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A Tool to Create Illuminant and Reflectance Spectra
for Light-Driven Graphics and Visualization
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Full spectra allow the generation of a physically correct rendering of a scene under different lighting conditions. In this article we devise a tool to augment
a palette of given lights and material reflectances with constructed spectra, yielding specified colors or spectral properties such as metamerism or objective
color constancy. We utilize this to emphasize or hide parts of a scene by matching or differentiating colors under different illuminations. These color criteria
are expressed as a quadratic programming problem, which may be solved with positivity constraints. Further, we characterize full spectra of lights, surfaces,
and transmissive materials in an efficient linear subspace model by forming eigenvectors of sets of spectra and transform them to an intermediate space in
which spectral interactions reduce to simple component-wise multiplications during rendering. The proposed method enhances the user’s freedom in designing
photo-realistic scenes and helps in creating expressive visualizations. A key application of our technique is to use specific spectral lighting to scale the visual
complexity of a scene by controlling visibility of texture details in surface graphics or material details in volume rendering.
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1. INTRODUCTION

Light interacting with matter and its processing by the human visual
system is the basis of imaging. In graphics it is common to simply
use RGB values for all interactions, although it is well known that
such a coarse approximation of full spectra can lead to disastrous
errors [Johnson and Fairchild 1999]. Hence, for both surface graph-
ics (including transmissions) as well as volume graphics we should
be using a good approximation of spectra.

Spectra in the context of this article will refer both to light as
a Spectral Power Distribution (SPD) over different energy levels
(wavelengths) of the electromagnetic field, as well as wavelength-
dependent reflectance of the material. The latter arises from the fact
that a material reflects or re-emits different wavelengths of incom-
ing light to different degrees. Both light SPD and reflectance are
modeled as scalar functions of wavelength and their basic interac-
tion can be described as a product of the two, resulting in a reflected
spectrum (color filtering). Additional effects involve shifts in emis-
sion of energy towards lower wavelengths (fluorescence) or at later
points in time (phosphorescence). However, in the following we
will consider color filtering alone, since this is the dominant effect
if typical current RGB-based photo-realistic scenes are converted
and enhanced within a spectral rendering framework.
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The field known as physically-based rendering aims at producing
photo-realistic imagery [Pharr and Humphreys 2004]. Employing
an appropriate algorithm that renders a convincingly realistic im-
pression in practice is only a part of the solution. First, we need a
synthetic scene that contains sufficient detail and has a close corre-
spondence to a physically plausible setting. Here we can distinguish
three aspects: geometric modeling of shapes or density distribution
of volumes; determining material appearance by setting reflection
properties; and configuring the lighting of the scene. When switch-
ing the light model from RGB (Red, Green, Blue) components to
a spectral representation, the geometric modeling remains unaf-
fected. Also, directional dependence of material shading properties
as it is expressed by a Bidirectional Reflection Distribution Func-
tion (BRDF) can still be used. However, modeling the wavelength
dependence of the BRDF as well as the light requires a new tool
replacing the classical color picker.

While in the classical approach the reflectance or the light spectra
are chosen separately, what we often need to model is the result of
their interaction. In other words, we would like to input the resulting
light-reflectance interaction as a constraint into our modeling system
and have the system choose proper materials and lights.

The design tool devised in this work is not limited to picking spe-
cific colors for certain light-material combinations. In addition, it is
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aimed at taking advantage of certain effects that are inherent to the
use of spectra. They are based on the notion of metamers: materials
that look the same under one light, but may have clearly distin-
guishable color under another. In typical color matching problems,
metamerism is increased to make materials match under different
lights. Our goal is to ensure metamerism only for one light, but to
exploit the visual effect when the reflectances do not match if il-
luminated with a different light source. This can be employed to
control visibility of additional detail in a scene, as will be shown for
a surface graphics example in Section 4.3.

Another effect is that of a metameric black [Wyszecki and Stiles
1982], a surface spectral reflectance function that produces a zero
RGB triple under a particular light. Under another light the surface
appears colored, not black. Highly (but not completely) transparent
materials tend to virtually disappear from a scene when they turn
black. Another light that is reflected brightly may bring their appear-
ance back to the user’s attention. The question of how to incorporate
such behavior into the design of spectra is the subject of Section 3.

The obverse of the situation is one in which a user controls the
appearance of a scene by changing the lighting. In a design involv-
ing metameric blacks as the difference between reflectances, these
materials retain their color as the light changes; we refer to this as
objective color constancy. Then clearly, if one material is designed
to change appearance as the lights change while other materials stay
the same, we have a means to guide the user’s attention, which can
be used for the exploration of datasets.

Sampling the visible spectrum from 400 nm to 700 nm in 10 nm
steps results in a 31-component spectral representation. Instead of
our usual 3-vector component-wise multiplication, we have an order
of magnitude more computational work. In a raytracing scenario
where we may have billions of light-material interactions this will be
very computationally expensive. Similar computational costs arise
for a raycasting setting with many volume samples taken along each
ray. Hence, we require a much more compact representation which
preserves the benefits of full spectra. Fortunately, a representation
is available that accurately represents full spectra using about twice
the number of components of tristimulus representations [Drew and
Finlayson 2003] (5 to 7 basis coefficients here). Moreover, the new
representation has the virtue that interactions can again be carried
out using a component-wise multiplication, which we call a spectral
factor model: Instead of simple component-wise multiplication of
RGB, we substitute a novel simple component-wise multiplication
of basis coefficients.

The following section examines specifics of linear color mod-
els, concluding in an efficient representation for spectra. Our design
method is proposed in Section 3. There, different criteria are in-
troduced and expressed as a least-squares problem. In Section 4 an
example scenario is described and the effects of the different criteria
are explained. In addition, an application of the design framework
to spectral volume rendering is discussed. The contributions of the
approach are summarized in Section 6 by providing a discussion of
limitations and possible future directions. Supplementary material
to the article contains Matlab code to perform all design steps as
well as a Java implementation.1

2. RELATED WORK

A number of spectral rendering frameworks have been compared
by Devlin et al. [2002], indicating a lack of open-source solutions
which has recently been changed by PBRT [Pharr and Humphreys
2004] only requiring a minor source modification to allow for ren-
dering with a spectral color model. For application of the spectral
rendering concept in volume visualization, see Noordmans et al.

1The material may be obtained at http://www.cs.sfu.ca/gruvi/

Projects/Spectral Engine.

[2000], Bergner et al. [2002], Abdul-Rahman and Chen [2005],
and Strengert et al. [2006] concerning the general use of spectra.
In particular, Abdul-Rahman and Chen [2005] and Strengert et al.
[2006] improved the accuracy of selective absorption by employing
Kubelka-Munk theory that has previously been used [Gondek et al.
1994] to improve realism of renditions of oil paintings. For this,
spectral BRDFs for layered paint are acquired by analyzing sim-
ulated microstructure as a preprocessing step. This is a promising
extension to analytic models for interference colors or diffraction
[Stam 1999; Sun et al. 2000]. A generative model to produce re-
alistic impressions of human skin [Donner and Jensen 2006] also
considers cross-effects between directional and energy dependence
of reflectance. However, in the majority of appearance models the
terms for directional and energy dependence of the reflectivity can
be considered independently. Hence, we will in our design method
concentrate on the wavelength dependence of the appearance only.

2.1 Previous Approaches to Constructing Spectra

In this work we consider a method to obtain spectra to equip a
synthetic scene according to certain appearance criteria. Spectral
representations of light have their origin in more accurate models
of physical reality. Hence, if the required materials or lights are
available, a first choice would be to determine the reflectance or
emission spectra by measuring them, for example, via a spectrom-
eter (see Matusik et al. [2003]). Such measurements and imagery
can be used to learn about chemical constituents of a light emitting
or reflecting object of inspection. For instance, we can learn about
the gas mixtures of stars via their emitting spectra, or we can find
out about different vegetation on the surface of our planet using
knowledge of distinct reflectances of plants and soils. When look-
ing for sampled spectra online we typically finds graphs, but not the
underlying data.2

There is also a history of work on estimating spectral information
from color filter array data, as used inside digital cameras or simply
based on RGB images (e.g., Drew and Funt [1992]). To resolve
the problem of increased dimensionality of the spectral space over
the measured components (usually three), assumptions are included
about the illumination as well as the color filters. Both of these may
be controlled, as in Farrell et al. [1999] who describe a system to
obtain spectral approximations from digital photographic recordings
of artwork.

For spectra already measured, we may also pick spectra from a
database. Wang et al. [2004] enhance this selection by automati-
cally choosing a neighborhood of 8 spectra surrounding a point of
user-specified chromaticity. These are linearly interpolated to pro-
duce an artificial spectrum close to physical spectra. Also, they use
Bouguer’s law to create additional spectra.

But a sufficiently large database may not be available to contain
solutions satisfying all design constraints. Also, sole use of real
physical spectra might not be a requirement in a computer graph-
ics setting, which could instead also benefit from the creation of
completely artificial spectra. Since linear basis functions comprise
a successful model to represent measured spectra, they are the com-
mon choice to form a basis for modeling new spectra. Previous
choices include delta functions at distinct wavelengths [Glassner
1989], boxes covering certain bands, and exponential functions,
such as Fourier or Gaussian [Sun 1999]. These approaches pro-
duce mixtures of three functions for red, green, and blue (RGB).

2Using a vector paint program, such as Inkscape http://www.inkscape.
org, we can trace the graphs. The node coordinates of the simplified and
corrected path can be read from SVG and transformed and resampled to
a fixed sampling distance using other numerical tools, such as Matlab or
Octave. This may not be as accurate as the original data, but it is considerably
more exact than eye-balling tristimulus color components.

ACM Transactions on Graphics, Vol. 28, No. 1, Article 5, Publication date: January 2009.



A Tool to Create Illuminant and Reflectance Spectra for Light-Driven Graphics • 5:3

To obtain flatter spectra [Smits 1999] we must also include comple-
mentary colors (CMY).

All of the aforementioned methods to create artificial spectra have
one common problem: They consider the design of a reflectance for
a given color without considering the illumination spectrum. Such
a design essentially only applies in controlling the appearance of
self-emitting objects. But for typical materials it is only the reflected
spectra that we can see. These are related to the light spectrum, via
a product with the wavelength-dependent reflectance, but they are
not the same. Thus, the color of a surface should indeed be chosen
with respect to the reflected spectrum, but what really needs to be
assigned in the scene description is a reflectance and a light.

This observation is the main motivation for our design method.
The second main difference over previous methods is that we con-
sider a design of an entire palette of several reflectances and lights
instead of just single combination colors. This allows us to take ef-
fects of combined material appearance or lighting transitions into ac-
count. In the following, we will provide some background on linear
color models, leading to a choice of basis for efficient component-
wise illumination computations, called the spectral factor model.
The design method and its description are given in Section 3, how-
ever, these are independent of a particular choice of linear model.

2.2 Linear Color Models and a Spectral Factor Model

To obtain a low-dimensional representation of lights and surfaces,
the most accurate representation that best accounts for variance is a
principal component representation (see Peercy [1993] for its use in
surface graphics). However, for such an m-component representa-
tion, every light interaction will necessitate an m×m matrix multiply
(this will be explicated shortly in Eq. (7)). The method in Drew and
Finlayson [2003] obviates this issue via a so-called “sharpening”
transform. Motivated by human color vision, sharpened camera sen-
sors are now the norm in digital color cameras (see, e.g., the sRGB
space [Anderson et al. 1996]). Sharpening is a simple m × m pre-
processing step for putting all calculations into a basis subspace that
is a linear transform away from the original sensor space [Finlayson
et al. 1994]. The idea of this transform is to make color sensors more
like delta functions.

For our purposes, we wish to sharpen the basis set for spectra. The
optimal basis set to use is that derived from color signals, namely
products of lights and reflectances [Drew and Funt 1992]. Then
a preprocessing step of a constrained optimization can deliver the
best basis space in which to work [Drew and Finlayson 2000]. If we
choose to use fluorescent lighting, then we can develop a specialized
basis set that best describes the spike-like behavior of the spectra
involved. In either case, the advantage is that while we lose none
of the expressive power of a principal component basis, when light
participates in interactions the result in the subspace is well modeled
via a simple spectral factor model.

We describe the results of using a factor model in Section 2.3. Ren-
dering proceeds using coefficients with respect to this new basis set.
One application that gains great benefit from such a compact model
is volume rendering. Typically, the sampled values of a volume are
assigned colors and opacities by means of a transfer function. In-
stead of directly assigning colors, we assign reflectance spectra. As
rays are cast from the camera through the volume they accumulate
the light that is reflected from each voxel, according to the opac-
ities in the volume. Our approach of “postillumination” [Bergner
et al. 2002] modifies this projection to allow for a postrendering re-
illumination of the spectral image using different lights. Thus, a new
form of real-time user interaction is created by allowing the scene
to be manipulated via changing the light source (see Section 4 for
further examples). This principle also extends to surface graphics.

2.2.1 Linear Color Models. Linear representations for spec-
tra of lights and reflectances are attractive for rendering complex

scenes for several reasons. Firstly, all illumination calculations can
be performed in a linear subspace of reduced dimensionality; and
the basis can be specialized for a set of representative spectra, thus
improving accuracy. In general, each illumination computation in
the linear subspace implies a matrix multiplication. The following
discussion will construct this illumination matrix R. In the special
case of the spectral factor model the matrix is diagonalized, reducing
the computation again to a simple componentwise multiplication,
as detailed in Section 2.3.

The basic idea of using a linear model is to describe a spectrum
C(λ) (e.g., a color signal [Wyszecki and Stiles 1982] formed from
the product of light and surface spectral reflectance functions) by
a linear combination of a set of basis functions Bi weighted by
coefficients ci .

C(λ) =
m∑

i=1

ci Bi (λ) (1)

The choice of basis functions can be guided by different criteria.
Marimont and Wandell [1992] discuss different approaches to find-
ing a basis that minimizes perceivable errors in the sensor responses.
Peercy [1993] devises a framework for using linear color models in
illumination calculations. The quality of a particular basis can be
summarized as the trade-off between accuracy and computational
complexity. There are two different approaches to this issue. We can
form specialized bases tailored to the particular set of spectra in a
scene. Then these spectra have only minimal error when projected
to the subspace spanned by the linear model. Spectra differing from
the prototype spectra may have larger error from projection. Alter-
natively, general bases are suitable for a wider set of spectra. For
instance, using exponential functions, such as a Fourier basis, only
assumes some degree of smoothness of the modeled spectra. Cer-
tainly, all spectra that are smooth enough will be well represented;
however, a Fourier representation may have negative coefficients
for valid physical (i.e., non-negative) spectra, making the model
problematic to use in a hardware implementation.

In order to computationally model interactions between spectral
power distributions (SPDs) we represent the continuous function
C(λ) as a discrete vector. A full spectrum then consists of equidistant
point samples taken over the visible range from 400 nm to 700 nm

at 10 nm intervals, forming a vector �C ∈ R
31. The basis in Eq. (1)

then becomes a 31 × m matrix B comprised of the set of m basis

vectors �Bi and the coefficients ci become a vector �c approximating
Eq. (1) as

�C =
m∑

i=1

ci �Bi = B�c. (2)

Modeling illumination we will restrict ourselves to nonfluorescent
interactions: No energy is shifted along different wavelengths of
the spectrum. Hence, the observed reflected color spectrum equals
a component-wise product of the two SPDs. We will use diag(�S)
as a diagonal matrix composed of the elements of �S to define a
component-wise multiplication operator ∗ between �E and �S.

�C = diag( �E) �S = diag(�S) �E = �E ∗ �S = �S ∗ �E (3)

The coefficients �c for a spectrum �C can be obtained via the pseudo-
inverse B+ of B.

�c = (BT B)−1BT �C = B+ �C (4)

The spectra forming �C can also be expressed in the linear subspace

as �S = ∑m
k=1 sk �Bk and similarly �E . We combine the previous

equations.
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ci = �B+
i

( m∑
j=1

e j �B j ∗
m∑

k=1

sk �Bk

)
(5)

The two operands inside the parentheses are �E and �S from Eq. (3).
The result of the spectral multiplication (in the full space R

31) is then
projected back onto the basis functions, as in Eq. (4). The vector
�B+

i denotes the i th row of the inverted basis B+. By reordering, we
obtain

ci =
m∑

j=1

m∑
k=1

�B+
i ( �B j ∗ �Bk) e j sk . (6)

This equation can be rewritten as a matrix multiplication, but one
of the two coefficient vectors has to be integrated into it. To do so,
we define a new matrix R written in terms of either �s or �e.

�c = R(�s) �e = R(�e) �s,

with Ri j (�v) =
m∑

k=1

�B+
i ( �B j ∗ �Bk) vk (7)

The m × m matrix R carries out any reflectance computation inside
the linear subspace. Eq. (7) also shows that an arbitrary choice of
some basis does not necessarily lead to a diagonalization of R.
However, it is at least possible to use specialized hardware to apply
this matrix at every reflection event [Peercy et al. 1995]. Current
commodity graphics hardware do also allow for an implementation
using the GPU.

In the following, we discuss how to modify the basis functions
such that component-wise multiplications alone, with diagonaliza-
tion of R, will suffice for such computations.

2.3 The RGB Factor Model and the Spectral
Factor Model

2.3.1 Spectral Sharpening. The linear color model we use here
is based on an extension, to spectral bases, of an idea called spec-
tral sharpening in color constancy algorithms in computer vision
[Finlayson et al. 1994].

The factor model for RGB 3-vectors in physics-based vision con-
siders explicitly the role of a camera in color formation. In our case,
in place of a camera we must instead use the basis set B. The idea
of spectral sharpening is to form camera filter combinations that are
more narrowband; and this is just what is also required here, but for
the basis instead of the camera.

RGB spectral sharpening proceeds as follows. Suppose we have a
31×3 set of camera sensors Q. Its rows are discretized versions of the
spectral sensitivity functions Qk(λ) of each sensor. For illuminant
E(λ) interacting with surface reflectance function S(λ), a physically
correct RGB color 3-vector �r is given by

rk ≡
∫

E(λ) S(λ) Qk(λ) dλ, k = 1..3. (8)

An approximation is formed by

rk � σkεk/wk, k = 1..3, (9)

where σk is the surface color under equi-energy white light

�σ = QT �S, (10)

and εk is the color of the illuminant

�ε = QT �E . (11)

The camera scaling term is

�w = QT �131, (12)

where �131 is a vector of 31 ones. Borges [1991] carefully considered
this approximation and showed that it is accurate, provided illumi-
nants (or surfaces) are “white enough.” In practice, the light can be
relatively nonwhite and still give fairly accurate results under an
RGB factor model. More importantly, for our application, it is clear
that if the camera sensors Q are narrowband enough then a factor
model will hold. Spectral sharpening provides just this needed band
limiting, by a judicious combination of the original, broadband, sen-
sors. The idea is that a 3×3 matrix transform of camera sensors can
place more energy for each sensor curve into its appropriate wave-
length range. Since these new sensors are more like delta functions,
the camera white balance is very simple: Thus, sharpening is used
in digital cameras (see Drew and Finlayson [2000] for a discussion
of optimization methods for producing such a transform).

Usually, since we have the freedom of defining the intermediate,
sharpened color space, we set the L1 norm of each new camera filter
to unity (each column of the new Q sums to 1). So in this case
Eq. (9) simplifies to

rk � σkεk, k = 1..3 (13)

and spectral sharpening allows us to approximate surface color by
a simple component-wise multiplication.

2.3.2 Spectral Factor Model. We are interested in multiplying
full R

31 spectra. The best we can do in an optimal fashion for rep-
resenting spectra that participate in image formation is to form a
principal component basis for the spectral curves [Drew and Funt
1992]. Then, as we have seen, since each spectrum is represented as
a sum over basis coefficients, this necessarily implies a matrix mul-
tiply of current light coefficients times the next interaction spectrum
coefficients. However, just as we sharpened the RGBs by a matrix
transform and worked in the intermediate space, here we can apply
the same idea to the basis set. In a camera, we form combinations
of the R, G, and B sensors that are optimally narrowband; here, we
form combinations of the basis set vectors.

In other words, we presharpen the basis by a simple matrix trans-
form and then agree to operate within the sharpened basis for all sur-
face or volume interactions [Drew and Finlayson 2003]. Note that no
information is lost by such a transform, and accuracy to within the
adopted dimensionality of the underlying finite-dimensional model
is maintained.

Then we can represent spectral interactions in terms of the low-
dimensional coefficients (typically 5 to 7) and calculate interactions
using simple component-wise multiplication of the coefficients. Us-
ing the new basis, Eq. (6) is reduced to a simple component-wise
multiply involving the coefficients of the current light, ei , times
those for the next interaction surface, si . We have

�B+
i ( �B j ∗ �Bk) � δi, jδ j,k (14)

so that

ci � ei si , i = 1..m. (15)

A set of sharpened basis vectors approximately obeys this equality
[Drew and Finlayson 2002]. Hence we have recast the color inter-
action Eq. (13) with a basis in place of the camera, and spectral
coefficients in the place of color.

Since the illumination of (spectral) light color can be achieved by
one component-wise multiplication, it can be the final multiply in a
sequence of reflection calculations, and hence adding light amounts
to a postillumination step. In the last step, descending to 3D RGB
color, we simply need a 3 × m matrix multiply for each pixel to
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Fig. 1. Spectral design of two material reflectances shown on the left of
their representative rows. The colors formed under two different illumination
spectra are shown in the squares in the respective columns where D65 (right
column) produces a metameric appearance.

create color on the screen, where m is the dimension of “color” (i.e.,
coefficients) in the basis coefficient space.

2.3.3 Accuracy. One problem with using linear models is that
only the spectra from which the basis functions are derived are
likely to be represented with good accuracy. For this we make use
of Principal Component Analysis (PCA) for a set of given spectra
and the first m significant vectors are taken to span an orthonormal
linear subspace for the spectra. Other spectra which have not been
considered during the construction of this basis may be very different
from their projections into that space.

Particularly in the case of fluorescent (spiky) lights or sharp cutoff
bands, we should make use of a dedicated, or “specialized,” basis.
Each illumination step as described in Eq. (7) makes use of a result
projected back into the linear subspace, and hence at every inter-
action the linear representation may move farther from an accurate
representation of the product spectrum. This problem is especially
relevant if we use multiple scattering or spectral volume absorption.
The highest accuracy is achieved when only very few illumination
calculations are performed. In case of a local illumination model
in combination with “flat” absorption (alpha blending), only one
scattering event is considered, with no further transmission events.
Another technique especially appropriate for linear color models is
subsurface scattering [Hanrahan and Krueger 1993]. This method
uses only very few reflections beneath a surface. Yet the spectral ab-
sorption (participating medium) is important for realistic results, so
using spectra can greatly improve correctness; since there are only
relatively few absorption events, the accuracy is still acceptable.

3. DESIGNING SPECTRA

The technique described in this section seeks to extend a scene
containing real-world reflectance and light spectra by creating ad-
ditional artificial materials and lights that fulfill certain criteria:

(1) a constructed light/reflectance should produce user-chosen col-
ors in combination with given reflectances/lights;

(2) spectra may also be represented in a lower-dimensional linear
subspace model for which the approximation error should be
minimal;

(3) to regularize the solution we minimize the second-order differ-
ence of the discrete spectrum; this provides smoothness of the
solution and improves convergence;

(4) physically plausible spectra should be positive, which enters
the optimization as a lower bound constraint.

The first three of these points are expressed as linear least-squares
problems. This allows us to weight and combine different criteria
and to employ standard solution methods.

All settings involved in the design process are represented as a
palette of spectra and combination colors, as shown in Figure 1.
The display uses columns for lights and rows for reflectances. In
the example the lights act as input to the design algorithm while the
reflectances are open for redesign. For any light-reflectance combi-
nation, the user may define a desired color that should result from
the illumination. It is displayed in the framed subsquare of the color
patch. Its surrounding area shows the color that the actual result-
ing spectra produce in combination with each other. The design is
considered successful if the desired and the actual colors are similar
enough. The appearance of “refl 2” under the high-pressure sodium
lamp is dark brown instead of the desired gray, which is acceptable
in this example.

3.1 Matrix Formulation

It is possible to approach the design problem by solving a linear
equation system for a spectrum �x

Qrgb,31diag( �E)�x = �c, (16)

where Qrgb,31 is the spectrum to RGB conversion matrix.3 The so-
lution �x will be a reflectance producing the user-specified color

tristimulus �c under the given illumination spectrum �E . Further, it

is possible to ask for multiple lights �Ek to produce colors �ck with
reflectance �x . We can solve for this by vertically concatenating the

illumination matrices Qrgb,31diag( �Ek) = Q
( �Ek )

rgb,31
into a matrix M

and their respective color forcing vectors �ck into a vector �y. As
there might not be a spectrum that fulfills all conditions exactly, we
switch from solving an equation system to a quadratic minimization
problem.

min�x ||M�x − �y|| = min�x
[�x T MT M�x − 2�yT M�x]

(17)

An unconstrained solution would be available via the pseudo-inverse
M+ = (MT M)−1M as �x = M+�y. Alternatively, we use quadratic
programming (QP) because it allows the inclusion of lower and
upper bound constraints for the components of �x . Note that the entire

design could be carried out for a light �E instead of a reflectance �S,

by replacing �E with �S in Eq. (16). The solution �x would then contain

a light �E producing color �c when illuminating the given reflectance
�S. This outlines the main idea behind the design method. We will
refine it in the following by adding more optional criteria, such
as linear subspace model error minimization and smoothness via
minimal second-order differences. Finally, all criteria are weighted
and combined by concatenating them to form M and �y in a single
QP problem.

As shown in Section 2.2.1, color computation can also be per-
formed in the linear subspace. The 3 × m matrix that takes an
m-vector representation in basis B of Eq. (2) directly to RGB is

3The matrix may be formed as Qrgb,31 = Qrgb,xyz ·Qxyz,31, where the rows
of Qxyz,31 are the 3 × 31 set of color matching functions in the CIE XYZ
model [Wyszecki and Stiles 1982] and Qrgb,xyz is a hardware (monitor)-
dependent 3 × 3 matrix to transform XYZ to RGB.
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Qrgb,m = Qrgb,31 B. The least-squares problem that minimizes the
error when computing illumination in the subspace is expressed as

min�s‖Qrgb,mR(�e) �s − �c‖, corresponds to

min�S‖Q
( �E)

rgb,m,31
�S − �c‖, with

Q
( �E)

rgb,m,31
= Qrgb,m R(Qm,31

�E) Qm,31, (18)

where R(�e) is the matrix from Eq. (7) that performs the illumina-
tion calculation of light �E and surface �S using their R

m subspace
representations �e = Qm,31

�E or �s in analog form. As mentioned in
Section 2.3, using the spectral factor model, matrix R(�e) can be re-
placed by diag(�e). In order to have a general description we have
retained matrix R(�e) as given before.

From the previous discussion we can express color objectives for
illumination in the point sampled 31-dimensional spectral model
and in the m-dimensional subspace model. The following criterion
seeks to minimize the difference between the resulting colors from

these two illumination methods to be close to a zero 3-vector �03.

min�S‖F( �E) �S − �03‖, (19)

F( �E) = Q
( �E )

rgb,31
− Q

( �E )

rgb,m,31
(20)

The third criterion is smoothness. While the previous two criteria
are aimed at accurate color reproduction, this one is introduced to
allow control over the general shape of the spectrum and to provide
regularization reducing the search space of the optimization. An op-
timal solution for given design colors with minimum error can lead
to spiky spectra with large extrema. A commonly used indicator for
roughness of a curve is the integral over the squared second deriva-
tive or second-order differences in our discretized model. Other
indicators are possible, but this one can easily be expressed in the
following form.

min�S‖D �S − �031‖, with

D = toeplitz([−1 2 −1 0 · · · 0 ]), �031 = zero 31-vector (21)

D is a tridiagonal matrix having 3-vector [−1, 2, −1] on the
three middle diagonals and zero everywhere else, which is also
called a Toeplitz matrix. The whole matrix D is normalized by

1/(
√

31 ‖ − 1 2 − 1‖): The
√

31 takes care of the number of rows
of the matrix so as not to make smoothness more important than

the design color matrices. These we normalize by 1/
√

3 in order to
have comparable importance. This is relevant when the residues of
all aforesaid criteria are combined in a sum of squares, as we will
discuss next.

3.2 Combined Optimization Function

Each of the design criteria is expressed as one of the matrices

Q
( �X )

rgb,31
, Q

( �X )

rgb,m,31
, F, D with accompanying objective vectors (target

colors or zero vectors). The design matrix M is formed by vertically
concatenating these criteria matrices. Similarly, the associated forc-
ing vectors are stacked to form �y. The different criteria are weighted
by ω{i j |F |D} for design colors �ci j , error matrix F, and smoothness D,
respectively. These weights provide control over the convergence of
the minimization and may all be set to 1. We compute a minimum-
error solution for an overdetermined system Mi �x = �yi for a surface
�Si corresponding to the set of stacked equations.⎡

⎢⎣
ωi1Q

( �E1)

rgb,31

ωFωi1F( �E1)

ωDD

⎤
⎥⎦ · �x = �y =

⎡
⎢⎣

ωi1�ci1

�03

�031

⎤
⎥⎦ (22)

We solve this system for a minimum-error solution using the form of

Eq. (17). The solution �x will contain the desired reflectance �Si pro-

ducing color �ci1 with light �E1. If there are several colors that should

be produced in combination with different lights �E j , the upper two

blocks are vertically repeated for each �E j , since the smoothness
criterion D only needs to be included once. In the following we will
consider the simultaneous creation of several spectra.

3.2.1 Free Metamers. In the preceding formulation the design
of one spectrum �Si is independent of the other spectra that are to
be designed. However, it is possible to solve for all needed spectra
simultaneously, by combining their individual design matrices Mi
in a direct sum. This means to concatenate the matrices diagonally
and to fill the remaining elements with zeros ∅ in the form M =
[M1 ∅; ∅ M2], where the semicolon denotes vertical concatenation.
The respective forcing vectors �yi are stacked as well, and the solution
vector �x will contain several spectra concatenated.

We will use this to include “free” colors into the design: We create
two spectra �Si , �S j and instead of defining their desired color as part
of �y, we will leave the actual color open and retrieve it as part of
the solution in �x . This is useful if we want these two reflectances
to look the same under a light �Ea , but do not care what specific
color they will actually form as long as they are metameric. This
can then be combined with further design colors for a different light
�Eb. More formally, we solve for a weighted solution {�cia, �Si , �S j }
of the system

Q
( �Ea )

rgb,31
�Si = Q

( �Ea )

rgb,31
�S j ,

Q
( �Eb )

rgb,31
�Si = �cib

(23)

using an illumination matrix as defined after Eq. (16) and with color

�cib given for a surface �Si under light �Eb: Specifically, we ask this

surface �Si under another light �Ea to have the same color as surface
�S j under that light. As a stacked matrix Eq. (23) becomes⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ωia 0 0 �031

0 −ωia 0 ωiaQ
( �Ea )

rgb,31
�031

0 0 −ωia �031

−ω ja 0 0 �031

0 −ω ja 0 �031 ω jaQ
( �Ea )

rgb,31

0 0 −ω ja �031

0 0 0 �031

0 0 0 ωibQ
( �Eb )

rgb,31
�031

0 0 0 �031

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

· �x = �y =

⎡
⎢⎢⎢⎣

�03

�03

ωib�cib

⎤
⎥⎥⎥⎦ .

(24)

The involved weights ω can be changed from the default value 1 to
steer the importance of this color criterion over others. The resulting
�x contains the free color �cia = �c ja in the first three components, and
after that two 31-component vectors for reflectances �Si and �S j . This
setup becomes interesting when used with upper and lower bounds
on �x , because then the free color can be forced into a given interval
without being specified precisely. The blue metameric color under
light D65 in Figure 1 was obtained using this method.

4. EVALUATION AND VISUAL RESULTS

In the following, we will demonstrate the use of our spectral design
method in several contexts. We will start with a palette design, fol-
lowed by an error evaluation for different design conditions. Beyond
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Fig. 2. The reflectance spectra on the left of each row are designed to be metameric under daylight (colors column 1) and to gradually split off into 3 and 5
distinguishable colors under two artificial “split light” sources. The resulting reflectance spectra are given below the figure.

considering palettes by themselves, we will also show their use in
practical spectral rendering examples in 3D surface graphics and
volume rendering. The set of Matlab scripts for the design method
and example setups of this article, along with a Java version of the
spectrum generator, are available as supplementary material at the
URL given at the end of the introduction (Footnote 1).

4.1 Example Palette Design

An example palette design is shown in Figure 2. The target colors
(shown in the framed subsquares) under the light in the third column
were taken from a palette of the map color brewer tool [Harrower
and Brewer 2003]. A light fulfilling these colors is generated with
our method and is denoted SplitLight 2. The center column colors
are chosen to visually merge each of the two red tones in column 3

and separately the two blue tones, replacing them by their average.
These colors result when switching to designed illuminant Split-
Light 1. In contrast, the first column, illuminated by measured stan-
dard daylight D65, is set to a single metameric average color for
all five reflectances. The spectra of the two artificial “split light”
sources are initially chosen as shifted positive sine waves of differ-
ent period lengths (60nm and 85nm). For the setup the smoothness
weight ωD was set to 1 and subspace error minimization was omit-
ted. All light sources are initially normalized to a luminance Y = 6
and the reflectances are allowed to have magnitudes in [0, 1]. This
scaling factor was determined experimentally through a preliminary
unbounded design.

In a first design phase we create reflectances fulfilling the given
colors. Here, we choose importance weights ωi,1 = 4 for the first
column, leaving the remaining weights at 1. This gives correct
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Fig. 3. Each graph shows the average L∗a∗b∗ error in the design process for palettes of given sizes, constraining all light-reflectance combination colors for
several palettes of different sizes. Changing spectral models and constraints results in different design error: (a) the positivity constrained 31D model; (b) the
positivity constrained 100D color model; (c) 31D without positivity constraint.

Fig. 4. Preservation of color distances for a 10 × 10 palette size. Each point in the graphs represents a certain pair of color entries in the palette. Its position
along the horizontal axis indicates the L∗a∗b∗ distance between the desired colors and the vertical position indicates distance of the resulting color pair after
the design. A position close to the diagonal indicates how well the distance within a pair was preserved in the design: (a) 31-D spectra, unconstrained; (b) and
(c) positivity constrained spectra with 31 and 100 dimensions, respectively.

metamers under daylight D65 and gets the remaining palette colors
approximately right. In a second phase we use the newly created
reflectances to recreate the two “split lights” to produce the given
colors more exactly. The resulting spectra are shown in the graphs
in Figure 2.

4.2 Design Error with Respect to Number
of Constraints

Expressing the design criteria as soft constraints allows us to al-
ways obtain a solution, but possibly with errors depending on how
well the criteria agree with each other. In order to obtain a better
understanding of these errors we performed a number of automated
tests on palettes of varying sizes. For each of the tests (with errors
displayed in Figure 3), we are requesting fixed random combina-
tion colors between each reflectance and light (uniformly distributed
in RGB space). Lights and reflectance are formed by first creating
reflectances for fixed random lights and then recomputing lights
for the new reflectances. The bottom left and right axes of each
graph in Figure 3 indicate the numbers of reflectances and lights,
respectively. The vertical axis denotes the average L∗a∗b∗ distance
between designed and actual light-reflectance combination colors
over the entire palette of a given size. While an error �Lab < 3 is
visually indistinguishable, we found that errors up to 10 are still ac-
ceptable. The 31-dimensional positive spectral model of Figure 3(a)
lies in this acceptable error range for palette sizes of up to 7×7. Each

RGB combination color adds 3 constraints, which for 10 colors are
matched by the degrees of freedom of a 31-dimensional spectrum to
be designed. Thus, without positivity constraint an error is expected
to occur after a palette size of 10 × 10, as observable in Figure 3(c).

Methods to reduce the error are to increase the dimensionality
of the color model (Figure 3(b)) or to drop the positivity constraint
(Figure 3(c)). The drastic reduction in error shows that positivity
imposes a major restriction on the design process. Reducing the
weight of the smoothness term ωD has a similar error decreasing
effect as increasing the dimensionality of the color model, since both
are different ways to regularize the solution. For our experiments
we have kept a fixed ωD = 0.001.

4.2.1 Preserving Distance Between Colors. When setting-up
several colors, a designer sometimes need not closely specify just
what color is actually produced, but rather that the colors of two
objects should be very similar or notably different. This idea is the
motivation for our second type of evaluation. Here, we do not look
at the preservation of the actual color in the design, but rather at the
distances between them. In an N × M palette setup, we consider
each of the 1

2
(N × M)2 color pairs, excluding duplicate pairings.

In particular, we want to see how well the (perceptual) distance be-
tween the desired colors matches the (perceptual) distance between
the actual colors produced by the designed spectra. Similar to the
previous analysis, the evaluation in Figure 4 shows that positivity

ACM Transactions on Graphics, Vol. 28, No. 1, Article 5, Publication date: January 2009.



A Tool to Create Illuminant and Reflectance Spectra for Light-Driven Graphics • 5:9

Fig. 5. Car model rendered with PBRT: (a) The spectral materials used in the texture are metameric under daylight D65, resulting in a monochrome appearance;
(b) changing the illumination spectrum to that of a high-pressure sodium lamp, as used in street lighting, breaks apart the metamerism and reveals additional
visual information.

Fig. 6. Engine block rendered using metamers and color constancy. The three images in the figure are re-illuminated without repeating the raycasting.

is a rather strong constraint, but that increasing the dimensionality
of the underlying spectral model can be used to compensate for it.

4.3 Spectral Surface Graphics

To implement spectral raytracing we have used the physically-based
rendering toolkit (PBRT) [Pharr and Humphreys 2004]. Its modular
design allows us to easily extend the color model to a 31-component
linear model with the appropriate color space transformation ma-
trices. Also, we have added support to load spectral textures, and a
Python script to replace RGB values by linear combinations of red,
green, and blue spectra to facilitate rendering of conventional RGB
scenes with the modified spectral renderer. Figure 5 shows two im-
pressions of the same scene under different illumination. Lighting is
provided by an area light source emitting one of the two illumination
spectra of Figure 1. The spectral texture for the flame job on the side
of the car uses the reflectances from the same palette. Thus, the day-
light metamerism makes the texture disappear, while the nighttime
sodium street lamp illumination breaks apart the metamerism and
makes texture details appear. Since here we needed the metamers to
match exactly, we set their importance weight to 10, while leaving
the weighting for the colors under the sodium lamp at 1.

4.4 Rendering Volumes Interactively

To further illustrate the efficacy of the design method and the palette
tool, we consider two volumetric datasets: an engine and a frog.
Each is represented by a volumetric grid of scalar density val-
ues. Optical properties, such as opacity and spectral reflectance, are
assigned to different densities via a spectral transfer function. For
each dataset a specific palette is produced that contains light spectra
and reflectances that are assigned to distinct parts of the data (ranges
of density values) via the transfer function. The volume is rendered
via a postillumination step: The images are first rendered with a flat

white light, or rather, lighting having all-unity basis coefficients.
Then lighting is changed. The actual raycasting is performed once
for a given viewpoint and all subsequent images for changing light
can be computed in real time, by simply multiplying the reflected
coefficients for spectra from flat white illumination recorded in an
image pixel by the new light’s basis coefficients. For further details
on this method along with a user-friendly widget to control different
lighting, see Bergner et al. [2005].

In Figure 6(a) an engine block and inner parts are metameric;
“smoke” (reconstruction noise) is present, but is colored black via
the metameric black mechanism. Thus, it is invisible. Figure 6(b)
has the same reflectances, but under a different light designed such
that inner parts are now distinguishable from the engine block,
which itself has kept a constant color from the previous light. The
smoke appears white now. Under another light, in Figure 6(c), the
smoke changes color red, whereas the other two parts keep their ap-
pearance to the extent possible in the context of having surrounding
smoke of a different color.

Another example, a frog, is shown in Figure 7. Again, the first
image shows all materials as being metameric. Notably, this color
was not chosen directly, but instead arises as free color, as described
in Section 3: The design process has chosen the color, on the basis
of the optimization. In Figure 7(b), a new light is gradually mixed in
such that the metamers begin to break apart. Additionally, that new
light makes the body of the frog go black so that it gradually dis-
appears. In Figure 7(c), the light dominant in (a) has been switched
off. As a result, the body turns dark and the inside structures remain
in a distinct color.

5. DISCUSSION

In computer graphics the step from RGB to full spectral color models
for illumination calculations is typically made to increase realism
of the renditions, since the increased dimensionality of a spectral
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Fig. 7. Frog rendered with four different materials at different mixtures of light spectra.

light and reflectance model allows for more accurate illumination
computations. At the same time, it leaves the creator of a spectral
scene with the tasks of specifying such additional degrees of freedom
of the appearance to best effect. Using real-world measurements
would of course be the method of choice to attain highest realism.
A different direction is to use the additional freedom to include
effects that are specific to spectra. Since the color appearance of a
material is dependent on the illumination and typically differs under
varying illumination, the key idea is to conduct a combined design
for pairs of reflectances and lights.

The example palette in Figure 1 shows a simple setup, using
metamerism under one light, that breaks apart into distinguishable
colors under a different light. This palette is used in a spectral tex-
ture of Figure 5 to illustrate how non/metamerism under specific
lighting can be used to reveal texture details selectively via lighting
change. A possible extension to such a setup would be a dynamic
scene in which the user introduces the metamer-breaking light via a
flashlight. In this case, the flashlight would become a metaphor for
revealing additional detail in the scene.

The same idea of merging and splitting metamers may be applied
hierarchically to a palette, shown in Figure 2. The idea here is that
under one illumination (daylight) the entire scene has a homoge-
neous appearance. Under additional “split lights,” there are 3 and
then 5 classes distinguishable, leading to different levels of discern-
ability (e.g., in a rendition of a map). Using this in a spectral texture
similar to Figure 5 forms a new way to scale visual complexity by
selectively introducing additional texture detail.

Also, controlling the lighting in the spectrum design addresses a
problem pointed out in Smits [1999] in that some colors can only be
modeled with physically implausible reflectances that have magni-
tudes larger than 1. However, when considering color as perceived
from an image we do not deal with reflectances, but rather reflected
spectra which involve the multiplication of a light source spectrum.
By considering colors for light-reflectance combinations, the [0,1]
bounds for reflectances can be maintained by scaling up the intensity
of the light sources. One way to obtain a suitable scaling is to ini-
tially produce reflectances without upper bound. If their maximum
magnitude is above 1, we may scale up all lights by that magnitude
value and repeat the design with a forced upper bound of 1 for the
reflectances.

The design errors discussed in Section 4.2 were shown to depend
on the number of constraints and also on enforcement of positivity. In
response to this situation, the user has to make a decision. Firstly, the
user could adjust the importance weights to drive the compromise
of conflicting criteria, for example, favoring the color combinations
that have the highest visible errors or that matter most to the final
result. This in particular applies to the metamers, that are supposed
to look exactly the same. To achieve this we set the importance of
the metameric color patches 4 or 10 times higher than that of the

remaining ones. Another solution consists of “free” colors, since
these allow us to choose a “natural” metameric color that is easiest
to fulfill in concert with the other given color conditions.

As an additional option, in case precise color fulfillment is very
important, the positivity constraint could be dropped to allow spectra
with negative components. As a result, the optimization may more
likely fulfill the given criteria without any error (see Figure 3(c)). The
same figure also indicates that choosing an even higher-dimensional
spectral model is yet another possibility for satisfying more con-
straints.

This kind of iterative design process of adjusting criteria to what
is possible has not been performed in our automatic evaluation,
but is feasible in practice. An interactive “live” update feature of
our Java implementation was found helpful in this regard. It per-
forms the redesign (constructing and solving the criteria matrix) in
a background thread whenever changes are made. This immediate
feedback allows the user to adjust conflicting colors or constraints
the moment they are introduced.

5.1 Future Directions

The design has so far only considered colors of single illuminants
combined with single reflectances. In rendering practice, we may
also be interested in mixtures of different illuminants as well as
materials of combined reflectances. While the light source mixture
would be linear due to additive superposition of the electromagnetic
field, the same may not hold for reflectances of mixed materials.

More advanced illumination models could be taken into account.
For instance, a bireflectivity matrix relating illuminating wave-
lengths to re-emitted wavelengths [Devlin et al. 2002] could be used
to model fluorescence. In fact, we could readily apply such a ma-
trix, replacing diag( �E) in Eq. (16) and design a light �E to produce
a given color on a fluorescent surface.

A feature similar to the free color approach, that creates two
or more colors that are as distinct as possible rather than equal,
could be useful. In this case, it might be helpful to switch to a
more perceptually uniform color space. A linear approximation to
CIELAB [Sharma and Trussell 1997] could be of use here. Work
in such a direction should also consider perceptual issues of palette
creation [Harrower and Brewer 2003].

Just like physical simulation can replace manual geometrical
modeling (e.g., for cloth or water surfaces), employing spectral ren-
dering could achieve the same for lighting and color appearance,
that is, with sets of materials designed to produce a well balanced
and distinct appearance under various lights. Instead of changing
the palette to create a different mood, the change would be implicit
under a different light.

With a proper paint mixture model we could look for feasible
spectra that could be mixed from paints or in combination with
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other base materials, such as metals or textiles, or even skin, as in
the case of face masks and make-up.

All our examples are given in the context of image synthesis. But
a method to construct spectra might also be used for reconstruction
of spectra in a computer vision setting, for example, using multi-
ple images of the same scene taken under different color filters or
different controlled illumination. Here, each color filter would give
rise to a distinct spectrum to camera RGB transformation matrix
that takes the effect of the filter into account via a premultiplied
diagonal matrix containing the filter absorptance spectrum. The op-
timization of the design method could then reconstruct a spectrum
that simultaneously fulfills the different recorded RGB values of a
given image pixel under the respective color filtered transformation
matrices.

6. CONCLUSIONS

Even though spectral rendering is fairly easy to implement, it is still
not widely used. Performance issues are only partly a reason. In
fact, due to cache coherency and with inexpensive component-wise
illumination calculations, the drop in performance is not significant.
Rather, we felt that it is the lack of spectral materials and the diffi-
culty of reusing existing RGB setups and textures within a spectral
setup that have posed obstacles to users.

To close this crucial gap in the design pipeline, we have devised a
spectral palette tool that allows the user to create a set of lights and
reflectances such that different parts of a rendering can be enhanced,
or be made to disappear, in real time and interactively. We formu-
lated the design process as a least-squares problem, yielding global
minimization of the criteria. The design scheme and optimization
is novel in both graphics as well as in color science. The resulting
set of spectra and colors have utility in the visualization of volume
data, but their usefulness is not restricted to this arena or to surface
graphics. In fact, with the liberty to inject actual physical spectra for
any of the components, we may design appropriate lights to attain
specific perceived colors when viewing real physical subjects.

REFERENCES

ABDUL-RAHMAN, A. AND CHEN, M. 2005. Spectral volume rendering
based on the Kubelka-Munk theory. Comput. Graph. Forum 24, 3, 413–
422.

ANDERSON, M., MOTTA, R., CHANDRASEKARAND, S., AND STOKES, M.
1996. Proposal for a standard default color space for the Internet—
sRGB. In Proceedings of the 4th Joint Conference on Color Imaging
Color, Science, Systems and Applications. Society for Imaging Science &
Technology (IS&T)/Society for Information Display (SID), 238–245.
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