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Abstract—We present a general Fourier-based method which provides

an accurate prediction of the approximation error, when the derivative of

a signal s(t) is continuously reconstructed from uniform point samples or
generalized measurements on s. This formalism applies to a wide class of

convolution-based techniques. It provides a key tool, the frequency error

kernel, for designing computationally efficient reconstruction schemes
which are near optimal in the least-squares sense.

Index Terms—derivatives, reconstruction, sampling, interpolation, ap-
proximation, error analysis, frequency error kernel.

I. INTRODUCTION

Reconstruction of a continuous function and its derivatives from

a set of samples is one of the fundamental operations in signal pro-

cessing, numerical analysis, and many other fields. In visualization,

for instance, the gradient is employed in volume classification and

shading [1]. It has to be evaluated at arbitrary locations and not only

at the discrete points where the underlying signal has been sampled.

Edge detection, segmentation, motion estimation and super-resolution

are other applications where partial derivatives may be required at

subpixel resolution.

A. Motivation

We denote by s(t) ∈ L2(R) a continuously defined function (the

signal) which is prefiltered and sampled at uniform locations to yield

the discrete measurements

u[k] =

∫

R

s(t)ϕ̃
(
k −

t

T

)
d
t

T
∀k ∈ Z, (1)

where T is the sampling step and the analysis function ϕ̃(t) is,

for instance, the impulse response of the acquisition device. This

generalized sampling scenario encompasses the case where ideal

point samples u[k] = s(Tk) are available, simply by letting ϕ̃(t)
be the Dirac distribution δ(t).

The signal s(t) is unknown and the sequence u = (u[k])k∈Z

represents the only available data. We are interested in constructing

from u an estimate of the N -th derivative s(N)(t) of s(t), for some

integer N ≥ 1. We look for a reconstruction in a linear shift-invariant

space VT (ϕ) = Span({ϕ( t
T
− k)}k∈Z) generated by the translates

of a template function ϕ(t) ∈ L2(R):

f(t) =
1

TN

∑

k∈Z

c[k]ϕ(
t

T
− k) ∀t ∈ R, (2)

where the coefficients c[k] are obtained by discrete filtering with the

stable prefilter p ∈ ℓ1:

c[k] = (u ∗ p)[k] ∀k ∈ Z. (3)
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Using this general recipe for reconstruction, we denote by fapp

an estimate of s (with N = 0 in (2)), while an estimate of the

derivative s(N) is denoted by fder. We remark that the reconstruction

method involves a discrete prefiltering step followed by the fit of the

continuous model itself. In practical applications, the prefiltering step

is performed once. Its computation time is negligible in comparison

with the many calls to (2) to evaluate f at the desired locations.

Estimating s(t) itself is the classical problem of interpolation,

for which there is a vast amount of literature; see e.g. the survey

papers [2]–[5] and some recent developments [6]–[8]. Of course, once

an estimate fapp(t) of s(t) has been reconstructed, one can consider

its derivative f
(N)
app (t) as a valid estimate of s(N)(t). But there is

no a priori guarantee that whenever fapp is close to s in the least-

squares sense, then f
(N)
app is close to s(N). Moreover, since efficiency

considerations generally steer the design of the method, one may be

interested in deriving direct estimation schemes of s(N), without the

conceptual intermediary step of evaluating s, which unnecessarily

constrains the conditions on accuracy and smoothness. The aim of

this work is to provide a way to quantify the error between s(N)

and its estimate fder, so that the design of reconstruction schemes

minimizing this error is made easy.

B. Related Work

There is a vast literature on designing so-called digital differen-

tiators, which are digital filters estimating the derivative at the grid

points Tk only, see e.g. [9] and references therein. In [10], point-

wise estimates of the derivative are derived, which are optimal in the

minimax sense. By contrast, we consider the context in which the

derivative is reconstructed continuously in a shift-invariant space, so

that it can be evaluated at every arbitrary location.

Shannon’s theory provides an exact way to recover a bandlimited

signal from its samples, using the sinc interpolator. Similarly, the

“ideal” derivative reconstruction filter was shown in [11] to be the

derivative of the sinc. However, its slow decay and the ringing

artifacts it may introduce, prevent its practical use. Moreover, for non-

bandlimited signals, the sinc-based theory is not valid any more [3],

[12], [13]. That is why practitioners rely on convolutions with more

localized kernels having compact support, like windowed sinc [14],

[15], splines and other piecewise polynomial functions [2], [11]. In

none of these works, there is an analytic comparison of different

filters nor a quantitative analysis of the estimation error.

In [16], the second author and its collaborators developed tools and

derived absolute error bounds for the spatial analysis of both interpo-

lation and derivative filters of arbitrary order. Approximation theory

also provides a general framework, which focuses on the asymptotic

error behavior of the reconstruction method as T → 0 [17], [18].

These qualitative error bounds are generally not sharp enough to

be of direct use to practitioners and accurate ways of predicting the

approximation error are desirable, so that algorithms can be compared

and the parameters ϕ, p, ϕ̃, T can be chosen appropriately. For

this, Blu et al. proposed a remarkable Fourier-based method which

provides an accurate estimate of the approximation error, with a

wide range of applicability [18]. Their approach makes the design of

reconstruction algorithms simple and accurate, and it is at the heart

of recent developments in interpolation theory [6]–[8]. In this paper,

we extend this theory to the setting of derivative reconstruction.

C. Notations and Paper Organization

The Fourier transform of a function f(t) is denoted by f̂(ω) =∫
R
f(t)e−jωtdt. We require ϕ̃ in (1) to have a well-defined bounded

Fourier transform.
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T
χ̃eq(

t
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T
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)

Fig. 1. Flowgraph of the different equivalent procedures for the sampling
process s 7→ u and the derivative reconstruction process u 7→ fder.

The Z-transform of a discrete signal v = (v[k])k∈Z is V (z) =∑
Z
v[k]z−k and its Fourier transform is v̂(ω) = V (ejω).

For any real r > 0, the Sobolev space W r
2 is the set of functions

f such that
∫

R
(1 + ω2)r|f̂(ω)|2dω < ∞. Therefore, the Sobolev

regularity of f is the maximum value of r such that f ∈W r
2 .

Pn is the space of polynomial functions of degree at most n ∈ N.

We define the causal B-spline βn
+(t) of degree n ∈ N by β0

+ = 1l[0,1)

and βn
+ = βn−1

+ ∗β0
+. The centered B-spline of degree n is βn(t) =

βn
+(t+ n+1

2
).

We introduce the dual φd of a function φ ∈ L2(R) by φ̂d(ω) =
φ̂(ω)∗/âφ(ω), where the discrete autocorrelation filter aφ is defined

by aφ[k] =
∫

R
φ(t)φ(t−k)dt and the star is for complex conjugation.

The different functions and filters used throughout the paper are

illustrated by the flowgraph in Fig. 1.

The outline of this paper is as follows. In Sect. II, we introduce the

frequency error kernel, which is the cornerstone for quantifying the

error between a function and its estimate from discrete measurements.

We present our main results in Sect. III, based on a new error kernel

dedicated to the reconstruction of derivatives. Finally, in Sect. IV, we

discuss the consequences of the formalism for the design of efficient

reconstruction methods.

II. THE FREQUENCY ERROR KERNEL

An important result of Blu et al. is that the error ‖s − fapp‖L2

between s and its estimate reconstructed using (2) can be predicted

very accurately by the estimate [18]:

ηs(T ) =

√
1

2π

∫

R

|ŝ(ω)|2E(Tω)dω, (4)

using the frequency error kernel defined by

E(ω) = 1 −
|ϕ̂(ω)|2

âϕ(ω)︸ ︷︷ ︸
Emin(ω)

+ âϕ(ω)
∣∣̂̃ϕ(ω)p̂(ω) − ϕ̂d(ω)

∣∣2
︸ ︷︷ ︸

Eres(ω)

. (5)

Remarkable properties of the global error estimate ηs(T ) include

its exactness for bandlimited signals and for the average of the true

approximation error over all possible shifts of the input function s. In

the general case, we have the approximation ‖s−fapp‖L2 = ηs(T )+
o(T r), assuming that s has Sobolev regularity r > 1

2
. Moreover, in a

stochastic framework where s is a realization of a random stationary

process instead of a deterministic function of L2, ηs(T ) is the exact

expression of the time averaged expectation of the quadratic pointwise

error, by replacing the energy |ŝ(ω)|2 by the power spectrum density

ĉs(ω) in (4). These properties and several others are detailed in [18]

and [19].

In practical situations, |ŝ(ω)|2 or ĉs(ω) is unknown, but the

multiplicative form in the integral (4) ensures that the error is small

if E(ω) is close to zero. Hence, the frequency error kernel is a tool

of choice for characterizing a reconstruction scheme. More precisely,

the value E(ω) at a given frequency ω can be interpreted as the

average power of the approximation error, in case s(t) is the pure

unit sinusoid ejωt/T [18, Thm. 3]. Therefore, the study of E(ω)
allows to characterize the behavior of a reconstruction method at

different frequency components. For instance, E(ω) for ω close to π
indicates to which extent the salient features, fine details and textures

are preserved and aliasing is enhanced. By contrast, an asymptotic

study for ω around 0 characterizes the reconstruction quality for the

low frequency content of the signal s.

Thus, ϕ and p can be tuned to minimize the error kernel, so that the

reconstruction quality is improved for virtually every function s [6]–

[8], [20]. Given the reconstruction space VT (ϕ), the error kernel

E(ω) attains its minimum value Emin(ω), for every ω ∈ R, when

fapp is the minimum error reconstruction of s in VT (ϕ); that is, its

orthogonal projection onto VT (ϕ). Thus, the prefilter p should be

designed so that E(ω) is close to Emin(ω), in order for the method

to behave like this optimal, but generally unattainable, least-squares

approximation [8], [18].

III. COMPUTATION OF THE ERROR ESTIMATES

We first define the function ψ(t) by

ψ(t) =
∑

k∈Z

p[k]ϕ(t− k) ⇔ ψ̂(ω) = p̂(ω)ϕ̂(ω). (6)

Then, fder(t) = 1
TN

∑
k∈Z

u[k]ψ( t
T
−k). Although in practice ϕ is

chosen with compact support, so that (2) is computationally attractive,

the function ψ, which is the impulse response of the reconstruction

operation, can have infinite support.

We assume that the following equivalent conditions on ψ are

satisfied, so that fder does not blow up as T tends to zero (because

of the 1/TN factor in (2)):

fder = 0 if s ∈ PN−1, (7)

⇔
∑

k∈Z

P (k)ψ(t− k) = 0, ∀t ∈ R, ∀P ∈ PN−1, (8)

⇔ ψ̂(n)(2kπ) = 0, ∀k ∈ Z, ∀n = 0 . . . N − 1. (9)

Although these equivalences may be classical in harmonic analysis,

we rederive them in the Appendix A for sake of completeness.

We can remark that, with the naive approach which consists in

reconstructing an estimate fapp of s and taking its derivative fder =
f

(N)
app , it is necessary that the approximation process s 7→ fapp is

a quasi-projection of order N [8], for the conditions (7)-(9) to be

satisfied.

Our second requirement is that ψ can be decomposed as

ψ(t) =
∑

k∈Z

q[k]χ(t− k) ⇔ ψ̂(ω) = q̂(ω)χ̂(ω), (10)

where q ∈ ℓ1 is a discrete filter and the integer translates of the

function χ ∈ L2 form a Riesz basis; that is, there exist two constants

B ≥ A > 0 such that A ≤ âχ(ω) ≤ B almost everywhere. Thus,

each function of the reconstruction space VT (χ) has a unique and

stable expansion in terms of the shifts of χ. Note that this condition

is not restrictive; in particular, there is no requirement that χ be

compactly supported, even if ϕ is.
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Our last requirement is that s ∈ L2 has Sobolev regularity r >
N + 1

2
, so that s has at least N continuous derivatives in L2.

The Riesz basis condition together with the requirement (9) imply

that 0 is a root of q of multiplicity N . In other words, there exists a

stable filter h ∈ ℓ1 such that q = h ∗ dN , where the iterated causal

finite difference filter dN is defined by DN (z) = (1− z−1)N . Thus,

we essentially decomposed ψ = p ∗ϕ into a moving difference filter

q and a well posed reconstruction kernel χ. This allows us to recast

derivative reconstruction into the framework summarized in Sect. II,

by reasoning on χ instead of ϕ. For this, we need the following

property:

Lemma. We define v = 1
TN

u∗dN . Then, v[k] =
∫

R
s(N)(t)χ̃(k−

t
T

)d t
T

, where χ̃ = ϕ̃ ∗ βN−1
+ .

This important lemma, proved in Appendix B, allows us to interpret

the filtered samples u[k] as generalized samples of the derivative

s(N). Hence, we now have all the ingredients to formulate the

following results, proved in Appendix B.

Theorem 1. ‖s(N) − fder‖L2 = ηs(N)(T ) + o(T r−N), where

ηs(N)(T ) =

(
1

2π

∫

R

|ŝ(ω)|2ω2N

︸ ︷︷ ︸∣∣ŝ(N)(ω)

∣∣2
E(Tω)dω

)1/2

(11)

and the new frequency error kernel characterizing derivative recon-

struction is

E(ω) = 1 −
|ϕ̂(ω)|2

âϕ(ω)︸ ︷︷ ︸
Emin(ω)

+ âϕ(ω)

∣∣∣∣̂̃ϕ(ω)p̂(ω)
1

(jω)N
− ϕ̂d(ω)

∣∣∣∣
2

︸ ︷︷ ︸
Eres(ω)

.

(12)

Moreover, the correction term o(T r−N) vanishes if s is bandlimited

in [− π
T
, π

T
], or if ϕ̃ and ϕ are both bandlimited in [−π, π].

Theorem 2. In a stochastic framework where s is a realization

of a random stationary process with power spectrum density ĉs(ω),

instead of a deterministic function of L2, we have

ηs(N)(T ) =

(
1

T

∫ T

0

E{|s(N)(t) − fder(t)|
2}dt

)1/2

, (13)

by replacing |ŝ(ω)|2 by ĉs(ω) in (11).

In Fig. 2, we give an example of the error estimate ηs′(T ) for

a practical experiment in which we reconstruct the derivative of

a Gaussian from point samples. This shows that ηs(N)(T ) is an

accurate, shift invariant approximation of the true error. We note that

if s ∈ W r
2 for every r ≥ 0, which is the case in our example, then

the difference between ηs(N)(T ) and the true error decays faster than

every polynomial in T as T tends to zero. This means that ηs(N)(T )
can be considered as the exact value of the error in some non-

infinitesimal interval; e.g. for T ∈ [0, 0.9] in Fig. 2. In the general

case, ηs(N)(T ) is a reliable estimate of the error for practical values

of T . By contrast, error analysis approaches based on Taylor series

only apply to the asymptotic regime where s is highly oversampled.

IV. ASYMPTOTIC APPROXIMATION PERFORMANCE

In this section, we focus on the reconstruction of lowpass signals;

that is, we assume that s(N) has most of its energy around ω = 0.

This is the case for natural images, at least for N = 1. For other

types of signals, the same study could be performed around another

frequency than 0, with exponential splines taking the role of the B-

splines [21].

Fig. 2. Approximation error as a function of the sampling step T . We

estimate the first derivative s′(t) of s(t) = e−
(t−1)2

2 by the first derivative
of the cubic spline interpolating the point samples u[k] = s(Tk). Thus, we
have ϕ̃ = δ, ϕ = (β3)′ et P (z) = 6/(z + 4 + z−1). The error estimate
ηs′ (T ) (dashed line) is close to the true error ‖s′−fder‖L2 (solid line). The

dotted line is the asymptote C‖s(4)‖L2T 3, where the asymptotic constant

C = 1/
√

30240 is obtained from the Taylor development E(ω)1/2 ∼ Cω3.

A. The Approximation Order

From Theorem 1, due to the closed form of ηs(N)(T ), it is easy

to expand this estimate in a power series of T to obtain the exact

behavior of the error as T → 0. Specifically, if s(N) has at least

Sobolev regularity L, we have the equivalence

E(ω)1/2 ∼ C ωL
as ω → 0 (14)

iff ‖s(N) − fder‖L2 ∼ C‖s(N+L)‖L2TL
as T → 0. (15)

In that case, we speak about a Lth-order approximation scheme.

When most of the spectral energy of the signal is concentrated in the

neighborhood of ω = 0, like with natural images, the approximation

order L is the most crucial determinant of the reconstruction quality

and should be chosen as large as possible. To have an approximation

order L, it is necessary that χ satisfies the Strang-Fix conditions of

order L [17]:

χ̂(0) 6= 0 and χ̂(n)(2kπ) = 0 for

{
k 6= 0
n = 0 . . . L− 1

. (16)

It was shown in [6] that a function χ with approximation L has

a support size S ≥ L with equality iff χ is a MOMS. Therefore,

the reconstruction schemes having the optimal tradeoff between the

reconstruction quality and the computational complexity are obtained

by choosing the reconstruction kernel ϕ as a MOMS.

On this point, there is an interesting connection with wavelet

theory. The equivalent conditions (7),(8),(9) imply that ψ has N
vanishing moments:

∫
R
tnψ(t)dt = 0, ∀n = 0 . . . N − 1. Therefore,

ψ is similar to a wavelet function. It is known that wavelets behave

like differentiators [22]. Moreover, in [23], it is shown that there

is a B-spline function at the heart of each scaling function and

wavelet associated with a multiresolution analysis. In our setting,

there is no such requirements like the two-scale relations associated

with multiresolution. Also, the building component of ψ carrying the

approximation order is χ. Therefore, these are the MOMS functions,

a broader class than the B-splines, which naturally appear when

designing χ.

B. The choice of the Prefilter

We now assume that ϕ is fixed. This determines χ and its

approximation order L (eqn. (16)). Then, we have to choose p so as to
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exploit at best the properties of the reconstruction space VT (ϕ); that

is, so that the scheme has approximation order L (eqns (14),(15)).

In fact, fder ∈ VT (ϕ) ⊂ VT (χ) and p controls which approximation

of s(N) in VT (ϕ) is picked by the method. The best possible

reconstruction is the orthogonal projection of s(N) in VT (ϕ). The

error between this optimal approximation and s(N) decays like TL

and is characterized by the error kernel Emin given in (12). Thus,

the reconstruction scheme has approximation order L if and only if

E(ω) = Emin(ω) +O(ω2L). (17)

To characterize p more precisely, we define the function

χ̃eq(t) =
∑

k∈Z

h[k]χ̃(t− k), (18)

where we recall that χ̃ = ϕ̃ ∗ βN−1
+ and p̂.ϕ̂ = ĥ.d̂N .χ̂. So,

we have fder(t) =
∑

k∈Z
y[k]χ( t

T
− k) ∀t ∈ R, with y[k] =∫

R
s(N)(t)χ̃eq(k−

t
T

)d t
T

∀k ∈ Z. Then, the reconstruction scheme

has approximation order L if and only if χ̃eq and χ are quasi-

biorthonormal with order L [18]; that is,

̂̃χeq(ω)χ̂(ω + 2kπ) = δk +O(ωL), ∀k ∈ Z, (19)

which is equivalent for χ̃eq and χd to have the same moments up to

order L:∫

R

tnχ̃eq(t)dt =

∫

R

tnχd(t)dt, ∀n = 0 . . . L− 1. (20)

We can express these conditions in terms of ϕ̃, ϕ and p as follows:

p̂(ω)

(jω)N
̂̃ϕ(ω)ϕ̂(ω + 2kπ) = δk +O(ωL), ∀k ∈ Z, (21)

or, equivalently,

p̂(ω)̂̃ϕ(ω) =
(jω)N

ϕ̂(ω)
+O(ωL+N ). (22)

We note that (22) can be obtained directly from (17).

Thus, it is preferable to choose p so that these quasi-

biorthonormality conditions are satisfied. There is a great freedom

in this respect, since only the L+N linear constraints given by (22)

have to be satisfied for the scheme to have the maximal approximation

order, given ϕ.

V. CONCLUSION

We introduced a generic Fourier methodology to evaluate the

quality of shift-invariant methods that continuously reconstruct the

derivative of a function from discrete measurements. In our future

work, we will focus on the use of this theory to design efficient

reconstruction schemes [24]. Some reconstruction methods for the

second derivative are compared in [25] to illustrate our approach.

We will also investigate the extension of the formalism to noisy

measurements [26], [27].

Since the frequency error kernel can be defined for multi-

dimensional signals on lattices, like in [20], the extension of this

work to the evaluation of partial derivatives of multi-dimensional

signals is straightforward [24]. Interesting applications include finite

difference methods and the numerical resolution of PDEs.

APPENDIX A

PROOF OF THE EQUIVALENCE OF (7),(8),(9)

We first prove that (8) ⇔ (9). Let n be in 0 . . . N − 1. We define

yn = (yn[k])k∈Z by yn[k] = ψ̂(n)(2kπ). Then, yn[k] = 0 ∀k ⇔
ŷn = 0 ⇔

∑
k
(t− k)nψ(t− k) = 0 ∀t, where the last equivalence

is Poisson’s sum formula applied to the function tnψ(t). So, (9)

⇔
∑

k∈Z
Q(t − k)ψ(t − k) = 0, ∀t ∈ R, ∀Q ∈ PN−1. This is

equivalent to (8) by letting, for any t, Q(X) be P (t−X). �

We then show that (8) ⇒ (7). We assume (8). Let s(t) =∑N−1

n=0
ant

n be in PN−1 and k be in Z. We introduce the

function g(t) = 1
T
s(t)ϕ̃(k − t

T
). Then, u[k] = ĝ(0) =∑N−1

n=0
anj

n dn

dωn {e
−jωTk ̂̃ϕ(Tω)∗}|ω=0 is a polynomial in k of

degree N − 1. Applying (8) to this polynomial P , we get fder = 0.

�

We don’t give the details of (7) ⇒ (8). This involves exhibiting, for

a given P ∈ PN−1, a polynomial s ∈ PN−1 such that u[k] = P (k),

which is always possible.

APPENDIX B

PROOFS OF THE RESULTS IN SECT. III

We first prove the lemma. We define the function sT (t) = s(T t).

Then, for every n in 1 . . . N , s
(n)
T ∗ β0

+(t) =
∫ t

t−1
s(n)(x)dx =

s
(n−1)
T (t)−s

(n−1)
T (t−1) = s

(n−1)
T ∗

(
δ−δ(·−1)

)
(t). By recurrence,

using the property βn
+ = βn−1

+ ∗ β0
+, we get s

(N)
T ∗ βN−1

+ ∗ ϕ̃ =

sT ∗
(
δ − δ(· − 1)

)N
∗ ϕ̃. Therefore, since u[k] = sT ∗ ϕ̃ (k), we

have s
(N)
T ∗ χ̃ (k) = TN

∫
R
s(N)(t)χ̃(k − t

T
)d t

T
= u ∗ dN [k]. �

The theorems 1 and 2 are adaptations of [18, Theorem 1] and [18,

Theorem 3], respectively, by making the substitutions s → s(N),

u → v, ϕ → χ, ϕ̃ → χ̃, p → h. Thus, the theorems are satisfied

with the following expression of E(ω) in (11):

E(ω) = 1 −
|χ̂(ω)|2

âχ(ω)
+ âχ(ω)

∣∣̂̃χ(ω)ĥ(ω) − χ̂d(ω)
∣∣2. (23)

Then, we obtain (12) by substituting in (23) the equalities χ̂ = p̂
q̂
ϕ̂,

âχ = | p̂
q̂
|2âϕ, ̂̃χ = ̂̃ϕ.̂βN−1

+ with ̂βN−1
+ (ω) = d̂N (ω)/(jω)N , q̂ =

ĥ.d̂N . �
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