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The Lattice-Boltzmann Method on
Optimal Sampling Lattices

Usman R. Alim, Alireza Entezari, and Torsten Mdller, Member, |IEEE

Abstract—In this paper, we extend the single relaxation time Lattice-Boltzmann Method (LBM) to the 3D body-centered cubic (BCC)
lattice. We show that the D3bQ15 lattice defined by a 15 neighborhood connectivity of the BCC lattice is not only capable of more
accurately discretizing the velocity space of the continuous Boltzmann equation as compared to the D3Q15 Cartesian lattice, it also
achieves a comparable spatial discretization with 30 percent less samples. We validate the accuracy of our proposed lattice by
investigating its performance on the 3D lid-driven cavity flow problem and show that the D3bQ15 lattice offers significant cost savings
while maintaining a comparable accuracy. We demonstrate the efficiency of our method and the impact on graphics and visualization
techniques via the application of line-integral convolution on 2D slices as well as the extraction of streamlines of the 3D flow. We further
study the benefits of our proposed lattice by applying it to the problem of simulating smoke and show that the D3bQ15 lattice yields

more detail and turbulence at a reduced computational cost.

Index Terms—Visual simulation, animation, physically based modeling, BCC, volume modeling, vector field data, flow visualization,

optimal regular sampling.

1 INTRODUCTION

N the context of signal processing and sampling theory,

the goal is to sample a function densely enough
(Nyquist), such that all frequencies in the spectrum of the
function are properly captured by the discrete sampling.
Assuming a band-limited function with an isotropic
spectrum, the densest sphere packing of the spectra in the
frequency domain introduces the best sampling lattice in
the space domain [23]. Hexagonal packing of the 2D
spectrum in the frequency domain leads to the dual
hexagonal lattice being the best sampling pattern for
sampling a bivariate function. Similarly, densely packing
the 3D spectra in the frequency domain on the Face
Centered Cubic (FCC) lattice introduces its dual, the Body
Centered Cubic (BCC) lattice, as the best generic pattern for
sampling trivariate functions. It is well known that the
overall improvement of the BCC lattice over the the
Cartesian lattice is 30 percent (either 30 percent less samples
or 30 percent more information).

This advantage has been known for several decades now
[23], [9], but has not yet found widespread acceptance in the
graphics and visualization community. The reasons were
twofold. On one hand, no practical reconstruction filters or
other signal processing and analysis tools had been devel-
oped for the BCC lattice. Therefore, no devices or algorithms
were built nor developed to acquire data directly on the
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BCC lattice. On the other hand, since there were no data given
on the BCC lattice, there was no need to develop signal
processing tools to process such lattices.

There has been an effort in the last several years to break
this cycle. Entezari et al. have created proper reconstruction
(interpolation, approximation) filters for the BCC lattice,
which are comparable to their Cartesian counterparts in
numerical accuracy [12], perceptual accuracy [21], and have
been shown to be twice as fast as their Cartesian counterparts
[13]. These insights make it almost possible to break the
above-mentioned cycle. The one remaining roadblock for a
more widespread acceptance of the BCC lattice in graphics
and visualization has been the fact that there are no
algorithms nor devices available that acquire sampled data
directly on this lattice.

The main two sources of discretized volumetric data for
volume graphics are medical acquisition devices and
numerical simulations. In this paper, we focus on the
numerical simulation of fluid flow, as expressed in the
Navier-Stokes (NS) equations. The application of such
algorithms cover a wide range of areas from visual effects
[14], [15] to urban security [26].

The Lattice-Boltzmann method (LBM) is a promising
alternative to traditional top-down techniques for solving the
incompressible NS equations. It has gained attention in the
visualization community in the past few years due to its easy
implementation on graphics hardware. Since the purpose of
this paper is to change the discretization lattice of the
continuous Lattice-Boltzmann equation, we found it impor-
tant to present an abridged derivation of these equations in
Section 3. The novelty of this paper, however, is a careful
consideration of the discretization of the velocities and its
impact on the lattice structure (see Section 4) as well as their
use in graphics and visualization.

The main contributions of this paper are the following:

e This is the first paper to acquire simulation data
directly on a BCC lattice without a necessary
resampling step. The advantage of employing this
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pattern for simulation is not only on its improved
accuracy of sampling, but also on its superior
computational efficiency properties [13].

e Whereas in the traditional LBM, the spatial dis-
cretization lattice is almost always the Cartesian
lattice, velocity discretization is chosen to include
extra directions in addition to the axis-oriented
directions. Our proposed lattice for spatial discreti-
zation, naturally provides more directions for dis-
cretization of velocity vectors. The increased
symmetries in the proposed lattice complements, in
the LBM, the sampling theoretical advantages such
as the efficiency of reconstruction.

e We demonstrate the advantages of solving the LBM
directly on a BCC lattice by improved efficiency of
the simulations without incurring any loss in
accuracy. Furthermore, stability is significantly en-
hanced in our proposed method. We provide the
explanations for the improvements the BCC lattice
brings to the LBM. We show the impact using line-
integral convolutions on 2D slices of the simulation
as well as 3D streamline computations and the
simulation and rendering of smoke.

2 RELATED RESEARCH

The numerical solution of partial differential equations is a
rich field with many challenges [22]. Modern sophisticated
techniques often resort to multigrid methods and, in
general, nonregular lattices. However, the simulation of
natural phenomena (such as smoke, fire, or fluids) for visual
effects in the movie or gaming industry is often done on a
Cartesian lattice.

In the early days of Computer Graphics (CG), when the
appearance of these phenomena was more important than
physical accuracy, researchers used procedural methods
[10]. Later, as computers became faster, top-down Compu-
tational Fluid Dynamics (CFD) techniques were used to
generate images with high levels of visual realism. Foster
et al. [15] provided a finite-difference solution to the NS
equations and Fedkiw et al. [14] proposed the addition of a
vorticity confinement force to address the problem of
energy dissipation in coarse grids.

2.1 The Lattice-Boltzmann Method

Recently, bottom-up approaches have been introduced and
consist of the Lattice Gas Cellular Automata (LGCA) and the
LBM. The starting point of these approaches is a discrete
mesoscopic model, which by construction, yields the Navier-
Stokes equations of fluid flow. Both LGCA and the LBM have
been used in the field of CG as an alternative to the top-down
CFD-based techniques. Dobashi et al. [8] have used LGCA to
produce realistic animations of clouds. Wei et al. have used
the LBM to compute velocity fields for the purpose of fire
simulation [32], create wind fields [34], and simulate gaseous
phenomena [33].

A significant advantage that the LBM has over the top-
down approaches is its simplicity. Computation of the LBM
consists of inexpensive addition, subtraction, and multi-
plication operations. Furthermore, these operations are
performed locally which can potentially improve computa-
tion speed by parallelization. Different types of boundaries
can also be incorporated without the need to change the
local computation rules.

2.2 Optimal Regular Lattices

All applications of the LBM use Cartesian type lattices for
the spatial and velocity-space discretization of the Boltz-
mann equation. Such a discretization is not optimal in the
sense of the isotropy of directions and the distribution of
lattice nodes.

The book by Conway and Sloan has an exhaustive look at
a number of different regular lattices and their properties
[3]. A formal treatment of signal processing concepts for
regular lattices, including the Cartesian and nonseparable
lattices in 2D can be found in the book by Dudgeon and
Mersereau [9]. After this early work, the 2D hexagonal
lattice has not received much attention until Van De Ville
et al. created a family of B-splines on the hexagonal lattice,
also known as hex-splines [31].

The design of reconstruction kernels for the BCC lattice
builds upon box splines [5], [12]. While this work had
focused on the numerical accuracy of the reconstruction, it
is important to evaluate these splines in terms of their
perceptual behavior. In setting up a user study, where the
users had to judge the quality of images reconstructed on a
Cartesian pipeline versus a BCC pipeline, it has been
established that the BCC lattice is comparable to a Cartesian
lattice with only about 70 percent of the samples [21].

Despite the numerical accuracy and perceptual fidelity of
these new box splines, they were prohibitively expensive in
their evaluation [12]. Looking to make these splines
practical for rendering applications, a surprising result
was found. With proper piecewise polynomial evaluation of
the spline, the rendering speed of a ray-caster, based on the
BCC lattice using the quintic box spline, is twice the speed
of an efficient implementation of a ray-caster on the
Cartesian lattice based on cubic B-splines [13]. The intuition
behind this result is the fact that the support of these
(nonseparable) box splines is much more compact than
separable, tensor-product splines.

3 THE LATTICE-BOLTZMANN MODEL

In contrast to the top-down CFD models that describe
macroscopic fluid properties, the LBM is a bottom-up
approach that describes the behavior of a fluid at a
mesoscopic level. At this level, fluid flow is modeled by
tracking the evolution of averaged distributions of micro-
scopic particles. Such an approach avoids the complexities
involved in dealing with fluid flow at a completely
microscopic level and yet accurately predicts the macro-
scopic behavior of the flow. As compared to top-down
models, the LBM has the advantage that the evolution rules
that govern the distribution of particles are linear and local,
thus making the method simpler and faster. For these
reasons, the LBM is a well-suited candidate for solving fluid
flow problems in computer graphics.

In this section, we will present a general description of the
model that is not tied to any particular lattice structure. For a
careful analysisand derivation of the LBM, werefer thereader
to the excellent texts by Succi [29] and Wolf-Gladrow [35].

3.1 The Boltzmann Equation

As the name suggests, the LBM has its roots in the kinetic
theory of gases where distribution functions such as the
Maxwell-Boltzmann distribution [35] play a key role. For a
domain @ C R? (d € {2,3}), a single species distribution
function f(z,v,t) is a function of the form f:Q x IR? x
R" —IR" and gives the continuous time-dependent



632 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 4, JULY/AUGUST 2009

probability of finding a fluid particle within an infinite-
simal volume located at z and having velocity v. The
kinetic theory of gases deals with the time evolution of
such distribution functions and relates macroscopic
quantities such as fluid density, velocity, and pressure
to the underlying microscopic particle distributions.
Under constant temperature conditions and when no
external forces are acting on the fluid, the distribution
function evolves according to the Boltzmann Equation

o v VE=QUD), 0
where v is the velocity of a particle at the location z at time .
The two-particle collision term Q( f, f) on the right-hand side
of (1) models the way in which the distribution changes as a
result of two particles colliding with each other. The term
v - V fin (1) models the change in the distribution function as
aresult of the propagation of particles owing to their motion.

The collision term in the continuous Boltzmann (1), in
general, has a complex integral form. In most applications
of kinetic theory to fluid dynamics, the collision integral is
approximated by simpler expressions. One such approx-
imation is the BGK approximation proposed by Bhatnagar
et al. and incorporated into the so-called Lattice BGK models
by Qian et al. [25]. This approximation is motivated by the
fact that the large amount of detail of the two-particle
collision integral Q(f, f) does not significantly influence the
values of quantities at the macroscopic scale. Consequently,
the two-particle term Q(f, f) is replaced by a simpler term

J(f), given by

TU) =~ [0, 1) — f(z,0,0)] 2

This operator models the effect of collisions as a relaxation
of the distribution toward a Maxwellian equilibrium
f(z,v,t). The parameter 7 has dimensions of time and
controls the frequency with which the distribution function
relaxes to equilibrium. The BGK approximation is also
sometimes referred to as the single relaxation time approxima-
tion and is quite popular in the LBM literature. Although
there are other forms of the collision integral in use (see, e.g.,
[6] for a description of a multiple relaxation time collision
model), our present work employs the BGK approximation as
it recovers the NS equations in the appropriate macroscopic
limits and is also suitable for use with benchmark problems.

3.2 LBGK Equation

The velocity space in the Boltzmann equation is continuous,
i.e., a particle is allowed to move about freely with any
velocity. A first step toward a discrete approximation of (1)
is the restriction of the continuous velocity space to a finite
set of velocities V :={¢y,c1,...,c,—1}. This means that a
particle located at x is now restricted to have one of the
n velocities ¢;. The distribution function f(z,v,t) now
reduces to the function f;(z,t) that describes distributions
over a finite lattice of velocities. The Boltzmann equation
under the BGK approximation becomes the discrete Boltz-
mann equation given by

af; 1

O e V= 1) 0
This equation is still not suitable for computational use
since it is continuous in space and time. In the LBM, (3) is
discretized spatially and temporally such that the domain

spacing Az and the time step At are related by % = ¢;. This
discretization ensures that particles located at a discrete
location (or node) z move within a time step At to a
neighboring node z + ¢; At that is along the velocity vector
¢;. Taking the time step At to be unity, (3) becomes the

lattice BGK equation, given by

Lt - @), @)

fi($+0i,t+1) 7f7‘(1:,t) :;

A simpler interpretation of this equation over a 2D or 3D
discrete lattice is as follows:

1. Collision. At time ¢, particles at a discrete node x
collide with each other, and in the process, change
the distribution function to f/(x,t), where

fi (@) = @0+ (@) - fiz.). )

2. Propagation. Within one time step, the postcollisional
distribution values f;(x,t) propagate to their neigh-
boring nodes along the lattice velocities ¢;. More
formally,

fi(III—FCi,t-i‘l) :ft*(.'li,t) (6)

This step does not alter the distributions as they are
propagating. Therefore, by construction, mass is conserved.

It is worth pointing out that the collision and propaga-
tion rules are simple and linear. The collision step at a
particular lattice node is entirely local and does not need
information from any other nodes. During the propagation
step, distribution values propagate to the neighbors along
the lattice velocities. This step therefore updates the
distribution function at at most n nodes. Due to the
simplicity and locality of these rules, the LBM is readily
amenable to parallelization.

3.3 Macroscopic Quantities

The variables of interest in most fluid flow applications are
the macroscopic fluid density and velocity. In the LBM,
these quantities are obtained by ensemble averages of the
underlying particle distribution function fi(z,t). The
density of the fluid at a discrete node x is given by the
total number of particles that reside at the node while the
fluid velocity is given by the first velocity moment of the
distribution function

p(:at) = Zfi(w>t)7 (7)
w(z, 1) = %Z f(z e (8)

3.4 Lattice Symmetry and Equilibrium Distribution
In order to recover the incompressible NS equations in the
macroscopic limit, the discrete set of velocities used in the
LBM must respect certain symmetry constraints as outlined
in [35], [17]. The first constraint is that the velocity set itself
is symmetric, i.e.,

V=-V. (9)

The second set of constraints is related to the isotropy of a
lattice. Let W; be a weight associated with a lattice velocity
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¢;. Moreover, let us assume that the weights are the same for
lattice velocities having the same speed and that they satisfy
the relation

2 W=t (10)
1

Isotropy requirements impose the constraints that the
generalized lattice tensors of rank two and four must be
isotropig, i.e.,

chiaciﬁ = Czéﬂ{j? (11)
i

Z Wici(vciﬂch’cié = Cf (6ud(5'y5 + 5()47566 + 6045693"/)7 (12)

where the summation is taken over all lattice velocities. The
Greek subscripts refer to the different Cartesian compo-
nents of a lattice velocity ¢; and 6,5 is the Kronecker delta
symbol. The parameter c¢; is the sound speed of a fluid in
equilibrium and is a constant for a given lattice.

The equilibrium particle distribution f*(z,t) depends on
the local fluid density and velocity, and has the implicit
form f(p(z,t),u(z,t)). It is computed by taking the
velocity moments of the Maxwell-Boltzmann distribution
and equating it with the respective moments of the
equilibrium distribution f;?(p,u). For velocity lattices that
satisfy the above constraints, this procedure results in a
closed-form expression for the equilibrium particle dis-
tribution given by

2
ci-u (¢-u) u-u

€q — 11 _

[ (psw) = pWi |1+ 2 21 20

(13)

By construction, the equilibrium distribution conserves
mass, i.e.,

2= (19
3.5 Recovery of Navier-Stokes Equations

No special treatment is needed to obtain solutions to the
macroscopic equations of fluid flow. It has been shown [25],
[35] that the fluid density and velocity obtained through the
LBM ((7) and (8)) solve the incompressible Navier-Stokes
equations

V.u=0

ou 9
Ez—szu—#—z/V u — Vp,
where v is the viscosity of the fluid and p is the scalar
pressure. The viscosity of the fluid is related to the sound
speed and the collision frequency through

(15)

(16)

V:%cg(%'— 1). (17)
Note that the constant mass density of the fluid is taken to
be unity and does not appear in the NS equations. When
the fluid speed is suff1c1ently small as compared to the
sound speed of the lattice ( < 1), the collision and
propagation rules of the LBM ensure that deviations of the
fluid density from its initial value are negligible. The LBM
therefore solves the Navier-Stokes equations in the
incompressible limit.

3.6 Initial and Boundary Conditions

Since the variables of interest are the macroscopic quan-
tities, the LBM needs to be able to handle initial and
boundary conditions that are prescribed in terms of the
fluid density and velocity. The general approach for
handling initial conditions is to set the initial distribution
function f(z) equal to the Maxwellian distribution that
satisfies the initial fluid density py(z) and the initial fluid
velocity ug(z):

f(@) = £ (po(2), uo(x)),

Starting from an initial particle distribution over the
lattice, the system evolves according to the collision and
propagation rules defined by (5) and (6). While the collision
rule is well defined for all lattice sites, the propagation rule
is not well defined for lattice nodes that have one or more
neighbors that either lie outside the domain Q or are
obstructed by a solid obstacle inside the fluid. In such cases,
the propagation rule needs to be redefined so that the
prescribed macroscopic boundary conditions are satisfied.

A very appealing property of the LBM is the fact that
different types of boundary conditions can easily be
incorporated into the model simply by modifying the
distributions locally. Fluid inlets and outlets as well as slip
and no-slip boundary conditions can all be modeled in
terms of the distribution values alone. However, care must
be taken in doing so since errors due to inaccurate
boundary treatments propagate to other parts of the
domain, thus affecting the solution everywhere.

x €. (18)

4 SAMPLING AND DISCRETIZATION

In the LBM literature, the notation DdQn is usually used to
indicate the choice of a discrete set of velocities at every
lattice point. The variable d implies the spatial dimension
where the simulation occurs and n is the number of discrete
velocities. The spatial and velocity discretizations are
related to each other in that, once a lattice has been chosen,
the velocity discretization is implicitly given by choosing a
particular neighborhood around a lattice point. The
arrangement of the velocities in the neighborhood must
respect the symmetry and isotropy requirements outlined
in Section 3.4 so that the incompressible NS equations can
be recovered in the macroscopic limit.

As an example, in 2D, the D2Q7 and the D2Q9 configura-
tions are commonly used (Fig. 1). The nodes in D2Q7 are
arranged on a hexagonal lattice and the velocity discretiza-
tion is obtained by connecting each point to itself and six of its
nearest neighbors. In contrast, the nodes in D2Q9 are
arranged on a Cartesian lattice and the velocity discretization
is obtained by connecting a node to itself, four nearest
neighbors that are a unit distance away in the axis-aligned
directions, and four second-nearest neighbors that are at a
distance of /2 in the diagonal directions. The hexagonal
lattice is of primary importance in signal processing where it
is known to achieve the highest packing density of Fourier-
transform replicas of an isotropically band-limited bivariate
function [9]. As can be seen in Fig. 1a, the D2Q)7 configuration
leads to a more isotropic velocity discretization where the
Voronoi cells of the six neighbors on the hexagonal lattice
share a face with the Voronoi cell of the center. On the other
hand, we have a mix of face and vertex connectivity in the
Cartesian case (Fig. 1b). Two key questions are in order at this
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(a) (b)

Fig. 1. The 2D LBM lattices. (a) The D2Q7 Lattice. (b) The D2@Q9 Lattice.

point: what ramifications does the optimal sampling prop-
erty have for the LBM and, if there are any advantages, do
they hold in 3D as well?

4.1 Cartesian and BCC Lattices

In order to answer the above questions, let us proceed by
first introducing the 3D lattices. The Cartesian lattice is the
usual choice for discretizing the Boltzmann equation in 3D.
The velocity space is then discretized by choosing an
appropriate sublattice of the Cartesian lattice (Fig. 2a). With
respect to a lattice site, we refer to the nearest neighbors as
first-order neighbors, the second-nearest neighbors as
second-order neighbors, and so on.

The D3Q15 lattice consists of a central node, 6 first-
order neighbors given by the permutations of (+1,0,0)
and 8 third-order neighbors given by the permutations of
(+1,+1,+1). The D3Q19 lattice consists of the central
node and the 6 first-order neighbors as well as 12 second-
order neighbors given by the permutations of (+1,=+1,0).
The D3Q27 lattice consists of the central node and all the
first, second, and third-order neighbors. Besides these
three lattices, another lattice that is commonly used is
D3Q13 formed by the central node and the 12 second-
order neighbors. The velocity discretization of D3Q13
leads to the structure of an FCC lattice. However, it is
usually used in conjunction with a Cartesian lattice where
simulations are carried out on two decoupled FCC lattices
that form a Cartesian lattice [7].

The BCC lattice is the optimal sampling lattice in 3D. Itis a
sublattice of the Cartesian lattice Z* formed by retaining all
points whose coordinates have the same parity, i.e either all
the coordinates are odd or all of them are even. The resulting
lattice is four times less dense giving the Voronoi cell (a
Truncated Octahedron), a volume of 4 [11]. A lattice point and
14 of its neighbors that share a face of the Truncated
Octahedron with it, give us a 15-point discretization which
we refer to as D3bQ15 (Fig. 2b). Out of these 14 neighbors, 8
are first-order given by offsets obtained through the
combinations of (+h, £h,+h) and 6 are second-order given
by offsets obtained through the permutations of (£2h,0,0),
where h is an arbitrary scaling parameter. In contrast to
D3Q15 which has a mix of face and vertex neighbors, D3bQ15
only has face neighbors which makes it a more isotropic
structure. It is easily verified that the D3bQ15 lattice indeed
satisfies the isotropy requirements needed to recover the
NS equations. We give the derivation of the weights and the
speed of sound c¢; in Appendix A. Also summarized in
Appendix A are some other important properties of the
various 3D lattices that we shall make use of.
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(@) (b)

Fig. 2. The 3D simulation lattices. (a) The Cartesian Lattice, a 27-point
view. (b) The BCC Lattice showing a 14-neighbor connectivity.

The lattice scaling parameter h for the D3bQ15 lattice can
be chosen in one of two ways. Either the lattice can be scaled
so that the speed of sound is the same as that of the Cartesian
lattices (i.e., 1/4/3), or it can be scaled such that the Voronoi
cell has a unit volume resulting in a sampling density that is
the same as the Cartesian lattice Z>. Henceforth, we refer to
the former case as D3bQ15 and the latter case as D3bQ15".
Since the BCC lattice is four times less dense as compared to
ZP, h =1/v/4 for D3bQ15*. Remarkably, for D3bQ15, the
scaling parameter turns outtobe h = 1/+/2, which s precisely
the scaling factor that allows a BCC lattice to capture the
frequency information of an isotropically band-limited
trivariate function with 30 percent less samples as compared
toits Cartesian counterpart[11]. A similar resultalso holds for
the 2D case where the D2Q7 lattice scaled to have the same
speed of sound as D2Q9 yields a 14 percent saving in samples.

4.2 Spatial and Velocity Discretization

The discrete propagation step (6) provides a second-order
accurate spatial discretization of the continuous Boltz-
mann equation in a particular direction. Errors introduced
as a result of this step can be lowered by reducing the
distance between lattice points. Table 1 gives the average
distance between a lattice point and its neighbors for
various 3D lattices. D3bQ)15, being a first-second-order
configuration, is better than D3@Q15 which is only a first-
third-order configuration. Moreover, it achieves a lower
average distance with 30 percent less samples. D3bQ15%,
due to its higher sampling density, provides an even
better discretization, which is comparable to that of
D3Q19 which is also a first-second-order configuration.
It should be noted that the accuracy of the solution at a
point not only depends on the spatial discretization error
but also on the velocity discretization error. Configurations
with more neighbors will generally tend to have lower
velocity discretization errors. Also, when the number of
velocities is the same, we would expect that configurations

TABLE 1
Average Distance between a Lattice Point and Its Neighbors

Lattice Type  Average Distance

D30Q15 1418
D3bQ15 1.306
D3bQ15* 1.163
D3Q19 1.276
D3Q27 1416
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Fig. 3. Total approximation error A(r) for various lattices. D2Q7 refers to
the 2D scaled hexagonal lattice that has the same speed of sound as
D2Q9. For all lattices shown, ¢, = 1/\/3. For each lattice velocity, a
Monte-Carlo integration method with 100,000 samples was used to
evaluate (20). In 2D, the integrals are computed over the boundary of a
circle of radius r.

that are more isotropic should have lower velocity dis-
cretization errors. Thus, D3bQ15 and D3bQ15" should be
better than D3Q15. To formalize this notion, let us turn back
to the collision step of the LBM (5) which relies on the
discrete equilibrium distribution function (13). The accu-
racy of the collision step therefore depends on the error
introduced by approximating the equilibrium distribution
function on a particular lattice. Equation (13) can be seen as
a second-order Taylor-series expansion (see [35] for details)
of the 3D Boltzmann distribution given by

y 1\? —¢)
fM () = <ch) exp [— (u—a) 26?::) }

The constant mass density is assumed to be unity and does
not appear in the above equation. Let us define the
approximation error in a particular lattice direction for a
fluid moving with speed r as

(19)

A(r) = / (F(w) - £ w)dS,  (20)

= 471'7’2 QO
where Q, refers to the surface of the sphere of radius r.
Using this, we define the total approximation error as

A(r) == ZA,;(T). (21)

Fig. 3 shows plots of the function A(r) for various lattices
and various fluid speeds. A general trend observed for all
lattices is that the error is low when the fluid speed is small,
which confirms the fact that the LBM recovers the NS
equations in the low-Mach-number regime (r < ¢). On the
Cartesian lattice, D3Q15 is by far the worst. With larger
neighborhoods, D3Q19 and D3Q27 provide much better
approximations for the equilibrium distribution function.
On the BCC lattice, with the same number of velocities,
D3bQ15 is significantly better than its Cartesian counterpart
D3Q15 and only slightly worse than D3Q19. D3Q27
achieves the lowest error in 3D which suggests that a

—0.5
L—05

05 —0.5
y i 0.5 .

Fig. 4. Schematic of the lid-driven cavity.

corresponding 27-neighbor configuration on the BCC lattice
should perform similarly.

Thus, we observe that the sampling optimality of a lattice
has immediate consequences for the LBM. Not only does
D3bQ15 provide a much better velocity-space discretization
as compared to D3Q15, it also provides a better spatial
discretization with 30 percent less samples.

5 3D Cavity FLow

We use the 3D lid-driven cavity flow problem to compare the
accuracy of the LBM on Cartesian and BCC lattices. This
problem has been extensively studied and is commonly used
as a benchmark to compare the accuracy of incompressible
NS solvers. See, e.g., [1], [4], [19] for results obtained through
top-down methods and [20] for results obtained through the
LBM. In our present work, we focus on the D3Q)15 and D3Q19
Cartesian configurations, and compare them with the
D3bQ15 and D3bQ15* BCC configurations.

An incompressible viscous fluid is enclosed in a cubic
cavity of side L(L € Z) and is driven into motion by a lid
moving at constant speed. Since the problem is symmetric
in space, it does not matter which face of the cube is chosen
as the driving lid. In our simulations, the cavity is arranged
as shown in Fig. 4 and the top face is chosen as the lid which
moves in the positive z-direction with a speed of U, = 0.1.
The other faces of the cavity are treated as solid walls that
satisfy a no-slip boundary condition. The Reynolds number
of the flow is denoted as Re and is given by Re = U;L/v,
where v is the kinematic viscosity of the fluid.

For the Cartesian configurations, the distribution of
nodes is straightforward. A cavity of side length L has
L? nodes that lie completely inside the cavity with the
boundary being 0.5 units away in each direction, as shown
in Fig. 4. For the purpose of computation, the nodes can
easily be stored as a 3D array. A BCC grid can also be
efficiently stored in memory as a 3D array [30], where
xy slices having an odd index are shifted by (h, h,0). Each
xy slice itself is a Cartesian grid with a spacing of 2h units in
the « and y-directions respectively, the distance between
successive slices in the z-direction being h. With this
arrangement scheme, the resolution of the BCC grid is
N, x Ny x N, where

(22)



636 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 4, JULY/AUGUST 2009

and the nodes are arranged so that they are centered within
the cavity. D3bQ15 and D3bQ15" configurations are
obtained by choosing h appropriately, as discussed earlier.

The viscosity of the fluid for a given Reynolds number is
computed as v = U;L/Re and the relaxation parameter 7 is
then chosen according to (17). Initially, all nodes except the
ones that lie in the topmost xy slice are initialized to an
equilibrium distribution corresponding to a fluid with
density p=1 and zero velocity (13). The top nodes are
initialized to an equilibrium distribution of p=1 and
u = (Ut, 07 0)

One time step of the simulation then proceeds by
applying the collision and propagation rules ((5) and (6))
to each of the lattice nodes. At the end of a time step, each
node is updated to its modified density and velocity
computed through the distributions that have propagated
to the nodes ((7) and (8)).

In order to ensure a constant driving speed of the lid, an
inlet boundary condition is imposed at all the top nodes.
This is achieved by resetting the distribution function at all
the top nodes, at the end of each time step, to the initial
equilibrium distribution. On the other walls of the cavity,
we use a simple bounce-back scheme in order to satisfy the
no-slip boundary condition. We note that our choice of
boundary conditions is similar to that used by Hou et al. [16]
for the 2D lid-driven-cavity problem but differs from those
used by Mei et al. [20] for the corresponding 3D problem.

In order to compare the performance of numerical
methods on this benchmark problem, the usual practice is
to compare the steady-state velocity profiles along the axial
directions in the geometric center of the cavity. For this
reason, we run our simulations until a steady velocity field
is obtained. We consider the velocity field to be steady if

max |lu(z,t + 1) —u(z, )| <e, (23)

where the convergence threshold e is taken to be 107°. We
denote the z-component of the steady-state velocity field as
u(z), the y-component as v(z), and the z-component as w(z).

Visualization. We also compare the quality of the
simulation results by visualizing the steady-state vector
fields using Line Integral Convolution (LIC) [2], [27] in 2D
and streamlines in 3D. We use a second-order Runge-Kutta
integrator to perform streamline integration. During
streamline integration, the vector fields need to be inter-
polated at nongrid points. For the Cartesian simulation, we
use a tricubic B-spline interpolation scheme, and for the
BCC simulation, we use a quintic box spline interpolation
scheme [12], [13], thus ensuring that the approximation
order is the same.

5.1 Results and Discussion

We carried out cavity flow simulations at different
Reynolds numbers using different lattice sizes. We only
consider the case of Re < 1,000 since, in this regime, cavity
flow becomes steady. In order to compare the velocity
profiles, all our results are normalized so that the cavity lies
within the unit cube [0,1]%, and the velocity is scaled by a
factor of 1/U;. This normalization also allows us to compare
our results with the benchmark data of Albensoeder and
Kuhlmann [1] and the results of Mei et al. [20].

In order to gain some insight into the performance of the
different lattices, we first compare them at Re = 1,000 and
L =96. Accuracy at a high Reynolds number is a good

Normalized velocity component

.04 . . . L
0 0.2 0.4 0.6 0.8 1

Distance along axis

Fig. 5. Axial profiles at Re = 1,000 and L = 96 through the center of the
cavity. The lattices are denoted as D3Q19 (solid lines), D3bQ15 (¢), and
D3bQ15* (e). Colors indicate different profiles; black: u(},1,z); blue:
v(3.y,3); and red: w(z,1,1). The symbols (x) are the results of
Albensoeder and Kuhlmann [1]. Note that the benchmark results for
the blue profile are not provided in [1]. The resolutions are D3Q19
(96 x 96 x 96), D3bQ15 (68 x 68 x 136), and D3bQ15* (76 x 76 x 153)

calculated using (22).

indicator of the overall performance of a numerical scheme
as accuracy generally deteriorates with increasing Re. Fig. 5
shows three axial profiles for the different lattices tested.
The results for D3Q15 do not appear on the plots since the
corresponding simulation did not converge even though a
high lattice resolution was used. Excellent agreement is
obtained between D3Q19 and the BCC configurations
D3bQ15 and D3bQ15* despite the fact that D3bQ15 is
30 percent coarser. However, we observe that our results do
not agree with the benchmark results and differ with
respect to the location of the velocity extrema. We
consistently observe such differences across all test cases
and attribute the disagreement to the fact that our boundary
treatment for the driving lid is different from Mei et al. [20],
who have used a modified bounce-back scheme to satisfy a
Dirichlet boundary condition on the lid wall. We believe
that a Dirichlet boundary condition on the lid wall is a more
accurate description of the problem and conforms well to
the boundary conditions used by top-down methods.

The effect of changing the Reynolds number is illu-
strated in Fig. 6. As Re increases, the flow becomes more
turbulent and the profiles show more high-frequency
features. Again, simulation results for BCC agree very
well with those of Cartesian. We notice that there is a
comparatively greater difference near the top boundary
which we believe is due to the fact that the geometry of the
Cartesian lattice is better able to represent the straight
boundaries of the cavity.

Fig. 7 shows the effect that lattice resolution has on
accuracy at Re =400. At this Reynolds number, the
simulations for both D3bQ15 and D3Q15 did not converge
for a coarse resolution lattice. However, D3bQ15* which has
the same computational burden as D3Q15 not only
converges, but also yields a velocity profile that is closer
to the one obtained for D3Q19 at a higher resolution.
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Fig. 6. Velocity profile u(},3, 2) at Re = 100 (black) and Re = 400 (red)
with L = 64. The symbols are as given in Fig. 5, D3Q15 is denoted by (O).

Thus, we see that D3Q15 is the least stable. With the
same number of velocities, D3bQ15 and D3bQ15*, due to
their better spatial and velocity discretization, perform
much better than D3Q15. Our results suggest that D3b(Q)15%,
by virtue of its higher sampling density, is comparable to
D3Q19 both in terms of accuracy and stability. On the other
hand, D3bQ15, having a lower sampling density, is not as
stable as D3bQ15*. However, in terms of accuracy, it
performs favorably when the parameters are well within
the stability regime of the problem, thus allowing one to
speed up simulations by 30 percent.

Finally, Fig. 8 shows a qualitative comparison of the flow
field at L = 96 and Re = 1,000. At this Reynolds number,
two vortices emerge as illustrated by the LIC slices (Figs. 8a,
8b, and 8c). These slices are color mapped to show the
strength of the flow field. Due to the differences in the lid
boundary between CC and BCC, we observe that D3(19
exhibits a stronger flow near the top as compared to the
BCC lattices, D3bQ15 and D3bQ15*. There is also a slight
disagreement in the location of the primary and secondary
vortices. The nature of the flow around the primary vortex
is shown in Figs. 8d, 8e, and 8f. Again, the images are
virtually indistinguishable, but we do note that D3bQ15* is
closer to D3Q19 than D3bQ15. Since it is more efficient to
perform interpolations on a BCC lattice [13], we observe
that all our BCC visualizations incur a reduced computa-
tional cost as compared to CC.

6 SMOKE SIMULATION

In order to demonstrate the advantages of the LBM on BCC
lattices, we apply it to the problem of simulating smoke
visually. Wei et al. [33] have used the LBM for this purpose.
However, they did not incorporate the effects of an external
body force into the LBM which limited the levels of
turbulence that they were able to achieve. For this reason,
we follow the recipe of Fedkiw et al. [14] with the
modification that we use the LBM as a NS solver.

We model smoke as a nonreactive substance that is
suspended in a viscous, incompressible fluid and gets
advected by the flow. We denote the time-dependent
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Fig. 7. Velocity profile v(},y,3) for L =32 (black) and L = 64 (red) at
Re = 400. The symbols are as given in Figs. 5 and 6.

density of smoke as P(z,t) and assume that it obeys the
advection equation

oP
ot
where u(z,t) is the time-dependent velocity of the fluid.

Furthermore, smoke exerts a buoyancy force on the fluid
in the +z-direction. We model this force as

=—-u-VP, (24)

Jouoy(T,1) = aP(z, 1)k, (25)

where « is a tunable parameter that controls the strength of
the force.

The effects of an external force can be incorporated in the
LBM by modifying the collision step. The propagation step
remains unaffected. We use the body-force model of Junk
et al. [18] according to which the collision step (5) changes to

F(@t) = filz,t) + % (£, 1) — fi(z, 1)) + 3Wic; - G(z.t),
(26)

where W, are the lattice weights and G(z,t) is a time-
dependent external force.

Smoke simulation proceeds by initially setting the fluid
mass density to py and giving it a constant upward
velocity of magnitude Uj. These values are then used to
initialize the packet distributions in the LBM. Before the
simulation begins, certain grid points are designated as
smoke sources. The density of smoke is initialized to zero
at all points that are not smoke sources and to a value P at
the smoke sources. Smoke is reinjected into the sources at
the end of each time step throughout the simulation. Like
the cavity flow problem, the viscosity of the fluid is
determined from the Reynolds number according to
v="UyL/Re, where L is the vertical height of the
simulation domain. Similarly, a no-slip boundary condition
is imposed on all the boundary nodes through the use of
the bounce-back rule, in effect simulating smoke trapped
within a solid box.

After initialization, the simulation proceeds iteratively
for a user-specified number of time steps. At the end of
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(d

(e) (f

Fig. 8. LIC and streamline images at Re = 1,000 and L = 96. (a) and (d) D3Q19, (b) and (e) D3bQ15, (c) and (f) D3bQ15*. The LIC images (a), (b),
and (c) illustrate the flow on the xz plane in the center of the cavity. Streamline images (d), (e), and (f) show the flow around the primary vortex. As
illustrated, a line source is used to seed the streamlines. Refer to the accompanying supplemental material, which can be found on the Computer
Society Digital Library at http://doi.ieecomputersociety.org/10.1109/TVCG.2008.201, for animations showing streamlines emanating from the line
source as it moves through the cavity. The LIC computation time averaged over 10 runs is (a) 44.7 s, (b) 37.7 s, and (c) 39.0 s. The average
streamline computation time per line is (d) 3.41 ms, (e) 2.92 ms, and (f) 2.89 ms.

each time step, we use the macroscopic velocity of the
fluid in a second-order Runge-Kutta-based semi-Lagran-
gian integration scheme [28] to advect the smoke density.
In order to avoid the problem of overshooting, we use
trilinear interpolation on CC and linear box spline
interpolation on BCC [12]. We then use the macroscopic
fluid velocity and the advected smoke density to calculate
a vertical buoyancy force (25) as well as a vorticity
confinement force given by

fvort(xvt) = E(N X w)7

where w is the vorticity (curl) of the velocity field and N is
the normalized gradient of the magnitude of vorticity. The
parameter e controls the strength of the vorticity confine-
ment force. We refer the reader to [14] for details on how
this force addresses the problem of decaying turbulence in
smoke simulations. The external force acting at each grid
point is simply the sum of the buoyancy and vorticity
confinement forces, i.e.,

G('T7t) = fbuoy(mvt) + fvort(z’ t)7

and is used in the subsequent collision step to drive the
flow. Since the BCC grid has axis-aligned neighbors in the

(27)

(28)

three axial directions, we use a central-difference scheme on
both CC and BCC to approximate the various partial
derivatives needed for the computation of the vorticity
confinement force. We note that this is not the optimal
choice for BCC and other more accurate strategies are
possible.

Lastly, we visualize the smoke density using a single-
scattering ray-casting procedure [24]. The extinction coeffi-
cient o, is directly computed from the density of the smoke
through o, = C, P, where C, is the extinction cross section
and P is the smoke density. In order to achieve better
quality, we make use of higher order (tricubic B-spline on
CC and quintic box spline on BCC [13]) schemes to
interpolate the smoke density.

6.1 Results and Discussion

Simulating smoke using the LBM is a challenging problem
in that the range of parameters over which the model is
stable is quite limited as compared to traditional top-down
solvers. The nature of the flow is also affected by the shape
of the simulation domain as the solid walls influence the
flow globally. Furthermore, since the LBM is a low-Mach-
number model, the magnitude of the external force must be
kept low in order to ensure stability.
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(a)

(b) (©)

Fig. 9. Three frames of an animation showing smoke rising from a single source at Re = 300. (a) D3Q19, (b) D3bQ15, and (c) D3bQ15*. The parameters
used are py = 2.7, Uy = 0.1, o = 1.0 x 107, and ¢ = 0.1. All images were rendered with a vertical resolution of 512 pixels. Grid resolution, average
simulation time per iteration, and average rendering time per frame are (a) 40 x 20 x 128, 0.390 s, 54.3 s, (b) 28 x 14 x 180, 0.245 s, 34.4 s, and

(€) 31 x 16 x 202, 0.356 s, 35.3 .

We conducted all our simulations and renderings on a
machine with two AMD dual-core Opteron 280 processors
with 8 GB of memory. Fig. 9 shows how smoke emerges
from a single source placed at the bottom of a vertical
column at Re = 300. Grid resolution as well as simulation
and rendering timings are indicated. Also indicated are the
initial fluid density and velocity, and the parameters that
control the magnitude of the buoyancy and vorticity
confinement forces. At this Reynolds number, both
D3bQ15 and D3bQ15* as well as D3Q19 are stable whereas
D3Q15 is unstable. Since the flow changes quite gradually
between each iteration, we used the density field after every
20 iterations for the purpose of producing the next
animation frame.

Placing the source close to the walls of the column gives
rise to turbulence, thereby causing the smoke to swirl as it
rises. The job of the vorticity confinement force is to ensure
that this swirling motion does not decay over time. We notice
that the BCC configurations (Figs. 9b and 9c) preserve the
vorticity of the flow much better than D3Q19 (Fig. 9a) which
exhibits lesser vorticity and a faster vertical flow. This
decaying turbulence also comes at the expense of greater
simulation and rendering times. On the other hand, the BCC
configurations not only exhibit greater vorticity, they do so at
a reduced computational cost.

Increasing the Reynolds number to 400 while keeping
the other parameters constant results in decreased
stability, D3bQ15* being the only stable configuration.
Interestingly, we observe that increasing the grid resolu-
tion while holding the other parameters constant also
results in reduced stability. Fig. 10 shows simulation
results for D3bQ15 using a grid that has twice the
resolution along each dimension. The corresponding
simulation for D3bQ15° remains stable but becomes
unstable for both the Cartesian configurations D3Q15
and D3Q19. We attribute this instability to the fact that a
higher grid resolution yields a flow with a greater level of
turbulence which, in turn, results in a stronger vorticity
confinement force being applied during the collision step.
Notice how in comparison to Fig. 9b, Fig. 10a shows
more discernible small-scale features, specially near the
top boundary. Fig. 10b illustrates how a more turbulent
appearance can be achieved by increasing the Reynolds

number. Notice how vorticity is preserved throughout the
course of the simulation. Refer to the supplemental
material for the accompanying animations, which can be
found on the Computer Society Digital Library at http://
doi.ieecomputersociety.org/10.1109/TVCG.2008-201.

7 CONCLUSION

In this paper, we extended the Lattice Boltzmann Method to
the BCC lattice configurations D3bQ15 and D3bQ15*, and
compared them to the Cartesian configurations D3Q15 and
D3Q19 using the 3D lid-driven cavity problem. We further
investigated the advantage of our proposed configurations by
applying them to the problem of visually simulating smoke.

We have shown that the sampling optimality of the BCC
lattice has important ramifications for the LBM. D3bQ15
with a 15-neighbor connectivity that is scaled to have the
same speed of sound as the Cartesian configurations yields
comparable results at a 30 percent savings in samples. It is
also more stable as compared to D3Q15. Stability is further
improved on D3bQ15*, which, due to its higher sampling
density, reduces the spatial discretization error. These
benefits are clearly demonstrated in our results. Smoke
simulations on a BCC lattice yield higher degrees of
turbulence at a reduced computational cost as compared
to their Cartesian cousins.

(@) (b)

Fig. 10. Three frames of simulations conducted on D3bQ15 using a
higher grid resolution of 56 x 28 x 361. (a) Rc = 300 and (b) Re = 400.
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The impact of the isotropy of the neighborhood on BCC
leads us to believe that a 27-neighborhood connectivity
should further improve the accuracy and stability of the
model, thus allowing us to simulate more turbulent flows.
In future, we plan to investigate this notion further, as well
as address the problem of finding a set of neutral boundary
conditions that do not favor the Cartesian lattice.

While previous research has shown that the BCC lattice
is a much preferred lattice for the representation, rendering,
and reconstruction of continuous data, this is the first paper
that acquires such data directly on a BCC lattice. We further
show that the BCC lattice is the preferred lattice for solving
the Navier-Stokes equation using the Lattice Boltzmann
Method, not only because of its accuracy and stability, but
also because of the fact that flow data acquired on the BCC
lattice can be visualized much more efficiently.

APPENDIX A

LATTICE PROPERTIES

Derivation of Lattice Weights for BCC

The D3bQ15 lattice consists of three different speeds; hence,
there are three different weights: w;, wy, and ws. w;
corresponds to the zero velocity (0,0,0), ws corresponds to
the 8 first-order velocities (£h, £h, +h), and ws corresponds
to the 6 second-order velocities given by the permutations
of (£2h,0,0). Let us denote the speed of sound as c,.
Conservation of mass gives us the first equation:

wy + 8wy + 6wz = 1.
The lattice tensor of rank 2 (11) is isotropic and yields the
equation

8h?(wy + w3) = 2.

Lattice tensor of rank 4 (12) is isotropic and yields the two
equations:

8h' (wy + dws) = 3cj,

8htw, = c;l

The above four equations can be solved for wy, ws, w3, and
¢s. The solution is

Miscellaneous Properties

Some of the important properties of the lattices that we have
used are summarized below. L is a particular lattice and V/
refers to the volume of its Voronoi cell. The weights are
given in ascending order according to the order of the
velocities.

L |V Cs | Weights

D3Q15 1 % wy =2, wy =5 wg =%

D3bQ15 V2 % see above

D3bQ15* | 1 9/51 7 see above

D3Q19 1 % wi =1 w =k, ws = &

D3Q27 1 % wy =5, wr =%, w3 =2, W4 = 535
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