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Abstract

Within the context of emission tomography, we study volumetric reconstruction methods based on the Expectation

Maximization (EM) algorithm. We show, for the first time, the equivalence of the standard implementation of the

EM-based reconstruction with an implementation based on hardware-accelerated volume rendering for nearest-

neighbor (NN) interpolation. This equivalence suggests that higher-order kernels should be used with caution and

do not necessarily lead to better performance. We also show that the EM algorithm can easily be adapted for

different lattices, the body-centered cubic (BCC) one in particular. For validation purposes, we use the 3D version

of the Shepp-Logan synthetic phantom, for which we derive closed-form analytical expressions of the projection

data. The experimental results show the theoretically-predicted optimality of NN interpolation in combination with

the EM algorithm, for both the noiseless and the noisy case. Moreover, reconstruction on the BCC lattice leads to

superior accuracy, more compact data representation, and better noise reduction compared to the Cartesian one.

Finally, we show the usefulness of the proposed method for optical projection tomography of a mouse embryo.

Categories and Subject Descriptors (according to ACM CCS): Image Processing and Computer Vision [I.4.5]: Re-
construction Transform methods—

1. Introduction

3D Computed Tomography (CT) provides a way to recon-
struct volumetric data from a set of 2D projections of the
3D object acquired at various projection angles. The Maxi-
mum Likelihood Expectation Maximization (EM) algorithm
is a widely used CT method for image reconstruction in
emission tomography (ET). The EM algorithm is an iter-
ative method that consists of three steps in each iteration:
forward projection, correction, and back-projection. The for-
ward projection can be conveniently implemented as volume
rendering that enables an implementation of the EM algo-
rithm on commodity graphics hardware that delivers very
high performance at low hardware costs [CM03,Xu07].

Volume rendering usually seeks to reconstruct a
continuous-domain representation from discrete samples
stored on a regular lattice. Reconstruction is achieved by
convolving the discrete samples with a continuous recon-
struction kernel. Obviously, the quality of the reconstruc-
tion depends on the chosen reconstruction kernel. In general,

higher-order kernels that use a larger neighborhood deliver
better quality than lower-order ones. This intuitive fact is
usually adapted by using trilinear interpolation when imple-
menting the forward projection in the EM algorithm within a
hardware-accelerated volume rendering framework [CM03].

In Section 3 of this paper, we will show that a volume ren-
dering implementation of the EM algorithm is correct if and
only if it uses nearest-neighbour (NN) interpolation. Higher-
order reconstruction kernels are not compatible with stan-
dard EM. To the best of our knowledge this is a novel result.

We substantiate this result empirically with several tests
in Section 5 demonstrating that NN interpolation achieves
most accurate results compared to higher-order filters.

To accelerate the algorithm, we implement the EM algo-
rithm using commodity graphics hardware. Since the EM
algorithm is not bound to a specific lattice, we extend the
implementation to the BCC lattice that is known to have
better sampling properties than the Cartesian (CC) lattice.
This enables reconstruction of volumetric data directly on
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a BCC lattice without the need to change acquisition de-
vices. We therefore pave the way to a more wide-spread
production of data sampled on the BCC lattice: By using
a BCC lattice instead of a CC lattice, either a reduction of
29% of the samples without any loss of information can be
achieved [TMG01], or more detail can be captured for the
same number of samples.

The three major contributions of our work are as follows:

First, we implement the EM algorithm using volume
rendering and show in Section 3 that the traditional dis-
crete representation of the EM algorithm is replaced by a
continuous-domain one using a volume rendering frame-
work. We show that this requires the use of a NN filter.

Second, in Section 5 we show that volumetric data recon-
structed on a BCC lattice deliver higher accuracy and better
noise reduction compared to the CC lattice.

Third, our GPU implementation is two orders of magni-
tude faster than a reference CPU implementation: large vol-
umes with approximately 130 million samples are recon-
structed within less than an hour compared to several days.

We test our method using an analytical phantom and a
real-world dataset; i.e., we use the 3D version of the well
known Shepp-Logan (SL) phantom [SL74] and we derive
analytical expressions for the ideal 2D projection data. Fur-
thermore, we employ data from a new modality where pro-
jections of a mouse embryo were acquired using optical pro-
jection tomography (OPT) [Sha04].

2. Related Work

Algorithms for CT reconstruction can be split into two cat-
egories: analytical and iterative methods. Analytical meth-
ods invert the Radon transform in a single step and include
back-projection methods such as Filtered Back Projection
(FBP) [Dea83,FDK84]. They only work reliably if the noise
is limited; e.g., for transmission tomography. Iterative meth-
ods, on the other hand, optimize a criterion to reconstruct
the volume; e.g., the Algebraic Reconstruction Technique
(ART) [GBH70] or the EM algorithm [SV82] alternate be-
tween forward and back-projections. Iterative procedures are
computationally expensive, but the criterion can be chosen to
improve robustness in the presence of noise [LM03], which
is clearly the case for ET.

There are several CT methods that have been success-
fully ported to the GPU improving reconstruction times
[CM03, XM07b]. However, all these methods work on the
standard CC lattice and/or suffer from the poor resolution
of 8 bits of the earlier GPU’s framebuffer. An excellent
overview can be found in Sitek’s tutorial [Sit07] and in Xu’s
thesis [Xu07]. None of these methods have investigated the
influence of different filter kernels (and mostly used linear
interpolation). In contrast, we show that highest quality is
achieved when using a NN filter.

The use of BCC lattices in tomography research is not
new [ML95,MY96]. Matej et al. [ML95] used spherically-
symmetric volume elements (blobs) introducing computa-
tional overhead due to the overlap. Mueller et al. [MY96]
employed the BCC lattice to reduce the computational costs
to a factor of 70.5% of the equivalent CC lattice. More recent
work by Xu et al. [XM07a] uses commodity graphics hard-
ware to accelerate the FBP algorithm using BCC lattices.
As mentioned above, this method is not reliable when re-
constructing from noisy projections. Iterative methods that
can deal better with noise often require a forward projec-
tion step in every iteration. Forward projection, however, in-
volves rendering of a volume; i.e., it involves reconstruction
from the volume on the underlying lattice with a kernel.

Since we use the EM algorithm (which is an iterative
method) in a rendering framework, the forward projection
is basically achieved via volume rendering. Volume render-
ing involves reconstruction of a continuous-domain function
from discrete samples lying on a regular lattice. Theußl et
al. [TMG01] were the first to use BCC lattices together with
a spherical extension of reconstruction filters in the area of
volume rendering. However, visual results were not convinc-
ing and since then several filters for the BCC lattice have
been proposed: box splines [EDM04, EVM08], a prefilter-
ing operator followed by a Gaussian filter [Csé05] and a B-
spline filter [CH06], and BCC-splines [Csé08]. In this paper
we choose box splines since they guarantee approximation
order and are numerically stable. On the CC side we employ
the commonly used B-splines.

3. Computed Tomography

We present a brief overview of the EM algorithm, first
in its traditional discrete form as introduced by Shepp et

al. [SV82] and then in a continuous form that can be adapted
for use in a volume rendering framework.

3.1. EM Reconstruction

The goal of image reconstruction in ET is to estimate a
continuous 3D activity distribution from discrete measure-
ments that correspond to some integral transformation of
the activity distribution. Lewitt et al. [LM03] have classi-
fied the models used to represent the data collection process
into three major categories, namely discrete-continuous (D-
C), discrete-discrete (D-D) and continuous-continuous (C-
C). D-C models are a natural setting for ET and attempt to
relate the discrete measurements to the continuous 3D ac-
tivity distribution. D-D models are obtained from D-C mod-
els by using a finite set of basis functions to represent the
unknown activity distribution. A reconstruction algorithm is
then used to estimate the coefficients of the basis functions.
C-C models interpret the discrete measurements as samples
of a continuous function in the measurement space and an
analytic formula is used to invert the integral transform in
order to estimate the activity distribution.
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Here, we shall focus on the EM algorithm which is based
on a D-D model of data collection; i.e., it treats the acquired
projections and the reconstruction volume as discrete data.
The 3D volume is typically discretized into non-overlapping
cubic cells that are tiled such that their centers make up a
regular 3D CC lattice. However, the algorithm is not tied to
any specific grid and allows the use of non-CC lattices.

We denote by λ (x), the unknown 3D activity distribution.
For convenience, we lexicographically order the cells and
index them with j ( j = 1, . . . ,J). Similarly, assuming a total
of I detector bins, we order them lexicographically and index
them with i (i= 1, . . . , I). We denote the total number of pho-
tons detected in bin i as ẙi and the total activity in cell j as λ̊ j.
The stochastic nature of photon detections in a particular bin
is modeled as a Poisson process that is independent of the
photon arrivals in other bins. In particular, photon arrivals
in bin i follow a Poisson distribution with mean ∑ j ai, jλ̊ j,
where the term ai, j models the physics and geometry of the
imaging process and represents the probability that a photon
emitted anywhere in cell j will be detected in bin i. This al-
lows the D-D imaging model to be written as a matrix-vector
product given by

E[ẙ] = A · λ̊ , (1)

where ẙ is the column vector (ẙ1, . . . , ẙI)
T consisting of de-

tector counts and λ̊ is the column vector (λ̊1, . . . , λ̊J)
T con-

sisting of cell activities.

The EM algorithm takes the form of an iterative procedure
that finds the image estimate λ̊ that maximizes the likelihood
of measuring the data ẙ under the imaging model (1). We
refer the reader to [SV82,LC84] for details of the derivation.

If we denote an activity estimate at iteration n as λ̊
(n)

, then
the equation that updates the activity estimate of cell j, can
be written as

λ̊
(n+1)
j =

λ̊
(n)
j

∑i ai, j
∑
i

ai, j
ẙi

∑k ai,kλ̊
(n)
k

. (2)

Let p̊(n) be the column vector (p̊
(n)
1 , . . . , p̊

(n)
I )T that repre-

sents the projection of the activity estimate λ̊
(n)

at iteration
n. It is given by

p̊(n) = A · λ̊
(n)

. (3)

Also, let c̊(n) be the column vector (ẙ1/p̊
(n)
1 , . . . , ẙI/ p̊

(n)
I )T

consisting of correction factors. Equation (2) can then be ex-
pressed in a more concise form as

λ̊
(n+1)
j = λ̊

(n)
j ů

(n)
j , (4)

where ů(n)
j =

(AT ·c̊(n)) j
∑i ai, j

and AT is the transpose of A.

The update equations (2) and (4) have a simple interpreta-
tion in terms of projection and back-projection operations.
In the standard EM framework, the matrix A computes a
projection of the current activity estimate whereas its trans-
pose,AT , back-projects correction factors into the volume to

update the estimate. Sometimes, a different back-projection
matrix BT may be used to accelerate convergence, resulting
in a modified reconstruction algorithm that goes by the name
of Dual-Matrix reconstruction. In ET, it accelerates conver-
gence by modeling the physics (attenuation, Compton scat-
tering, detector blurring) as well as the geometry of the ac-
quisition process into the projection matrix A while keeping
the back-projection matrix BT sparse (e.g by modeling ge-
ometry only). The projection and back-projection matrices
must form a valid pair as analyzed in [ZG00].

3.2. Volume Rendering Formulation

Volume rendering techniques for tomographic reconstruc-
tion have the advantage that they avoid the expensive compu-
tation and storage of the systems matrixA, rather, the entries
of the matrix are implicitly computed on the fly during the
projection and back-projection steps. In order to make use of
volume rendering techniques, we need to write the discrete
quantities presented in the previous section, in a form that is
more suitable for volume rendering algorithms. In particu-
lar, the activity distribution λ (x) and the forward projection
model (1) need to be transposed into the continuous domain.
Towards this end, we formulate the equations in terms of
arbitrary basis functions and highlight the conditions under
which the continuous-domain representation is equivalent to
the discrete EM framework.

We start by examining the D-C data collection model
which treats both the emission density and the detection
probability as continuously defined functions. Let hi(x) de-
note the continuous-domain probability density function that
represents the probability that an emission within an in-
finitessimal volume at x will be detected in bin i. If we rep-
resent the continuous-domain emission density as a linear
combination of a finite number of basis functions, the con-
tinuous analogue of the discrete imaging model (1) can be
written as

g̊i =
∫

R3
hi(x)

(

∑ j
λ jφ j(x)

)

dx, (5)

where g̊i denotes the total number of photons detected in
bin i under a continuous imaging model, φ j(x) is the basis
function corresponding to cell j and λ j is the corresponding
coefficient. Here, we have not placed any restrictions on the
choice of basis functions. Any set of functions that form a
valid basis can be used.

An entry of the matrix A represents the average proba-
bility that an emission from cell j will be detected in bin
i [LM03]. It can be obtained through hi(x) by integrating
over the volume occupied by cell j; i.e.,

ai, j =
∫

R3
hi(x)χ j(x)dx, (6)

where χ j(x) denotes the characteristic function of cell j. It
is unity within the volume of the cell and zero elsewhere.

Using (6) and the D-D projection model of the EM frame-
work (1), we can write the expected total number of photons
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detected in bin i as

∑ j
λ̊ jai, j = ∑ j

λ̊ j

(

∫

R3
hi(x)χ j(x)dx

)

=
∫

R3
hi(x)

(

∑ j
λ̊ jχ j(x)

)

dx.

(7)

By comparing this with the continuous imaging
model (5), we observe that if we use the characteristic
functions χ j(x) as basis functions along with the total cell

emissions λ̊ j as the corresponding coefficients, the con-
tinuous imaging model becomes equivalent to the discrete
formulation of the EM framework. Thus, a continuous
imaging model that makes use of NN interpolation for the
emission density and treats the integration kernel hi(x) as
a continuously defined function, can safely be used as a
projector in an EM reconstruction framework. Higher-order
interpolation schemes are incompatible. This should come
as no surprise since the EM formulation capitalizes on the
additive property of independent Poisson distributions. A
natural way to achieve this independence is to assume an
underlying piecewise-constant emission density.

The back-projection step can also be expressed in an in-
tegral form similar to (7). Taking (6) and substituting it
into (2), we see that the total unnormalized correction fac-
tor back-projected to cell j is given by

∑
i

c̊iai, j = ∑
i

(

∫

R3
c̊ihi(x)χ j(x)dx

)

. (8)

Equations (7) and (8) are in a more suitable form since
volume rendering algorithms are fine tuned for the purpose
of computing such integrals.

In ET modalities, a collimator is usually employed that
only allows photons traveling perpendicular to the detector
plane to pass through. If we further neglect the effects of
photon scattering, the integration kernel hi(x) is non-zero
within a cuboid-shaped beam perpendicular to the detector
plane and zero outside. Forward projection (7) can therefore
be efficiently computed via volume rendering using ortho-
graphic projection and an emission-only integrator that sam-
ples the volume along rays perpendicular to the image plane.
Similarly, the back-projection (8) can be evaluated by treat-
ing each image plane of correction factors as a light source
and tracing rays through the volume, accumulating their con-
tribution at each cell. In such a volume rendering based ap-
proach for computing the forward and back-projection, if
the integrands are sampled at the same locations, we have a
matched projector/back-projector pair as in (4). On the other
hand, in hardware-accelerated reconstruction, the usual ap-
proach is to use a smaller step size for the forward projection
and an approximate evaluation of the back-projection step,
thus leading to an unmatched approach.

As mentioned earlier, this formulation can be generalized
to any 3D lattice. Once the lattice is determined, the only
adjustment needed is in the choice of the characteristic func-
tion χ j(x), which changes according to the lattice’s Voronoi

cell. In our case we choose the CC and BCC lattices which
have the cube and the truncated octahedron as their Voronoi
cells respectively. Therefore, χ j(x) is the NN interpolation
kernel of the lattice.

4. Hardware-Based Implementation

The EM algorithm expects m projections (ẙ) as input that
are equidistantly distributed over a certain range (usually
360 degrees). The algorithm consists of three different steps
in each iteration n: Forward projection, correction step, and
back-projection (see Figure 1).

Figure 1: Overview of the EM implementation. Illustration

adapted by permission [BDCM05].

Forward Projection: For each iteration n, the forward
projection computes m projection estimates p̊(n) from the
current 3D estimate λ (x)(n) (where λ (x)(1) = 1). Note that
Equation 7 can be considered as beam integrals that can be
approximated by line integrals that are easily computed via
volume rendering. Therefore, we render λ (x)(n) from every
projection angle to obtain p̊(n). According to Equation 7, a
strict implementation relies on NN interpolation. Here, we
compare NN interpolation to higher-order kernels to empiri-
cally confirm the theoretical results from Section 3.

To conduct GPU-based volume rendering on the CC and
BCC lattice, two different adjustments have to be made: To
account for different filters, the fragment shaders have to be
adjusted (see Section 5.2) and for the BCC lattice we need a
different memory access scheme: Figure 2 (a) shows a BCC
lattice that can be seen as two interleaved CC lattices (red
and blue) where the samples of the second lattice are shifted
to the center of the first lattice’s cubes. A BCC lattice point
(x,y,z) has either only even values x, y and z, or they are all
odd. By storing the BCC lattice in a 3D array and using the
following mapping, a fast conversion of a BCC point (x,y,z)
to its index (i, j,k) in the 3D array is achieved by i = x÷2,
j = y÷ 2 and k = z where ÷ is integer division. Being able
to store the two interleaved CC lattices as one 3D array, it is
loaded as a 3D texture into GPU memory (Figure 2 (b, c)).

NN search for a point p in a BCC lattice is achieved by
finding the two closest points to p in the two CC lattices that
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(a) (b) (c)

Figure 2: (a): A BCC lattice is formed by two CC lattices

(red and blue). (b): 2D scheme of the BCC lattice. (c): In

memory, every odd (blue) row (i.e., slice in 3D) is shifted to

the center of the "even" (red) CC lattice.

form the BCC lattice. Having found these two points, one
chooses the closest point to p.

We use texture slicing with an orthographic camera to ren-
der the estimate of the volume. No attenuation correction
takes place so we use additive alpha blending. To compute
the line integral per pixel, we multiply the sum of the frag-
ments with the distance between two adjacent slices (i.e., the
stepsize). This results in images p̊(n) similar to X-ray projec-
tions.

Correction Step: The correction images are calculated
according to Equation 4; i.e., we compute the correction vec-

tor c̊(n) = (ẙ1/p̊
(n)
1 , . . . , ẙI/p̊

(n)
I )T .

Back-Projection: For the back-projection we compute
the integral according to Equation 8. To compute the next
estimate λ (x)(n+1), λ (x)(n) conceptually becomes the cam-
era (i.e., voxels detect photons) and c̊(n) acts as light source
(i.e., pixels emit photons). We proceed as proposed by Chid-
low et al. [CM03]: For every horizontal slice of λ (x)(n), we
find the corresponding row of pixels in c̊(n). We load this row
as a 1D texture into GPU memory which is then "smeared"
over a (rotated) quadratic polygon which represents a hor-
izontal slice in the update volume ů(n). For every rotation
angle of the m projections, these values are normalized by
m and get accumulated in the rendering buffer. This poly-
gon represents one slice of ů(n). Finally, we obtain the next

estimate λ (x)(n+1) = (ů
(n)
1 λ̊

(n)
1 , . . . , ů

(n)
J λ̊

(n)
J )T .

CC vs. BCC: Differences in the algorithm when using
the BCC lattice only occur in the forward projection (where
the fragment shaders and the storage scheme for the BCC
lattice have to be adjusted), and in the back-projection: A
BCC lattice is formed by two CC lattices. Therefore, in the
BCC lattice every slice in the xy-, xz- and yz-plane is a 2D
CC lattice where every odd slice is shifted by one half of the
grid spacing. This shift has to be taken into account for every
odd polygon during back-projection.

5. Results

In this section we test our GPU implementation of the EM
algorithm. We ran our experiments on a PC with a Nvidia
GeForce 9800 GX2 graphics board using Linux 2.6.18 with

gcc 4.1.2, OpenGL, and GLSL. In Section 5.1, we derive the
3D Shepp-Logan (SL) phantom with analytically computed
projections. In Section 5.2, we investigate the influence of
different filters in the forward projection step, and Sec-
tion 5.3 demonstrates the superiority of the BCC lattice over
the CC lattice. Finally, Section 5.4 demonstrates the feasi-
bilty of our method for a real-world dataset.

5.1. Synthetic Phantom

In practical CT settings only the projections are given and a
ground truth is not available. In order to be able to compare
CT algorithms we have to measure the error between the re-
sult (the estimate of the volume) and the actual solution (i.e.,
a ground truth of the volume). Hence, it is desirable to de-
fine synthetic phantoms and to create (ideal) projections for
which we can compute an error measure. Therefore, we em-
ploy the SL dataset. The 2D SL test function was introduced
by Shepp and Logan [SL74]. It consists of several analyti-
cally defined ellipsoids that resemble the shape and charac-
teristics of a slice of a brain’s CT scan. We make use of its
3D version [KS88] and use it as ground truth.

We created 256 projections of the 3D SL phantom of size
128× 128 each on a 360 degree orbit around the phantom.
In order to obtain accurate projections, it is not desirable to
compute the projections in a numerical way (i.e., by comput-
ing numerical integrals along rays cast through the volume
onto the detector plane). Since the 3D SL phantom is a sum
of ellipsoids, we can create the projections analytically by
using the Fourier slice theorem: The Fourier transform of a
unit solid sphere centered at the origin is given by [Miz73]

f̂s(ω) :=
J3/2(2π‖ω‖)

‖ω‖3/2
, (9)

where J3/2 is the Bessel function of the first kind of order
3/2. Furthermore, an ellipsoid is obtained by an affine trans-
formation of a sphere. These transforms can also be applied
in the Fourier domain to yield the Fourier transform of an
ellipsoid (and thus of the 3D SL phantom).

f̂e(ω) := |M|exp(−2πixo
Tω) f̂s(M

Tω), (10)

where M is an affine transformation matrix that maps the
unit sphere to the ellipsoid and xo is the center of the ellip-
soid. Now a spatial projection can be created by first sam-
pling the Fourier transform of the 3D SL phantom on a dis-
rete 2D slice perpendicular to the viewing direction, centered
at the origin, and then applying the inverse Fourier transform
on this slice.

In real-world applications projections are often corrupted
by noise. To test the denoising capabilities of the EM al-
gorithm, we created two more sets of projections that were
corrupted by Poisson noise: For each pixel pxy in projection
p, pxy is treated as the mean of the Poisson distribution at
pixel pxy. A scaling factor n is used to control the mean. The
higher n, the higher is the noise level and the lower is the
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peak signal-to-noise ratio (PSNR). The first set has a PSNR
of 32.19 and the second set has a PSNR of 22.19 (Figure 3).

(a) noiseless (b) PSNR 32.19 (c) PSNR 22.19

Figure 3: Analytically computed projections with different

noise levels of the 3D SL phantom.

Having at hand the ground truth and the projections, the
reconstructions are computed for 30 iterations while moni-
toring the root mean squared error (RMSE) between each es-
timate and the ground truth. We reconstructed the SL phan-
tom on a CC lattice of size 128× 128× 128 and on a BCC
lattice of size 100×100×200. The CC lattice has a slightly
higher sampling density than the BCC lattice.

5.2. Different Filters

In Section 3 we have shown the necessity of using a NN fil-
ter. To substantiate this result empirically, we compare NN
interpolation to higher-order reconstruction filters in the for-
ward projection. For higher-order filtering on the BCC lattice
we used the linear box spline and the quintic box spline with
and without prefiltering (see [FEMV09] for details). For the
CC lattice we used the trilinear B-spline and the tricubic B-
spline with and without prefiltering. The linear box spline
and the trilinear B-spline guarantee C0 continuity, the quin-
tic box spline and the tricubic B-splineC2 continuity.

Figure 5 shows the RMSE after iteration 30 for each lat-
tice, and the four respective kernels when using the noise-
less and the two noisy projection sets. We recognize that NN
interpolation (compared to higher-order reconstruction) de-
livers the most accurate result for both lattices, especially in
the presence of noise.

In our model, we assume that only photons traveling per-
pendicularly to the sensor are recorded, and that distributions
are independent. This should favor NN interpolation when
reconstructing small features. Thus, we used the method de-
scribed in Section 5.1 to create 256 noiseless projections
(40× 40) of small spheres with radius ≈ 2x (where x is the
side length of a cubic voxel), from which we reconstructed
the CC volume of size 40× 40× 40 with the NN and tricu-
bic filter. Figure 4 shows volume renderings of these spheres
after 30 iterations and it is apparent that the reconstruction
of the spheres using NN interpolation in the EM algorithm
is more accurate. The spheres are more symmetric whereas
the tricubic tomographic reconstruction is more irregular.

(a) NN (b) Tricubic (c) Ground truth

Figure 4: Small spheres reconstructed using (a) NN inter-

polation, and (b) the tricubic B-spline.
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Figure 5: RMSE after iteration 30 for different noise levels

and filters.

5.3. Different Lattices

Figure 5 already indicates the superiority of the BCC lattice
since all four BCC reconstruction kernels show better error
behavior than their CC counterparts. A possible explanation
is the more isotropic topology of the BCC lattice.

The convergence of the EM algorithm (using NN filter-
ing) for both lattices is illustrated in Figure 6 by the RMSE
curves for all three noise levels between iterations 10 and
30. Iterations 1 to 9 were omitted for better readability. For
each noise level, the BCC lattice outperforms the CC lattice
(compare the dashed, solid, and “circle” curves).

5 10 15 20 25 30
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Figure 6: RMSE curves for iteration 10 to 30 for three dif-

ferent noise levels (noiseless, PSNR 32.19, PSNR 22.19) for

the BCC and CC lattice.

The numerical differences demonstrated by the RMSE

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

1028



Finkbeiner et al. / High-Quality Volumetric Reconstruction on Optimal Lattices for Computed Tomography

curves are supported by visual results. In the following, we
used the projections with a PSNR of 32.19 but similar results
were obtained for noiseless projections and noisy projections
with a PSNR of 22.19 and are presented in total in the file
sl_results.pdf of the supplementary material.

Figure 8 shows two slices from the reconstructed vol-
umes: (a) shows a 128× 128 slice from the reconstructed
CC volume after 30 iterations and (b) and (c) show the corre-
sponding slice (100×100) from the reconstructed BCC vol-
ume. Note that although the BCC slice has only 100× 100
pixels, the physical size of the slice is the same as the size of
the CC slice. The reason for this is the different topology of
the BCC lattice. To avoid confusion we therefore show the
BCC slice with the same pixel size (b) and the same phys-
ical size (c) as the CC slice. In other words, (c) is just an
upscaled version of (b). (d-f) show the corresponding slices
of the ground truths (CC and BCC). When comparing the es-
timate of the CC volume (a) to the estimate of the BCC vol-
ume (b, c) the visual difference is noticable: The BCC slice
(b, c) shows less noise than its CC counterpart in (a). The
last row (g, h) shows the intensity values indicated by the
red lines in the middle row. The dashed black lines indicate
the ground truth. Again, (h) shows less noise than (g) and
demonstrates the better noise suppression of the BCC lattice.
As a quantitive measure of noise suppression we computed
the variance in the homogeneous dark grey region of the SL
phantom. The lower the variance the better the noise sup-
pression: For the BCC lattice the variance in the dark grey
region is 0.000277 and for the CC lattice 0.000413, which
shows that the noise suppression for the BCC lattice is al-
most twice as good as for the CC lattice.

The presented experiments were also performed with a
BCC lattice of size 91×91×182 which is 30% smaller than
the CC lattice. A BCC lattice of this size can store the same
information as the 1283 CC lattice and the results in the sup-
plementary file sl_results.pdf show that even this BCC lat-
tice performs better than the CC lattice.

5.4. Real-World Data Experiments

We demonstrate the feasibility of tomographic reconstruc-
tion on BCC lattices using the GPU by reconstructing a vol-
ume from real-world data. We use projections of a mouse
embryo that were acquired at the Max-Planck-Institute for
Molecular Genetics using OPT. OPT is a method used
to capture objects of the size of 1 to 10 mm diame-
ter [SAP∗02] at high spatial resolution and is employed
for three-dimensional imaging of small biological specimen
with optical light. Thus, different wavelengths (i.e., color)
can be captured. Applications of OPT are mainly in the field
of molecular biology and include gene-expression analysis,
screening of abnormal anatomy or histology, or pinpointing
cells within a tissue [Sha04].

We used 400 scalar OPT scans of a mouse embryo where
each projection has a resolution of 471× 696 pixels. Our

GPU implementation is able to reconstruct a high-resolution
volume (321×474×642 BCC samples, see Figure 7) within
less than one hour (30 iterations). Our reference CPU imple-
mentation requires seven days employing eight cores.

Figure 7: Volume rendering of the mouse embryo which was

acquired from 400 OPT scans on a BCC lattice (321×474×
642). Red areas indicate the most dense tissue.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

(g) CC profile
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

(h) BCC profile

Figure 8: (a): CC slice of the reconstructed volume. (b):

corresponding BCC slice. (c): upscaled verion of (b). Sec-

ond row: corresponding ground truths. Last row: intensity

profiles indicated by the red lines in (d-f).

6. Conclusion and Future Work

We have established in a mathematical and empirical way
the connection between the standard EM algorithm and the
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continuous-domain volume rendering framework using NN
interpolation. This contradicts the intuition that higher-order
filters lead to higher accuracy; i.e., for the EM algorithm to
work best with volume rendering techniques, one has to use
NN interpolation. Higher-order reconstruction filters are in-
compatible. Note that NN interpolation is also the fastest re-
construction scheme due to its small and compact support.

Furthermore, we have demonstrated that volumetric re-
construction on the BCC lattice is more accurate and bet-
ter suited for noise suppression than traditional reconstruc-
tion on CC lattices. The advantage of our method is that the
acquired projections are still on 2D Cartesian lattices and
therefore acquisition devices do not need to be changed. This
result opens the possibility to a more wide-spread use of op-
timal sampling lattices in the areas of computed tomography
and volume rendering.

So far, we have not modeled effects such as scatter correc-
tion, collimator blur, and attenuation correction. However,
we assume that NN interpolation will also improve results
because of its fundamental connection to the EM algorithm.
The investigation of these effects are subject to future work.

Furthermore, we plan to investigate the possibilities of ex-
tending the EM algorithm for higher-order filters by match-
ing the forward and back-projection for arbitrary reconstruc-
tion kernels. This could enable us to use the advantages of
higher-order filters for CT.
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