
Sort-First Parallel Volume Rendering
Brendan Moloney, Marco Ament,

Daniel Weiskopf, Member, IEEE Computer Society, and Torsten Möller, Senior Member, IEEE

Abstract—Sort-first distributions have been studied and used far less than sort-last distributions for parallel volume rendering,

especially when the data are too large to be replicated fully. We demonstrate that sort-first distributions are not only a viable method of

performing data-scalable parallel volume rendering, but more importantly they allow for a range of rendering algorithms and techniques

that are not efficient with sort-last distributions. Several of these algorithms are discussed and two of them are implemented in a

parallel environment: a new improved variant of early ray termination to speed up rendering when volumetric occlusion occurs and a

volumetric shadowing technique that produces more realistic and informative images based on half angle slicing. Improved methods of

distributing the computation of the load balancing and loading portions of a subdivided data set are also presented. Our detailed test

results for a typical GPU cluster with distributed memory show that our sort-first rendering algorithm outperforms sort-last rendering in

many scenarios.

Index Terms—Volume rendering, sort-first parallelization, visualization, dynamic load balancing, early ray termination, shadow, ray

coherence.

Ç

1 INTRODUCTION

MANY scientific simulations and measurements result in
enormous volumetric data sets. Volume rendering is

an essential tool for visualizing and gaining insight from
such data. The process of exploring volumetric data can also
benefit greatly from volume rendering, but only if the user
can interactively alter the viewing conditions. To perform
interactive volume rendering, even of small data sets,
requires a tremendous amount of computational power.
Recently, Graphics Processing Units (GPUs) have provided
a cost-efficient method of rendering small to medium sized
data sets at interactive frame rates. However, larger data
sets still require us to distribute the workload and data set
among a number of processing units.

GPUs have their own dedicated high-speed memory to
maximize the bandwidth available to the processing core. In
a parallel environment, this extra layer of memory further
complicates the problem of simultaneously distributing the
data set and the rendering workload evenly. This is largely
the reason for the focus on static sort-last distributions for
GPU accelerated parallel volume rendering. While sort-last
methods do ultimately demonstrate better data scalability
than sort-first methods, we show that sort-first can give
better performance in many scenarios where data scalability
is required. The performance difference comes from the

increased ability to leverage occlusion and the lack of alpha
compositing overhead.

The partitioning strategy used to distribute the rendering
workload and data set among the processing units can limit
the types of algorithms that are applicable within the
parallel rendering environment. In particular, many image-
space algorithms cannot be efficiently adapted to work with
a sort-last distribution since it does not keep the data and
processing along each (virtual) ray local to a single
processing unit. These algorithms (which we call ray
coherent) can provide tremendous speedups through
visibility culling, more informative images through sophis-
ticated lighting models that include shadowing effects,
more accurate and consistent load balancing, and poten-
tially many other benefits.

The target platform is a cluster of machines with GPUs
and distributed memory. The algorithms are agnostic in
regards to the type of interconnect used for communication,
but for our tests, gigabit ethernet is used due to its
availability and affordability. To make our results relevant
to more cluster configurations, we also estimate the
performance for higher bandwidth network interconnects.
Since the processing units in our cluster have the same
amount of RAM as the entire cluster’s GPU memory, there
is currently no need to send volume data over the network.
The basic rendering approach used is three-dimensional
texture slicing but alternative techniques such as ray casting
could be used as well (except when half angle slicing is
used for shadowing).

1.1 Goals and Contributions

The majority of the state-of-the-art research on parallel GPU
volume rendering has focused on sort-last distributions. Our
goal is to show that sort-first methods can outperform sort-
last methods in many scenarios that require data scaling and
allow for efficient parallelization of a number of existing
volume rendering algorithms that would otherwise be
intractable. Experimental results for each stage of the

1164 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 8, AUGUST 2011

. B. Moloney is with the AIRC—Advanced Imaging Research Center,
Oregon Heath Science University, 3181 SW Sam Jackson Park Rd, L452,
Portland, OR 97239. E-mail: moloney@ohsu.edu.

. M. Ament and D. Weiskopf are with the VISUS—Visualization Research
Center, Universität Stuttgart, Allmandring 19, D-70569 Stuttgart,
Germany. E-mail: marco.ament@vis.uni-stuttgart.de,
weiskopf@visus.uni-stuttgart.de.

. T. Möller is with the School of Computing Science, Simon Fraser
University, 8888 University Drive, Burnaby BC, Canada V5A 1S6.
E-mail: torsten@cs.sfu.ca.

Manuscript received 29 Apr. 2009; revised 26 Jan. 2010; accepted 3 May
2010; published online 8 Sept. 2010.
Recommended for acceptance by K.-L. Ma.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-2009-04-0086.
Digital Object Identifier no. 10.1109/TVCG.2010.116.

1077-2626/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

parallel rendering pipeline are provided and we compare
sort-first and sort-last distributions as fairly as possible.

In Section 4, we discuss our contributions toward two of
the fundamental components of data-scalable sort-first
volume rendering: load balancing and data redistribution.
An existing load balancing algorithm which provides
consistently good results is used and we reduce its
overhead by lowering the amount of communication
required. To reduce the sudden dips in performance
associated with data redistribution, a proximity-based
caching scheme that predictively loads data in close
proximity to the frustum is described.

In Section 5, a number of ray coherent algorithms and
their benefits are discussed. Two of the algorithms are
implemented and discussed in detail. The first algorithm
leads to efficient and effective early ray termination for
parallel GPU volume rendering, which is not possible with
existing sort-last methods. Our improved algorithm incurs
almost no overheads when there is little volumetric
occlusion while achieving superior performance when
volumetric occlusion does occur. The second algorithm
uses a hybrid sort-first and sort-last distribution which
allows us to adapt an image-based volumetric shadowing
algorithm to a parallel environment. Ray coherence along
the shadow rays is achieved by performing a sort-first
distribution of the light’s image-space. This essentially gives
us a sort-last distribution from the camera’s point of view,
which requires us to composite the intermediate images in
order to get the final result.

In Section 6, results for each algorithm and stage of the
parallel rendering pipeline are given. We show that our
data-scalable sort-first distribution can often give better
performance than a sort-last distribution, and that our
proximity caching scheme performs better than methods
with least recently used (LRU) caching. Similarly, we justify
our choice of load balancing algorithm by showing that it
provides better and more consistent results than the more
commonly used alternative. Occlusion culling is shown to
scale dramatically better with a sort-first distribution
compared to sort-last, allowing large performance gains.
We also provide a look at the overall performance for large
real-world data sets.

This paper builds upon previous work on parallel
volume rendering by Moloney et al. [1]. Where we directly
utilize techniques from that previous paper, we just include
a reference to that paper in order to avoid duplication of
paper contents. This paper adopts text from [1] only in
small parts in Sections 2, 3, and 4.

2 RELATED WORK

In this section, we look at related work in GPU accelerated
volume rendering as well as parallel volume rendering.

2.1 GPU Accelerated Volume Rendering

Three-dimensional texture slicing [2], [3] is an easy way to
interactively perform high-quality volume rendering of
small to medium sized data sets. This is the basic rendering
method used for the generation of intermediate images on
the nodes of our cluster-based rendering system. For the
special case of volume shadowing, a variant of 3D texture

slicing called half angle slicing [4], [5] is adopted. This
slicing technique produces a single set of slices that can be
used to render the data from two different points of view.
The direction perpendicular to the slices is chosen so that it
is the half vector of the two view directions if they both lie
in the same hemisphere, or the half vector of one view
direction and the inverse of the other if they lie in opposite
hemispheres. By using half angle slicing and alternating
between rendering each slice from the point of view of the
camera and the point of view of the light source, a
shadowing effect can be produced [4], [5].

Early volume ray casting algorithms for the GPU used a
multipass approach due to the limited number of instruc-
tions that could be executed in a shader program on older
GPUs [6], [7]. These multipass approaches were able to
update the depth buffer between each pass, and set it to kill
fragments above some opacity threshold using depth
culling. This approach to early ray termination is applicable
to any iterative front to back algorithm, and has been
adapted for data sets subdivided into bricks [8].

Newer GPUs facilitate single-pass ray casting [9], which
allows for effects like reflection, refraction, and self-
shadowing isosurfaces. Although our implementation is
restricted to 3D texture slicing, GPU ray casting could
replace slicing in the sort-first approach of this paper
because the parallelization strategy and domain decom-
position is independent from the core volume rendering
technique. The only exception is volume shadowing which
is tightly linked to half angle slicing.

Subdividing the data into bricks is a popular method of
empty space leaping on GPUs due to the fact that it can
reduce not only the amount of computations but also the
amount of texture memory required. Bricking has been
used both for slice-based rendering [10] and ray casting
[11]. More accurate methods of reducing the computations
on empty voxels [8], [12] exist, but do not save any
additional texture memory. Bricking has also been used in
parallel rendering for data distribution [13] and load
balancing [11], [14].

2.2 Parallel Rendering

A variety of methods have been proposed for distributing
the rendering workload among a number of machines.
Molnar et al. [15] classify these into groups based on where
in the rendering pipeline primitives are sorted in regards to
viewing conditions. The sort-last method probably is the
most common for parallel volume rendering. One of the
primary research topics for sort-last algorithms is how to
efficiently transfer and composite the intermediate images
created by the processing units in the cluster. A parallel
pipeline approach [16] from parallel polygon rendering
organizes n processors in a circular ring and divides the z-
buffer of each node into n disjoint regions. The subimages
are circulated along the ring and accumulated in a
pipelined fashion. Binary swap [17] and direct send [18],
[19] compositing schemes are easy to implement and do a
fair job of distributing the compositing workload among the
render nodes. SLIC [20] improves direct send compositing
primarily through better load balancing and scheduling.
Overlapping local ray casting and compositing [21] reduces
network congestion because smaller messages are sent over

MOLONEY ET AL.: SORT-FIRST PARALLEL VOLUME RENDERING 1165

the network throughout the entire process of rendering
instead of sending large messages when all ray casting
processes are completely finished.

The focus of our paper is sort-first methods for parallel
volume rendering. In general, these methods either repli-
cate the data set across all render nodes [22] or transfer data
over the network [13]. Algorithms that replicate the full
data set on each GPU can only scale performance, but not
the maximum data set size. Algorithms that transfer data
over the network, or cache data locally, can allow for data
sets larger than the memory available to a single processing
unit. The work of Bethel et al. [13] takes a detailed look at
the amount of data communication required for data-
scalable sort-first volume rendering but it does not consider
the effects of different caching techniques.

Neumann [23] compares the communication costs for
sort-first versus sort-last volume rendering. He concludes
that dynamic sort-first distributions can have much worse
communication costs than sort-last. However, this does not
consider the possibilities of caching, asynchronous loading,
or avoiding loading of occluded data. It also does not
consider the need for load balancing for sort-last distribu-
tions, which would increase the communication require-
ments substantially.

Eilemann et al. [24] present a generic framework for
parallel rendering which handles a variety of different data
types and applications. Sort-first and sort-last approaches
are also compared but the results are difficult to compare to
our own. The sort-last algorithm shows superlinear scaling
since the data are out of core for small numbers of nodes.
The sort-first algorithm on the other hand is not data-
scalable when rendering volume data and thus shows
consistently sublinear scaling.

The shadow rendering technique mentioned in the
previous section can be adapted to work in a parallel
environment using a sort-last distribution [25]. The sort-last
distribution allows for good data scalability but it requires
two rendering and composting passes. The first pass
generates a global shadow map and the second pass
generates the rendered image. Such an approach would be
prohibitively slow on gigabit ethernet even with moderate
image resolutions. With a higher bandwidth network inter-
connect the additional processing and synchronization
would be the main concern. In contrast, our approach
described in Section 5.2 only requires a single rendering
and compositing pass.

Load balancing is an important research subject for
parallel volume rendering, as the overall performance is
limited by the slowest component. Static load balancing
algorithms do not perform well under a variety of viewing
conditions unless overpartitioning is used. Overpartitioning
the image-space causes much more data replication when
using a data-scalable sort-first approach and overpartitioning
the object-space causes much higher compositing overheads.
An important overpartitioning strategy in sort-last load
balancing is the so called k-way replication [26] that
originates from parallel polygon rendering. Every rendering
primitive is replicated k times onnnodes (k� n). In this way,
load imbalances coming from zooming into the data set are
alleviated because, in contrast to a static one-way distribu-
tion, starving nodes can dynamically change the subset of

primitives in a view-dependent way without exchanging
excessive amounts of geometry data during rendering.
However, the amount data replication used in the paper is
slightly higher than what is needed by our sort-first algorithm
for the same number of nodes (about one quarter of the data
set stored on each of 24 nodes). Additionally, the amount of
data replication for our sort-first algorithm decreases with
additional nodes while the amount of data replication for k-
way replication remains constant for a given quality of load
balancing.

Dynamic load balancing tends to assign each unit a
single partition and thus avoids these problems. Each
processing unit’s partition is updated as the camera moves
in order to maintain good load balancing. A common
technique uses the relative performance of each rendering
node in the previous frame. This has been done with sort-
last algorithms [11], [14] that subdivide the volume into
bricks and reassign bricks to nodes that had a higher frame
rate (less workload) in previous frames. Despite being sort-
last, these methods require volume data to be sent over the
network or cached locally.

Sort-first algorithms have also used this method of load
balancing [22], redistributing the image-space instead of the
object-space. Any such method relies on frame-to-frame
coherence and thus cannot guarantee any tight bounds on
the level of load balancing. Sort-first load balancing
algorithms that do not rely on frame-to-frame coherence
tend to estimate the rendering cost for different portions of
the screen and then divide up these portions evenly. The
mesh-based adaptive hierarchy decomposition (MAHD)
[27] does this for surface-based rendering by dividing the
screen into tiles and then computing a weighted sum of the
primitives that project to that tile. However, these rendering
primitives are not applicable in volume rendering.

With the worker farm paradigm [28] a master process
issues work items, in this case a block of pixels, to distributed
worker processes. After a time-out period has expired, all
workers inform the master how much time they need to
process the current item. Workers that are idle or expect
completion soon are assigned new items in order to keep a
good load balance. A similar sort-first approach originates
from parallel polygon scan conversion [29] and shared-
memory parallel rendering [30]. A processor that runs out of
tasks searches for the processor with the highest load among
the others and splits the work in half or steals entire tasks
from the queue to redistribute the load evenly. Although
these methods are generic and are not restricted to polygon
rendering they need to communicate during frame proces-
sing because of task redistribution, which disturbs efficient
rendering, especially in modern graphics environments that
are highly sensitive to stalls in the rendering pipeline.

The cost of computing a pixel’s color is directly related
to the number of participating fragments along the view
ray. Calculating the number of intersections of the ray
with the cell faces of the grid [31] is close to our approach,
but we also account for the length of a ray segment within
each brick, which allows a more accurate estimate of the
costs. The load balancing scheme for sort-first volume
rendering we published previously [1] computes the cost
of rendering each pixel (or small group of pixels) on the

1166 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 8, AUGUST 2011

GPU by taking the associated view ray and adding up
the lengths of all of its intersections with the portions of
the data set. In Section 4.3, we improve our method with a
staged communication pattern to reduce the overhead of
load balancing computation.

3 PARTIONING STRATEGIES FOR PARALLEL

RENDERING

There are two main reasons for using multiple processing
units to render volumetric data. The first is that the amount
of processing required might take too long to achieve
interactive frame rates, and the second is that the data itself
might be too large to fit into the local memory of a single
unit. How well a parallel workload distribution addresses
the former issue can be called its “performance scaling” and
how well it addresses the latter issue can be called its “data
scaling.” Often, it is difficult to balance both of these goals
reliably for all viewing conditions.

In Fig. 1, a generic parallel rendering pipeline is
illustrated, as well as the paths that several algorithms
take. The red and blue paths through the pipeline
correspond to the sort-first and sort-last algorithms,
respectively. There are then three possible points to loop
back to in each frame. The dotted line shows the path taken
by the sort-last algorithm when static load balancing is used
and by the sort-first algorithm without data scaling. When
the data fit into the RAM of a single processing unit, both
the sort-last algorithm with dynamic load balancing and the
sort-first algorithm with data scaling take the path with the
solid line. When the data does not fit into the RAM of a
single processing unit, both algorithms must take the path
shown with the dashed line.

Recently, there has been a focus on sort-last distributions
due to their good data scaling. With a simple static
distribution such an approach provides nearly ideal data
scaling and reasonable performance scaling when the data
set is viewed globally. However, as illustrated in Fig. 2, once
the user starts to zoom in to look at smaller features of the
data set (an increasingly common behavior with larger data
sets), such a data distribution is no longer sufficient.
Overpartitioning the data can reduce this problem but at
the cost of increased compositing and reduced data
scalability. Dynamic load balancing on the other hand
requires data to be redistributed as the viewpoint changes.

A sort-first distribution does not need to alpha composite
intermediate images, and thus can provide better perfor-
mance scaling in certain scenarios. The main drawback to
sort-first approaches is the difficulty of achieving data
scalability. As illustrated in Fig. 3, for different viewing
conditions each node may require completely different

parts of the data to render their respective portions of the
image-space. An important advantage of the sort-first
rendering is the ability to adapt a number of algorithms
that are not efficient (or sometimes even feasible) with a
sort-last approach. Algorithms that require information
from a previously rendered sample on a ray may require
too much synchronization when the rays are split up among
different rendering nodes. Sort-first rendering can keep one
set of rays local to each machine and thus allow for such
algorithms to be utilized efficiently.

4 DATA-SCALABLE SORT FIRST VOLUME

RENDERING

There are several issues that must be addressed in order to
make sort-first rendering viable for data-scalable volume
rendering. These include efficiently rendering and loading
portions of a subdivided data set, caching portions of the
data set in an intelligent manner, and providing a
consistently good level of load balancing.

4.1 Bricking

The data set is divided into a uniform grid of evenly sized
bricks based on a user-defined parameter for the size of the
bricks. A bit mask corresponding to the scalar values that

MOLONEY ET AL.: SORT-FIRST PARALLEL VOLUME RENDERING 1167

Fig. 1. A generic overview of the parallel DVR pipeline.

Fig. 2. An example of a sort-last (object-space) distribution scheme with
four nodes. (a) Global view of the data set with each node using a
different color when rendering the bounding box of their respective
portions of the object-space. (b) Zoomed view which illustrates the
problem of load balancing with a static object-space distribution (only the
green and red nodes are doing work).

Fig. 3. An example of an image-space distribution scheme with four
nodes. Each node colors their image-space bounding rectangles and the
bounding box of the volume with a different color. For the two viewpoints
used to make the images, the data that each node needs to render are
completely different.

occur within each brick is computed so that transparent
ones can be culled quickly. Data scalability is achieved by
having each rendering node load only the bricks intersected
by its view frustum, as illustrated by a 2D example in Fig. 4.

When choosing a brick size, we must balance the benefits
of having a finer granularity in object-space and the
increased overheads from having a larger number of bricks.
A finer granularity reduces data replication between
rendering nodes along shared planes of the nodes’ view
frustums. This replication is illustrated in Fig. 4. However,
there is a texture size overhead for each brick since adjacent
bricks must share one data value at every point on their
border so that the trilinear interpolation is consistent across
bricks. When using a preintegrated transfer function [32],
two data values must be replicated so that one can access
the values for the backsides of the slabs at the boundary.
When bricks are culled based on the transfer function,
having a finer granularity can allow us to perform a more
accurate culling, thus reducing the rendering workload and
the amount of data that must be loaded. A hierarchy of
brick sizes has often been used to help balance these factors
but, in turn, has its own associated overheads.

A significant per brick performance overhead (when
using slice-based rendering) is the increased number of
vertices that must be generated on the CPU, and sent to the
GPU, for the proxy geometry of each brick. To tackle this
issue a slice templating technique [1] is used to generate a
single set of slices that can be used to render every brick of
the same size. This reduces the amount of computation on
the CPU as well as the amount of data that must be
transferred to, and stored on, the GPU.

4.2 Caching

The amount of bricks that need to be loaded on any given
frame depends on the size of the frustum relative to the
bricks, the level of frame-to-frame coherence, the viewing
conditions, and the method of caching bricks. Since the size
of the frustums decreases as processing units are added, the
number of bricks that need to be loaded also decreases (as
long as the frustums are larger than a couple of bricks).
Frame-to-frame coherence is usually a fairly safe assump-
tion in interactive volume rendering, with the exception
being time-varying data, which has to be loaded on every
frame anyway. When the camera is rotating around the

volume from a distance, the amount of data loading is much
higher than when the camera is zooming in or panning.

Two caching schemes are investigated in this paper. The
simplest method of caching bricks is to load them as they
intersect the frustum and, once memory runs out, start
swapping bricks out in LRU order. The LRU method is
simple to implement but cannot take advantage of
asynchronous loading and it typically suffers from sudden
spikes in the amount of loading that must be done in a
frame. If there is good frame-to-frame coherence, then the
bricks that will be needed in upcoming frames can be
predicted and loaded ahead of time. One way of doing this
is to cache bricks that are in close proximity to the frustum
but not yet intersecting. The proximity caching method
approximates the frustum with a cone and records the
distance from the center of each brick to the surface of the
cone. The bricks that are farthest away from the frustum can
then be swapped out of memory and the bricks that are
closest can be precached. A user-specified limit on how
many bricks can be precached in a frame prevents spikes in
loading. A more advanced prediction technique may favor
bricks on a certain side of the frustum based on a prediction
of the camera movement.

While some general-purpose GPU programming APIs
allow simultaneous data transfer and kernel execution on
the GPU, OpenGL currently lacks this capability. With
OpenGL transfers to the GPU can only be asynchronous on
the CPU side. Even without this capability there is still a
benefit to predictive caching to the GPU. Performance can
be stabilized by spreading the loading costs across multiple
frames instead of having large spikes in the amount of data
that needs to be loaded in a single frame.

Since each processing unit in our cluster has as much
system memory as the entire cluster’s combined GPU
memory, we only have a single layer of caching between the
two. Since the data set is replicated in each nodes system
memory there is no cache synchronization between nodes.
This is not a limitation of our sort-first approach but rather a
limitation of our implementation. If we were to scale our
cluster further, and render very large data sets, we would
either need more system memory or a second layer of
caching. The second caching layer would swap data in from
network or storage devices to system memory. The
bandwidth over gigabit ethernet is significantly less than
the bandwidth to the GPU but-high speed networks can
provide more bandwidth than OpenGL texture uploads.
The amount of system memory available for caching is also
much larger and the loading could be asynchronous to the
rest of the rendering process. Out-of-core rendering algo-
rithms employ similar predictive caching methods between
storage devices and system memory like we do between
system memory and GPU memory. Varadhan and Manocha
[33] implemented priority-based prefetching of large geo-
metric data from disk with respect to level-of-detail.
Precaching data from disk storage by taking advantage of
frame-to-frame coherence was presented by Corrêa et al.
[34] in a visibility-based approach.

In a future implementation, both layers of caching could
be combined with the goal to take maximum advantage of
asynchronous loading rather than just reducing spikes in
the amount loaded per frame. Provided that there is

1168 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 8, AUGUST 2011

Fig. 4. A 2D illustration of how bricking allows data scalability albeit with
a memory overhead. The red hatched bricks are loaded into textures by
the node with the left-view frustum, the solid blue bricks are loaded by
the node with the right-view frustum, and the solid yellow bricks must be
loaded by both. As the viewpoint changes ((a) versus (b) image) the
bricks required by each node can change.

adequate bandwidth, the asynchronous loading would
incur no additional overhead.

4.3 Consistent Load Balancing

In order to achieve data-scalable sort-first rendering, a
predictable load balancing method is required. The most
commonly used load balancing method uses a simple
heuristic where processing units that were slower in the
previous frames are given less screen space and faster units
are given more. While this is simple to implement and can
give acceptable load balancing in some situations, it does
not give predictable or consistent results.

We utilize our previously published load balancing
method that strictly uses data from the current frame to
compute the cost of each pixel (or block of pixels) [1]. A
summed area table (SAT) of the pixel costs can then be used
to divide the screen into regions of equal cost which are
assigned to the processing units. In Section 6.2, we show
that this cost-based technique provides a more consistent
load balancing than the heuristic method, even when frame-
to-frame coherence is good. As the frame-to-frame coher-
ence decreases, the cost-based method outperforms the
heuristic method by an increasing margin.

The trade-off for the cost-based load balancing technique
is an increased computational overhead needed for the
evaluation of the cost estimate. One way to decrease this
overhead is to have each processing unit compute the pixel
cost and SAT for a portion of the screen. In our original
work, the entire SAT is then gathered at a single processing
unit which computes the screen space distribution. Much
less of SAT actually needs to be gathered if the commu-
nication is done in stages. The number of stages of
communication corresponds to the number of levels in the
hierarchy used to divide the screen space. A two-level mesh
hierarchy is proposed to divide the screen, which allows us
to communicate just a couple of rows and columns of the
SAT in two stages. This communication pattern is illu-
strated in Fig. 5 by an example.

While a one-level hierarchy (horizontal or vertical strips)
would be the most efficient for parallelizing the load
balancing computations, we want to use the same screen
decomposition to distribute both the rendering and the load
balancing so that the load balancing computations are well

distributed. A one-level hierarchy would cause significantly
more data loading for our data-scalable sort-first distribu-
tion since the amount of loading increases with the surface
area of the sides of the processing unit’s frustums (which is
determined by the length of the viewport’s perimeter). A
two-level hierarchy (a two-dimensional ragged array) is
chosen since it reduces the communication requirements of
the load balancing algorithm while keeping the surface area
of the sides of the view frustums small.

5 RAY COHERENT ALGORITHMS

One of the main reasons for exploring sort-first approaches
to data-scalable parallel volume rendering is due to their
compatibility with many volume rendering algorithms. In
this section, we focus on existing single-GPU algorithms
that benefit from ray coherence when adapted to a parallel
environment. All of the algorithms benefit from keeping the
information and processing along each ray local to a single
processing unit.

The first algorithm, discussed in Section 5.1, takes
advantage of the locality of all the information along a
viewing ray in order to perform visibility culling. In
contrast, each processing unit in a sort-last distribution
can only cull data from its local portion of the data set. This
can be very inefficient: imagine the case where some units’
portions of the object-space are completely occluded by
data on the other units. The second algorithm, discussed in
Section 5.2, is an image-space shadowing algorithm that
alternates between rendering from the light’s and camera’s
point of view. To parallelize this algorithm, we must do a
sort-first decomposition from the light’s point of view, so
that all the information along the shadow rays is available
locally. Last, in Section 5.3, we discuss other algorithms that
could benefit from ray coherence when being adapted to a
parallel environment.

5.1 Visibility Culling

It has long been observed that many of the fragments
processed when rendering a volume do not contribute
anything to the final image (see [35]). Typically, these
fragments are separated into two groups: fragments that
have zero opacity (empty fragments) and fragments that are
occluded by one or more fragments which have a total
opacity of one (occluded fragments). Skipping empty
fragments is easily supported by culling empty bricks, which
is possible in sort-first and sort-last volume rendering alike.

However, early ray termination of occluded volume
elements introduces view dependency and, therefore, is not
effective for sort-last volume rendering. We propose two
methods of avoiding processing of occluded parts of the
data in sort-first rendering. The first is a direct adaptation of
an existing single-GPU approach [6], [7], [8] which uses the
early depth culling ability of GPUs to speed up the
processing of occluded fragments. The culled fragments
still have some, though greatly reduced, processing cost and
per brick overheads cannot be avoided. The second method
uses the occlusion query feature on GPUs to test if entire
bricks are completely occluded. Loading and rendering of
the occluded bricks can then be avoided for that frame.

MOLONEY ET AL.: SORT-FIRST PARALLEL VOLUME RENDERING 1169

Fig. 5. An illustration of the communication pattern for computing the
load balancing in parallel with five processing units. The distribution of
the screen space among processing units is illustrated by the numbered
regions with black outlines. (a) Shows how only the right most column of
each node’s SAT (corresponding to the columns of pixels highlighted
with a red dotted lines) needs to be communicated in the first stage so
that the new horizontal split lines (solid blue lines) can be found.
(b) Shows the rows of SAT information (highlighted with red dotted lines)
needed in the second stage to find the new vertical split lines (solid blue
lines). (c) Shows how the new split lines provide the image decomposi-
tion for the next frame.

The early depth culling feature on GPUs uses the depth
buffer to mask regions of the screen for which the fragment
shader should not be executed. While originally designed to
speed up rendering of occluded surfaces, it has also been
used to speed up the rendering of occluded volume data [6],
[7]. Periodically doing an extra pass to update the depth
buffer incurs an overhead proportional to the number of
updates (and to a lesser degree, the number of pixels
updated). An extreme case of frequent updates is from
Ruijters and Vilanova who update once for every brick in a
subdivided data set [8] by rendering the front faces of each
brick’s bounding box into the depth buffer before rendering
the volume inside that brick.

Since many bricks do not overlap at all in image-space,
we have found that it is beneficial to update the depth
buffer less frequently. Therefore, we render a chunk of
bricks at a time, and update the depth buffer in between
each chunk. Since we cannot capture any occlusion
happening between bricks in the same chunk, we would
like the bricks in a chunk to be spread out over the image-
space rather than overlapping. We can achieve this by
generating our front to back order slab by slab, where we
choose the set of slabs perpendicular to the axis most
aligned with the view direction. The ideal size for the
chunks depends on the data set and brick size, hence it
must be chosen accordingly.

While reducing the number of update passes is going to
have the biggest effect on performance, we also aim at
minimizing the cost associated with each update pass. To do
this, we do not change the render target (as is required in
multipass ray casting [6], [7]) but instead just disable color
output for the update pass. The number of pixels processed in
the update pass is reduced by keeping track of an approx-
imate image-space bounding box for each chunk of bricks.

In conjunction with early depth culling to kill occluded
fragments, we use the occlusion query feature on GPUs to
cull full bricks which are completely occluded. Occlusion
queries allow a program to know how many fragments
were actually rendered (passed the depth test) for a group
of primitives. Thus, if we were to render the bounding box
of a brick and we get a fragment count of zero, then we
know that the brick can be skipped entirely. This results in a
small additional increase in rendering performance but it
also allows bricks to not be loaded.

5.2 Volumetric Shadowing

Shadowing effects can provide an additional depth cue to a
user exploring a volumetric data set. In the past, this was
done by creating a corresponding shadow volume which
describes the amount of light arriving at any point in the
data [36]. Computing such a shadow volume is expensive
and must be done every time that the light position or
transfer function changes. The ability to interactively
change the light position and transfer function is key to
efficient volume exploration. Also, shadow volume ap-
proaches can suffer from attenuation leakage due to
insufficient resolution and increased memory requirements.

A recent image-space approach to volume shadowing
avoids these problems [4], [5]. Instead of rendering
the slices so that they are aligned with the camera, they
are aligned with the half angle between the camera and the

light. This allows the same slice to be rendered from both
the camera’s and light’s point of view. We can then render
the volume slice by slice, with each slice being rendered
first from the camera’s point of view, and then from the
light’s. When the next slice is rendered from the camera’s
point of view, the previous result from the light’s point of
view is mapped as a texture. The opacity of this texture then
tells us how much light has been attenuated thus far. This
approach allows for interactive updates of the light and
transfer function, requires far less memory, and avoids
issues with attenuation leakage. By combining this image-
space shadowing algorithm with a hybrid partitioning
scheme, we are able to perform interactive shadowed
volume rendering on data sets which are too large to fit
on a single GPU.

5.2.1 Hybrid Partitioning

In the same way that we exploited the coherence of viewing
rays for performing visibility culling, we can use a sort-first
distribution of the light’s image-space in order to make the
light rays coherent on each processing unit. The screen
space for the light map is divided into regions and the
corresponding frustums of each unit are intersected against
the bricks. The bricks that intersect the light frustum must
also be rendered from the camera’s point of view.
Obviously, when the camera’s view is not perfectly aligned
with the light’s, the intermediate images produced by each
node will overlap. Therefore, as in sort-last partitioning, we
require a compositing stage to combine the samples along
the viewing rays and create the final image. A 2D version of
this hybrid partitioning scheme is illustrated in Fig. 6a.

The processing units cannot just render their portions of
the data brick by brick as we have done for standard volume
rendering. For many viewing conditions, there is no
ordering of the bricks that will give correct compositing
results for both the light and the camera. While this could
potentially be overcome by rendering sets of bricks into
different buffers and then combining the results, this would
add significant complexity and computational overhead.
Instead, we process the data slice by slice by consecutively
rendering the pieces of each slice from each of the bricks it
intersects. This incurs a significant overhead since it requires

1170 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 8, AUGUST 2011

Fig. 6. (a) A 2D illustration of the hybrid partitioning. The light frustum is
divided into two pieces and the solid blue bricks are rendered by the unit
with the left frustum while the red hatched bricks are rendered by the unit
with the right frustum. The bricks that are solid yellow must be clipped
against the shared plane of the two frustums and each unit renders their
respective portions. (b) Shows how the staircasing effect that occurs if
the bricks are not clipped can create cycles in the compositing order. A
viewing ray (shown with the dashed black line) passes from one unit’s
set of bricks to the other’s and back again.

us to change some of the rendering state, such as the current
texture, for every piece of every slice. Due to this additional
overhead, the ideal brick size is much larger for shadowed
rendering compared to standard volume rendering.

Bricks shared by neighboring processing units require
special attention. It is usually not possible to just assign
whole bricks to one node or the other and have a valid
compositing order. Although the bricks themselves are
convex, the set of bricks that are intersecting a unit’s
frustum are likely to have concavities due to staircasing. As
shown in Fig. 6b, this creates cycles in the compositing
order whenever viewing rays cross from one unit’s set of
bricks into another’s and then back into the first unit’s set
again. Therefore, we clip the bricks with the frustum planes
to create convex pieces, and have each unit render their
respective portions of the shared bricks. The clipping can be
seen in Fig. 7, which shows the results from a shadowed
rendering with two processing units.

5.2.2 Direct Send Compositing

The compositing stage uses direct send compositing, due to
its simplicity and efficiency when handling nonpower of
two numbers of nodes. Binary swap compositing requires
some processing units to remain idle for the first composit-
ing stage if the number of units is not a power of two. For
our method of distributing the screen space (as described in
Section 4.3), both the number of rows and the number of
columns in the screen space distribution would have to be
powers of two in order to have no idle units during binary
swap compositing. This is because, in order to avoid cycles
in the compositing order, we must composite the images
from the units that belong to the same row in the image-
space distribution before we can composite the results from
the different rows.

5.3 Other Potential Algorithms

Most algorithms which process the data along a set of rays are
going to benefit from ray coherence when adapted to a sort-
first parallel distribution. Even standard emission absorption
volume rendering performance can benefit from ray coher-
ence through reduced communication overheads. In parti-
cular, sort-first parallelization leads to good scalability with

the number of pixels, e.g., for large displays. Algorithms that
benefit from reduced synchronization overheads are the
most interesting. In the case of the shadowed rendering with
half angle slicing, the synchronization required for an object-
space distribution is much greater than what is required by
our approach.

Another potential application of ray coherent paralleliza-
tion is the rendering of spectral effects like inelastic
scattering and selective absorption [37], [38]. These effects
depend of the spectrum of light traveling along the rays,
which changes as the ray steps through the volume.
Therefore, the rays need to be coherent to avoid synchro-
nization problems between processing units.

Other examples are techniques that utilize depth peeling,
such as opacity peeling [39] and feature peeling [40], for
visualizing nested structures within the volume data. These
techniques split the volume into layers based on some
criteria which is evaluated as the rays pass through the
volume. Both approaches require information along the ray
to be available locally if adapted to a parallel environment.

Using an image-based metric for level-of-detail techni-
ques [41] results in higher quality images than those acquired
with a level-of-detail algorithm using an object-based metric.
The reason that image-based metrics are superior, is that they
can take the visibility of a brick into consideration when
choosing its level-of-detail. The downside is that the image-
based metric must be periodically recomputed as the
viewpoint changes, which can be an expensive task. In a
parallel environment, a ray coherent workload distribution
would allow each processing unit to compute the image-
space metric for the bricks they are rendering without any
additional communication or synchronization.

6 IMPLEMENTATION AND RESULTS

This section provides a detailed performance analysis of each
stage of our sort-first approach to data-scalable parallel
volume rendering. We first look at the isolated results of each
of the algorithms and techniques that we use, and then we
put it all together and show the overall performance on a
large real-world data set. Our results show that proximity
caching, cost-based load balancing, and visibility culling
allow data-scalable sort-first distributions to provide better

MOLONEY ET AL.: SORT-FIRST PARALLEL VOLUME RENDERING 1171

Fig. 7. An example of shadowed volume rendering on two processing units. The left and center images show the intermediate images created by
each of the processing units. The right image shows the final composited result with the brick outlines drawn in different colors by each processing
unit to show the data distribution.

performance than sort-last distributions in many scenarios.
The results for our visibility culling techniques show
improved performance compared to previously published
approaches and better efficiency when combined with a sort-
first rather than sort-last distribution. Our shadow rendering
algorithm is shown to allow for real-time rendering of data
sets that are larger than the memory available to a single
GPU. The overall performance results from rendering with
various data sets, image resolutions, and transfer functions
show that there are still plenty of performance gains possible
if more processing units were utilized.

We focus on the results for multiple nodes here and
refer to the Appendix, provided as supplemental material,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TVCG.2010.116, for details on single node performance.
Appendix A.1 gives details about the hardware and
software used in our parallel rendering environment. Our
implementation is based on C++, OpenGL, and GLSL (for
GPU programs). The environment of the performance
measurements for this paper consists of 32 workstations
with 2.3 GHz quad-core AMD Opteron Processors
(Shanghai architecture) and Nvidia GTX 285 GPUs
connected over a PCI-E bus. In Appendix A.2, we discuss
the transfer functions and the data sets used in our
experiments. Most experiments use the visible male data
set (2;048� 1;024� 1;878) or a double size version
(2;048� 2;048� 1;878) with two copies mirrored back to
back as shown in Fig. 8.

6.1 Rendering and Caching Bricks

We first consider the baseline performance of a single node
for rendering a data set that has been divided into a number of
different brick sizes. We minimize the overhead of generating
slices for rendering bricks by using slice templating [1]. In
Appendix A.3, we show that for a relatively small 5123 data
set the minimum brick size to be around 703 to 803 in order to

avoid large performance overheads. In Appendix A.4, we
show that culling empty bricks almost doubles the rendering
performance for the transfer functions used to test the visible
male data set. For this larger data set, we get optimal
performance with a brick size between 1153 and 1253.

The bricks also have to be uploaded to and cached on the
GPU in an efficient manner. In Appendix A.5, we look at the
bandwidth achieved with different texture formats and brick
sizes. Since the bandwidth is relatively constant for the range
of brick sizes that give acceptable rendering performance,
this has little effect on our choice of brick size. With a brick
size of 1253 and single component textures the bandwidth is
just under one gigabyte per second.

Provided that we have frame-to-frame coherence, the
average number of bricks loaded on a frame will be quite
low. However, the number of bricks being loaded on any
single frame can be quite high. This is because the loading
occurs in spurts where many bricks are loaded on one
frame and then none are loaded on the next several frames.
This is undesirable when trying to interactively explore a
data set because of the sudden slowdown when a spurt of
loading occurs. To combat this, we load some of the bricks
in close proximity to the frustum on frames where the
loading requirements are small. This will result in more
bricks being loaded in total but in a more consistent fashion.

We compare the proximity caching algorithm to the naive
LRU caching algorithm that just loads bricks as they intersect
the frustum. We render the visible human data set with a
brick size of 1253. This results in 1.6 gigabytes of data after
culling empty bricks. We set the maximum amount of texture
memory to be used as a buffer by each render node to be
850 MB. For these tests, we use a recorded animation of a user
exploring a data set. The animation includes rotation,
panning, and zooming motions. We look at how many
frames in the animation need to load more bricks than the
threshold value. The results are compiled into Table 1.

The threshold value is the limit on the number of bricks
being preloaded in the proximity caching algorithm. The
results from using 9 and 16 render units are shown. We take
the average number of frames above the threshold among
all the render units. We can see that even with a preloading
threshold as low as four bricks per frame the number of
frames where a spurt of loading occurs is cut in half
compared to LRU. With a threshold of 8 to 10 bricks per
frame the loading spurts are almost eliminated. Finally, we
can see that when we increase the number of rendering

1172 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 8, AUGUST 2011

Fig. 8. The mirrored version of the visible male data set
(2;048� 2;048� 1;878) using a high-opacity transfer function.

TABLE 1
Comparison of LRU and Proximity Caching Showing the
Percentage of Frames of an Animation Where the Cache

Misses Exceed the Threshold for the Maximum Number of
Bricks to Preload with the Proximity Caching Algorithm

nodes the data loading requirements decrease in tandem
with the size of each render unit’s frustum.

6.2 Load Balancing

In order to quantify how well the load balancing works, we
take the difference between the render times of the fastest
and slowest processing unit for each frame and average this
over all frames. Using this metric, we compare the cost-based
load balancing method to the heuristic performance-based
method (that uses the rendering times from the previous
frame) to see which one gives better and more consistent
results. We render the visible human data set with 16 render
nodes and a 2 megapixel image. We show the results for three
different levels of frame-to-frame coherence in Table 2. The
results are the average deviation in render time among
processing units listed in milliseconds (lower is better). We
also show the standard deviation to illustrate the consistency
of the load balancing methods. To get different levels of
frame-to-frame coherence, we take a prerecorded animation
with good coherence and then skip some number of frames.
With good frame-to-frame coherence, the performance-
based load balancing gives slightly better results since it
also balances the per brick overheads. However, with even a
moderate decrease in frame-to-frame coherence, the cost-
based load balancing gives much better and more consistent
results. Using the communication scheme discussed in
Section 4.3, we find that our cost-based load balancing has
just a few milliseconds of overhead regardless of the image
resolution or the number of render nodes.

6.3 Visibility Culling

In order to determine the ideal update frequency for the
depth buffer, we must compare the amount of overhead
incurred by each update to the additional culling achieved.
As shown in Appendix A.6, the overhead grows rapidly
with the number times the depth buffer is updated, but the
performance is more than doubled, compared to rendering
without visibility culling, with as little as six updates to
the depth buffer. With 28 updates to the depth buffer, we
lose less than one percent off the peak performance while
incurring less than 2.5 milliseconds of overhead when no
occlusion occurs. We also find that occlusion queries incur
less than 0.5 milliseconds of additional overhead and can
provide an eight percent increase in performance. The
performance increase from the occlusion queries is small
compared to the fragment culling, however, it would be
possible to avoid loading bricks that are completely culled
and the visibility information gained from the queries could
be used for things like level-of-detail selection.

6.4 Sort-First versus Sort-Last

Doing a direct comparison of sort-first and sort-last
distributions is difficult since many parameters influence
rendering performance. We chose a static sort-last distribu-
tion and view the data set globally from a slight distance.
We also disable empty brick culling to minimize the load
imbalance in order to create fair conditions. Even though it
does not account for occlusion, we use the pixel-cost-based
load balancing for the sort-first experiments since it
provides better data scalability. The brick size is set to
1253 and the slice spacing is half the sample spacing.

Our alpha compositing algorithm does not use any
compression but we do limit image transfers to the image-
space bounding box of the data set. For the axial rotations
used in our tests, this provides an effective culling of empty
pixels. We also undersample the data in the image-space by
using a 3 megapixel image size, which reduces the composit-
ing cost for sort-last. The rotation animation also causes
significant data loading for sort-first. We show the perfor-
mance scaling for both distributions using the visible male
and the larger mirrored visible male data sets in Figs. 9 and
10, respectively. The memory overhead inherent to the sort-
first distribution (shown previously in Fig. 4) causes a larger
number of nodes to be required for rendering each data set.

While we do not cull empty bricks we do use visibility
culling. We use two different transfer functions in the
experiments, one has a relatively high opacity and thus
produces isosurface-like images while the other has a
relatively low opacity and produces more cloud-like

MOLONEY ET AL.: SORT-FIRST PARALLEL VOLUME RENDERING 1173

TABLE 2
Comparison of the Cost-Based and Performance-Based Load
Balancing Algorithms with Different Levels of Frame-to-Frame

Coherence (Render Times in Milliseconds)

Fig. 9. The performance scaling for sort-first and sort-last distributions
using the visible male data set (2;048� 1;024� 1;878). Results for both a
high and low-opacity transfer functions are shown to illustrate the effect
of visibility culling. For sort-first, a minimum of 16 nodes is necessary to
meet memory requirements.

Fig. 10. The performance scaling for sort-first and sort-last distributions
using the mirrored visible male data set (2;048� 2;048� 1;878). Results
for both a high and low-opacity transfer functions are shown to illustrate
the effect of visibility culling. For sort-first, a minimum of 28 nodes is
necessary to meet memory requirements.

images. We expect the sort-first approach to achieve a
similar speedup from visibility culling regardless of the
number of render nodes. It is clear that this is true for both
the small and large data sets. With sort-last, the speedup
clearly diminishes for the larger data set as the number of
nodes increases. However, for the smaller data set, the
speedup is already almost gone for as little as eight nodes.
With the high-opacity transfer function, sort-first is con-
sistently faster than sort-last and even with the low-opacity
transfer function it is always at least as fast. It is important
to note that the compositing cost increases with the data
size due to the larger screen foot print.

Fig. 11 shows an estimate of how network bandwidth
would effect the performance of the sort-first and sort-last
distributions. We render the mirrored visible human data
set with a 4 megapixel image size and 32 render nodes. We
then scale the network transmission portions of the total
time by the expected bandwidth. The positions of the data
points along the x-axis correspond to gigabit ethernet and
both single and dual data rate Infiniband. With gigabit
ethernet, the sort-first still gives interactive frame rates
while sort-last does not. With single data rate Infiniband
sort-first matches or beats the performance of sort-last
depending on the transfer function. With dual data rate
Infiniband sort-first is slightly worse or slightly better than
sort-last depending on the transfer function.

6.5 Volumetric Shadowing

The shadowed rendering algorithm must render the data
one slice at a time rather than one brick at a time. This means
that each slice must be rendered as a collection of smaller
pieces from all the bricks that the slice intersects. For each
piece of each slice, we are required to change some of the
rendering states such as the texture that is bound and the
transformation matrix. This incurs a much greater per brick
overhead which we discuss in Appendix A.7. With different
data sets and transfer functions, it is possible to see a net
increase in performance from culling empty bricks, but the
gain is likely to be small for all but the most extreme
circumstances.

We also need to avoid rendering the parts of the data that
are outside the light’s frustum when we render from the
camera’s point of view. We use the clip planes built into
OpenGL so that the processing cost for the culled fragments
is reduced. Slice templates cannot be used since they also
utilize the clip planes, but the vertex generation costs are

already reduced due to the larger brick size and distance
between slices.

We look at how well the performance scales when we use
multiple processing units to render the visible human data
set. In Fig. 12, we show the scaling results for a brick size of
2303 and a 1 megapixel image size. We show three curves: the
average node render time, the maximum node render time,
and the total render time. While the average node render time
continues to scale as we add render nodes, the maximum
node render time and the total render time peak with just 16
render nodes. This is because we do not have an appropriate
load balancing algorithm that will account for the increased
per brick overheads. While the performance-based load
balancing would automatically account for this, it does not
provide reliable enough data scaling. A modification to our
cost-based load balancing which also considers the number
of bricks being rendered by each node should provide better
scaling results. A better network interconnect would also
help by reducing the alpha compositing overhead.

6.6 Overall Performance

The previous parts of this section mostly document and
compare the isolated impact of different rendering techni-
ques. Now we look at the overall performance and
scalability of our sort-first approach. In Fig. 13, we show
the full scaling results for rendering a reduced portion of
the visible male data set with 1 to 28 nodes. To keep the
final gather time small, we render to a 1 megapixel
viewport. In order to provide a sufficient workload, we
do not cull invisible bricks and we set the slice spacing to be
one eighth of the sample spacing. We compare the scaling
results with and without the final gather time and with both

1174 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 8, AUGUST 2011

Fig. 11. Projected performance for rendering the mirrored visible male
data set (2;048� 2;048� 1;878) with a 4 megapixel resolution and
different network interconnect bandwidths.

Fig. 12. The performance scaling of shadowed rendering with the visible
male data set (2;048� 1;024� 1;878). A minimum of 12 nodes is
necessary to meet memory requirements.

Fig. 13. The scaling results for a reduced portion of the visible male data
set (2;048� 1;024� 400) with and without the final gather time included.
The results for the low and high-opacity transfer functions are on the left
and right, respectively.

the low and high-opacity transfer functions. It is clear that
the final gather time is hampering the performance scaling
despite the relatively low-image resolution. Saturation
effects [24] are also coming into play with the high-opacity
transfer function due to the reduced rendering workload. In
Fig. 14, we look at the effect of the final gather time for a
larger data set and image resolution. We render the full
visible male data set with a 3 megapixel image resolution
using 16 to 32 nodes. We do not cull empty bricks and we
set the slice spacing to be half the sample spacing. The
results without the final gather time show the upper bound
for the scalability of our approach with the given data set
and rendering parameters. With image compression or a
higher speed network, the scaling performance of our
algorithm would approach this upper bound.

Finally, we explore the total performance of our sort-first
rendering system using all 32 nodes and different data set
sizes, image resolutions, and transfer functions. We use the
full visible male data set as well as the mirrored version of this
data set. We use the same high and low-opacity transfer
functions as in Section 6.4. The transfer functions are
designed so that the same number of empty bricks are culled
for both the high and low-opacity versions. The camera is
placed at a distance that tries to maximize the size of the data
on the screen while keeping the frustum culling to a
minimum. The animation rotates the camera around the data
set at a constant rate which causes significant data loading.

We render into 3 megapixel (1;7722) and 4 megapixel
(2;0482) images with the slice distance set to be half the
largest grid distance. We cull occluded fragments with the
depth test using about 28 updates to the depth buffer for
each frame. Fully occluded bricks are culled using occlusion
queries. We use our pixel-cost-based load balancing
technique for calculating the cost with the resolution set
to one quarter of the image resolution. The pixel cost load
balancing cannot account for occlusion, but it allows us to
consistently render larger data sets than what is possible
with the performance-based load balancing. With the
performance-based load balancing it is not uncommon for
the screen distribution to jump around and require a
processing unit to render more data than it can store in
texture memory. We precache at most 10 and 20 bricks in
each frame for the smaller and larger data sets, respectively.
With the brick size set to 1253 we have just under one
gigabyte per second of bandwidth, resulting in about two
milliseconds of overhead for every brick loaded. This

compares favorably to the cost of alpha compositing in
our parallel environment which is required for sort-last
distributions.

We show a detailed breakdown of the average perfor-
mance for all data sets, transfer functions, and image
resolutions in Fig. 15. We average over all 32 nodes and all
frames of the animation. The visibility culling results in
better render times for the high-occlusion versus low-
occlusion transfer functions. The load balancing time is
consistently just a few milliseconds for both data sets and
image sizes. The data loading time essentially doubles with
the size of the data set but remains smaller than the
rendering time even for these relatively low-image resolu-
tions. The frame buffer readback is essentially inconsequen-
tial on PCI-E and scales linearly with the number of
processing units when doing sort-first. With gigabit ethernet
the total time is dominated by the final gather compositing.
If we were to add more processing units we would expect
the load balancing and final gather times to remain the same
and all the other times to decrease. Therefore, we would
expect to continue to see performance scaling for these data
sets as we add more processing units, especially for higher
image resolutions. The final gather time will eventually
dominate the total time when using gigabit ethernet.

7 CONCLUSION AND FUTURE WORK

The utility of sort-first workload distributions for parallel
volume rendering has been demonstrated. We have shown
that data-scalable sort-first distributions can outperform sort-
last distributions in many scenarios. Our proximity caching
algorithm reduces spikes in loading and could reduce the
loading overhead when asynchronous transfers are possible.
We have improved the parallel computation of a load
balancing algorithm and demonstrated the load balancing
algorithm we use is superior to the alternatives. Most
importantly, we have shown how the locality of the data
and processing along rays afforded by a sort-first distribution
can allow for efficient adaptations of many existing volume
rendering algorithms to a parallel environment.

This includes an improved visibility culling technique
which provides a good speedup when occlusion occurs and
almost no overhead when it does not. We have shown how
visibility queries can provide some modest performance
increase as well as visibility information about bricks which
could potentially be used to reduce loading or select a level-
of-detail. Volumetric shadowing can also be performed in

MOLONEY ET AL.: SORT-FIRST PARALLEL VOLUME RENDERING 1175

Fig. 14. The scaling results for the visible male data set
(2;048� 1;024� 1;878) with and without the final gather time included.
The results for the low and high-opacity transfer functions are on the left
and right, respectively.

Fig. 15. A detailed breakdown of how the processing time is split up
among the different stages of the parallel rendering pipeline. All four
experiments are shown for two different data set sizes.

parallel on data sets that are too large for a single GPU using
our hybrid sort-first and sort-last distribution. We also
describe a number of other algorithms and techniques that
could require or at least benefit from a sort-first distribution.

The proximity-based caching algorithm could be im-
proved by considering the camera movement in the
previous frames and trying to predict where the camera
will move in the next frame. The caching overhead could
also potentially be reduced by waiting to load bricks until
after the occlusion queries are done, so that the loading of
occluded bricks can be skipped. Ideally, the visibility of
bricks could then also be considered when prioritizing
bricks to be cached. Our current implementation is limited
to rendering data sets that are not larger than system
memory. However, we plan as a future work, a second layer
of caching that asynchronously prefetches data from local
storage (as with out-of-core algorithms) or over the network.

The early ray termination techniques that we described
could show even greater benefits when used with more
expensive rendering techniques. This includes out-of-core
rendering, compressed volume rendering, rendering with
higher order interpolants, and much more. Compressed
rendering is an especially attractive pairing since it could
significantly reduce the amount of data that needs to be
loaded for the sort-first approach.

An interesting area for future work is a thorough
comparison between the sort-first distribution and a sort-
last distribution with dynamic load balancing. We suspect
that the sort-last distribution could require less data
redistribution when the camera is zoomed out and rotating
around the data set, while the sort-first distribution could
fair better when the camera is zoomed in. Perhaps this
could even motivate some sort of hybrid approach that
changes based on viewing conditions.

ACKNOWLEDGMENTS

This work was funded in part by the Natural Sciences and
Engineering Research Council (NSERC) of Canada and the
Deutsche Forschungsgemeinschaft (DFG). The authors
would like to thank the following sources for data sets
used in the illustrations and experiments:

. Dr. Christof Rezk-Salama, University of Siegen,
Germany and Dr. Michael Scheuering, Siemens
Medical Solutions, Forchheim, Germany for the fish
data set.

. Brown & Herbranson Imaging, Stanford Radiology,
and The Rosicrucian museum, for the mummy
data set.

. The National Library of Medicine for the visible
human data set.

REFERENCES

[1] B. Moloney, D. Weiskopf, T. Möller, and M. Strengert, “Scalable
Sort-First Parallel Direct Volume Rendering with Dynamic Load
Balancing,” Proc. Eurographics (EG) Symp. Parallel Graphics Visua-
lization (PGV), pp. 45-52, 2007.

[2] T.J. Cullip and U. Neumann, “Accelerating Volume Reconstruc-
tion with 3D Texture Hardware,” Technical Report TR93-027,
Univ. of North Carolina at Chapel Hill, 1993.

[3] B. Cabral, N. Cam, and J. Foran, “Accelerated Volume Rendering
and Tomographic Reconstruction Using Texture Mapping Hard-
ware,” Proc. IEEE Symp. Volume Visualization and Graphics (VolVis),
pp. 91-98, 1994.

[4] J. Kniss, G. Kindlmann, and C. Hansen, “Multi-Dimensional
Transfer Functions for Interactive Volume Rendering,” IEEE
Trans. Visualization and Computer Graphics, vol. 8, no. 3, pp. 270-
285, July 2002.

[5] C. Zhang and R. Crawfis, “Shadows and Soft Shadows with
Participating Media Using Splatting,” IEEE Trans. Visualization and
Computer Graphics, vol. 9, no. 2, pp. 139-149, Apr.-June 2003.

[6] J. Krüger and R. Westermann, “Acceleration Techniques for GPU-
Based Volume Rendering,” Proc. IEEE Visualization (VIS), pp. 287-
292, 2003.

[7] S. Roettger, S. Guthe, D. Weiskopf, T. Ertl, and W. Straßer, “Smart
Hardware-Accelerated Volume Rendering,” Proc. Eurographics
(EG) Symp. Data Visualisation (VisSym), pp. 231-238, 2003.

[8] D. Ruijters and A. Vilanova, “Optimizing GPU Volume Render-
ing,” Winter School of Computer Graphics, vol. 14, pp. 9-16, 2006.

[9] S. Stegmaier, M. Strengert, T. Klein, and T. Ertl, “A Simple and
Flexible Volume Rendering Framework for Graphics-Hardware-
Based Raycasting,” Proc. Eurographics (EG) Workshop Volume
Graphics, pp. 187-195, 2005.

[10] X. Tong, W. Wang, W. Tsang, and Z. Tang, “Efficiently Rendering
Large Volume Data Using Texture Mapping Hardware,” Proc. EG/
IEEE TCVG Symp. Visualization, pp. 121-132, 1999.

[11] C. Müller, M. Strengert, and T. Ertl, “Optimized Volume
Raycasting for Graphics-Hardware-Based Cluster Systems,” Proc.
Eurographics (EG) Symp. Parallel Graphics Visualization (PGV),
pp. 59-66, 2006.

[12] T. Klein, M. Strengert, S. Stegmaier, and T. Ertl, “Exploiting
Frame-to-Frame Coherence for Accelerating High-Quality Volume
Raycasting on Graphics Hardware,” Proc. IEEE Visualization (VIS),
pp. 223-230, 2005.

[13] E.W. Bethel, G. Humphreys, B. Paul, and J.D. Brederson, “Sort-
First, Distributed Memory Parallel Visualization and Rendering,”
Proc. IEEE Symp. Parallel and Large-Data Visualization and Graphics
(PVG), pp. 41-50, 2003.

[14] S. Marchesin, C. Mongenet, and J. Dischler, “Dynamic Load
Balancing for Parallel Volume Rendering,” Proc. Eurographics (EG)
Symp. Parallel Graphics and Visualization (PGV), pp. 43-50, 2006.

[15] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs, “A Sorting
Classification of Parallel Rendering,” IEEE Computer Graphics and
Applications, vol. 14, no. 4, pp. 23-32, July 1994.

[16] T.-Y. Lee, C.S. Raghavendra, and J.N. Nicholas, “Image Composi-
tion Methods for Sort-Last Polygon Rendering on 2D Mesh
Architectures,” Proc. IEEE Symp. Parallel Rendering (PRS ’95),
pp. 55-62, 1995.

[17] K.-L. Ma, J.S. Painter, C.D. Hansen, and M.F. Krogh, “Parallel
Volume Rendering Using Binary-Swap Compositing,” IEEE
Computer Graphics and Applications, vol. 14, no. 4, pp. 59-68, July
1994.

[18] W.M. Hsu, “Segmented Ray Casting for Data Parallel Volume
Rendering,” Proc. Symp. Parallel Rendering (PRS), pp. 7-14, 1993.

[19] S. Eilemann and R. Pajarola, “Direct Send Compositing for Parallel
Sort-Last Rendering,” Proc. Eurographics (EG) Symp. Parallel
Graphics and Visualization (PGV), pp. 29-36, 2007.

[20] A. Stompel, K.-L. Ma, E.B. Lum, J. Ahrens, and J. Patchett, “SLIC:
Scheduled Linear Image Compositing for Parallel Volume
Rendering,” Proc. IEEE Symp. Parallel and Large-Data Visualization
and Graphics (PVG), pp. 33-40, 2003.

[21] K.-L. Ma, “Parallel Volume Ray-Casting for Unstructured-Grid
Data on Distributed-Memory Architectures,” Proc. IEEE Symp.
Parallel Rendering (PRS ’95), pp. 23-30, 1995.

[22] F.R. Abraham, W. Celes, R. Cerqueira, and J.L. Elias, “A Load-
Balancing Strategy for Sort-First Distributed Rendering,” Proc.
Brazilian Symp. Computer Graphics and Image Processing (SIBGRAPI),
pp. 292-299, 2004.

[23] U. Neumann, “Communication Costs for Parallel Volume-
Rendering Algorithms,” IEEE Computer Graphics and Applications,
vol. 14, no. 4, pp. 49-58, July 1994.

[24] S. Eilemann, M. Makhinya, and R. Pajarola, “Equalizer: A Scalable
Parallel Rendering Framework,” IEEE Trans. Visualization and
Computer Graphics, vol. 15, no. 3, pp. 436-452, May-June 2009.

[25] B. Domonkos and B. Csébfalvi, “Interactive Distributed Translu-
cent Volume Rendering,” Proc. Winter School of Computer Graphics
(WSCG ’07), pp. 153-160, 2007.

1176 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 8, AUGUST 2011

[26] R. Samanta, T. Funkhouser, and K. Li, “Parallel Rendering with K-
Way Replication,” Proc. IEEE Symp. Parallel and Large-Data
Visualization and Graphics (PVG ’01), pp. 75-84, 2001.

[27] C. Mueller, “The Sort-First Rendering Architecture for High-
Performance Graphics,” Proc. Symp. Interactive 3D Graphics (SI3D),
pp. 75-84, 1995.

[28] B. Corrie and P. Mackerras, “Parallel Volume Rendering and Data
Coherence,” Proc. Symp. Parallel Rendering (PRS ’93), pp. 23-26,
1993.

[29] S. Whitman, “A Task Adaptive Parallel Graphics Renderer,” Proc.
Symp. Parallel Rendering (PRS ’93), pp. 27-34, 1993.

[30] P. Lacroute, “Real-Time Volume Rendering on Shared Memory
Multiprocessors Using the Shear-Warp Factorization,” Proc. IEEE
Symp. Parallel Rendering (PRS ’95), pp. 15-22, 1995.

[31] J. Challinger, “Scalable Parallel Volume Raycasting for Non-
rectilinear Computational Grids,” Proc. Symp. Parallel Rendering
(PRS ’93), pp. 81-88, 1993.

[32] K. Engel, M. Kraus, and T. Ertl, “High-Quality Pre-Integrated
Volume Rendering Using Hardware-Accelerated Pixel Shading,”
Proc. ACM SIGGRAPH/EG Workshop Graphics Hardware (HWWS),
pp. 9-16, 2001.

[33] G. Varadhan and D. Manocha, “Out-of-Core Rendering of
Massive Geometric Environments,” Proc. IEEE Visualization
(VIS), pp. 69-76, 2002.

[34] W.T. Correa, J.T. Klosowski, and C.T. Silva, “Visibility-Based
Prefetching for Interactive Out-of-Core Rendering,” Proc. IEEE
Symp. Parallel and Large-Data Visualization and Graphics (PVG),
pp. 1-8, 2003.

[35] K. Engel, M. Hadwiger, J.M. Kniss, C.R. Salama, and D. Weiskopf,
Real-Time Volume Graphics. A K Peters, 2006.

[36] U. Behrens and R. Ratering, “Adding Shadows to a Texture-Based
Volume Renderer,” Proc. IEEE Symp. Volume Visualization (VolVis),
pp. 39-46, 1998.

[37] H. Noordmans, H. van der Voort, and A. Smeulders, “Spectral
Volume Rendering,” IEEE Trans. Visualization and Computer
Graphics, vol. 6, no. 3, pp. 196-207, July-Sept. 2000.

[38] M. Strengert, T. Klein, R. Botchen, S. Stegmaier, M. Chen, and T.
Ertl, “Spectral Volume Rendering Using GPU-Based Raycasting,”
The Visual Computer, vol. 22, no. 8, pp. 550-561, 2006.

[39] C. Rezk-Salama and A. Kolb, “Opacity Peeling for Direct Volume
Rendering,” Computer Graphics Forum, vol. 25, no. 3, pp. 597-606,
2006.

[40] M.M. Malik, T. Möller, and M.E. Gröller, “Feature Peeling,” Proc.
Graphics Interface, pp. 273-280, 2007.

[41] C. Wang, A. Garcia, and H.-W. Shen, “Interactive Level-of-Detail
Selection Using Image-Based Quality Metric for Large Volume
Visualization,” IEEE Trans. Visualization and Computer Graphics,
vol. 13, no. 1, pp. 122-134, Jan.-Feb. 2007.

Brendan Moloney received the bachelor’s
degree in computer science from the University
of Arizona in 2005 and the master’s degree in
computer science from Simon Fraser University
in 2008. Since 2010, he has been a senior
research assistant at the Advanced Imaging
Research Center, Oregon Health Sciences
University. His research interests include com-
puter graphics, visualization, parallel processing,
GPU processing, image processing, and MRI

reconstruction.

Marco Ament received the Diplom degree in
computer science from the University of Tübin-
gen, Germany, in 2009. Currently, he is a PhD
student at VISUS Visualization Research Center
at the University of Stuttgart, Germany. His
research interests include interactive direct vo-
lume rendering on distributed systems for visua-
lization, global illumination, and fluid simulations
on GPUs for computer graphics.

Daniel Weiskopf received the Diplom (MSc)
and the PhD degrees in physics from Eberhard-
Karls-Universität Tübingen, Germany, and the
Habilitation degree in computer science from
Universität Stuttgart, Germany. From 2005 to
2007, he was an assistant professor of comput-
ing science at Simon Fraser University, Canada.
Since 2007, he has been a professor of
computer science at the Visualization Research
Center, Universität Stuttgart (VISUS) and at the

Visualization and Interactive Systems Institute (VIS), Universität
Stuttgart. His research interests include scientific visualization, GPU
methods, real-time computer graphics, mixed realities, ubiquitous
visualization, perception-oriented computer graphics, and special and
general relativity. He is a member of the ACM SIGGRAPH, the
Gesellschaft für Informatik, and the IEEE Computer Society.

Torsten Möller received the Vordiplom (BSc) in
mathematical computer science from Humboldt
University of Berlin, Germany, and the PhD
degree in computer and information science
from Ohio State University in 1999. He is an
associate professor at the School of Computing
Science at Simon Fraser University. He is a
senior member of the IEEE and a member of the
ACM, the Eurographics, and the Canadian
Information Processing Society (CIPS). His

research interests include the fields of visualization and computer
graphics, especially the mathematical foundations thereof. He is the
codirector of the Graphics, Usability and Visualization Lab (GrUVi) and
serves on the Board of Advisors for the Centre for Scientific Computing
at Simon Fraser University. He is the appointed vice chair for
Publications of the IEEE Visualization and Graphics Technical Commit-
tee (VGTC). He has served on a number of program committees
(including the Eurographics and the IEEE Visualization conferences)
and has been papers cochair for IEEE Visualization, EuroVis, Graphics
Interface, and the Workshop on Volume Graphics as well as the
Visualization track of the 2007 International Symposium on Visual
Computing. He has also co-organized the 2004 Workshop on
Mathematical Foundations of Scientific Visualization, Computer Gra-
phics, and Massive Data Exploration at the Banff International Research
Station, Canada. He is currently serving on the steering committee of
the Symposium on Volume Graphics. Further, he is an associate editor
for the IEEE Transactions on Visualization and Computer Graphics
(TVCG) as well as the Computer Graphics Forum.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

MOLONEY ET AL.: SORT-FIRST PARALLEL VOLUME RENDERING 1177

