works out that the
squared error in prediction, Z2(x) is

Z2 (xnew) = 6% (1 — ¢(xnew, X)' R ¢(xnew, X)) )

This measure reveals the confidence of the model in making a pre-
diction at a particular point.

4.3 Next Sample Point

The uncertainty measure by itself is helpful, but if we just sample in
locations where the uncertainty is high we will sample in a number of
spots that will never lead to a maximal value. Since we are interested in
design points that optimize our quality measures, it would be far better
to combine our current estimate at a location with the uncertainty and
use that as a guide. We should sample in areas with high estimated
response and high uncertainty.

There have been several attempts at picking the next sample point
algorithmically. These methods all attempt to combine areas of high
response and high uncertainty in order to find the best place at which
to take more samples. We use the method outlined in Jones et al [20]
due to its ease of implementation and explanation to the user. Itis very
important to make sure the user can understand what the meaning is
behind what the application is displaying (and it can be difficult to
explain the reasoning behind a complex statistical model).

Instead of just taking the predicted point, ¥ (xpew ), as a known scalar
we assume that the prediction at that point is the mean of a normal
distribution with standard deviation equal to the standard error of the
predictor; Z(x) of (Eq. 8). With this assumption the expected improve-
ment at a particular point, /(x), works out to be (note that £ and / in
this formula are not related to (Eq. 1) and (Eq. 2))

E[(xnew)] = (fop — 1)@ (%) +Z(Xnew) 9 (%) C)

where ®(+) and ¢(-) are the cumulative normal and normal probabil-
ity density functions respectively and fop is the current best response
value.

5 WALKTHROUGH

Here we present our system, Tuner. Tuner is designed to guide the user
through the full lifecycle of tuning the parameters of a segmentation
algorithm. This takes them from selecting an initial sampling strategy,
to finding regions of interest, to further examining these regions of
interest by placing and evaluating additional samples in these regions.

The overall pipeline for the analysis is shown in Fig 1. The over-
arching idea is to start with a sparse initial sampling of the parameter
space. Then, through an iterative procedure of identifying regions of
interest and refining with additional samples. In this manner the user
is able to identify regions that meet their criteria.

Tuner is responsible for generating the points at which to take sam-
ples. These are the sample points shown in Fig 1. These are passed to
the segmentation algorithm which assigns one or more scalar values
indicating the “goodness” of segmentation. Once these design points
are passed back to Tuner we build an interpolation model in the form
of a Gaussian process model and use that model to drive the interface.

The only requirement that we impose on the segmentation code
(whose inputs are being sampled) is that it can be run in the back-
ground (i.e. non-interactively). We link to the segmentation code by
means of a user-specified shell script. The contract for the shell script
is that it must take a reference to a file containing sample points gen-
erated by our program and write out the classified points into a file
specified by Tuner. This keeps Tuner independent of any particular
algorithm or platform.

5.1 Initial Sampling

In order to facilitate a systematic initial sampling of the parameter
space we provide a workflow to place these initial samples. When the
user creates a new project they are presented with the initial sampling
dialog, shown in Fig 2(a). Getting a dense initial sampling of the pa-
rameter space is critical for gaining a good overall estimation of the
parameter space. Perhaps the most obvious way would be to lay out a
large number of samples per dimension in a Cartesian grid. However,
the combination of high dimensionality of the inputs and the expense
of running one sample point make this strategy prohibitively expen-
sive. We want to minimize the number of runs of the segmentation
code while getting a good overall idea of the response manifold.
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Fig. 1. An overview of the workflow in Tuner. The user starts (a) by taking an initial sampling of the space. This generates a set of sample points
(b) at which we want to compute segmentations. These points are passed off to the segmenter (c) and design points — the segmented images
— are generated (d). The segmented images are compared against a ground truth image (e) in order to generate scalar responses (f). We then
estimate the full response space (g) and display it to the user such that they can explore it (h). At any time the user can generate additional sample

points in order to build up a more accurate model (i).

As an alternative we provide the user two alternative sampling
strategies: Latin Hypercube sampling [28] and random sampling.
Both of these strategies place an exact number of samples in the pa-
rameter space. This allows the user to accurately interpret the running
time. We show the generated sample points in a scatterplot matrix.
This provides the user with a general idea of how well the number
of sample points they have chosen fill the sampling space. Another
advantage of these strategies is that both of these sampling strategies
run in interactive time. When the user changes the number of sample
points in the dialog they immediately see the updates in the SPLOM.

Clicking on the run button begins the sampling process. Tuner mon-
itors the state of the sampling and provides a progress bar to show
feedback. Once sampling is complete Tuner automatically builds the
Gaussian process model for each non-input field found.

Fig. 2. a) Marking out an 8D hyperbox in order to place additional sam-
ples. The sliders below the box control the extent of the box centered
at the current point. Adding samples brings up the sampling interface
b) which uses a SPLOM preview of sample point locations. The user
enters the desired number of sample points and the sampling strategy
and the SPLOM automatically updates. The “Save for Cluster” button at
the bottom allows the user to save the sample points to a file (e.g. for
running on a cluster). The “Run” button runs the sample points directly
through Tuner.

5.2 Project Viewer

Once the Gaussian process models are built the user is presented with
the Project Viewer window, shown in Fig 3. This is the primary in-

Pareto Panel

View Controls

—

Fig. 3. The main interaction window in Tuner. The Response View is a
slice-based view of the response surface. The Pareto Panel shows the
tradeoffs between the two selected response values. The View Controls
and Plot Controls adjust the type of plot shown and the current parame-
ter settings. The user can also mark out a region for sampling here. The
Histograms show estimated histograms for each of the response vari-
ables. We have linked these views in order to facilitate the evaluation of
various tradeoff points.

Response View

Plot Controls

terface for interaction with the response surface. The main sections of
this interface are the Pareto Panel, the Response View, the Controls,
and the Histograms. These views are designed to support the tasks of
analyzing the tradeoff of up to two response variables, finding opti-
mum parameter settings, and brushing and refining regions of interest.
A typical workflow with this view begins with the Pareto Panel. The
user selects a favorable output combination. They then explore the
area around that known tradeoff point and mark out a region in which
to place samples. The user then runs these sample points through the
external segmentation algorithm. The Gaussian process model auto-
matically rebuilds and the updated view is presented to the user.

5.2.1

Pareto analysis is an established term in statistical data analysis. It
refers to the fact, that when optimizing multiple objects, not all ob-
jectives can be maximized. The so-called Pareto Front are all points

Pareto Panel



in parameter space where at least one objective cannot be further im-
proved, given that all other objectives remain fixed.

The Pareto Panel, shown in Fig 3 gives the user an overview of the
combination of known response values. This view shows a scatter-
plot of the sampled response values for the selected pair of response
dimensions. The optimal tradeoff between pairs of response values
is not clearly defined. Some tasks may place a heavy weight on one
particular response dimension, effectively performing a 1D optimiza-
tion while other tasks may weight all response dimensions equally.
Finding these optimal tradeoff points by navigating through the input
parameter space is akin to finding a needle in a haystack.

This is an interactive tool in the sense that clicking on a particular
dot in the scatterplot will set the slices to the parameters backing that
dot. Thus the user can start their exploration at a known tradeoff point
and then explore the surrounding area. We found that the users were
quickly able to reason about which response to prioritize over another
using this view.

5.2.2 Response View

Fig. 4. The three types of plots in our system. a) Shows the response
value itself. Here darker regions indicate higher response. b) Shows
the uncertainty in estimation. Here darker regions indicate higher un-
certainty. ¢) Shows the expected gain from additional sampling. Darker
colors here are areas of higher expected gain.

The Response View is the main portal for interaction with the esti-
mated response surfaces. The plots shown are analogous to a scatter-
plot matrix. However, instead of scatterplots for each pair of dimen-
sions we are showing 2D slices as was suggested in HyperSlice [43].
This is a very familiar interface for our users as slice-based views are
common in medical image visualization. There are two methods for
interaction with these plots. One is by clicking and dragging in the
plots themselves. This changes the slices accordingly. We also pro-
vide slider controls to change the slice and range filters to change the
zoom level under the “Controls” tab in the “Plot Controls” section
shown in Fig 3.

This view allows us to show and visually compare up to two re-
sponse dimensions at a time. The first response variable is shown in
the lower left matrix and the second response value is shown in the
upper right matrix. We use different color maps for the different re-
sponse values in order to visually distinguish them. Different response
variables are distinguished through different hues using quantitative
colormaps from Colorbrewer [17].

We provide three different plot types of the data to the user. An ex-
ample image of each is shown in Fig 4. Each of these plot types sup-
port a different task that the users want to perform. Response shows
the estimated response value at any given point. This view supports
finding regions of high-quality segmentation. Error shows the stan-
dard deviation (Eq. 8) reported by the estimation model. Here, areas
of high error are essentially gaps in our sampling. By placing sample
points in these gap regions the analyst is able to build up a more ac-
curate model across the entire input space. A model built up in this
way is ideal for conducting a global sensitivity analysis. The third plot
shows the expected gain in the maximum from sampling at that loca-
tion. This expected gain measurement is a realization of (Eq. 5). By
placing sample points in areas of high expected gain the user builds
up a more accurate model in areas with a high likelihood of finding an
optimum value. This supports the optimization task.

In practice we found that the error plots were not as useful as the
gain plots. One possible explanation for this is that the error plots

indicate areas of global uncertainty. This error value does not account
for the fact that it may be guiding the user towards areas where the
response is known to be low. However, the gain plots are taking into
account the current best known sample point as well as the uncertainty.
This is better suited to our optimization task since we will not spend
as much time placing samples in areas where we do not expect to find
any sort of optimal value.

The color maps are interactive. The user can filter out response
values that are of no interest by compressing the color map. This al-
lows the user to better distinguish interesting from uninteresting areas.
Since we are searching for optimal values, the filtering of the colormap
needs to constrain the range in only one direction. Filtered values are
mapped to a neutral gray color in order to visually distinguish them
from the unfiltered values.

5.2.3 Controls

In the Plot Controls section we placed the controls that affect the user’s
exploration and refinement of the response surface in a tab panel. The
“Info” tab shows the user the details. This includes the numerical val-
ues of all input parameters and output values for the specified focus
point. It can also include an image slice of the corresponding segmen-
tation. The focus point is also indicated with a crosshair in each plot.
The “Local” tab contains a slider for each dimension. These sliders
specify the size of the region of interest which can be used as a bound-
ing box for placing additional samples or simply as a reference. This
tab also contains a table listing the number of sample points in the cur-
rent region as well as the gradient with respect to each input parameter.
The “Controls” tab contains controls that allow the user to adjust what
slice they are viewing , the zoom level, and which response variables
to view. The user is also allowed to save particular points they find
interesting as a type of bookmark by pressing the “H” key at any time.
The “History” tab contains a table of these saved points, one per row.
The user can click on a row in that table and that will take them back
to that point.

In the View Controls section we provide controls that only affect
the view in the Response View. The plot types are changed with radio
button controls. In addition, we provide controls to show and hide the
currently selected region of interest and a control to show a line from
the current slice to the nearest sample point. This shows users where
the sample points are in the parameter space. However, neither of our
users used this feature in their analysis.

5.2.4 Histograms

The response histograms are designed to give the user an idea about the
distribution of response values. We show one histogram per response
dimension. To generate these histograms we take a dense sampling of
the estimated response values from the Gaussian process model.

We also use an arrow glyph in the x-axis of each histogram to show
where the current slice lies in the range of outputs. This lets the user
see at a glance how close the currently selected point lies in relation
to all response dimensions, not only the ones shown in the Pareto
Panel. The histograms can be individually hidden so that unimportant
response dimensions will not clutter the interface.

5.3 Regions of Interest

Once the user has identified regions of interest via the response view or
one of the two error views their next task is to place additional sample
points in this region in so as to further refine the shape of these regions.
Remember that we only took a few samples spread throughout the full
high-dimensional parameter space. It is very likely that there are some
regions that require a denser sampling.

The “gain” plots are well-suited to this task, an example of which is
shown in Fig 5(a). In this particular plot areas where the expected gain
is high are represented in dark green. An advantage of using this scalar
gain value for the plots is that we can utilize the same navigational
interface used for finding high response to find good areas in which
to take additional samples. The expected gain measure is just treated
as an additional albeit always available goal function. The user does



Fig. 5. a) An example expected gain plot from our system. Note the
area of high gain around minCorrelation 0.2 and similThreshold 0.175.
b) The corresponding response value for the gain plot. Note that the
most gain is achieved around the location of highest response.

not have to learn two workflows and switching between sampling and
response surface maximization is instantaneous.

In order to mark out a region of interest we provide the user with
a set of radius sliders located under the “Local” tab in the controls
section. An example of this is shown in Fig 2(b). These allow the user
to mark out a hyperbox centered at the current slice over the current
region of interest. The user then clicks on the “Add Samples” button
on that control panel which opens up a dialog that presents an interface
that is identical to the initial sampling dialog, Fig 2(a). The interaction
here is also identical: the user selects the number of sample points to
place in the region and a sampling strategy and the dialog provides a
preview of the locations of the sample points in a SPLOM. When the
user clicks on the run button in this case the project window is closed
and the user is presented with a progress bar indicating the status of the
sampling. Once the sampling has finished the Project Viewer window
reopens and the user may examine their refined regions.

5.4 Task Solutions

We conclude the walkthrough of Tuner explaining how our solutions
correspond to the tasks laid out in Sec. 2.4.

Exploring the full parameter space: We use slice-based naviga-
tion in order to explore the full parameter space. In addition, we allow
the user to click on a plot in order to snap to that location. In order to
allow the user to filter out uninteresting regions we provide zoom func-
tionality in each dimension. We also allow the user to compress the
colormap of either response value. Specific details about a particular
point are displayed as a table to the user (details-on-demand).

Finding optimal parameter settings: Through the use of the
Pareto Panel, identified in Fig 3, the user is able to understand and
select a trade-off point to explore in further detail. Using the expected
gain plots to find areas with high expected gain around this location,
the user takes additional samples in order to find the maximum value.

Assessing the sensitivity of a parameter region: As the user
changes a particular parameter value all plots dependent on it change
interactively. At first this may seem to be confusing for the user since
so many elements are changing simultaneously. However, what the
user is able to very quickly grasp is how much each plot is changing as
they move through a particular dimension. The change causes their at-
tention to automatically move to the plot that is changing the most. In
fact, we found that this interactive method was preferred over looking
at static slices and deciphering the effect from those.

Simultaneous exploration of multiple quality measures: We
show the two response surfaces in linked views thereby showing both
quality measures simultaneously. The user is able to visualize different
parameter settings and their effects on both quality measures without
having to change views. We also provide a tradeoff plot for known
sample points in the form of a scatterplot allowing the user to select a
desired Pareto point as a starting location.

6 CASE STUDIES

Our users were PhD students whose research involves the development
of novel image segmentation techniques.

Fig. 6. Brain dynamic PET study images. a) The last time step slice
(highest signal-to-noise ratio) of the synthetic dPET data blurred with a
Gaussian kernel (i.e. introduces partial volume effect) with noise level
51, b) with noise level 101, c) the ground truth segmentation, d-h) rep-
resent multiple segmentations with different parameter configurations
showing the need for carefully fine-tuning the algorithm parameters.

6.1 Brain Dynamic PET Study

In dynamic PET imaging, a series of 2D images are reconstructed
from listmode data obtained by Gamma coincidence detectors. Ki-
netic modelling is the process of applying mathematical models to
analyze the temporal tracer activity in order to extract clinically or
experimentally relevant information. An extension of the algorithm
by Saad et al. [35] is being developed by adding more energy terms to
make the segmentation more robust. The goal is to segment 2D+Time
PET images into six functional regions: background, skull, grey mat-
ter, white matter, cerebellum, and putamen. We used images from
Saad et al. [35].

The proposed probabilistic algorithm is controlled by eight param-
eters: o represents the weight of an image fidelity term, o repre-
sents the weight of a random walker based spatial regularization term
[16], o3 represents the weight of a shape prior term, 4 represents
the weight of an intensity prior term, o5 represents the weight of a
non-negativity constraint over the segmentation probability field, o
represents the weight of a non-negativity constraint over the recovered
regional TACs, o7 represents the weight of a prior term over the re-
covered regional time activity curves (TACs) using a set of templated
TACs, o represents a parameter that impacts how similar two nodes
are that are connected through edges which is common in graph-based
approaches [16]. Two main quality measures have been calculated for
the putamen structure, the dark brown object in Fig 6(c): the Dice
metric [14] that measures the quality of the recovered shape and the
Glucose metabolic rate recovery error that measures the error in recov-
ering the physiological parameter under investigation.

Fig 6(a) and Fig 6(b) show the last dPET time step with noise levels
5A and 10A respectively. Here, A is used to scale the unit variance of
the random noise generator to the scale of the synthetic TAC intensity
at each time step [35]. We show the last time step as it has the high-
est signal-to-noise ratio (SNR), as is typical in dPET (the preceding
time frames are even noisier). Fig 6(c) shows the ground truth image
that we hope to obtain. Fig 6(d)-Fig 6(h) show multiple segmenta-
tions with different parameter configurations demonstrating the need
for fine-tuning the algorithm parameters to obtain suitable results.

Fig 7 shows the exploration stages for the dPET parameter space
using Tuner. We first ran an experiment with 50 different parame-
ter configurations sampled using a Latin Hypercube method. The first
goal is to obtain a parameter configuration with low Glucose metabolic
recovery error and high Dice metric for the putamen structure. In order
to choose a starting point for our exploration, we examine the Pareto
Panel showing the Dice metric versus the Glucose metabolic recov-
ery error Fig 7(a). Examining the preview image at point a, shown
in Fig 7(a), represents a low error value with moderate Dice value
but the corresponding image shows a salt-and-pepper like noise in the
segmented image. Point b represents moderate error with high Dice
value and a better segmented image. Hence, we choose the parame-
ter configuration corresponding to point b as a starting configuration.
Fig 7(b) shows the slice plot matrix corresponding to the initial pa-
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Fig. 7. Parameter exploration of the dPET parameter space. a) Dice metric versus the Glucose metabolic recovery error Pareto Panel that
corresponds to 50 samples. b) slice plot matrix that corresponds to the initial parameter configuration of point 5. The bottom-right corner shows the
corresponding segmented image. c) Fine-tune o3, o7, o, az, and og. d) shows the slice plot matrix of higher noise level 101 e) expected gain plot
suggesting more needed samples especially in the regions of oy and as. f) 250 samples slice plot matrix.

rameter configuration of point b. It shows the possibility of obtaining
lower recovery error in the a7 vs. o3 plot and better Dice in the o
vs. o plot. The bottom-right corner shows the respective segmented
image. Fig 7(c) shows the selection of the optimal o7, a3, 0, and o .
It also shows that o > 0.7 is a stable region in terms of the Dice co-
efficient. For a4, 05, and o, the Dice plot shows larger stable regions.

To examine the performance with higher noise levels, Fig 7(d) ex-
amines the slice plot with additive noise of variance 10A. It shows that
there is shrinkage in the stable region in the Dice plot for o suggesting
a good range to be 0.6 < sigma < 0.8 but still not a definitive answer
yet for a4 and o5. Fig 7(e) shows the expected gain plot, which sug-
gests adding more samples for this higher noise level especially in the
oy and o5 ranges. Fig 7(f) shows a 250 sample experiment for the
102 noise level. It shows that lower values of oy give higher Dice val-
ues. However, it still shows wide stable region for o5 suggesting that
neither the Dice value nor the error metric are sensitive to the change
of a5. This has to be related to the fact that other spatial regulariza-
tion parameters prevent the segmentation probability matrix to contain
negative values which o5 controls directly. The final parameter con-
figuration yields a Dice value of 0.806 and error value of 0.064.

We have applied the same values to 11 datasets accounting for inter-
subject anatomical variability. We find a mean Dice value of 0.754
with standard deviation of 0.084 and a mean error value of 0.0641
with standard deviation of 0.000078. This shows that the parameter
settings picked from wider stable regions in the parameter space lead
to reasonable segmentations for images from the same population [26].

6.2 Microtubule Extraction from Electron Microscopy To-
mograms

We used Tuner to determine the best parameter settings for a biologi-
cal segmentation algorithm designed to extract microtubule centerlines
from Electron Microscopy Tomograms. The aim of this segmentation
is to give reasonable measures for the density of microtubules in the
specimen. Microtubules constitute a part of the cell cytoskeleton and
are subject to extensive study in biological research due to their im-
portant role in scaffolding and cell division.

The segmentation algorithm proceeds by first enhancing the center-
lines of the microtubules in the tomograms by computing normalized

cross-correlation with an idealized cylinder [24], [46]. In the second
step the geometry of the centerlines is reconstructed using a simple it-
erative greedy traversal in the enhanced volume. The tracing algorithm
has three parameters: a threshold, minCorrelation, determining where
to search for microtubules in the volume (MC), a model parameter,
orientation, penalizing strong curvature of the traced lines (OW), and
a second threshold, similThreshold, that determines when to stop the
tracing of one line (S7). The outputs of this algorithm are polygonal
lines representing microtubules in the volume.

Finding a good parameter set by visual inspection is nearly impos-
sible since the microtubule network can be very dense, containing be-
tween 500 and 2000 lines. Many datasets (30 — 100) have to be pro-
cessed as well. Thus we aim to find common parameter settings yield-
ing good results on few test data sets and apply the found parameters to
the remaining data. The assumption is that a parameter set exists that
yields reasonable results for all data. Hence, we need to assure that
the selected test data sets represent quite well the variety of the com-
plete set. Likewise, if no stable parameter range for this test set can
be found, we can conclude that it is impossible to use the automatic
segmentation algorithm with one parameter setting for all datasets.

To find suitable parameters, we created sets of microtubule cen-
terlines manually (the ground truth) for the test data and compare the
automatically computed centerlines to these. The measurement we use
is similar to the one utilized by Cole et al. [13] and results in numerical
measures Precision and Recall which measure the estimated error rate
in the algorithmic segmentation. Note that using Precision and Recall
as measures requires that the ground truth segmentation is complete,
since missing lines would result in a low Precision even for a perfect
automatic segmentation. Previous work [48], albeit from a different
domain, leads us to believe that setting the Precision in our case to
above 0.9 and Recall to above 0.8 will yield trustworthy results.

Tuning parameters according to these constraints is time consum-
ing, since ST, OW, and MC depend on each other. Before Tuner, we
investigated the effects of the various parameter settings by fixing two
of the three parameters and then varying the third. We then plotted Re-
call over Precision [13]. In the resulting plot the best parameter choice
can be found where the curve is closest to one for both Precision and
Recall. A stable range of parameters can be found when plotting Pre-



Fig. 8. Final parameter ranges for the three test datasets. Gray boxes
enclose the areas chosen as final ranges for minCorrelation (MC), sim-
iIThrehold (ST) and orientation (OW) fulfilling both Recall and Precision
constraint for a) DTHQ, b) DTMQ and c) STLQ.

cision/Recall over the parameter, but only with the other parameters
fixed. Because of the interdependence of the parameters, this tuning is
an iterative process. Tuning by hand can take days to weeks. Adding
another model parameter to the tracing increases the complexity even
further, since checking the effect of the new parameter would require
to compare its effect against all three other parameters.

Using Tuner, we estimated our parameters independently on three
different data sets with varying acquisition quality (referred to as
DTHQ, DTMQ and STLQ). For each data set we started with 50
samples on a Latin Hypercube within our three-dimensional param-
eter space. The number of samples was constrained by the fact that
each segmentation took on average ten minutes. Hence, 50 samples
took almost 9 hours to compute.

Using the Pareto Panel we first navigated to a sample point near or
in the quality constraint. We filtered out all values for Precision and
Recall below the constraint using the interactive colormap and drew a
box marking ranges of parameters that lay within the unfiltered area,
thus fulfilling the constraint. In order to mark out the full region, we
iteratively moved the center point of the found box to points nearby to
search for areas where a larger box could be drawn and resized the box.
We refined with 20 new sample points. This procedure was repeated
for the two other test data.

For each of the three data sets we again searched for valid ranges
in the same manner using the refined samples, but this time precisely
fulfilling the constraint. Fig 8 shows the resulting choices for each of
the data sets. Grey boxes mark the finally chosen ranges. Table 1 lists
the final ranges for each parameter and data set. A parameter set that
fulfils the constraint for all the datasets must lie inside the intersection
of these ranges. The intersection is given in the last line of Table 1.

The resulting parameter choices correspond to what we measured
by using the above described Precision/Recall plots. However, it was
an order of magnitude faster. Moving the slider of one parameter can
be considered the same operation as creating a Precision/Recall plot
as mentioned above. With Tuner, instead of having to recompute ad-
ditional values, a simple move of the slider is sufficient. This reduced
the work of days to a couple of hours.

Table 1. Resulting parameter ranges for the microtubule segmentation
algorithm satisfying the quality constraint.

min max min max min max

MC MC ST ST ow ow
DTHQ 0.256 | 0.37 0.168 | 0.28 0 1
DTMQ | 0.26 0.348 | 0.197 | 0.247 | 0.307 | 0.702
STLQ 0.278 | 0.36 0.179 | 0.235 | 0.142 | 0.93
min/max | 0.278 | 0.348 | 0.197 | 0.235 | 0.307 | 0.702

7 IMPLEMENTATION

Tuner is written in the Scala programming language using APIs pro-
vided by the Processing library and OpenGL. For the Gaussian process
model and Latin Hypercube generator we are using packages for the
R environment, m1egp and 1hs respectively. The link between Scala
and R is provided by the JRI Java library. The axes labels were deter-
mined using the algorithm and code described in Talbot et al. [41].

8 LESSONS LEARNED AND FUTURE WORK

Because of enthusiastic feedback by our collaborators and their col-
leagues, we plan to extend the capabilities of our tool and make it
available to a wider audience.

Currently, we constrain our tool to focus on only two trade-offs at
a time. An earlier version of Tuner allowed the user to simultane-
ously view the output of up to four objective functions. However, with
the layout we used it proved too difficult to compare between objec-
tive functions to be effective. After discussing the case with our users
we found that while they definitely needed to visualize two objective
functions simultaneously there was not a strong case to be made for
viewing more than two. An example use case is examining Dice coef-
ficients for different structures simultaneously. There are approaches
in the literature, that deal with the trade-off of multiple objective func-
tions [42], [29]. We believe their work can help in improving Tuner.

Further, there is a need to compare the tuning of parameters for mul-
tiple images from different patients or multiple images from different
noise levels simultaneously. However, this would add a categorical
data type. Hence, we need to investigate how the Gaussian process
model can be applied to categorical data types. Currently, the model
assumes that all parameters are continuous.

As seen in our PET study, some objective measures are inexact, i.e.
improving the objective measure (in our case Dice) doesn’t necessarily
improve the quality of segmentation. Still, the objective measure is vi-
tal to guide the algorithm (and the user) towards a good segmentation,
but the fine tuning needs to happen by examining the segmentations
directly. Therefore, it is desirable to not just predict the (scalar) ob-
jective measures, but also the actual segmentations. We investigated
naively applying the Gaussian process model in order to estimate the
voxels of the images between known segmentations but we found that
the estimated images produced were not accurate enough to be reli-
able predictors of the actual segmentation algorithm. We need to find
a proper, general methodology for image interpolation.

The Pareto Panel in Fig 3 was found to be incredibly useful in terms
of selecting a starting location for one’s analysis. Users are able to
visually see the trade offs in maximizing one response variable against
another. However, it only shows values for known segmentations. We
intend to extend this widget to show the full Pareto Frontier for the
response values by taking into account the estimated response values
from the Gaussian process model. This would allow the user to fine-
tune their trade-off analysis.

9 CONCLUSION

In this paper we have demonstrated Tuner, a tool designed to assist
developers of segmentation algorithms with finding “good” parameter
settings for a wide variety of algorithms. We began by introducing four
tasks that are vital to segmentation algorithm developers: exploring
the full parameter space, finding optimal parameter settings, assess-
ing the sensitivity of a parameter region, and simultaneous exploration
of multiple quality measures. We demonstrated how our technique of
building a statistical model from a sparse sampling, iterative improve-
ment, and high dimensional visualization allow the user to perform
these tasks. By using this tool they are able to replace a tedious and
manual process with a principled and systematic approach that allows
them a much greater understanding of the effect of a parameter on their
algorithm. Both our users only spent some hours on the exploration of
the parameter space using Tuner before becoming confident on partic-
ular optimal parameter regions. Both users had used days and weeks
on the same task before Tuner was made available to them.
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