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Summary. In this paper we introduce reconstruction kernels for the 3D optimal
sampling lattice and demonstrate a practical realisation of a few. First, we review
fundamentals of multidimensional sampling theory. We derive the optimal regular
sampling lattice in 3D, namely the Body Centered Cubic (BCC) lattice, based on
a spectral sphere packing argument. With the introduction of this sampling lattice,
we review some of its geometric properties and its dual lattice. We introduce the
ideal reconstruction kernel in the space of bandlimited functions on this lattice.
Furthermore, we introduce a family of box splines for reconstruction on this sampling
lattice. We conclude the paper with some images and results of sampling on the BCC
lattice and contrast it with equivalent samplings on the traditionally used Cartesian
lattice. Our experimental results confirm the theory that BCC sampling yields a
more accurate discrete representation of a signal comparing to the commonly used
Cartesian sampling.

1 Introduction

With the advent of the theory of digital signal processing various fields in
science and engineering have been dealing with discrete representations of
continuous phenomena. As scientific computing algorithms mature and find
applications in a variety of scientific, medical and engineering fields, the ques-
tion of the accuracy of the discrete representations gains an enormous im-
portance. The theory of optimal sampling deals with this issue: given a fixed
number of samples, how can one capture the most information from the un-
derlying continuous phenomena. Such a sampling pattern would constitute
the most accurate discrete representation.

While virtually all image and volume processing algorithms are based on
the Cartesian sampling, it has been well known that this sampling lattice
is sub-optimal. Yet, only recently advances have been made by introducing
reconstruction filters for the 2D optimal lattice (e.g. the Hexagonal lattice).
Our paper introduces novel reconstruction filters for the Body Centered Cubic
(BCC) lattice, the analogous optimal sampling lattice in 3D, that are based on
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the geometric structure of the underlying lattice. This should pave the way for
a more mainstream adaption of the BCC lattice for the discrete representation
and processing of three dimensional phenomena.

An introduction to multi-dimensional sampling theory can be found in
Dudgeon and Mersereau [5]. A lattice can be viewed as a periodic sampling
pattern. Periodic sampling of a function in the spatial domain gives rise to a
periodic replication of the spectrum in the Fourier domain. The lattice that
describes the centers of the replicas in the Fourier domain is called the dual,
reciprocal, or polar lattice. Reconstruction in the spatial domain amounts to
eliminating the replicas of the spectrum in the Fourier domain while preserv-
ing the primary spectrum. Therefore, the ideal reconstruction function is the
inverse Fourier transform of the characteristic function of the Voronoi cell of
the dual lattice.

In Section 2 we will give a rigorous introduction to multidimensional sam-
pling theory and derive the relationship between the sampling pattern in the
spatial and the frequency domain. This will allow us to derive the notion of
the optimal sampling lattice in Section 3. Section 4 will discuss and derive
geometric aspects of the BCC and the FCC lattices, setting the stage for de-
riving nearest neighbor, linear and cubic reconstruction filters in Section 5. A
practical implementation of the linear reconstruction filter is derived in Sec-
tion 6 and Section 7 discusses our experimental evaluation. Finally, Section 8
and Section 9 summarize our contributions and point to some open problems,
respectively.

2 Multidimensional Sampling Theory

Let f ∈ L2(R
n) be a multivariate function for which the Fourier transform

exists and let f̂ : R
n → C be its Fourier transform:

f̂(ω) =

∫

f(x)e−2πiω·xdx

Given the fact that f̂ ∈ L2(R
n) also, the inversion formula

f(x) =

∫

f̂(ω)e2πiω·xdω

recovers the original function f almost everywhere 1. If the original function
is also continuous, the reconstruction equality holds everywhere [8].

We are interested in the regular sampling of a function and its reconstruc-
tion from the discrete set of samples. In this paper we shall refer to recon-
struction in the space of functions with a compact support in their Fourier
representations (i.e. bandlimited functions).

1Reconstruction takes the mean value of the left and the right limit at the points
of discontinuity.
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The sampling operation is defined over the space of square integrable func-
tions (L2(R)) equipped with the usual inner product:

〈f, g〉 =

∫

f(x)g(x)dx.

Assuming sample values are produced by a sampling device which is charac-
terized by a function, g, called its impulse response2. The sampling operation,
takes a function that is an element of L2 and returns a number. This operation
can be modeled by the following functional:

L2 7→ R : f 7→ 〈f, g〉 .

The ideal impulse response (i.e. sampling function) is referred to as Dirac’s
delta (generalized) function which is the point evaluation functional defined
by the following functional equation:

δ[f ] = f(0) (1)

for all continuous functions f . Formally this symbol in an integral behaves as
the limit of integrals of a sequence of integrable functions Kr that have the
properties:

∫

Kr(x)dx = 1 for all r > 0

lim
r→0

Kr(x) = 0 for all x 6= 0.

Examples of such kernels consist of Dirichlet, Fejér, Gaussian and Poisson
kernels. It is customary to say that in the limit these kernels behave like the
delta function:

δ[f ] = lim
r→0

∫

Kr(x)f(x)dx = f(0)

for all continuous functions f . Therefore the behavior of the functional in
Equation 1 can be considered as the behavior of the above limit. As a nota-
tional convenience, the operation of δ on a function f is defined as:

∫

δ(x)f(x)dx , δ[f ]

even though, such a function δ(x) does not exist. Since Dirac’s generalized
function is not a function in the classical setting, the symbolic introduction
of Dirac’s delta function is merely for the ease of notation.

A regular sampling pattern can be viewed as a point lattice. An n-
dimensional point lattice is characterized by a set of n basis vectors {Tj}1≤j≤n.

2In the medical imaging community the impulse response is sometimes referred
to as the excitation function.
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A point is on the lattice if and only if it is described by a linear combination
with integer coefficients of the basis vectors. The matrix, T = [T 1T 2 . . . T n],
whose columns are the basis vectors is called the sampling matrix and any
lattice point t is given by t = Tp for some p ∈ Z

n. Figure 2 illustrates a
two-dimensional lattice. The impulse response of such a sampling lattice is:

Fig. 1. A two-dimensional lattice with T = [T 1T 2], where T 1 = [4, 1]> and T 2 =
[1, 2]>.

qqT (x) =
∑

k∈Zn

δ(x − Tk) (2)

This equation is again a symbolic equation that eases the notation. The cor-
responding definition, then, is:

∫

qqT (x)f(x)dx , lim
r→0

∫

∑

k∈Zn

Kr(x − Tk)f(x)dx (3)

for all continuous functions f with bounded support.
The corresponding functional that defines the qqT is:

∫

qqT (x)f(x)dx =
∑

k∈Zn

f(Tk) (4)

Therefore the function that is obtained by the sampling device is:

fs(x) = qqT (x)f(x) (5)

We observe that qqT is a periodic function with period T : qqT (x + Tm) =
qqT (x) for m ∈ Z

n.
In order to study the effect of the sampling operator on the Fourier rep-

resentation of the underlying function, we need to derive the Fourier trans-
form (FT) of qqT . Without claiming any of the convergence properties of the
Fourier transform for the shah function, we transform the shah as:
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q̂qT (ω) =

∫

qqT (x)e−2πiω·xdx.

Since the exponential functions are continuous, Equation 4 yields:

q̂qT (ω) =
∑

k∈Zn

e−2πiω·(T k).

Note that q̂qT is periodic with the periodicity matrix T̃ = T−>, since for any
m ∈ Z

n:

q̂qT (ω + T−>m) =
∑

k∈Zn

e−2πi(ω+T −>m)·(T k)

=
∑

k∈Zn

e−2πi[ω·(T k)+(T −>m)·(T k)]

=
∑

k∈Zn

e−2πi[ω·(T k)+(m>T −1T k)]

=
∑

k∈Zn

e−2πi[ω·(T k)+(m>k)]

=
∑

k∈Zn

e−2πiω·(T k)e−2πim·k

=
∑

k∈Zn

e−2πiω·(T k) since e−2πim·k = 1 for all m,k ∈ Z
n

= q̂qT (ω).

Theorem 1. The Fourier transform of a Shah function qqT (x) over a lattice

T as defined in Equation 2 can be described as another Shah function qqT̃ (ω)

over the dual lattice T̃ = T−> with q̂qT (ω) = qqT̃ (ω)

Proof. To prove this theorem we note that the q̂qT is T̃ periodic. Let Ω =
T̃ [− 1

2 , 1
2 )n be one period of the domain R

n. Therefore, all we need to show is
that:

∫

Ω

q̂qT (ω)g(ω)dω = g(0) =

∫

δ(ω)g(ω)dω (6)

for all continuous g : R
n 7→ C with bounded support.

For the choice of the kernel Kr in Equation 3, we resort to the Poisson kernel.
The family of functions Pr : R

n 7→ C, 0 < r < 1 defined by:

Pr(ω) =
∑

k∈Zn

r‖k‖e2πiω·(T k)

where ‖k‖ =
∑n

i=1 |ki| for k = [k1 . . . kn]
>

.
Expanding the right hand side of the above equation we have:



6 Alireza Entezari, Ramsay Dyer, and Torsten Möller

Pr(T̃ ω) =
∑

k∈Zn

r‖k‖e2πiω·k

=
∑

k1,k2,...,kn∈Z

r|k1|r|k2| . . . r|kn|e2πiω1k1e2πiω2k2 . . . e2πiωnkn

= (
∑

k1∈Z

r|k1|e2πiω1k1)(
∑

k2∈Z

r|k2|e2πiω2k2) . . . (
∑

kn∈Z

r|kn|e2πiωnkn)

= Pr(ω1)Pr(ω2) . . . Pr(ωn)

In other words, the multi-dimensional Poisson kernel is a separable kernel and
therefore we can use the following one-dimensional results from [1]:

Pr(ω) =
∑

k∈Z

r|k|e2πiωk

Pr(ω) ≥ 0
∫

[− 1

2
, 1

2
)

Pr(ω)dω = 1

Furthermore,[1]:

lim
r→1

∫

Pr(ω)g(ω)dω = g(0) =

∫

δ(ω)g(ω)dω

Since Pr(ω) is positive and bounded, Pr(ω) ≥ 0 and by the Fubini theorem
we have:

∫

[− 1

2
, 1

2
)n

Pr(T̃ ω)dω =

∫ 1

2

− 1

2

Pr(ω1)dω1

∫ 1

2

− 1

2

Pr(ω2)dω2 . . .

∫ 1

2

− 1

2

Pr(ωn)dωn = 1.

Moreover, for any continuous function g : R
n 7→ C we have:

lim
r→1

∫

Ω

Pr(ω)g(ω)dω =

= lim
r→1

∫

ω1

. . .

∫

ωn

Pr(ω1, . . . , ωn)g(ω1, . . . , ωn)dωn . . . dω1

= lim
r→1

∫

ω1

. . .

∫

ωn−1

Pr(ω1, . . . , ωn−1)g(ω1, . . . , ωn−1, 0)dωn−1 . . . dω1

...

= lim
r→1

∫

ω1

Pr(ω1)g(ω1, 0, . . . , 0)dω1 = g(0)

Hence, we conclude by the dominated convergence theorem that:

lim
r→1

∫

Ω

Pr(ω)g(ω)dω =

∫

Ω

q̂qT (ω)g(ω)dω = g(0)



From Sphere Packing to the Theory of Optimal Lattice Sampling 7

Since q̂qT is T̃ periodic, we have:

q̂qT (ω) = qqT̃ (ω).

This equality is again a symbolic equality and its meaning is only defined
under an integral:

∫

q̂qT (ω)f(ω)dω =

∫

qqT̃ (ω)f(ω)dω (7)

for all continuous functions f with bounded support.

In conclusion, the Fourier transform of qqT is yet another shah function on
the reciprocal lattice qqT̃ . ut

In order to find the Fourier transform of the sampled function fs as in
Equation 5, one can use the Convolution-Multiplication theorem to show:

f̂s(ω) = (q̂qT ∗ f̂)(ω) = (qqT̃ ∗ f̂)(ω)

The important observation from this result is that the two lattices represented
by T and T̃ are duals of each other through the Fourier transform.

3 The Optimal Lattice Sampling

The main result of the previous section was that sampling a function f on
a lattice T , brings about the replication of the Fourier Transform of f on
the dual lattice T̃ = T−>. Due to this reciprocal relationship, the sparsest
sampling matrix T will have to produce the densest packing of the replicas
of the spectrum on the dual lattice T̃ . Therefore, in order to distribute the
samples in the spatial domain in the most economical (sparse) fashion, the
dual lattice T̃ needs to be as densely packed as possible.

In the typical three-dimensional case, usually there is no knowledge of a
direction of preferred resolution for sampling the underlying function f and
the function is assumed to be qualitatively isotropic. This means that f has
a spherically uniform spectrum. With this assumption, the dense packing of
the spectra in the Fourier domain can be addressed by the sphere packing
problem. Consequently the best sampling lattice in 3D is dual to the lattice
that attains the highest sphere packing density.

The sphere packing problem [3] can be traced back to the early 17th
century . Finding the densest packing of spheres is known as the Kepler prob-
lem. The fact that the face centered cubic (FCC) packing attains the highest
density of lattice packings was first proven by Gauß in 1831 [3]. Further, the
Kepler conjecture – that the FCC packing is an optimal packing of spheres
in 3D even when the lattice condition is not imposed – was not proven until
1998 by a lengthy computer-aided proof [6].
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In two dimensions however, the hexagonal packing structure can be easily
shown to attain the optimal density of packing. Since the two dimensional
hexagonal lattice is self-dual, the optimal sampling in 2D is a hexagonal lattice.
Consequently, by sampling a 2D function f on a hexagonal lattice, its Fourier
domain representation is replicated on the dual hexagonal lattice; similarly
by sampling a function on the commonly used Cartesian lattice, its Fourier
domain representation is replicated on the dual Cartesian lattice.

Figure 2 illustrates the optimality of hexagonal sampling versus Cartesian
sampling. An equivalent spatial domain sampling density is used for both the
Cartesian and the hexagonal sampling lattice. The Fourier domain replication
is shown for the Cartesian lattice in Figure 2(a) and for the hexagonal lattice
in Figure 2(b). It is apparent that the area of the main spectrum (in red)
that is captured in the hexagonal case is larger than that of the Cartesian
case. This means that with the equivalent sampling density in the spatial
domain, the hexagonal sampling captures more of the frequency content of
the spectrum of f and in the process of band limiting the underlying signal
for sampling, we can allow a larger baseband to be captured. This means that
more information can be captured with the same number of samples. The
increased efficiency of the optimal sampling lattice in 2D is about 14% and in
3D it is about 30%.

(a) Cartesian Replication of the
Spectrum

(b) Hexagonal Replication of the
Spectrum

Fig. 2. Hexagonal sampling captures higher frequencies with equal sampling density

While the optimal regular sampling theory is attractive for its theoretical
advantages, it hasn’t been widely employed in practice due to the lack of
signal processing theory and tools to handle such a sampling lattice.
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4 The BCC Lattice

A lattice can be viewed as an infinite array of points in which each point
has surroundings identical to those of all the other points [2]. In other words,
every lattice point has the same Voronoi cell and we can refer to the Voronoi
cell of the lattice without ambiguity. The lattice points form a group under
vector addition in the Euclidean space.

The BCC lattice is a sub-lattice of the Cartesian lattice. The BCC lattice
points are located on the corners of the cube with an additional sample in the
center of the cube as illustrated in Figure 3. An alternative way of describing
the BCC lattice is to start with a Cartesian lattice (i.e. Z

3) and retain only
those points whose coordinates have identical parity.

(a) (b)

Fig. 3. The BCC Lattice. A neighborhood of 35 points is displayed on the left,
while a simple neighborhood of 9 points is displayed on the right.

The simplest interpolation kernel on any lattice is the characteristic func-
tion of the Voronoi cell of the lattice. This is usually called nearest neighbor
interpolation. More sophisticated reconstruction kernels involve information
from the neighboring points of a given lattice point. With this in mind, we
focus in the next section on the geometry and the polyhedra associated with
the BCC lattice.

4.1 Polyhedra Associated with the BCC Lattice

Certain polyhedra arise naturally in the process of constructing interpolation
filters for a lattice. The Voronoi cell of the lattice is one such example. The
Voronoi cell of the Cartesian lattice is a cube and the Voronoi cell of the BCC
lattice is a truncated octahedron as illustrated in Figure 4a.

We are also interested in the cell formed by the immediate neighbors of a
lattice point. The first neighbors of a lattice point are defined by the Delaunay
tetrahedralization of the lattice; a point q is a first neighbor of p if their
respective Voronoi cells share a (non-degenerate) face. The first neighbors cell
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is the polyhedron whose vertices are the first neighbors. Again, this cell is the
same for all points on the lattice.

For example, by this definition there are six first neighbors of a point in
a Cartesian lattice; the first neighbors cell for the Cartesian lattice is the
octahedron. For the BCC lattice there are fourteen first neighbors for each
lattice point. The first neighbor cell is a rhombic dodecahedron as illustrated
in Figure 4b.

The geometry of the dual lattice is of interest when we consider the spec-
trum of the function captured by the sampling operation. The Cartesian lat-
tice is self dual. However, the dual of the BCC lattice is the FCC lattice. The
FCC lattice is a sublattice of Z

3 and is often referred to as the D3 lattice
[3]. In fact D3 belongs to a general family of lattices, Dn, sometimes called
checkerboard lattices. The checkerboard property implies that the sum of the
coordinates of the lattice sites is always even. We will use this property to
demonstrate the zero crossings of the frequency response of the reconstruc-
tion filters at the FCC lattice sites.

The Voronoi cell of the FCC lattice is the rhombic dodecahedron as il-
lustrated in Figure 4c. Its characteristic function is the frequency response of
the ideal reconstruction filter for the BCC lattice. Figure 4d shows the first
neighbors cell of the FCC lattice; the cuboctahedron.

5 Reconstruction Filters

The kernel for the nearest neighbor interpolation in 1D is the Box function. It
is the characteristic function of the Voronoi cell of the samples on the real line.
The nearest neighbor interpolation on the BCC lattice is similarly defined
in terms of the Voronoi cell of the lattice which is a truncated octahedron
(Figure 4(a)). In this scheme, a point in space is assigned the value of the
sample in whose Voronoi cell it is located. Since the Voronoi cell tiles the space,
its characteristic function induces an interpolation scheme for that lattice.
Based on the fact that the periodic tiling of the Voronoi cell yields the constant
function in the spatial domain, Van De Ville [12] proves by means of the
Poisson summation formula that the frequency response of such a kernel does
in fact vanish at the aliasing frequencies.

5.1 Ideal Interpolation

As noted earlier, sampling a function on a periodic lattice replicates the spec-
trum of the function in the Fourier domain on the dual lattice. When the space
of bandlimited functions is the space of choice for reconstruction, the ideal in-
terpolation function is the one that removes the replicates of the spectrum
in the Fourier domain. This proves that the Fourier transform of the ideal
interpolation function is the characteristic function of the Voronoi cell of the
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a) b)

c) d)

Fig. 4. The Voronoi cell of the BCC lattice is the truncated octahedron (a), and
its first neighbor cell is the rhombic dodecahedron (b). For the FCC lattice, the
rhombic dodecahedron is the Voronoi cell (c), and the cuboctahedron is the first
neighbor cell (d).

dual lattice; hence, convolving by the ideal interpolation function, leaves out
the main spectrum and eliminates all of the replicas.

The ideal reconstruction function for the Cartesian lattice has a Fourier
transform that is the characteristic function of a cube and the one for the BCC
lattice has Fourier transform which is the characteristic function of a rhombic
dodecahedron. Therefore, in order to find the ideal interpolation function for
the BCC lattice we need to find a function whose Fourier transform is constant
on the rhombic dodecahedron in Figure 4(c) and is zero everywhere else.

As it is not easy to derive this function directly, to construct an explicit
function we decompose the rhombic dodecahedron into simpler objects that
are easy to construct in the dual domain. Figure 5 illustrates the decomposi-
tion of the rhombic dodecahedron into four three dimensional parallelepipeds.
These parallelepipeds share the origin and each are formed by three vectors
from the origin. For a rhombic dodecahedron oriented as in Figure 4(c) we
define the set of vectors:

ξ1 =





−1
−1

1



 , ξ2 =





−1
1

−1



 , ξ3 =





1
−1
−1



 , ξ4 =





1
1
1



 .
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Any three of these four vectors form one of the parallelepipeds in the
decomposition of the rhombic dodecahedron illustrated in Figure 5. One can
observe that:

ξ1 + ξ2 + ξ3 + ξ4 =





0
0
0



 (8)

that is attributed to the symmetries of the rhombic dodecahedron.
Since a parallellepiped can be constructed by a linear transform from a

cube, we can start by constructing a cube in the Fourier domain:

F{sinc(x) sinc(y) sinc(z)} = B(ωx)B(ωy)B(ωz)

where sinc(x) = sin(πx)
πx

. Rewriting the above equation in terms of a 3D ex-
tension of sinc:

F{sinc3D(x)} = B3D(ω).

Let ξi, ξj , ξk denote the vectors forming a parallelepiped. Then the matrix
T = [ξi|ξj |ξk] transforms the unit cube to the parallelepiped. If χT denotes
the characteristic function of the parallelepiped formed by the columns of T ,
then:

χT (ω) = B3D(T−1ω).

In order to get χT in the Fourier domain, we use the multidimensional scaling
lemma in the Fourier transform:

F{sinc3D(T>x)} = det TχT (ω).

That means the spatial domain form of a constant parallelpiped formed by T

in the Fourier domain is:

F{sinc(ξi · x) sinc(ξj · x) sinc(ξk · x)} = det TχT (ω). (9)

This equation represents a parallelepiped that is centered at the origin; in
order to represent the parallelepipeds in Figure 5 we need to shift them so
that the origin is at the corner of each parallelepiped. The shift is along the
antipodal diagonal of the parallelepiped by half the length of the antipodal di-
agonal. The shift in the Fourier domain can be achieved by a phase shift in the
space domain. Therefore, the space domain representation of a parallelepiped
formed by T with its corner at the origin is

F{e−2πi 1

2
(ξi+ξj+ξk)·x sinc(ξi · x) sinc(ξj · x) sinc(ξk · x)} = det Tχo

T (ω).

where χo
T is the characteristic function of the parallelepiped with its corner

at the origin.
Now we can write the space domain representation of the rhombic dodec-

ahedron in Figure 4(c).
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sincBCC(x) =

eπiξ
4
·x sinc(ξ1 · x) sinc(ξ2 · x) sinc(ξ3 · x)+

eπiξ
3
·x sinc(ξ1 · x) sinc(ξ2 · x) sinc(ξ4 · x)+

eπiξ
2
·x sinc(ξ1 · x) sinc(ξ3 · x) sinc(ξ4 · x)+

eπiξ
1
·x sinc(ξ2 · x) sinc(ξ3 · x) sinc(ξ4 · x)

=
4

∑

j=1

eπiξj ·x
∏

k 6=j

sinc(ξk · x).

(10)

Claim. sincBCC(x) is a real valued function

Proof. In order to show that sincBCC(x) is a real valued function we subtract
it from its conjugate:

sincBCC(x) − sincBCC(x) =

4
∑

j=1

(e−πiξj ·x − eπiξj ·x)
∏

k 6=j

sinc(ξk · x) =

4
∑

j=1

(2i sin(πξj · x))
∏

k 6=j

sinc(ξk · x) =

4
∑

j=1

(2πi(ξj · x) sinc(ξj · x))
∏

k 6=j

sinc(ξk · x) =

4
∑

j=1

2πi(ξj · x)
∏

sinc(ξk · x) =

2πi((ξ1 + ξ2 + ξ3 + ξ4) · x)
∏

sinc(ξk · x) = 0

due to symmetries of the rhombic dodecahedron illustrated in Equation 8.
As a corollary to this claim, using the fact that sincBCC(x) = <{sincBCC(x)} =

1
2 (sincBCC(x) + sincBCC(x)) we simplify the sincBCC(x) to :

sincBCC(x) =

4
∑

j=1

cos (πξj · x)
∏

k 6=j

sinc(ξk · x). (11)

5.2 Linear Box Spline

de Boor et al [4] analytically define the box splines, in n-dimensional space,
by successive directional convolutions. They also describe an alternative ge-
ometric description of the box splines in terms of the projection of higher
dimensional boxes (nD cubes). A simple example of a one dimensional linear
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(a) (b) (c)

Fig. 5. The rhombic dodecahedron, the Voronoi cell of the FCC lattice, can be
decomposed into four parallelpipeds.

box spline is the triangle function which can be obtained by projecting a 2D
box along its diagonal axis down to 1D. The resulting function (after proper
scaling) is one at the origin and has a linear fall off towards the first neighbors
as illustrated in Figure 6a.

The properties and behaviors of box splines are studied in [4]. For example,
the order of the box splines can be determined in terms of the difference in
dimension between the higher dimensional box and the lower dimensional
projection. For instance, the triangle function is a projection of a 2D cube
into 1D, hence it is a first order box spline.

Our construction of box splines for the BCC lattice is guided by the fact
that the rhombic dodecahedron (the first neighbors cell of the BCC lattice)
is the three-dimensional shadow of a four-dimensional hypercube (tesseract)
along its antipodal axis. This fact will be revealed in the following discussion.
This construction is reminiscent of constructing a hexagon by projecting a
three-dimensional cube along its antipodal axis; see Figure 6b for the 2D
case.

Integrating a constant tesseract of unit side length along its antipodal
axis yields a function that has a rhombic dodecahedron support (see Figure
3b), has the value two3 at the center and has a linear fall off towards the
fourteen first neighbor vertices. Since it arises from the projection of a higher
dimensional box, this filter is the first order (linear) box spline interpolation
filter on the BCC lattice.

Let B denote the Box distribution. The characteristic function of the unit
tesseract is given by a product of these functions:

T (x, y, z, w) = B(x)B(y)B(z)B(w). (12)

Let v = 〈1, 1, 1, 1〉 denote a vector along the antipodal axis. In order to project
along this axis, it is convenient to rotate it so that it aligns with the w axis.

3Note that the BCC sampling lattice has a sampling density of two samples per
unit volume.
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a b

Fig. 6. a) one dimensional linear box spline (Triangle function). b) the two dimen-
sional hexagonal linear box spline

Let

R =
1

2
[ρ1ρ2ρ3ρ4] =

1

2









−1 −1 1 1
−1 1 −1 1

1 −1 −1 1
1 1 1 1









(13)

This rotation matrix transforms v to 〈0, 0, 0, 2〉.4 Let x = 〈x, y, z, w〉; now the
linear kernel is given by

LRD(x, y, z) =

∫

T (R>x) dw.

Substituting in equation (12) we get

LRD(x, y, z) =

∫ 4
∏

i=1

B(
1

2
ρi · x) dw. (14)

We illustrate an analytical evaluation of this integral in Section 6.

5.3 Cubic Box Spline

By convolving the linear box spline filter kernel with itself we double its vanish-
ing moments in the frequency domain. Hence the result of such an operation

4By examining equation (13), one can see that each vertex of the rotated tesser-
act, when projected along the w axis, will coincide with the origin or one of the ver-
tices of the rhombic dodecahedron:

˙

± 1

2
,± 1

2
,± 1

2

¸

, 〈±1, 0, 0〉, 〈0,±1, 0〉 or 〈0, 0,±1〉.
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will have a cubic approximation order [11]. As noted by de Boor [4], the
convolution of two box splines is again a box spline.

An equivalent method of deriving this function would be to convolve the
tesseract with itself and project the resulting distribution along a diagonal
axis (this commutation of convolution and projection is easy to understand in
terms of the corresponding operators in the Fourier domain – see Section 5.4).
Convolving a tesseract with itself results in another tesseract which is the
tensor product of four one-dimensional triangle functions.

Let Λ denote the triangle function. Then convolving the characteristic
function of the tesseract yields

T c(x, y, z, w) = Λ(x) Λ(y) Λ(z) Λ(w). (15)

Following the same 4D rotation as in the previous section, we obtain a space
domain representation of the cubic box spline filter kernel:

CRD(x, y, z) =

∫ 4
∏

i=1

Λ(
1

2
ρi · x) dw. (16)

Again, we will illustrate in Section 6 how to evaluate this integral analyt-
ically.

5.4 Frequency Response

From the construction of the rhombic dodecahedron discussed earlier, we can
analytically derive the frequency response of the linear function described by
equation (14).

From equation (12), it is evident that the frequency domain representation
of the characteristic function of the tesseract is given by the product of four
sinc functions:

T̃ (ωx, ωy, ωz, ωw) = sinc (ωx) sinc (ωy) sinc (ωz) sinc (ωw).

While in the previous section the origin was assumed to be at the corner
of the tesseract, for the simplicity of derivation, we now consider a tesseract
whose center is at the origin. The actual integral, computed in Equation 14
or Equation 16 will not change.

By the Fourier slice-projection theorem, projecting the tesseract in the
spatial domain is equivalent to slicing T̃ perpendicular to the direction of
projection. This slice runs through the origin. Again we make use of the rota-
tion (13) to align the projection axis with the w axis. Thus in the frequency
domain we take the slice ωw = 0.

It is convenient to introduce the 3 × 4 matrix

Ξ =
1

2
[ξ1ξ2ξ3ξ4] =

1

2





−1 −1 1 1
−1 1 −1 1

1 −1 −1 1



 (17)
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given by the first three rows of the rotation matrix R of equation (13). The
frequency response of the linear kernel can now be written as

L̃RD(ωx, ωy, ωz) =

4
∏

i=1

sinc (
1

2
ξi · ω), (18)

where ω = 〈ωx, ωy, ωz〉.
The box spline associated with this filter is represented by the Ξ matrix.

The properties of this box spline can be derived based on this matrix according
to the theory developed in [4]. For instance, one can verify C0 smoothness of
this filter using Ξ.

We can verify the zero crossings of the frequency response at the aliasing
frequencies on the FCC lattice points. Due to the checkerboard property for
every ω on the FCC lattice, ξ4 ·ω = (ωx +ωy +ωz) = 2k for k ∈ Z; therefore,
sinc ( 1

2ξ4 · ω) = 0 on all of the aliasing frequencies. Since ξ4 · ω = −ξ1 · ω −
ξ2 ·ω − ξ3 ·ω, at least one of the ξi ·ω for i = 1, 2, 3 needs to be also an even
integer and for such i we have sinc ( 1

2ξi · ω) = 0; therefore, there is a zero of
order at least two at each aliasing frequency, yielding a C0 filter.

The cubic box spline filter can be similarly derived by projecting a tesseract
composed of triangle functions. Again, the frequency response can be obtained
via the Fourier slice-projection theorem.

Since convolution corresponds to multiplication in the dual domain, the
frequency response of (15) is

T̃ c(ωx, ωy, ωz, ωw) = sinc2(ωx) sinc2(ωy) sinc2(ωz) sinc2(ωw).

By rotating and taking a slice as before we obtain:

C̃RD(ωx, ωy, ωz) =
4

∏

i=1

sinc2 (
1

2
ξi · ω). (19)

We can see that the vanishing moments of the cubic kernel are doubled from
the linear kernel. We could also have obtained Equation 19 by simply multi-
plying Equation 18 with itself, which corresponds to convolving the linear 3D
kernel with itself in the spatial domain.

The box spline matrix for the cubic kernel is Ξ ′ = [Ξ|Ξ]. One can verify
the C2 continuity of this box spline using Ξ ′ and the theory in [4].

6 Implementation

In this section we describe a method to evaluate the linear and the cubic
kernel analytically.

Let H denote the Heaviside distribution. Using the fact that B(x) = H(x)−
H(x − 1) we can expand the integrand of the linear kernel (Equation 14) in



18 Alireza Entezari, Ramsay Dyer, and Torsten Möller

terms of Heaviside distributions. After simplifying the product of four Box
distributions in terms of H, we get sixteen terms in the integrand. Each term
in the integrand is a product of four Heaviside distributions. Since x, y, z are
constants in the integral and the integration is with respect to w, we group the
x, y, z argument of each H and call it ti, using the fact that H( 1

2x) = H(x),
we can write each term in the integrand as:

I =

∫ b

a

H(w + t0)H(w + t1)H(w + t2)H(w + t3) dw.

The integrand is non-zero only when all of the Heaviside distributions are
non-zero and since the integrand will be constant one we have:

I = max(0, b − max(a,max(−ti))).

Similarly, for the cubic kernel in Equation 16 we substitute Λ(x) = R(x)−
2R(x− 1) +R(x− 2), where R denotes the ramp function. We obtain eighty
one terms, each of which is a product of four ramp functions. Using R( 1

2x) =
1
2 R(x), we can write each term in the integrand as a scalar fraction of:

I =

∫ b

a

R(w + t0)R(w + t1)R(w + t2)R(w + t3) dw.

This simplifies to a polynomial times four Heaviside distributions that we can
evaluate analytically:

I =

∫ b

a

4
∏

i=1

(w + ti)H(w + ti) dw

=

∫ b

c

4
∏

i=1

(w + ti) dw.

where c = min(b,max(a,max(−ti))) and one can compute the integral of this
polynomial analytically.

6.1 Simplification of the Linear Kernel

An alternative method of deriving the linear kernel can be obtained through
a geometric argument.

All of the polyhedra discussed in Section 4 are convex and therefore may
be described as the intersection of a set of half spaces. Further, each face is
matched by a parallel antipodal face; this is due to the group structure of
the lattice. If a point a is in the lattice and vector b takes it to a neighbor
then a + b is in the lattice; then the group property enforces a− b be a point
in the lattice as well, hence the antipodal symmetry. As a consequence the
polyhedra lend themselves to a convenient description in terms of the level
sets of piecewise linear functions.
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Consider the rhombic dodecahedron, for example. Each of its twelve rhom-
bic faces can be seen to lie centered on the edges of a cube such that the vector
from the center of the cube to the center of its edge is orthogonal to the rhom-
bic face placed on that edge.

So the interior of the rhombic dodecahedron that encloses the unit cube
in this way can be described as the intersection of the twelve half spaces

±x ± y ≤
√

2, ±x ± z ≤
√

2, ±y ± z ≤
√

2. (20)

Now consider the pyramid with apex at the center of the polyhedron and
whose base is a face f with unit outward normal n̂f . Notice that for any
point p within this pyramid, the scalar product p · n̂f is larger than p · n̂f ′ ,
where n̂f ′ is the outward normal for any other rhombic face f ′. Thus if we
define a function

φ : R
3 −→ R

φ : p 7−→ max
n̂f

p · n̂f , (21)

its level sets are rhombic dodecahedra. We can use the axial symmetries of
the half spaces (20) to write the function (21) for the rhombic dodecahedron
in the compact form

φ(x, y, z) = max(|x| + |y|, |x| + |z|, |y| + |z|).

For a fixed s, all the points in the space with φ(x, y, z) < s are the interior
of the rhombic dodecahedron, φ(x, y, z) = s are on the rhombic dodecahedron
and φ(x, y, z) > s are on the outside of the rhombic dodecahedron. Therefore
for all s ≥ 0 the function φ(x, y, z) describes concentric rhombic dodecahedra
that are growing outside from the origin linearly with respect to s.

Using this fact, one can derive the function that is two at the center of the
rhombic dodecahedron and decreases linearly to zero at the vertices, similar
to the linear kernel described in Equation 14, to be:

LRD(x, y, z) = 2max(0, 1 − max(|x| + |y|, |x| + |z|, |y| + |z|)). (22)

7 Results and Discussion

The optimality properties of the BCC sampling imply that the spectrum of a
Cartesian sampled volume matches the spectrum of a BCC sampled volume
with 29.3% fewer samples [7]. On the other hand, given equivalent sampling
density per volume, the BCC sampled volume outperforms the Cartesian sam-
pling in terms of information captured during the sampling operation. There-
fore, in our test cases, we are comparing renditions of a Cartesian sampled
dataset against renditions of an equivalently dense BCC sampled volume as
well as against a BCC volume with 30% fewer samples.
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In order to examine the reconstruction schemes discussed in this paper,
we have implemented a ray-caster to render images from the Cartesian5 and
the BCC sampled volumetric datasets. The normal estimation, needed for
shading, was based on central differencing of the reconstructed continuous
function both in the Cartesian and BCC case. Central Differencing is easy to
implement and there is no reason to believe that it performs any better or
worse than taking the analytical derivative of the reconstruction kernel [10].

We have chosen the synthetic dataset first proposed in [9] as a benchmark
for our comparisons. The function was sampled at the resolution of 40×40×40
on the Cartesian lattice and at an equivalent sampling on the BCC lattice of
32 × 32 × 63. For the sake of comparison with these volumes a 30% reduced
volume of 28×28×55 samples on the BCC lattice along with a volume of 30%
increased sampling resolution of 44 × 44 × 44 for the Cartesian sampling was
also rendered. The images in Figure 7 are rendered using the cubic box spline
on the BCC sampled datasets and the tri-cubic B-spline on the Cartesian
sampled datasets. The images in Figure 8 document the corresponding error
images that are obtained by the angular error incurred in estimating the
normal (by central differencing) on the reconstructed function. The gray value
of 255 (white) denotes the angular error of 30 ◦ between the computed normal
and the exact normal.

The optimality of the BCC sampling is apparent by comparing the images
Figure 7(a) and Figure 7(b) as these are obtained from an equivalent sampling
density over the volume. While the lobes are mainly preserved in the BCC
case, they are smoothed out in the case of Cartesian sampling. This is also
confirmed by their corresponding error images in Figure 8. The image in
Figure 7(c) is obtained with a 30% reduction in the sampling density over the
volume of the BCC sampled data while the image in Figure 7(d) is obtained
with a 30% increase in the sampling density over the volume of the Cartesian
sampled data. One could match the quality in Figure 7(c) with Figure 7(b)
and the Figure 7(d) with the Figure 7(a), this pattern can also be observed
in the error images of Figure 8. This matches our predictions from the theory
of optimal sampling.

We also examined the quality of the linear kernel on this test function.
The renditions of the test function using the linear kernel on the BCC lattice
and tri-linear interpolation on the Cartesian lattice are illustrated in Figure 9.
Since 98% of the energy of the test function is concentrated below the 41st
wavenumber in the frequency domain [9], this sampling resolution is at a
critical sampling rate and hence a lot of aliasing appears during linear recon-
struction. We doubled the sampling rate on each dimension and repeated the

5In order to ensure fair comparison of Cartesian vs. BCC sampling we should
compare our new reconstruction filters with filters based on the octahedron of first
neighbors cell (see Section 4.1). However, tri-linear filtering is the common standard
in volume rendering and since tri-linear filters are superior to the octahedron based
filters, we will compare our new filters to the tensor-product spline family instead.
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(a) BCC 32 × 32 × 63 (b) Cartesian 40 × 40 × 40

(c) BCC, 30% reduced (d) Cartesian, 30% increased

Fig. 7. Comparison of BCC and Cartesian sampling of the Marschner-Lobb data
set, cubic reconstruction

experiment in Figure 10. Figure 11 demonstrates the errors in the normal es-
timation. Due to the higher sampling density, the errors in normal estimation
are considerably decreased; hence we have mapped the gray value 255 (white)
to 5 ◦ of error.

Renditions of the Marschner-Lobb function with this higher sampling res-
olution using cubic reconstruction and the corresponding error images are
illustrated in Figure 12 and in Figure 13.

Throughout the images in Figure 7 through Figure 13, one can observe the
superior fidelity of the BCC sampling compared to the Cartesian sampling.

Real volumetric datasets are scanned and reconstructed on the Cartesian
lattice; there are filtering steps involved in scanning and reconstruction that
tune the data according to the Cartesian sampling so the spectrum of the
captured data is anti-aliased with respect to the geometry of the Cartesian
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(a) BCC 32 × 32 × 63 (b) Cartesian 40 × 40 × 40

(c) BCC 30% reduced (d) Cartesian, 30% increased

Fig. 8. Angular error of the computed normal versus the exact normal of the cubic
reconstruction in Figure 7. Angular error of 30 ◦ mapped to white

lattice. Therefore, the ultimate test of the BCC reconstruction can not be
performed until there are optimal BCC sampling scanners available.

However, for examining the quality of our reconstruction filters on real
world datasets we used a Cartesian filter to resample the Cartesian datasets
on the BCC lattice. While prone to the errors of the reconstruction before
resampling, we have produced BCC sampled volumes of the tooth and the
UNC brain datasets with 30% reduction in the number of samples. The origi-
nal tooth volume has a resolution of 160×160×160 and the BCC volume after
the 30% reduction has a resolution of 113× 113× 226; similarly for the UNC
dataset, the original Cartesian resolution of 256 × 256 × 145 was reduced by
30% to the BCC resolution of 181 × 181 × 205 . The result of their rendering
using the linear and the cubic box spline in the BCC case and the tri-linear
and tri-cubic B-spline reconstruction in the Cartesian case is illustrated in
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(a) BCC 32 × 32 × 63 (b) Cartesian 40 × 40 × 40

(c) BCC: Error image (d) Cartesian: Error image

Fig. 9. (a,b)Comparison of BCC and Cartesian sampling of the Marschner-Lobb
data set, linear reconstruction. (c,d) The corresponding error images map an angular
error of 30 ◦ to white

Figure 14 and Figure 15. These images were rendered at a 5122 resolution on
an SGI Altix with sixty four 1.5GHz Intel Itanium processors running Linux.

8 Conclusion

In this paper we have derived an analytic description of linear and cubic box
splines for the body centered cubic (BCC) lattice. Using geometric arguments,
we have further derived a simplified analytical form of the linear box spline in
Equation 22, which is simple and fast to evaluate (simpler than the trilinear
interpolation function for Cartesian lattices).

Further we have also derived the analytical description of the Fourier trans-
form of these novel filters and by demonstrating the number of vanishing mo-
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(a) BCC 64 × 64 × 126 (b) Cartesian 80 × 80 × 80

(c) BCC, 30% reduced (d) Cartesian, 30% increased

Fig. 10. Linear reconstruction of the Marschner-Lobb data set at a higher resolution

ments we have established the numerical order of these filters. We believe that
these filters will provide the key for a more widespread use of BCC sampled
lattices.

Our images support the theoretical results of the equivalence of Cartesian
lattices with BCC lattices of 30% fewer samples.

9 Future Research

As we have obtained the linear interpolation filter from projection of the
tesseract, we can obtain odd order splines by successive convolutions of the
linear kernel (or alternatively – projecting a tesseract which is the tensor
product of higher order one-dimensional splines). However, the even order
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(a) BCC 64 × 64 × 126 (b) Cartesian 80 × 80 × 80

(c) BCC, 30% reduced (d) Cartesian, 30% increased

Fig. 11. Angular error images for linear reconstruction at a higher resolution as
shown in Figure 10. Angular error of 5 ◦ mapped to white (255)

splines and their analytical forms do not seem to be easily derived. We are
currently investigating this case.

The ease of deriving the frequency response of these interpolation filters
lends itself to a thorough error analysis on this family.

Further, the computation of the cubic box spline in Equation 16 currently
entails the evaluation of 81 terms. This makes the evaluation of the cubic ker-
nel computationally expensive. We are currently investigating simplifications
similar to that of the linear kernel discussed in Section 6.1.

Except for the first order box spline, the spline family are approximat-
ing filters, hence research on exact interpolatory filters, similar to those of
Catmull-Rom for the BCC lattice is being explored.
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(a) BCC 64 × 64 × 126 (b) Cartesian 80 × 80 × 80

(c) BCC, 30% reduced (d) Cartesian, 30% increased

Fig. 12. The cubic reconstruction of the Marschner-Lobb data set at a higher
resolution

References
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Fig. 13. Angular error images for cubic reconstruction at a higher resolution as
shown in Figure 12. Angular error of 5 ◦ mapped to white (255)
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(a) BCC 30% reduced, linear box
spline, 12 seconds

(b) Cartesian , tri-linear, 13 seconds

(c) BCC 30% reduced, cubic box
spline, 190 minutes

(d) Cartesian, tri-cubic B-spline, 27
seconds

Fig. 14. The tooth dataset
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(a) BCC 30% reduced, linear box
spline, 11 seconds

(b) Cartesian , tri-linear, 12 seconds

(c) BCC 30% reduced, cubic box
spline, 170 minutes

(d) Cartesian, tri-cubic B-spline, 24
seconds

Fig. 15. The UNC dataset


