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Abstract—Many data sets are sampled on regular lattices in two, three or more dimensions, and recent work has shown that statistical

properties of these data sets must take into account the continuity of the underlying physical phenomena. However, the effects of

quantization on the statistics have not yet been accounted for. This paper therefore reconciles the previous papers to the underlying

mathematical theory, develops a mathematical model of quantized statistics of continuous functions, and proves convergence of

geometric approximations to continuous statistics for regular sampling lattices. In addition, the computational cost of various

approaches is considered, and recommendations made about when to use each type of statistic.

Index Terms—Histograms, frequency distribution, integration, geometric statistics
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1 INTRODUCTION

MANY areas of science, engineering, and medicine study
continuous phenomena with scalar functions

sampled finitely in two, three, or more dimensions. Even
where discontinuous boundaries are of interest, sampling
theory still assumes that the underlying phenomena and the
sampling process involve functions that are continuous
everywhere or nearly everywhere. Moreover, many algo-
rithms in visualization and analysis depend heavily on
computing statistics or distributions, and these have
historically been based on discrete samples rather than the
underlying phenomenon.

There are three reasons why statistics in visualization
must account for intersample continuity. First, histograms
are often noisy, which impedes the ability to detect features
of interest, and this is directly related to the discretization of
the sampling process. Second, visualization methods such
as direct volume rendering depend on continuity in order to
integrate optical properties. Third, multivariate data give
multidimensional histograms (i.e., scatterplots) with many
more bins, aggravating the problems caused by discretiza-
tion. Continued improvement of visualization techniques
therefore depends on a solid theoretical footing for
calculating distributions from data sampled from contin-
uous or near-continuous functions.

In this paper, we provide this theoretical footing by
showing rigorously how histograms (including multidi-
mensional histograms) measure geometric properties, and
how to compute better approximations efficiently.

In practice, this starts with the recognition that statistics of
sampled continuous functions are dependent on discretiza-
tion in both domain and range. Range discretization
(quantization) means that level sets are interval volumes
(Section 5), while domain discretization (sampling) means
that histograms approximate quantized interval volumes
(Section 5). These effects can be dealt with by applying
Geometric Measure Theory to integrate over the quantized
interval volumes (Section 4). The principal contributions of
this paper are thus:

1. We show the importance of understanding Lebesgue
integration and Federer’s Coarea formula in relation
to quantized data. However, while Lebesgue inte-
gration is necessary to understand the mathematical
foundations of histograms, Riemann integration
suffices for our proofs (Section 4).

2. We introduce the necessary correction for quan-
tized statistics and demonstrate they are in fact
volume statistics computed by Riemann integration
(Section 6).

3. We provide a formal proof of convergence for
quantized statistics and geometric properties based
on Riemann integration (Section 6).

We contribute further by splitting scalar field statistics
into two groups, volume statistics (Sections 5 and 6) and
surface statistics (Section 7). We then show the difference
between these (Section 9) and summarize which statistic to
use (Section 11) based on computational performance
(Section 10).

We therefore start by reviewing previous work (Section 2)
and the mathematical notation (Section 3) necessary for
Federer’s Coarea formula (Section 4). Supplementary materi-
als relating to Section 4 are in Appendices I and II, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TVCG.2012.118. Fi-
nally, Appendix III, available in the online supplemental
material, gives a detailed account of all data sets and implicit
functions used for evaluation throughout this work.

2 RELATED WORK

At the heart of this work is the relationship between
histograms and other distribution statistics, geometric
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properties of isocontours, considerations of algorithmic
efficiency, and measure theory. We will discuss measure
theory in the next section and review work in visualization on
statistics, geometric properties, and algorithmic efficiency in
this section.

Statistical analysis of scalar fields is used in visualization

for purposes such as feature detection in large volumetric

data sets. Traditionally, statistical methods such as histo-

grams are used to approximate probability distributions of

scalar field data. Initially, statistical moments of distribu-

tions were extracted, corresponding to statistically signifi-

cant features. Other statistical moments, such as variance

and standard deviation, skewness and kurtosis proposed by

Tenginakai et al. [1], [2], have also been used to detect

salient features.
Histograms are used in transfer function design [3] to

assign optical properties to isovalues. Multidimensional

histograms have been used by Kindlmann et al. [4], [5], [6]

and by Kniss et al. [7], [8] to exploit relationships between

isovalues and gradients. In a further variation, local

histograms were proposed by Lundström et al. [9] to allow

users to examine sub-regions of the volume in greater detail.
Geometric properties of isosurfaces were introduced by

Bajaj et al. [10], [11] instead of histograms in visual interfaces.
Algorithmically, Shen et al. [12] used the range of isovalues

in each cell (the span) in data structures to accelerate

isosurface extraction. Similarly, Fujishiro and Takeshima

[13] extended a measure of spatial coherence from gray-scale

images in 2D to volumetric data in 3D, using the difference

between adjacent samples to measure coherence, and one of

the principal purposes of this work was to improve the

algorithmic performance of visualization techniques.
Carr et al. [14] identified the fundamental relationships

between statistics, geometry, and algorithmic perfor-

mance, introduced continuity, and argued that algorithmic

properties such as active cell count could substitute for

histograms.
Scheidegger et al. [15] corrected errors in detail of this

work and showed that geometric surface statistics do not

measure the same properties as the histogram. They adjusted

the geometric surface statistics via Federer’s Coarea formula

to account for gradient changes over the scalar field,

approximating the gradient with the span of the isosurfacing

cells. Although based on geometric measure theory, this

work approximated measures with discrete computations

and overlooked the existence and contribution of cells with

no span (i.e., zero gradient).
Bachthaler and Weiskopf [16] extended the continuous

models to multidimensional histograms, markedly im-

proving scatterplots for meshes representing continuous

phenomena.
In summary, work in this area has unified the roles of

statistics, geometry, algorithmic performance, and measure

theory, but left several elements unresolved: quantization in

the range, the impact of cells with zero span or gradient,

and whether algorithmic approximations can be guaranteed

to give the same answer as the histograms. We therefore

first develop some notation and summarize the relevant

mathematics.

3 DEFINITIONS AND NOTATION

Since the proofs that follow use formal definitions of
integration, we state the relevant terms here, referring
readers to Federer [17] or Morgan [18] for further informa-
tion. We shall stick as strictly as possible to Federer’s
notation, although there are respects in which it could be
simplified.

We also note that the geometric measure theory is not
restricted to functions with 1D domains and ranges, but
applies more generally to functions with arbitrary dimen-
sionality. We therefore start by assuming that we have a
function f : A � X ¼ IRm ! B � Y ¼ IRn from a subset A
in the domain X ¼ IRm to a subset B in the range Y ¼ IRn.
For convenience, we shall assume that A is of size 1—more
precisely, of m-dimensional Hausdorff measure 1 (see
below).

Lipschitz function. As defined in Federer [17], Lipschitz
functions generalize the idea of functions of limited
gradient—i.e., continuous functions. Thus, a function f :

X ! Y is a Lipschitz function from a metric space X to
another metric space Y iff 8a; b 2 A there is some finite
number K such that:

dY ðfðaÞ; fðbÞÞ � KdXða; bÞ; ð1Þ

where dX and dY are the metrics for X and Y , respectively.
Although this definition applies to a variety of metric
spaces, we are primarily interested in euclidean spaces, and
will therefore assume that dX and dY are euclidean metrics
and that the function f is Lipschitz.

Functions as manifolds. For a Lipschitz function
f : A � X ! B � Y , we can think of f as defining a set

F ¼ fðx1; . . . ; xm; y1; . . . ; ynÞ 2 E : ðx1; . . . ; xmÞ
2 A; fðx1; . . . ; xmÞ ¼ ðy1; . . . ; ynÞ 2 Bg:

Since f is Lipschitz, F will be an m-manifold embedded in
the mþ n-dimensional space constructed by E ¼
IRm � IRn, the direct sum of the spaces X ¼ IRm and
Y ¼ IRn. For convenience, we will refer to this space as the
embedding space E of X and Y . Where m ¼ 2 and n ¼ 1, then
X ¼ IR2 is the infinite plane shown in Fig. 1, A is a region
on the plane, and f : A! B is a height function defined on
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Fig. 1. Here, we show the relationship between the domainX ¼ IRm, the

range Y ¼ IRn, and the embedding space E ¼ IRmþn. Note how the

inverse image f�1ðyÞ can exist either as a subset ðf�1ÞEðyÞ of F � E or

a subset ðf�1ÞXðyÞ of A � X.



A, where B � IR is the range of height values taken on by f .
Moreover, the embedding space E ¼ A�B � IR2 � IR1 ¼
IR3 is a 3D space in which the function defines a terrain,
and F is the terrain itself, embedded in E.

If we then project F perpendicular to X ¼ IRm, it projects
onto A, but if we project F perpendicular to Y ¼ IRn, the
projection of F must be B. For any given y 2 B, we can then
define the inverse image f�1ðyÞ ¼ fx 2 A : fðxÞ ¼ yg, i.e, a
level set in the domain A. However, we can see from the
figure that it is also meaningful to discuss the inverse image
as a subset of F : f�1ðyÞ ¼ fðx; yÞ 2 E : x 2 A; y 2 B; fðxÞ ¼
yg. To avoid confusion, we will use f�1

X ðyÞ to refer to the
inverse image in A, but f�1

E ðyÞ to refer to the inverse image
in the embedding space. Thus, while our immediate interest
involves scalar fields, the analysis also applies to multi-
variate fields of the form f : X ! Y , as shown by
Bachthaler and Weiskopf [16].

Riemann integration. In real analysis, Riemann integra-
tion is the most commonly used form. To approximate area
under a curve, the x-axis (the domain) is divided into
segments. Rectangles are constructed on each segment to fit
under (or over) the curve, and the area approximated as the
sum of the areas of the rectangles. As the segment length
approaches zero, the sum approaches the area under the
curve: from below if rectangles are fitted under the curve,
the lower bound, from above if rectangles are fitted over
the curve, the upper bound.

This approach to integration uses euclidean cross
products between segments in the domain and range of
the function to construct measuring patches, i.e., for f :
IR1 ! IR1 the corresponding patch is of dimension
IR1 � IR1 ¼ IR2, a rectangle. Higher dimensional integra-
tion can be performed using the same principles by taking
rectangular segments in the domain and range, where a
rectangle is understood to mean a euclidean cross product
of arbitrary dimensions.

For m-dimensional domains and n-dimensional ranges,
m-dimensional patches are used instead of segments, and
mþ n-dimensional regions instead of rectangles. We writeZ

A

fðxÞdmx; ð2Þ

where the exponent m can be added when integrating over
more than one dimension. While sufficient for most
problems, Riemann integration breaks down for certain
functions that are well behaved in the range but not in the
domain.

Squeeze theorem. For a given function fðxÞ, convergence
is shown by trapping fðxÞ between upper and lower
bounding Riemann integrable functions gðxÞ � fðxÞ � hðxÞ
for all x in an open interval containing a, except possibly
x ¼ a. If limx!a gðxÞ ¼ limx!a hðxÞ ¼ L, then the Squeeze
Theorem forces limx!a fðxÞ ¼ L, and similarly for left and
right limits. We note that this is a sufficient condition for
convergence of Riemann integrals: as we are using it to prove
our result, we do not require it to be a necessary condition.

Lebesgue measure. To remedy the flaws in Riemann
integration, Lebesgue stepped back from integrating func-
tions, and started with the simpler problem of measuring
the size of the set B. Instead of a limit as patch size

approached zero, Lebesgue used Borel sets: collections of
subsets of A which are closed under countable union or
intersection. Provided that a Borel set covers the set of
interest, the Lebesgue measure LðAÞ of A replaces the
concept of the limit by taking the minimum sum of sizes of
Borel sets that covers A.

Lebesgue integration. To integrate a Lipschitz function
fðxÞ over A, Lebesgue integration computes the minimal
sum of sizes of the Borel elements multiplied by the value of
fðxÞ at the centre of the Borel element. When Lebesgue
integration is explicitly intended, it is written as:Z

A

fðxÞdLmx: ð3Þ

Lebesgue measures and integration are a key aspect of
geometric measure theory and are discussed in Section 4.1.

Hausdorff measure. In general topology, sets are
covered with open balls (abstractions of circles/spheres).
With a similar definition to Lebesgue measures, the
Hausdorff measure of an object HðAÞ is the sum of the
sizes of the minimal open-ball covering of A. The Hausdorff
measure is usually considered the best measure of object
size, as it matches more general topological expectations.
For a set of dimension m embedded in a space of dimension
mþ n, the Hausdorff measure is always m-dimensional, as
it measures the intrinsic size of the set. Since we will end up
with different spaces in which sets can be measured, we
will make explicit the space in which we measure by
writing Hm

X to indicate the m-dimensional Hausdorff
measure in the space X.

Hausdorff integration. We can also integrate with
respect to Hausdorff measures. The process is similar to
Lebesgue integration, using open balls instead of boxes, and
is written: Z

A

fðxÞdHm
Xx; ð4Þ

where the subscript indicates the space in which we measure.
Besicovich covering theorem. To link the Hausdorff

measure to the Lebesgue measure, the Besicovich covering
theorem states that measures based on patch shapes other
than open balls converge provided that there is a constant
ratio between the patch size and open balls.

Jacobian. A generalized version of gradient, the Jaco-
bian is the corrective factor that relates elements of regions
of the domain of a function to images of the function. For
f : IRm ! IRn, differentiable at x, the Jacobian is based on
the m� n differential matrix Df of the partial derivatives
of each of the n output variables with respect to the m

input variables.
The k-dimensional Jacobian of f , written JkfðxÞ, is the

maximum k-dimensional volume of the image underDf of a
unit k-dimensional cube as described by Morgan [18]. If
rankDfðxÞ � k, then ðJkfðxÞÞ2 is the sum of the squares of the
determinants of the k� k submatrices of Df as per Morgan.1

Conveniently, where n ¼ 1 (i.e., f is a scalar field), the
Jacobian matrix is simply an m� 1 vector, and the Jacobian
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1. This definition of the Jacobian comes straight from Morgan [18] 3.6,
who uses a point differentiable at a rather than x. We use x for consistency.



is the magnitude of the gradient of f , i.e, J1fðxÞ ¼ krfðxÞk.
If m ¼ n ¼ 1, f is a curve embedded in two dimensions, and
the slope of the tangent line is the Jacobian. For arbitrary m
and n, the Jacobian measures distortion from the domain A
to the manifold F . For clarity, Appendix I, available in the
online supplemental material, shows a worked example.

Sampling (Discretization in the domain). We assume
that the continuous function f : A! B has been sampled at
a discrete set of N distinct points PN on a regular lattice.
Since a regular lattice is defined by a set of m independent
vectors ~�j 2 X ¼ IRm; j ¼ 1 . . .m, each sample point p can
be written as the weighted sum of integer multiples of the
vectors, p ¼

Pm
j¼1 wj~�j : wj 2 ZZ. The set PN of sampling

points is then all distinct sample points pi in the domain A:

PN ¼ p ¼
Xm
j¼1

wj~�j : wj 2 ZZ; p 2 A
( )

; ð5Þ

where N is determined by the number of points on the
lattice within the domain A. As we will see in Section 5.3, a
set of patches covering the domain is induced by the
Voronoi cells of the sampling points in PN . As N increases,
these patches can then be used for Riemann integration.

Quantization (Discretization in the range). In addition
to quantizing in the domain by means of sampling,
machine representations of data quantize in the range:
even floating point values are quantized at the level of
machine epsilon. For a scalar field f : X ! IR, the effect of
this is to divide the domain into a set of disjoint regions
with distinct values. In 2D, where a scalar field can be
represented as a terrain in 3D, quantization results in a new
function fQ that takes the form of a set of terraces, as shown
in Fig. 2. Where quantization is combined with sampling,
these terraces then get approximated by sets of prismatic
columns perpendicular to the domain.

Level set measure. Given any function f , the level set
measure �f measures the size of the level set for each given
value y 2 Y . For any value of y, �fðyÞ is thus the Hausdorff
measure of the inverse image f�1ðyÞ

�fðyÞ ¼ Hm�nðf�1ðyÞÞ: ð6Þ

Histogram. For a discrete set of quantized samples, the
histogram is the proportion of the samples with a given
value. The histogram samples are at the centers of Voronoi
cells. We assume that the total volume of the domain is 1
and the size of a Voronoi cell K is sizeðKÞ ¼ 1=N (see the
discussion of boundary conditions below), as there are N
rectilinear Voronoi cells in each lattice, one for each sample.
We therefore define the histogram over N samples to be:

HNðiÞ ¼
X

fðpÞ¼i;p2PN
sizeðKÞ: ð7Þ

Voronoi cells. As previously shown [14], histograms
computed for a sampling involve the Voronoi cells of the
samples. For each point p 2 PN , its Voronoi cell is the set of
points that are closer to p than to any other sample:

V orðpÞ ¼ fq 2 A : dðq; pÞ < dðq; p0Þ8p0 2 PN n fpgg: ð8Þ

Fig. 3 shows samples on a square lattice in two dimensions as
dots, and their Voronoi cells as squares. Since a regular lattice
uses integer-weighted sums of the basis vectors, all Voronoi
cells except those at the boundaries will be homeomorphic
and have the same Hausdorff measure. It is then easy to see
that Nearest Neighbor interpolation reconstructs f by
assigning the value fðpÞ to each point q 2 V orðpÞ.

Delaunay cells. Our approximations using geometric
properties are not calculated with the Voronoi cells.
Instead, as in Marching Cubes and related algorithms, we
calculate geometric properties using the Delaunay cells
DelðPNÞ of the point set PN . Formally, the Delaunay
complex DelðPNÞ is the set of cells which satisfies the
condition that no point in PN is in the interior of any closed
ball circumscribing any cell in DelðPNÞ. A point set PN in
X ¼ IRm is said to be degenerate if there is any set of mþ 2
or more points from PN on the boundary of any closed ball
that contains no other vertices. If the point set is not
degenerate, then all cells in DelðPNÞ must be simplices
(triangles in 2D, tetrahedra in 3D).

Where PN is degenerate, however, cells may be arbitrary
convex polyhedra. For Cartesian sampling lattices, the
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Fig. 2. Here, we quantize the same function f as in Fig. 1 to a function
fQ. In fQ, only quantized values i 2 B have non-empty inverse images.
Quantization thus replaces the manifold F with a piecewise manifold FQ
whose pieces are the inverse images ðf�1

Q ÞEðiÞ. In the domain, the
corresponding inverse images become interval regions Ai ¼ ðf�1

Q ÞXðiÞ
defined by isocontours at iþ 0:5 and i� 0:5 of the nonquantized
function.

Fig. 3. The Voronoi cells of sample points can be used to prove

convergence of the histogram HN to �fQ as N !1.



Delaunay cells are m-cubes with sample points as vertices:
i.e., the Delaunay cells are the cells used by marching
algorithms.

Boundary conditions. Voronoi cells at the boundary of
the domain may not actually be homeomorphic. We avoid
this by offsetting the samples by half a lattice unit, i.e., by
assuming that a point sample occurs at the centre of the
pixel rather than the corner. The Delaunay cells of these
samples are then nonuniform, as half- and quarter-pixels
occur at the boundary. To keep our computations consis-
tent, we therefore make the simplifying assumption that the
function is periodic across all boundaries, resulting in N
Delaunay cells of size 1=N each.

4 FEDERER’S COAREA FORMULA

We now turn to one of the major results in geometric
measure theory—Federer’s Coarea Formula [17]. However,
the use of this work in computational statistics and
visualization has varied significantly in notation, making
the relationship between published papers unclear. More-
over, there is a significant flaw in how this theorem has been
applied. We therefore develop the required results directly
from Federer’s Coarea Formula, and use Appendix II,
available in the online supplemental material, to reconcile
the notation in previous work.

4.1 Lebesgue Measures in Domain and Range

As stated above, Lebesgue integration is often used to
integrate over the range of a function rather than the
domain. This can be used in several ways, but the simplest
is that any integral is merely the Hausdorff measure of a
particular set. For example, for fðxÞ : IR! IR, we can
measure the area

R b
a fðxÞdx between the curve and the x-

axis, or we can measure the size of F : the arclength of a
segment of f plotted in two dimensions.

For the purposes of this paper, we are primarily
interested in the measure of F—but as we will see shortly,
Lebesgue integration can readily be extended to other
integrals. To see how various measures relate, we return to
Fig. 1.

Since f is a manifold F in the embedding space E, it is
natural to measure A, B, or F , and to ask how these
measures are related. To get the measure of A, we take

Hm
XðAÞ ¼

Z
A

1dLmx: ð9Þ

For the measure of F , we start with Federer’s Area Formula
(3.2.3) [17], where for a Lipschitzian function f : IRm !
IRmþn with m � n and an Lm measurable set A:Z

A

JmfðxÞdLmx ¼
Z
IRn

Nðf jA; yÞdHmy: ð10Þ

Morgan [18] points out that if f is a smooth embedding,
then the right hand side of (10) is the Hausdorff measure of
fðAÞ, i.e., the left-hand side of (9). Before proceeding, we
observe that Federer uses f , g, m, and n to refer to different
things here and in the Coarea formula. We therefore
regularize the notation by defining a mapping function g :
IRm ! IRmþn : gðxÞ ¼ ðx1; . . . ; xm; f1ðxÞ; . . . ; fnðxÞÞ which
parameterizes the manifold F from the region A in the

domain. Since g is Lipschitzian with m � mþ n, it satisfies
the requirements for (10), and we can compute the
Hausdorff measure of F :

Hm
E ðF Þ ¼

Z
A

JmgðxÞdLmx; ð11Þ

using the Jacobian JmgðxÞ to correct for the projection. We
give a small example in Appendix I, available in the online
supplemental material, to clarify the notation and the
relationship between the Area and Coarea Formulas.

It is also possible to compute measures of f�1ðyÞ in A or
in E: since y is fixed, f�1

E is restricted to a subspace of E
parallel to the domain X, as shown in Fig. 1. The Hausdorff
measure of f�1ðyÞ must then be identical in X and E:

�fðyÞ ¼ Hm�n
X ððf�1ÞXðyÞÞ

¼ Hm�n
E ððf�1ÞEðyÞÞ

¼
Z
ðf�1ÞEðyÞ\F

1dHm�n
E x:

ð12Þ

4.2 Federer’s Coarea Formula

For cases where Riemann integration breaks down, integra-
tion can often be done over the range Y ¼ IRn rather than
the domain X ¼ IRm. If f is invertible, this is trivial, but if
not, a different approach is instead needed.

In general, f is noninvertible: f�1ðyÞ is a set of dimension
m� n rather than a point. However, f�1ðyÞ can be measured
for each y, and the Coarea formula integrates over y 2 Y
rather than over x 2 X. Thus, for a given Lm measurable set
A in the domain of a Lipschitz function f : X ¼ IRm ! Y ¼
IRn where m > n, Federer’s Coarea formula (3.2.11) states
that: Z

A

JnfðxÞdLmx ¼
Z
B

Hm�nðA \ f�1ðyÞÞdLny: ð13Þ

Adding subscripts to show the integrating space, we getZ
A

JnfðxÞdLmx ¼
Z
B

Hm�n
A ðA \ ðf�1ÞAðyÞÞdLny: ð14Þ

In other words, we can integrate over the projection of F
into the domain X ¼ IRm or the projection of F into the
range Y ¼ IRn. In either case, the integration computes
the measure of patches in the projection, then multiplies
those measures by a perpendicular measure estimating
spatial distortion. For Riemann integration, the patches are
a set of disjoint patches that sum up to either A or B, while
Lebesgue integration takes the minimum sum over all Borel
covers of either A or B.

Although it might seem that this equation computes the
Hausdorff measure of F , the Jacobian JnfðxÞ used in this
equation is not the same as that used in (11). We provide a
small example in Appendix I, available in the online
supplemental material, to clarify this issue.

Moreover, (14) is primarily about measuring a region,
rather than integrating a function over that region. This task
of integration is done by introducing a new function in
Federer’s Theorem 3.2.12. In this, we take any Lm integrable
IR valued function g : X ¼ IRm ! IR (where IR is the
extended reals IR [ f�1g [ f1g). Then,
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Z
A

gðxÞJnfðxÞdLmx ¼
Z
B

Z
f�1ðyÞ

gðxÞdHm�nxdLny; ð15Þ

and, with subscripts indicating the integrating space:Z
A

gðxÞJnfðxÞdLmx ¼
Z
B

Z
ðf�1ÞEðyÞ

gðxÞdHm�n
E xdLny: ð16Þ

This implies several things about the use of Federer’s

Coarea formula for scalar and multivariate fields and

applications. We defer this discussion to Appendix II,

available in the online supplemental material, along with

the relationship between Riemann and Lebesgue integration

and reconciliation of Federer’s notation with that used in

the related work. At this stage, we can make the following

observations:

1. Although Lebesgue integration is more general than
Riemann integration, many practical problems are
solved with Riemann integration for the sake of
simplicity.

2. Lebesgue integration was introduced in part to deal
with functions that were well behaved in the range
but not in the domain. In the case of functions
quantized for machine computation, we actually
have functions that are well behaved in the domain
but not in the range.

3. Although Federer’s Coarea Formula uses Lebesgue-
integrable functions, all of our data sets in practice
are sampled at finitely many locations—our recon-
structed function is therefore always Riemann-
integrable.

4. For the geometric approximations of distributions
introduced by Carr et al. [14], convergence is easier
to prove with the mechanics of Riemann integration.

For the above reasons we will prove convergence using

Riemann integration rather than Lebesgue integration.

5 CONVERGENCE OF HISTOGRAMS

Having understood the Coarea Formula, we turn our

attention to the histogram, and in particular, to demon-

strating that the histograms of a quantized function

represent volume statistics. Specifically, histograms funda-

mentally represent the measure of an interval volume

defined by quantization.

5.1 Quantization and Interval Volumes

We consider a quantized function fQ. In machine arith-

metic, we sample with a fixed number of bits—usually 8, 12,

16, or 32. For simplicity, we assume a function fQ that is

quantized to integer values, as shown in Fig. 2. Here, all

function values in the range ½i� 0:5; iþ 0:5Þ are rounded off

to i, with the result that the function displays a distinct

series of steps, bounded (in the domain) by the isocontours

at isovalues i� 0:5 and iþ 0:5. The inverse image of any

integer i 2 B is then the region Ai ¼ fQ�1
X ðiÞ � A in the

domain that is bounded by these two isocontours. It then

follows for scalar fields in three dimensions (m ¼ 3; n ¼ 1)

that these regions are interval volumes, as described by Guo

[19] and Fujishiro et al. [20].

5.2 Measuring the Interval Volumes

We now observe that f�1
Q ðyÞ is an interval volume of

dimension m iff y 2 B is an integer i, and of dimension 0
otherwise. It then follows that (6) cannot be applied to
compute an ðm� nÞ-dimensional Hausdorff measure for
�fQ , and that fQ is discontinuous and thus not Lipschitz.

However, we can remedy this problem if we observe that
each Ai is a bounded subset of the domain X, and that f is
(still) a Lipschitz function. Applying (15) to Ai, we can
compute �fQ in terms of f as follows:

�fQðiÞ ¼ HmðAiÞ

¼
Z
Ai

1dLmx

¼
Z
Y

Z
ðf�1ÞEðyÞ\Ai

1

krfk dH
m�n
E xdLny

¼
Z iþ0:5

i�0:5

Z
ðf�1ÞEðyÞ

1

krfk dH
m�n
E xdLny:

ð17Þ

Interestingly, in this form, the Jacobian is retained, and it
becomes clear why the formulation in Scheidegger et al. [15]
performs as desired: the Jacobian term is required for the
Lebesgue integration, which is performed over an interval of
size 1. Similarly, Bachthaler and Weiskopf’s mass density [16]
formulation already includes the Jacobian in their definition
of �ð�Þ. We note that they render to an image, thus implicitly
quantizing the result to bins of fixed size �y. In effect,
therefore, their model performs a Riemann sum with regions
of size �y, and produces the same result as the histogram.

Moreover, a corollary of this is that the sum of �fQ over
all integer i 2 Y must be the total volume of the domain A:

V olðAÞ ¼
X
i2Y

�fQðiÞ: ð18Þ

Before covering the implications of this, we first show that
the histogram converges to �fQ as sampling resolution
increases.

5.3 Histogram Convergence

We take our definition of the histogram HN , and assume
that the samples are on a square lattice as in Fig. 3. From
Section 3, we know that the Voronoi cells in a regular
square lattice are all of Hausdorff measure sizeðKÞ ¼ 1=N .
We claim the limit of the histogram HN tends to �fQ as N
tends to infinity:

lim
N!1

HNðiÞ ¼ �fQðiÞ: ð19Þ

We have assumed in Section 3 that f is Riemann integrable.
We therefore measure the size of the region bounded by the
two contours at iþ 0:5 and i� 0:5 using Riemann integration
over the Voronoi cells of the samples, as shown in Fig. 3. As
the patch size approaches zero, the area computed will then
converge to the correct answer in the limit. In general, the
patches need not be of uniform size, but our proofs assume a
regular lattice, so all patches will be of uniform sizeðKÞ.

To demonstrate that the histogram converges to the
measure of the interval region, we define an upper bound
UNðiÞ and a lower boundLNðiÞwhich are known to converge
correctly by the Squeeze Theorem, and show that the
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histogram HNðiÞ is trapped between these bounds. For our
lower bound LNðiÞ, we count the set of Voronoi cells strictly
contained in the interval region, as shown by green squares
in Fig. 3, and multiply by sizeðKÞ. As LNðiÞ is contained
inside the interval region it must converge because the
interval region converges. LNðiÞ is analogous to the lower
Riemann sum of a 1D function. Similarly, for our upper
bound UNðiÞ, we choose the set of Voronoi cells intersecting
the interval region, as shown as blue squares in Fig. 3. As
UNðiÞ is the total cover of the interval region it must also
converge. UNðiÞ is analogous to the upper Riemann sum of a
1D function. By Riemann integration, these bounds converge
as N increases and sizeðKÞ decreases:

lim
N!1

LNðiÞ ¼ �fQðiÞ ¼ lim
N!1

UNðiÞ: ð20Þ

Now, as shown by red circles in Fig. 3, the histogram
counts all samples whose values quantize to i, i.e., all
samples in the interval region Ai. We claim that HNðiÞ �
LNðiÞ for all N . First, every Voronoi cell in Fig. 3 which is
counted for LNðiÞ is entirely contained in Ai, and therefore
the sample that defines it must be in Ai, i.e., the sample
quantizes to i. It then follows that the samples correspond-
ing to these Voronoi cells are a subset of the samples
counted by the histogram, and the inequality holds. By a
similar argument, HNðiÞ � UNðiÞ, i.e.:

LNðiÞ � HNðiÞ � UNðiÞ: ð21Þ

Then, as the Voronoi cell sizeðKÞ approaches zero, the
histogram is trapped between two converging sequences,
and must also converge to �fQðiÞ, as in (19).

6 GEOMETRIC VOLUME STATISTICS

Having proven that the histogram converges to the Haus-
dorff measure of interval volumes, we next wish to prove
that geometric approximations of volume statistics converge
to the same result. However, in constructing the proof, it
becomes apparent that the formulas reported by Carr et al.
[14] and Scheidegger et al. [15] need correction, as they do not
handle all of the consequences of quantization correctly.

Scheidegger et al. [15] approximated contour size by
inverse gradient weighting either the area of triangulated
isosurfaces or the number of active cells for any given
isovalue, then approximated gradient magnitude with the
span of the cell. While the result converged empirically,
there is a subtle effect that is evident in particular for active
cell count statistics.

We observe that contours are typically extracted using
marching algorithms that divide the space into a mesh whose
vertices are sample points, then extracted separately in each
cell of the mesh. Carr et al. [14] showed that for a regular
lattice of sample points, the appropriate mesh is the Delaunay
complex of the samples, instead of the Voronoi complex.

For a given isovalue i, the values at a cell’s vertices are
compared to i and classified as black if their value is > i,
white if � i. A surface is constructed in the cell iff some
vertices are black and others white. Now consider a cubic
Delaunay cell K, all of whose vertices have isovalue h. For
all isovalues < h, all vertices are classified black, so no
contour is drawn, while for isovalues > h, all vertices are
classified white, and no contour is drawn. Under trilinear
interpolation, however, every point x in the cell has

function value fðxÞ ¼ h. Correspondingly, the inverse
image f�1ðhÞ ¼ K is a volume, not a surface. In practice,
this is avoided by classifying vertices as white if they are
� i, so no surface at all is extracted.

We refer to cells whose vertices share an isovalue as
homogeneous cells. Since the span of such a cell is zero, using
it to approximate inverse gradient magnitude would cause
an exception. But contouring algorithms treat homogeneous
cells as inactive for all isovalues, so no surface is extracted,
and no statistic exists to be inverse gradient-weighted. As a
result, Carr et al. [14] and Scheidegger et al. [15] do not
process homogeneous cells, and therefore do not include
them in the overall statistics—contrary to (18).

6.1 Evidence of Homogeneous Cells

The existence of homogeneous cells may seem a quibble. In
quantized data, however, they are surprisingly common, and
affect the accuracy of geometric statistics. Before proceeding,
we therefore confirm their existence in implicit functions and
in real-world data. A more detailed account of these data sets
can be found in Appendix III, available in the online
supplemental material. We illustrate this in Fig. 4, using a
circular distance field over the domain IR2 constrained to the
sampling window x ¼ ½�1;þ1� and y ¼ ½�1;þ1�. The results
of this are shown in Fig. 4 for the range ½0; 20�. As cell size
decreases, a smaller proportion intersects the contour at
isovalue j ¼ 11 (shown in green), and homogeneous cells
appear between active cells, as shown in red.

Once we have shown that this effect occurs for simple
analytical functions, it is natural to ask whether homo-
geneous cells exist in real data sets. To consider this, we
took the same 94 8-bit and 23 12-bit data sets used by Carr
et al. [14] and computed the number of homogeneous cells
in each. Table 1 reports our results—as we can see, even for
scanned data sets, it is not uncommon to have 25-30 percent
of the cells homogeneous.

In practice, floating point data is requantized to lower
precision to compute histograms of scalar fields. For this
reason we restrict ourselves to the typical quantization
levels 8, 10 or 12 bit. We note that for floating point data
homogeneous cells will occur with much lower frequency.

We also observe that the volumetric coherence intro-
duced by Fujishiro and Takeshima [13] relates to the
homogeneous cells. These cells have zero span, and must
necessarily have the same isovalue at all of the vertices. Since
this implies that there are samples at isovalue i adjacent to
other samples at isovalue i, homogeneous cells occur along
the main diagonal of the co-occurrence matrix P�, but are
excluded from the volumetric coherence V CM by a term
ði� iÞ. Since low values of V CM are taken to mean highly
coherent volumes which can be rendered efficiently, the
connection between statistics, geometry and algorithmic
performance can again be seen.

6.2 The Histogram and Geometric Statistics

We now know that histograms approximate measures of
interval volumes, and previous computations based on
continuous formulas combined with discrete extraction
using Marching Cubes do not correctly account for the
entire domain. We will see in Section 9 the practical
implications of this. First, however, we modify the formulas
explicitly to account for the entire domain, and prove
convergence to the correct result.
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We observe that an interval regionAi includes isovalues in

the range ½i� 0:5; iþ 0:5Þ. From Section 3, we assume that the

Delaunay cells wrap around, and that sizeðKÞ ¼ V olðAÞ=N .
The span of a cell K is spanðKÞ ¼ maxðKÞ �minðKÞ, and

K intersects spanðKÞ þ 1 interval regions Ai, as shown in

Fig. 5, where spanðKÞ ¼ 5� 1 ¼ 4, but there are five interval

regions A1; . . . ; A5 intersecting the cell. Of these, A1 covers

isovalues in the range ½1:0; 1:5Þ—i.e., the range is half as great

as for A2, so we give A1 and A5 (i.e., Amin and Amax) half as

much size as the remaining regions. This is precise for linear

interpolation, but not for other interpolants.
This leads to the following approximation of �fQ :

DNðiÞ ¼
X

K2DelðPN Þ
sizeðKÞdiðKÞ ð22Þ

diðKÞ ¼

0; Ai

T
K ¼ ;

1; Ai

T
K 6¼ ;; spanðKÞ ¼ 0

1

2spanðKÞ ; Ai

T
K 6¼ ;; i ¼ minðKÞ

1

2spanðKÞ ; Ai

T
K 6¼ ;; i ¼ maxðKÞ

1

spanðKÞ ; otherwise;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð23Þ

where DelðPNÞ is the Delaunay complex of PN and minðKÞ
and maxðKÞ are the extremal values of the cell.

In this formulation, Delaunay cells entirely outside the

interval region Ai contribute 0, those entirely inside (i.e.,

homogeneous cells) contribute 1, and other cells contribute a

proportion of the cell based on 1=spanðKÞ as shown in Fig. 5.

We note that the result of this is that each cellK is guaranteed

to contribute 1 to the overall computation, thus preserving

the measure of A as the sum of the measures of Ai:

V olðAÞ ¼
X
i2Y

DNðiÞ; ð24Þ

as required by (18). We claim that the limit of DN must tend

to �fQ as N tends to infinity:

lim
N!1

DNðiÞ ¼ �fQðiÞ: ð25Þ

Fig. 6 shows the proof: note the parallel with the proof for
the histogram, except here the integration patches are
Delaunay cells instead of Voronoi cells. Delaunay cells
wholly in the interval regionAi, i.e., with span zero, form the
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TABLE 1
Empirical Results from the 94 8-bit and 23 12-bit Data Sets

Used by Carr et al. [14] Show a
Large Percentage of Zero Spans

For the 12-bit data sets, with more quantization levels, the proportion of
zero spans unsurprisingly decreases.

Fig. 4. In (a) and (b), a spherical distance field was sampled and quantized to the range [0-20]. Cells containing isocontour j ¼ 11 are marked in
green. Cells marked red are homogeneous cells, introduced by quantization, where all values equal j.

Fig. 5. Interval regions Ai intersecting a single cell K. The isovalue
range in the cell is from 1.0 to 5.0, and we accordingly divide it into slabs
for which f rounds off to integer values. Given linear interpolation, the
slabs A1 and A5 are then half the width of the remaining slabs, as half of
the ranges that round off to 1 and 5 are outside the cell.



lower bound LNðiÞ of the squeeze, while the cells that
intersect the interval region Ai form the upper bound UNðiÞ.
DN is then trapped between LN and UN as shown in Fig. 6 by
shading the fraction of the cell attributed to DNðiÞ by (23)

LNðiÞ � DNðiÞ � UNðiÞ: ð26Þ

Applying the squeeze principle again it follows that DN

must converge to �fQ as in (25) and the result follows.

6.3 Weighted Area Convergence

As discussed in the previous work [14], [15], it is also possible
to approximate the distribution function by taking the area of
the isosurface for each cell and multiplying it by the inverse
gradient magnitude or cell span. In effect, this replaces the
isosurface with a thin shell of nonuniform thickness, that
measures the volume (i.e., region size) of this shell.

This approximation also needs to be adjusted to include
homogeneous cells, and proven to converge to (17). As it is
based on the size of the interval region Ai surrounding the
contour at isovalue i, we use CNðiÞ:

CNðiÞ ¼
X

K2DelðPN Þ
ciðKÞ ð27Þ

ciðKÞ ¼

0; Ai

T
K ¼ ;

sizeðKÞ Ai

T
K 6¼ ;;

spanðKÞ ¼ 0
ZðK;i�0:5Þ

2
t

spanðKÞ Ai

T
K 6¼ ;;

i ¼ maxðKÞ
ZðK;iþ0:5Þ

2
t

spanðKÞ Ai

T
K 6¼ ;;

i ¼ minðKÞ
ZðK;i�0:5ÞþZðK;iþ0:5Þ

2
t

spanðKÞ otherwise:

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð28Þ

Here, ZðK;xÞ is the Hausdorff measure of the contour of f
at isovalue x in cell K, approximated by marching cells.
t ¼ ðsizeðKÞÞ1=m is a term that approximates the thickness
of the cell with its linear dimension. The effect of this is to
compute an approximation of the portion of K

T
f�1
Q ðiÞ.

Unlike (23), however, the sum of these terms is not
guaranteed to sum to 1.

As with DNðiÞ the proof utilizes the squeeze principle,
based on the recognition that we are computing region size.
However, rather than treating the inverse gradient magni-
tude term as a fraction of the cell, we now treat it as the
thickness of a shell.

We again use homogeneous cells in Ai for the lower
bound LNðiÞ. We then define an upper bound for some
constant k:

UkNðiÞ ¼ LNðiÞ þ kðUNðiÞ � LNðiÞÞ: ð29Þ

We know that, in general, for any fixed k, f and f þ g
converge iff f and f þ kg converge. Since we have shown
that UNðiÞ and LNðiÞ converge to (17), we therefore
conclude that UkNðiÞ will also converge to (17) for any fixed
k. We use this conservative upper bound to simplify the
proof.

As before, it is easy to see that LNðiÞ counts exactly those
homogeneous cells captured by the second branch of (28),
and it follows that LNðiÞ � CNðiÞ. Now, to construct our
upper bound UkNðiÞ, we start by observing that DNðiÞ
counted the size not only of the homogeneous cells, but also
some fraction of the size of all cells on the boundary. Note
that this fraction was an approximation of the portion of the
cell covered by the interval region, and was computed by
assuming that all interval regions intersecting the cell were
the same size.

In the present instance, instead of arbitrarily dividing the
cell into regions of equal size, we wish to approximate the
size of the region by taking the inverse gradient as an
estimate of the thickness of the interval region, and
multiplying by an estimate of the other dimensions of the
interval region: in this case an estimate of the length of the
contour. It is not immediately clear that this approximated
region will lie entirely inside the cell, and our convergence
proof must adapt to this.

As the resolution gets finer, all cell dimensions get
smaller: for a mesh with N cells in m dimensions, there will
be �ðN1=mÞ divisions in each dimension, and the linear
dimension of each cell will scale with ðsizeðKÞÞð1=mÞ.
Moreover, for a given case in a marching cells table, since
a contour fragment is ðm� 1Þ-dimensional, its measure will
scale with tm�1 ¼ ðsizeðKÞÞ

m�1
m . And finally, the thickness

estimated using the inverse gradient must also scale with
the cell, i.e., with t ¼ ðsizeðKÞÞð1=mÞ.

We can now ask what the maximum region size added to
CNðiÞ per cell is. We simplify by considering only 2D square
lattices, and observe that marching squares approximate a
contour with line segments, and generate at most two such
segments. Now, each segment lies inside a square of side t,
which in turn lies inside a circumscribing circle of diameterffiffiffi

2
p
� t. Each of the line segments therefore has length at mostffiffiffi

2
p
� t: since there may be at most two such line segments,

ZðK; i� 0:5Þ � 2
ffiffiffi
2
p
� t. Moreover, spanðKÞ � 1, so the three

lower cases of (28) can contribute at most 2
ffiffiffi
2
p
� t� t=1 ¼

2
ffiffiffi
2
p
� t2 ¼ 2

ffiffiffi
2
p
ðsizeðKÞÞ to the computation.

Since for each cellK intersected by the interval region, we
add at most 2

ffiffiffi
2
p

of its area to DN , we can choose a constant
k > 2

ffiffiffi
2
p

so that LN and UkN force convergence of CN . Note
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Fig. 6. For our approximations DNðiÞ and CN ðiÞ, the Delaunay cells of
the sample points are used to prove convergence to �fQ as N !1.



that this proof relies on a looser convergence than DN , even
though it attempts to be more accurate. We will see later that
this is actually matched by looser empirical convergence.

7 GEOMETRIC SURFACE STATISTICS

In the previous sections, we showed that the histogram
converges to the Hausdorff measure of interval volumes—
i.e., that it is a volume statistic. We also showed that the
formulas in Scheidegger et al. [15] converge to the same
property once they have been corrected for the presence of
homogeneous cells. We can now ask: if the statistics
computed by Carr et al. [14] are not volume statistics, what
are they?

The statistics in question were active cell counts, triangle
counts, and isosurface area as approximated using Marching
Cubes. While the latter two are logically related to the area of
an isosurface, and the data plotted by Carr et al. clearly show
convergence, it is less clear why active cell counts converge to
the same result, and the discovery of the role of homo-
geneous cells should make us suspicious of any demonstra-
tion not founded on the underlying measure theory.

We shall therefore demonstrate that all three statistics
are in fact surface statistics—measures of particular (iso)-
surfaces. In addition to this we must address the relation-
ship of geometric surface statistics to isosurface
complexity measures.

7.1 Active Cell Counts

Active cell counts are the easiest to compute, but the
hardest to link logically to surface area. Paradoxically,
however, they are also the easiest for which to prove
convergence. We start with the Lebesgue integral: the lower
bound of the size of the Borel sets covering the region. For
the Hausdorff measure, the Borel sets are spheres in the full
dimension of the embedding space, rather than the intrinsic
dimension of the region. Thus, the Hausdorff measure of an
isosurface (a surface) is computed with a Borel set
composed of spheres (volumes).

Moreover, the Besicovich Covering Theorem allows the
use of any other primitive of full dimension, albeit with
slower convergence. Here, we observe that, as the resolution
is increased, the active cells at different resolutions form a
Borel cover composed of m-cubes. The result then follows.

7.2 Triangle Counts

With this in hand, we now consider triangle counts.
Empirically, Carr et al. [14] showed that these converge to
the same result as the active cell count, once normalized.
Since Carr et al. [21] showed that each cell has a reasonably
reliable average number of triangles, this is hardly
surprising.

Proving that triangle counts converge, however, is not
easy. Each active cell will have between one and six triangles
using the standard Marching Cubes cases. This was used in
Section 6.3 as part of the convergence proof for weighted
isosurface area. That proof, however, related to volume
statistics for which the homogeneous cells dominate at
higher resolutions. Thus, the contribution of the boundary
cells (i.e., active cells at i	 0:5) becomes progressively
smaller, and the squeeze principle can be used to establish
convergence. In the case of triangle counts, the homogeneous

cells are not involved, so looseness in approximation at the
boundary is problematic.

In practice, therefore, we do not recommend using
triangle counts for statistical purposes, as they are not
proven to converge, do not empirically converge any faster
than active cell counts, and are more expensive to compute.

7.3 Isosurface Area Computation

Finally, surface statistics can be approximated by explicit
isosurface extraction and computation of each triangle’s
area. Empirically, these converge to the same result as
active cell counts, which we have just proven to converge
to the Hausdorff area of the isosurface. However, like
triangle counts, proving convergence is difficult for the
same reasons—while upper and lower bounds for each cell
can be constructed, these loose bounds are not guaranteed
to converge.

Thus, while isosurface area computation seems ideal, the
lack of a formal proof of correct convergence should be kept
in mind. Moreover, the additional computational cost
means that active cell counts should be preferred in practice.

8 ISOSURFACE COMPLEXITY

In the previous section, we reviewed geometric surface
statistics. Recently, surface statistics have been used to
measures isosurface complexity, which has two meanings.
The first meaning is topological complexity, such as genus,
shape, smoothness, and curvature of isosurfaces as de-
scribed by van Gelder and Wilhelms [24]. The second
meaning is algorithmic complexity, the rate of growth of the
size of the isosurface k as a function of the lattice size N .
More recently in the visualization literature the term
isosurface complexity has been used to describe the latter.
Isosurface complexity is a concern in visualization applica-
tions, such as isosurface extraction (Marching Cubes [25],
[26]), when processing large data sets.

In this section, we discuss how isosurface complexity
relates to statistics of scalar fields and review recent results,
then introduce a simple method for computing isosurface
complexity based on growth rates with respect to sampling
frequency.

8.1 Relation to Summary Statistics

Isosurface complexity is linked to integration and measures
of surface properties. Measuring complexity adds an
additional dimension to the integration, i.e., over the
sampling resolution of the volume. Therefore, we identify
three distinct tasks that involve measuring or integrating
isosurfaces.

The first task estimates algorithmic cost for rendering
based on the geometric surface statistics in Section 7, i.e.,
cell and triangle counts, and should be treated as such.
While this formed the original motivation of Carr et al. [14],
in retrospect rendering cost is better predicted by the
maximum number of triangles rather than the average as it
represents the worst case for asymptotic analysis. We return
to this in Section 8.3.

The second task computes a summary statistic for a data set,
and is a volume statistic. For this, Scheidegger et al. [15] as
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modified in Section 6 are correct. For measuring algorithmic
complexity, however, the gradient is not required.

The final task, computing fractal complexity of noisy data
[23], computes complexity from fractal box span dimen-
sions of a 2-manifold in a 3-space. This measures the
intrinsic complexity or dimensionality of the function, and
is therefore different from the previous two tasks.

8.2 Related Results

While introducing a new isosurface extraction technique, Itoh
and Koyamada [22] made a passing observation that
isosurfaces, being planar, should have a growth rate of
�ðN 2

3Þ and proposed triangle counts to approximate isosur-
face size k. Carr et al. [14] measured isosurface growth
empirically as a function ofN , by counting triangles in 90 data
sets and fitting a least squares line to the data. The slope of the
line was used to estimate a growth rate of �ðN0:82Þ.

Scheidegger et al. [15] then argued that average isosur-
face complexity should account for the gradient and
introduced the Coarea formula. They used gradient
weighted isosurface area to estimate k, which yielded a
growth rate of �ðN0:96Þ. Scheidegger et al. [15] also showed
that for clean implicit functions the growth rate is
approximately �ðN 2

3Þ, but that noise increases this. We
know from Section 6 that gradient weighting gives us
volume statistics: they are therefore not an appropriate
measure of algorithmic complexity.

Khoury and Wenger [23] estimated a growth rate of
�ðN0:75Þ by measuring the fractal dimensions of isosurfaces
using cell intersections to approximate k. They count active
cells because the cell counts are independent of the specific
approximation methods used in isosurface reconstruction.
Furthermore, they showed the fractal dimension of an
isosurface is proportional to the topological noise in the
data. They measured topological noise for an isosurface by
computing the number of connected components and
dividing by the edge intersections to correct for the
dependency on isosurface area.

8.3 Asymptotic Analysis Approach

In this section, we introduce a new method for measuring
isosurface complexity based on a multiscale approach. We
use multiple down-sampled versions of 60 data sets to
compute the growth of k as a function of N : a method
suggested but not implemented by Khoury and Wenger
[23]. As the lattice density increases, we measure the active
cell and triangle counts at each resolution. The growth rate
for each isosurface is then found from the slope of a log-log
least squares line, and shown in Table 2 and Fig. 7. As we

see in Table 2, these approximations are similar to the
prediction by Itoh and Koyamada [22]. From the variation
in results, we see that the approximation chosen for
isosurface reconstruction affects the computed growth rate,
as predicted by Khoury and Wenger [23].

In addition to this we compute average cell count
complexity for 11 implicit functions and add synthetic
Gaussian noise in Fig. 7. This verifies the result of
Scheidegger et al. [15] for implicit functions. Noiseless
volumes have average complexity of approximately
�ðN0:67Þ. Adding noise to the volume moves the complexity
toward the �ðNÞ asymptote. The list of data sets used can
be found in Appendix III, available in the online supple-
mental material.

In practice, average complexity does not have a clear
meaning. Instead, implicit functions tend to have smooth
interfaces between regions in the data, so their complexity
measures are not representative of real data. For real data,
peaks representing significant features tend to be distrib-
uted asymmetrically with large standard deviations. Thus,
while implicit functions give a lower bound, and an upper
bound of OðNÞ is provable, Khoury and Wenger [23]
showed that the expectation is intermediate between these
bounds and fractal in nature.

In Section 8.1, we noted that worst case performance
should be used to predict algorithmic cost. For isosurface
extraction this means taking the isosurface with the max-
imum growth rate. We also note that computing the average
isosurface growth rate for a given data set has very little
meaning for two reasons. First, average isosurface growth
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TABLE 2
A Summary of Isosurface Complexity Measures to Date

Fig. 7. Plot of noise level versus cell count for eleven implicit functions
described in Appendix III, available in the online supplemental material.
For implicit functions, noiseless volumes have average complexity close
to �ðN0:67Þ, and noise moves the complexity towards the �ðNÞ
asymptote.



does not reflect how the user interacts with the isosurface
extraction algorithm and may not represent a statistically
significant feature in the data. Second, averaging implies
integrating over the range of the data set and may compute
the growth rate of an isosurface that does not exist when
dealing with quantized data.

We therefore compute the average worst and best case
growth rates from a population of 60 data sets, a subset of
the 77 data sets in Appendix III, available in the online
supplemental material. Data sets with a dimension less than
64 samples were excluded to maintain sufficient sample
density when downsampling, i.e., a data set 128� 256� 32
would be excluded. The average worst and best cases for
downsampled cells are estimated in Table 2.

9 COMPARISON WITH PREVIOUS METHODS

In previous sections, we established that histograms and
other volume statistics provably converge to the interval
volume measure, that active cell counts converge to isosur-
face area, and that other surface statistics empirically
converge to isosurface area. It remains to test whether adding
homogeneous cells to the computation makes any significant
difference.

We start with the Marschner-Lobb [27] data set at 413

resolution. We compared the histogram with the statistics
reported by Carr et al. [14], by Scheidegger et al. [15], and
the updated volume statistics in (22) and (27). For clarity,

volume statistics based on cell intersections are shown on
the left of Fig. 8, while those based on weighted isosurface
areas are shown on the right.

In these figures we see that, as previously reported,
histograms give poor approximations of interval volume
measures at low resolutions, and that volume statistics give
smoother estimates. Misleadingly, the active cell count
reported by Carr et al. [14], shown in blue, appears to give
the same distribution as the other statistics, presumably
because the gradient in the Marschner-Lobb signal is fairly
uniform. Moreover, although there are minor differences
between the results of the formula reported by Scheidegger
et al. [15] and (22) and (27), there is little to choose between
them in practice.

At higher resolution, in Fig. 9, we see that the histogram
has converged to the same result as the other volume
statistics, but that the simple count of intersected cells has
converged to a different result. We also see that, at the
margins of the distribution, (22) and (27) converge slightly
better than the statistics from Scheidegger et al. [15].

One might conclude that there is no point to improving
the computation, but this is not true, as can be seen in Fig. 10,
an MRI scan of a monkey. Again, the simple count of
intersected cells is clearly a different result from either
histogram or volume statistic. Since we have already
concluded above that this is actually a surface statistic, this
poses no difficulty. But, when we compare the cell
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Fig. 8. Comparison of volume statistics for 41� 41� 41 resolution sampling of the Marschner-Lobb test signal. As in previous work, it is apparent that

volume statistics of low-resolution data are of better quality than histograms.
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Fig. 9. Comparison of volume statistics for 256� 256� 256 resolution sampling of the Marschner-Lobb test signal. At high resolutions, the histogram

has converged reasonably well, and no advantage is seen from the use of volume statistics. Minor differences are visible when homogeneous cells

are added to the computations.



intersection statistics, we see that the computation in
Scheidegger et al. [15] struggles with the uneven quantiza-
tion of the underlying data, resulting in a sequence of cusps
rather than the smoother line that results from counting
homogeneous cells as well.

For high-resolution data sets, then, histograms are suffi-
ciently high quality that no other volume statistics are
merited. However, at lower resolutions, or for data with
hidden sampling issues, geometric statistics are more reliable.

10 COMPUTATIONAL PERFORMANCE

As well as the relative quality of these approaches, we can
also consider the computational cost. Due to the simplicity
of the computation, we would expect histograms to be
cheapest. We would also expect weighted cell counts to be
cheaper than weighted isosurface area, as there is no need
to extract and measure triangles. The updated volume
computations of (22) and (27) should be slightly more
expensive than the weighted cell counts and weighted
isosurface area from Scheidegger et al. [15], since a small
amount of additional computation is required.

In Fig. 11(left), we show the computation cost in seconds
of the volume statistics for the same data sets as used by
Carr et al. [14], plotted against the data size. As expected,
the performance advantage of the histograms shows up
quite clearly, with the two weighted cell intersection
computations next, and the two weighted isosurface area

computations last. And, also as expected, the corrections
introduced in (22) and (27) add little or no additional cost.

Similarly, Fig. 11(right) shows the comparative computa-
tion cost in seconds of the surface statistics originally
reported by Carr et al. [14], with histograms plotted for
comparison. Again, while histograms are clearly cheapest to
compute (although not computing the same property), cell
intersection counts are much cheaper than isosurface area
computations.

Since these computations are all performed one voxel or
one grid cube at a time, we expect them to scale linearly with
the data size, and within broad terms they do. We therefore
plotted least squares fitted lines for each statistic, and report
summary statistics in Table 3. We can see from these statistics
that histograms are cheaper by one and a half orders of
magnitude than all intersection cell computations, which in
turn are an order of magnitude cheaper than isosurface area
computations.

11 ASSESSMENT

We have now seen that the statistics reported in previous
work converge to one of two fundamental properties.
Histograms and the corrected weighted cell intersection
counts of (22) converge to the measure of the interval
volume. Cell intersection counts and isosurface area
approximations converge instead to the Hausdorff measure
of the isosurface area.
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Fig. 10. Comparison of volume statistics for Monkey-MRI-T1 data. Here, the data are of very uneven quality, and the updated computation with

homogeneous cells shows a marked improvement compared to previous work. Moreover, the difference between surface statistics (blue) and

volume statistics becomes apparent.
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Fig. 11. Performance Characteristics of volume and surface statistics. As predicted, histograms are cheapest to compute, followed by cell counted
statistics, followed by triangle-area computations.



We have seen, however, that some statistics give
smoother results than others, especially at low resolution,
and that some statistics are cheaper to compute than others.
Given these observations, we can now make the following
recommendations:

1. For high-resolution volume statistics, histograms
give sufficiently high-quality results most of the
time that their speed advantage dictates their use.

2. For low-resolution volume statistics, interval volume
cell counts should be used, as they balance quality
and speed better than either histograms or interval
volume approximations. Equation (22) should be
used instead of the formula reported by Scheidegger
et al. [15].

3. For surface statistics, cell intersection counts should
be used, as they are cheap and converge rapidly.

12 CONCLUSIONS AND FUTURE WORK

We have shown that previous papers on geometric
statistics of continuous functions can be reconciled to the
underlying mathematical model of Federer’s Geometric
Measure Theory. We have also shown that histograms are
statistics that approximate the volumetric measure of
the interval volume defined by the quantization of data
in the range, and that the same property can also be
computed by approximations based either on counting cells
intersecting the interval volume, or computations measur-
ing the interval volume extracted by Marching Cubes. We
have further shown that computing these approximations
correctly requires accounting for homogeneous cells—cells
all of whose vertex isovalues are identical.

We have also confirmed that the level set measure �fðyÞ
of a function f is the Hausdorff measure of f�1ðyÞ in the
domain, and that this can be approximated either by
isosurface area extraction and mensuration or simply by
counting active cells.

Finally, we have shown that the choice of which statistic
to compute can be driven by assessing the tradeoff between
computational cost and quality of result.

Some future directions arise from this. First, none of the
computations herein are restricted to volumetric data or to
the Cartesian lattice: the proofs generalize to higher
dimensions in both domain and range and to non-Cartesian
lattices. Federer’s Area and Coarea formulas for Lipschit-
zian maps of functions only work for m-dimensional
measures over subsets of n-dimensional euclidean space,

i.e., m � n. Bachthaler and Weiskopf explicitly dealt with
m ¼ n, and we would like to extend this work to m > n and
to irregularly sampled data.

We would like to consider the impact of geometric
measure theory on other geometric properties such as higher
order moments and sphericity. Since these involve second
and higher derivatives, we expect that the homogeneous
cells will be increasingly important. In broad terms, we
predict that where these properties are being used to
underpin transfer function design, adjustments will be
needed to base them on the interval regions rather than
local properties of isosurfaces, but the details of this will take
considerable effort to work out.

We intend to explore the use of these statistics to assess
relative convergence properties of different sampling
lattices. We note that, logically, if inverse gradient-weighted
cell counts approximate interval volumes as do histograms,
that gradient-weighted histograms ought to approximate
isosurface area computations, potentially at cheaper cost
than cell counts.

Furthermore, the identification of the gradient relation-
ship between the two types of statistics (re)raises an
interesting question: if histograms relate to inverse-gradient
weighted statistics, are surface statistics such as active cell
counts a better statistic for detecting high-gradient bound-
aries in data?
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