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Abstract—Graphics artists commonly employ physically-based simulation for the generation of effects such as smoke, explosions,
and similar phenomena. The task of finding the correct parameters for a desired result, however, is difficult and time-consuming as
current tools provide little to no guidance. In this paper, we present a new approach for the visual exploration of such parameter
spaces. Given a three-dimensional scene description, we utilize sampling and spatio-temporal clustering techniques to generate a
concise overview of the achievable variations and their temporal evolution. Our visualization system then allows the user to explore
the simulation space in a goal-oriented manner. Animation sequences with a set of desired characteristics can be composed using
a novel search-by-example approach and interactive direct volume rendering is employed to provide instant visual feedback. A user
study was performed to evaluate the applicability of our system in production use.

Index Terms—Visual exploration, visual effects, clustering, time-dependent volume data.

1 INTRODUCTION

Physically-based simulation is gaining increasing popularity for gener-
ating realistic animations of water, smoke, explosions, and related phe-
nomena using computer graphics. Common modeling and animation
software packages include built-in fluid dynamics simulators or offer
this functionality via add-on modules. These existing tools frequently
allow the user to modify the simulation parameters via standard con-
trols such as sliders or numeric input fields. It is difficult, however,
to predict the influence of changing one or several of these values.
Depending on the exact scene setup, effects may be global or remain
rather localized, both in space and time. Even small changes can dra-
matically affect the appearance of the resulting animation. Graphics
artists, who aim to produce a particular visual result, therefore typi-
cally have to resort to a cumbersome and time-consuming trial-and-
error approach. Moreover, as the simulation process is computation-
ally expensive, interactive visual feedback is frequently not available.
While recent advances in real-time fluid simulation help by reducing
the simulation time [32, 41], the underlying problem remains: there is
virtually no guidance in exploring a vast parameter space.

In this paper, we present a result-driven visual approach to navigate
through this parameter space tailored to the requirements of graphics
artists. Unlike scientists and engineers, who usually seek to under-
stand and analyze the underlying physical phenomenon, these users
are primarily interested in controlling the simulation in order to ap-
proximate a particular artistic vision. To facilitate this task, we sample
the parameter space and apply clustering techniques in an effort to
identify the characteristic spatio-temporal variations of the resulting
simulations. The results of this process are presented to the user in
an interactive visual exploration environment, which combines three-
dimensional animated views with an abstracted representation of the
identified spatio-temporal clusters. The user can interactively navigate
through the space of simulations to find sequences with the desired
characteristics using intuitive visual query facilities.

The main contributions of this paper can be summarized as follows:
Firstly, we target an application area which, to the best of our knowl-
edge, has not been explored before. Physically-based simulations
have become a mainstay in the animation community and visualization
tools designed to control the specification of their parameters can help
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to make the design process considerable less labor intensive. We also
present a novel approach for clustering time-dependent volume data
generated by sampling a high-dimensional parameter space. Further-
more, the paper describes new visualization and interaction techniques
for volumetric time sequences designed to meet the requirements of
graphics artists. Finally, we present a user study performed to evaluate
the practical applicability of our approach to visual effects design.

2 RELATED WORK

The visualization of general time-oriented data is an extensive field
of research and Aigner et al. [1] as well as Andrienko et al. [5] pro-
vide comprehensive surveys. Our work focuses on the visualization of
time-varying volume data, a topic which has been intensively studied
in the context of science and engineering data [24]. In many cases,
the user is interested in tracking certain features over time which can
be difficult in animations of complex data. One approach is to con-
sider the time series as a four-dimensional scalar field. Hanson and
Heng [17] introduced general techniques for visualizing surfaces and
volumes embedded in four dimensions and developed a 4D illumina-
tion model for this purpose. The HyperSlice method presented by van
Wijk and van Liere [34] uses a matrix of orthogonal 2D slices as the
basic visual representation of a multi-dimensional function. Woodring
et al. [40] proposed an intuitive user interface for specifying arbitrary
hyperplanes in 4D. After applying slicing or projection, the resulting
volume can be displayed using standard techniques. Chronovolumes,
presented by Woodring and Shen [37], use integration through time
to produce a single volume that captures the essence of multiple time
steps in a sequence. A further approach by Woodring and Shen [38]
employs different operators to combine multiple volumes. While these
methods are useful for detailed analysis and comparison, the resulting
visualization can be quite abstract and difficult to grasp.

An alternative approach is to interpret the temporal progression of
the data values at each point in space as a one-dimensional function
referred to as a time-activity curve [14]. These curves can be used to
identify spatial regions with certain properties. Muigg et al. [27] pre-
sented techniques for the visualization of a large set of these function
graphs for applications such as breast tumor diagnosis. Woodring and
Shen [39] applied clustering to time-activity curves to identify simi-
lar regions in space. The approach by Lee and Shen [22] attempts to
identify temporal trends and models them as a state machine of trend
sequence. A further approach for characterizing time-dependent vol-
ume data are time histograms which represent information about the
frequency of occurrence for each data value and time. Akiba et al. [3]
used time histograms to assist in the specification of transfer functions
across multiple time steps. For the visualization of multi-variate time-
dependent data, Akiba and Ma [2] also proposed the combination of



clustering

sampling

segmentation

simulation

feedback

visualization

production

sequences segments clusters

scene descriptionparameter vectors visual exploration

TODO :-)

Fig. 1. Conceptual overview of our visualization system. The process starts from a scene description which defines the basic simulation scenario.
Sampling generates a set of parameter vectors which are used to control the simulation process. The resulting sequences are then split into
multiple short segments and clustering is applied to group these segments. The results can be interactively explored to find the desired parameter
settings for the final animation.

time histograms and parallel coordinates. Our goal differs from these
methods in that we do not attempt to track features over time or char-
acterize the behavior of different regions. Instead, we want to globally
investigate the similarities and characteristic variations between mul-
tiple volumetric time series.

Thus, while based on time-dependent volume data, our approach
bears many similarities to methods from video processing and content
retrieval. In order to overcome the sequential and time-consuming
process of viewing video a noticeable amount of effort has been made
to devise methods for analyzing and abstracting video data automat-
ically [33]. A first step in many approaches is shot detection, i.e.,
partitioning the video into multiple series of interrelated consecutive
frames. Hanjalic [15] provides a detailed overview of different meth-
ods employed for this purpose. A further step may involve cluster-
ing of these shots to extract a compact representation of the video in
the form of representative key frames or preview sequences [16, 28].
Within the visualization community, Daniel and Chen [10] proposed
the use of volume rendering to present summaries of video sequences.
Our work draws inspiration from video analysis and abstraction meth-
ods and has many related goals such as the easy visual retrieval of
data.

Dimensionality reduction and clustering are commonly employed
for gaining insight into high-dimensional parameter spaces [6,21]. Our
input parameter space is also multi-dimensional, but we apply cluster-
ing to characterize the output space of simulations to extract informa-
tion about visual variations over time. Furthermore, visualization and
query techniques for interacting with complex sets of temporal data
such as ThemeRiver [19], TimeSearcher [20], and PatternFinder [13]
have inspired our work.

Finally, our approach is most closely related to techniques for de-
sign space exploration. Ma [23] introduced a visualization system
which presents information on how parameter changes affect the re-
sult image as an image graph based on data generated during an in-
teractive exploration process. Smith et al. [31] presented methods for
navigating through a complex shape space of registered car models us-
ing an intuitive direct manipulation interface. The work of Monks et
al. [26] discussed a system for acoustic design which applies visualiza-
tion, simulation, and optimization in a goal-oriented manner. Marks et
al. [25] introduced Design Galleries, a general concept for exploring
parameter spaces. Our system is founded in their basic methodology
of sampling the input space to generate a visual overview. In con-
trast to the methods presented in this paper, however, their work only

discussed static output and did not address the complex issue of time-
dependent data.

3 OVERVIEW

In order to distinguish our goal from that of typical simulation visual-
ization approaches targeted at scientists and engineers, an analogy to
biology can be drawn. The genome encodes the set of instructions for
building a living organism. The term genotype refers to an organism’s
full hereditary information, even if not expressed. The term phenotype,
on the other hand, refers to an organism’s actual observed properties,
such as morphology or behavior. Different genotypes may result in
similar phenotypical characteristics during different stages of devel-
opment. Cladistics is the systematic study of organisms based on their
genetic relationships, while phenology attempts to classify organisms
based on overall similarity regardless of their evolutionary relation.
Even though most of today’s evolutionary biologists favor cladistics,
phenetic approaches can prove useful when studying diverse groups
of closely-related organisms. Similarly, we want to provide visualiza-
tion tools to explore the simulation space, i.e., our main focus lies in
visualizing the variability in observable characteristics of a set of sim-
ulations. In this sense, our approach can be considered deliberately
phenetic. In contrast, if the primary goal is to analyze the underlying
parameter space, a cladistic approach is usually more suitable.

A conceptual overview of our system is depicted in Figure 1.
We start from a scene description generated in a standard model-
ing/animation software package. It consists of the basic simulation
settings, such as duration, geometric setup, and emitter specification.
While many artists have developed an intuition which general param-
eters need to be tuned in order to achieve a certain result, the actual
parameter values are highly dependent on the specific nature of the
scene. To provide visual guidance in this selection process, our ap-
proach begins by randomly sampling a manually selected subset of the
parameter space. The sampling process generates a set of parameter
vectors. For each of these combinations of parameter values, a simu-
lation consisting of multiple time steps in the form of volumetric grids
is produced. These sequences may exhibit different characteristics at
different points in their temporal evolution. For instance, they share
the same initial state and, depending on the parameters, can diverge
at varying rates. Likewise, multiple simulation sequences may start to
converge to similar states as they progress. As a simple example, con-
sider a smoke simulation: Initially smoke will rise, but, depending on
the temperature, gravity will cause the smoke particles to fall again at



a certain point in time. In order to capture these kinds of characteristic
variations, we evaluate the spatio-temporal similarity of the generated
simulations. First, a segmentation step decomposes each simulation
sequence into multiple continuous segments. A density-based clus-
tering algorithm is then applied to group multiple similar segments
into visually distinct phases. The results of this classification process
are presented in an easily-understandable layout for interactive visual
exploration. The user can inspect the different variations and use in-
tuitive interaction tools to find sequences which exhibit the desired
spatial and temporal characteristics. The corresponding parameters,
or the already generated simulation, can then be used for production
of the final animation.

The remainder of this paper details these individual steps and com-
ponents. Section 4 is devoted to sampling, segmentation, and clus-
tering, while Section 5 focuses on visualization and interaction tech-
niques. Implementation details are discussed in Section 6. Section 7
presents the results of a user study performed to evaluate the suitability
of our system for production use. The paper is concluded in Section 8.

4 SAMPLING AND CLUSTERING

In this section, we describe the individual processing steps which form
the basis of our approach.

4.1 Sample Generation
The high computational costs of fluid simulation severely constrain
interactive exploration within the authoring environment. In an effort
to eliminate the cumbersome trial-and-error process of changing a pa-
rameter value, waiting for the result to compute, and then deciding
whether the desirable effect has been achieved, we generate random
simulation samples in an offline process. While this may seem costly,
both in terms of processing time and storage demands, it has the con-
siderable advantage that it can be performed without requiring user in-
tervention, e.g., overnight. Animation studios are typically equipped
with render farms, so this setup fits well into the environment of our
intended users. Initially, the user chooses a set of M simulation param-
eters:

P = {p1, p2, . . . , pM} (1)
where each parameter pi ∈ P has an associated range of interest
Ri = [ai,bi] ⊂ R. This choice is mostly influenced by the desired ef-
fect and the physical interpretation of these parameters. A selected
number of N samples of this M-dimensional parameter space will be
generated. We refer to each combination of simulation parameter val-
ues as a parameter vector x ∈ RM :

x = (x1,x2, . . . ,xM) (2)

with xi ∈ Ri. For each parameter vector x, the simulation module then
generates a simulation sequence S(x) written as a set of T time steps:

S(x) = {s1,s2, . . . ,sT } (3)

where each si is a volumetric grid. Depending on the type of simu-
lation, each grid point may store multiple attributes, such as density,
temperature, pressure, etc. For simplicity, the remainder of this pa-
per will focus only on scalar output, but our methods equally apply to
multi-channel data. For most common effects density and temperature
are simulated and typically mapped to, respectively, opacity and color.
The sampling process generates N sequences consisting of T volumes.
For most visual effects, simulations will be rather short with T ranging
from tens to a few hundred frames. Grid sizes vary depending on the
specific effect, but are typically smaller than for other common types
of volume data such as medical scans. N should be chosen according
to the number of parameters, but is constrained by the simulation cost
in terms of processing time and disk space requirements.

In our current implementation, we use unconstrained random sam-
pling as it permits the easy addition of further samples as well as termi-
nation of the sampling process at any time. However, to ensure a more
uniform coverage of the parameter space alternative schemes such as
Latin hypercube sampling may be used instead. One major practical
advantage of random sampling is that the exploration of intermediate
results is easily possible.

4.2 Sequence Segmentation
To facilitate robust clustering as well as to reduce the computational
load of the subsequent processing steps, our approach first splits each
volumetric time sequence S into multiple short segments S′ ⊆ S of
varying length. It is important to note that, at this point, we are not
concerned with identifying overall similarity. Rather, we want to di-
vide each simulation sequence into a smaller number of manageable
units which exhibit high similarity and are continuous in time. Here,
we draw inspiration from the field of video processing. Many methods
for generating an overview of a video clip start by dividing the input
into multiple shots by detecting discontinuities [15]. In contrast to
these methods, however, our approach groups neighboring time steps
as a simulation will in general not exhibit distinct boundaries.

For each sequence S, we compute a dissimilarity measure between
neighboring time steps of a sequence using the sum of squared inten-
sity differences over all grid points of the corresponding volumes:

dS(t) = ∑
u
(st+1(u)− st(u))2 (4)

where st(u), st+1(u) are the data values at the three-dimensional grid
position u of two subsequent time steps with t ∈ [1,T − 1]. We then
use a simple greedy algorithm which merges neighboring time steps
based on their dissimilarity. Initially, each time step forms its own
segment. The cost value associated with each segment is initialized
to zero. We then iteratively merge two neighboring time steps if the
dissimilarity at their boundaries added to their individual costs is min-
imal. The cost of the resulting segment is updated to this sum. This
process proceeds at least as long as the number of segments is larger
than a specified value for the maximum segment count. After that, the
algorithm terminates when the minimum cost exceeds a threshold. The
first parameter, the maximum number of segments, is set according to
the available computational resources – a larger number of segments
will increase the time required for the subsequent clustering step. For
the cost threshold, we use the average dissimilarity of the sequence.

The result of this algorithm is a varying number of segments for
each simulation sequence. The representative time step r(S′) for a
segment S′ is chosen such that it minimizes the absolute difference be-
tween the cumulative dissimilarity of its predecessors and successors
within the segment:

r(S′) = argmin
si∈S′

∣∣∣∣∣ ∑
s j∈S′, j<i

dS( j)− ∑
s j∈S′, j>i

dS( j−1)

∣∣∣∣∣ (5)

For segments with only two members, the lower time step is chosen.
In the subsequent clustering step, all of the individual time steps repre-
sented by one such segment are treated as a unit and the representative
time step is used in their place.

Figure 2 depicts an example of the sequence segmentation process.
A short sequence of 25 time steps is split into 7 segments. The graph
shows the dissimilarity dS(t) for t ∈ [1,24] – note that for the last time
step t = 25 of the sequence, this function is undefined. The highlighted
points indicate the chosen representative time steps and the images
show renderings of the corresponding volumes. No minimum number
of segments was specified and the cost threshold was set to the average
dissimilarity.

4.3 Density-based Clustering
Having split each simulation sequence into a number of representative
segments, we now aim to compare the simulation space on a global
level, i.e., we want to identify similar phases or states which may occur
at different points within the temporal evolution of each simulation.
For this purpose, we employ a density-based clustering approach. In
contrast to partitional and hierarchical approaches, density-based clus-
tering uses a local cluster criterion, in which clusters are defined as re-
gions in the data space where the data points are dense, separated from
one another by low-density regions. In particular, we employ a varia-
tion of the DBSCAN algorithm [12], as it has the ability of discovering
clusters with arbitrary shape and does not require the predetermination



Fig. 2. Sequence segmentation. A sequence of 25 time steps split into 7 segments using our algorithm is shown. The graph depicts the dissimilarity
dS(t) between two subsequent time steps t and t +1. The highlighted points indicate the selected representative time steps for each segment.

of the number of clusters. This is advantageous, as it allows us to make
minimal assumptions about the similarity relationships in simulation
space.

DBSCAN requires two parameters: ε , which defines the maximum
distance between two points considered to be neighbors, and pmin, the
minimum number of points required to form a cluster. The algorithm
starts with an arbitrary point that has not been visited. This point’s ε-
neighborhood is retrieved, and, if it contains sufficiently many points,
a cluster is started. Otherwise, the point is marked as noise. This point
may later be found to be in a sufficiently-sized ε-environment of a dif-
ferent point and hence still become part of a cluster. If a point is found
to be part of a cluster, its ε-neighborhood is also part of that cluster.
Thus, all points that are found within the ε-neighborhood are added
to its cluster, as is their own ε-neighborhood. This process continues
until no further points can be found. Then, a new unvisited point is
processed.

In our case each segment, identified by its representative time step,
corresponds to one point. For the neighborhood size, which allows
DBSCAN to judge local density, however, the point contributes with
the number of members of the corresponding segment. This enables
the information gathered during sequence segmentation to influence
the clustering process. An important choice is the dissimilarity mea-
sure employed in the clustering algorithm – as motivated in Section 3,
we are primarily interested in visualizing the simulation data in terms
of their observable characteristics. Feature-based distance metrics
have shown to have many advantages for various clustering tasks and
much work has been devoted to developing techniques for extracting
features in scalar- as well as vector-valued volume data [30]. However,
most of these methods require several parameters and are tailored to
specific tasks. Since we want to compare hundreds of volumes, man-
ual parameter selection is not an option (indeed, the main motivation
of our work is to simplify parameter specification). Moreover, it would
be difficult to define a feature vector which provides a robust basis for
comparing simulation time steps generated across the full range of the
parameter space. Thus, instead of attempting to extract explicit fea-
tures, we use a rather simplistic dissimilarity measure based on the
sum of squared intensity differences between two volumes v1 and v2:

d(v1,v2) = w(v1,v2)∑
u
(v1(u)− v2(u))2 (6)

with

w(v1,v2) = 1+

{√
|ti(v1)− ti(v2)| if si(v1) = si(v2)

0 otherwise
(7)

where v1(u) and v2(u) are the data values at the three-dimensional grid
position u, ti(v1), ti(v2) are the time step indices, and si(v1), si(v2) are
the sequence identifiers of, respectively, the volumes v1 and v2. The
additional weight increases the dissimilarity of time steps within one
sequence based on their temporal differences. This allows the cluster-
ing algorithm to group similar temporal progressions between differ-
ent sequences even if they are not entirely synchronous. The approach

is related to the measures proposed by Birant and Kut [9] even though
they focus on geographic time series data. The choice of the sum of
squared differences as the basis for our measure is motivated by its
frequent use in image registration tasks [35]. While other measures,
such as mutual information, may perform better they also come at sig-
nificantly higher computational costs.

The clustering step then proceeds as follows: First, we compute the
dissimilarity matrix by comparing each pair of segment representa-
tives. Next, for each segment representative, a neighborhood index is
generated by sorting the dissimilarity values in ascending order. The
DBSCAN algorithm is then executed resulting in a number of clus-
ters. If a segment representative is part of a cluster, all members of the
corresponding segment are assumed to share this association.

For specifying the parameters of the algorithm, we use a simple
heuristic [12]. The minimum number of points pmin is set to:

pmin = ln

(
1

|S′|
NT

)
(8)

where |S′| is the average number of members in a segment, N is the
number of sequences, and T is the number of time steps per sequence.
We set ε to the average dissimilarity between all segments. In our ex-
periments these values have shown to be robust defaults. However, as
the time required for executing the actual clustering algorithm once the
dissimilarity matrix has been computed is negligible, these values can
also be adjusted easily if an unusually low or high number of clusters
is detected.

In addition to references to its members, each cluster stores the fol-
lowing additional information computed after the clustering algorithm
has completed:

Cluster medoid – the cluster member which minimizes the average
dissimilarity to all other members in the cluster.

Sequence range – the set of sequence identifiers which have at least
one member in the cluster.

Temporal range – the set of time step indices covered by the mem-
bers of the cluster.

Temporal medoids – for each distinct time step index contained in
the cluster, the member which minimizes the average dissimilar-
ity to all cluster members of the same time step.

In the following section we discuss how this information is used to
generate a compact representation of the simulation space’s temporal
evolution.

5 INTERACTIVE EXPLORATION

Having identified spatio-temporal clusters in the set of sampled simu-
lations, we want to present this information, together with the original
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Fig. 3. Screenshot of our interactive exploration environment.

simulation sequences, in an easily-understandable manner. The gen-
eral layout of our interactive visualization system is shown in Figure 3.
The user interface consists of several different linked views. The an-
imation view shows a volume rendering of the currently selected se-
quence and is controlled by a standard time slider. The sequence view
allows the user to browse through all available simulation sequences.
The cluster timeline is the main element for our application – it gives
an overview of the visual variations across the simulated sequences
over their temporal range and allows the user to search for sequences
with particular characteristics. Finally, the parameter view provides
a visualization of the parameter space variations for a selected set of
clusters. All views are linked, so selecting a particular sequence in
the sequence view, for example, will update the animation view and
highlight the corresponding elements in the other views.

5.1 Animation View
As the final result of the process assisted by our visualization system
is an animation sequence, it is important to provide an interactive pre-
view. The animation view depicts a volume rendering of the currently
selected sequence. It allows viewpoint manipulation and playback us-
ing a standard time slider and animation controls. Rendering of time-
dependent volume data is an active area of research and many power-
ful techniques capable of dealing with large data sets have been pre-
sented [24]. As this is not the focus of our paper, we will only briefly
describe our setup. Our system features two different volume render-
ers: An emission/absorption ray caster implemented in CUDA, and a
slice-based renderer which supports self-shadowing and scattering ap-
proximations based on a conical phase function. The latter renderer
uses OpenGL since the slice-by-slice processing scheme required by
its illumination model performs significantly better in OpenGL than
a comparable CUDA implementation as it can exploit fixed-function
GPU operations. The CUDA renderer offers better overall perfor-
mance, while the superior optical model of the OpenGL renderer pro-
vides higher fidelity. The user can switch between these two renderers
at runtime.

5.2 Sequence View
The sequence view provides a simple overview of all simulated se-
quences by depicting a ”film strip” of their time steps. One of its
purposes is to allow the user to establish a mental model of the visual-
ization process. The sequence view displays all simulation sequences.
Hence, the animation view which only displays a single time step at
a time, and the cluster timeline, which provides a summarized and
abstracted view of the sequences’ temporal progression, can be in-
terpreted as filtered representations of the data. The sequence view is
linked to the other views, so whenever the current sequence is changed
it is scrolled into view and highlighted. While it would also be pos-
sible to use the results of sequence segmentation for selecting the de-
picted images, we instead choose to uniformly divide the time range
so the chosen time steps are the same for all sequences resulting in
a more traditional presentation familiar from common animation and
video processing software. Depending on the width of the view, the

Fig. 4. Cluster timeline at different temporal compression levels. The
depicted time interval sizes are, from top to bottom: 1, 5, 10, and 15.
The sequences in this set of 128 simulations of a bullet passing through
a medium have 150 time steps each.

number of images is adjusted to fill the available space. The displayed
images are live thumbnails, i.e., they are updated whenever settings
such as the current viewpoint change. Image generation is performed
in the background using our CUDA volume renderer and the resulting
thumbnails are cached in main memory.

5.3 Cluster Timeline

The cluster timeline provides a concise overview of the visual varia-
tions over the duration of the simulation while summarizing the simi-
larities between different sequences and represents the key component
of our interface. The general idea behind this visualization is to con-
sider the identified clusters as distinct phases in the temporal evolu-
tion of a simulation. Multiple sequences may enter a particular phase
at different points in time as they progress. Since, depending on the
nature of the simulation, potentially many of these phases exist, the
generated layout should be compact. Our dissimilarity measure is suc-
cessful in grouping similar segments, but since it is not feature-based
the inter-cluster distance is less informative and we choose not to vi-
sually encode it which provides more freedom in designing a compact
layout. While our experiments have shown that the identified clus-
ters tend to cover continuous time ranges, we do not explicitly enforce
temporal continuity so the visualization algorithm needs to be capable
of handling discontinuous clusters as well. Finally, as artists are used
to dealing with linear time scales in their standard tools, we choose not
to distort the time axis.

Based on these general guidelines, we developed a simple layout
algorithm which visualizes the temporal distribution of clusters and
their membership relationships. The cluster layout is generated in the
following manner: Initially, all clusters C are assigned a global rank
rG(C) defined as the product of the total number of time steps covered
by the cluster and the number of distinct sequences it contains. This
means that clusters which cover a large temporal range and/or include



(a) (b)

Fig. 5. Interaction with the cluster timeline. (a) No selection has been made, so all cluster items remain active. (b) A cluster item has been
selected, the corresponding sequence path is highlighted, and unconnected items are dimmed. The depicted data set is a fire effect consisting of
128 sequences, each with 25 time steps.

many different sequences will be ranked higher. Each cluster is as-
signed a color using one of the ColorBrewer’s [18] qualitative color
schemes. As it is generally advised against attempting to visually en-
code too many classes using color, the assigned cluster colors may not
be unique. If the number of total clusters exceeds the number of col-
ors in the scheme (the maximum is 12), we maximize the temporal
difference between clusters which are assigned the same color.

Cluster items are then positioned on the canvas by traversing the
temporal simulation range. One cluster item represents a subset of
the cluster’s members which share a common time interval. Thus, the
number of associated cluster items varies depending on the temporal
extent of a cluster. For every non-overlapping time interval [ts, te) and
every cluster C, the number rT (C, ts, te) of cluster members which are
contained in the interval is determined. All clusters where this num-
ber is greater than zero are sorted in descending order according to the
product of rG(C) and rT (C, ts, te) and one item is created for each of
these clusters. The horizontal position of the item is determined by the
current interval [ts, te) while the vertical position (from top to bottom)
corresponds to the sorting order. The visual representation of a clus-
ter item consists of a background rectangle in the cluster color and a
live thumbnail image depicting a rendering of the cluster’s temporal
medoid for the current interval, i.e., the cluster member which mini-
mizes the average dissimilarity to all other members within the same
time interval.

To provide an overview of the temporal progression of the indi-
vidual simulation sequences, a sequence path is generated for every
sequence. The path represents the progression of cluster memberships
of a sequence over time and is displayed as a cubic spline connect-
ing the centers of all cluster items the sequence is a member of. It is
drawn using an opacity based on the total number of sequences which
enables the identification of membership patterns that occur more fre-
quently. The path of the current sequence, i.e., the one that is dis-
played in the animation view and selected in the sequence view, is
emphasized and drawn with full opacity on top of all other paths. The
resulting layout depicts, for every time interval, the possible variations
identified in the clustering process. Due to the influence of temporal
range on the sorting order, clusters covering many time steps appear
first. The user can control the size of the interval interactively using a
slider. When changing the interval size, the size of the cluster items on
screen remains the same, but the time axis gets compressed. Cluster
items which represent the same cluster merge, while those of differ-
ent clusters stack on top of each other according to their rank. At the
highest zoom level, i.e., the interval spans the entire vertical range, all
clusters are listed vertically according to their rank. This sort of tem-
poral compression enables viewing of long sets of sequences without
scrolling, while preserving their salient features and variations. As a
sequence path may connect several cluster items at the same horizon-
tal position for large intervals, we only connect them to the highest
ranked cluster item in these cases.

Figure 4 shows an example of the cluster timeline at different tem-
poral compression levels. The sequences in this set of 128 simulations
have 150 time steps each. The depicted time interval sizes are, from
top to bottom: 1, 5, 10, and 15. Note that on screen the cluster items
always have the same size and the view scrolls horizontally.

5.3.1 Search-By-Example
To enable result-driven exploration, the user can interact with the clus-
ter timeline. Selecting a cluster item will highlight all other cluster
items which have members that connect to it, i.e., there is a sequence
which is a member of both clusters within the time interval of the
item. Multiple items can be selected thereby further filtering the view.
Whenever such a selection is made, the current sequence displayed
in the animation and sequence views is instantly updated to the best
match of the query and the corresponding sequence path is highlighted
in the cluster timeline. When the selection is modified, candidate se-
quences, i.e., those which connect to all selected cluster items, are
ranked by the number of their time steps which are members of the
corresponding clusters. Of those sequences with the maximum num-
ber of overlapping time steps, the one which minimizes the dissimi-
larity to the temporal medoids of all selected cluster items is chosen.
This strategy prefers sequences with longer membership times in the
clusters corresponding to the selected items, i.e., their sequence paths
will tend to be more straight.

An example for this type of interaction with the cluster timeline is
shown in Figure 5. The cluster timeline for a flame effect simulation
is depicted in Figure 5 (a). When a cluster item is selected, as shown
in Figure 5 (b), all items which share no connection with the selected
item are dimmed. The sequence path of the best query match is em-
phasized. The cluster items which remain active indicate the possible
variations which share a similar end state.

This intuitive visual query metaphor enables quick identification
of sequences with the desired spatial and temporal properties, or al-
ternatively, that there are no such sequences. The linked animation
view additionally adds to the flexibility of this approach for finding
desired simulation characteristics. When selecting a cluster item, the
sequence depicted in the animation view changes according to the best
match of the query, but the time position remains unchanged and can
be controlled independently by the time slider. Only when an item is
double-clicked, the time slider is moved to the start of its interval. This
enables the user to, for instance, quickly switch between different vari-
ations early in the temporal progression and get a three-dimensional
view of their evolution at a later point in time.

To explore the variations within a cluster, a radial context menu can
be opened by right-clicking a cluster item. The menu depicts the near-
est neighbors of the cluster item’s temporal medoid which are part of
the same cluster, but not necessarily at the same time step. By click-
ing on one of the displayed thumbnails, the corresponding sequence is
selected. This enables navigation within a cluster. The context menu
is visible in the screenshot shown in Figure 3.

5.3.2 Sequence Blending
Sometimes, a particular desired temporal progression may not occur
in the set of simulations. This can be due to the limited number of
samples, but it may also be the case that it is physically impossible
given the chosen set of simulation parameters. Nonetheless, artists
will often sacrifice physical plausibility for achieving a desired result.
Animation packages usually include functionality to combine differ-
ent simulation runs. In our system, we allow the user the possibility
to specify blending between sequences directly in the cluster timeline.



A cluster item can be marked as a key frame, i.e., the best matching
sequence for the item, as described previously, will be displayed un-
til the end of the cluster item’s time interval. If a further key frame
is selected, a transition between the two sequences will occur in the
animation view within the time interval between the two cluster items.
Blending is performed in volume space using on-the-fly interpolation
between the corresponding time steps of both sequences based on a
user-specified easing curve. An extension of these simple animation
facilities using approaches such as those presented by Wohlfart and
Hauser [36] or recent work by Akiba et al. [4] could also be an inter-
esting direction for further research.

5.4 Parameter View

While, as initially stated, it is not our primary goal to facilitate detailed
analysis of the parameter space, it is still useful to provide an overview
of the parameter variations within a cluster. For this purpose, we em-
ploy circular parallel-coordinate plots inspired by DataRoses as pro-
posed by Elmqvist et al. [11]. For each selected cluster, the parameter
view shows a star plot layout where each of the simulation parameters
corresponds to one of the equiangular axes. As it is common to facili-
tate side-by-side comparisons, all star plots use the same scaling with
the minimum of the parameter range at the center and the maximum
located at the radius of the circle for each axis. Since we want to visu-
alize the parameter distribution in relation to its visual manifestation,
the depicted parameter vectors are weighted indirectly proportional to
the dissimilarity of the corresponding segment to the cluster medoid.
The weights are scaled such that the medoid is assigned a value of one
and the member with the highest dissimilarity to the medoid receives
a weight of |C|−1 where |C| is the number of cluster members. The
parameter vector for each cluster member is then depicted as a poly-
gon with an opacity proportional to its weight. The weighted mean of
parameter vectors within the cluster is shown as thick white polygon
with full opacity. Additionally, the region enclosed by the first and
third weighted quartile is highlighted.

Figure 6 depicts the parameter view for three clusters of a flame ef-
fect together with a rendering of the final time step of a cluster mem-
ber. Note how a correspondence between lower dissipation and a more
typical fire-like appearance is indicated when observing the distribu-
tion of parameter vectors within each star plot. The corresponding
cluster timeline is shown in Figure 5.

6 IMPLEMENTATION

Our system was implemented in C++ using the Qt cross-platform ap-
plication framework and consists of two basic parts: the stand-alone
visualization application and a processing module. The processing
module was implemented as a plugin-in for Autodesk Maya. The
sampling process can be initiated using a command in Maya’s script-
ing language MEL or can be bound to a user-interface element. Both
modules communicate via sockets, and can therefore be used over the
network.

In order to provide a fully responsive interactive experience with-
out delays, we heavily rely on parallelism at several different levels.
Even if individual volume dimensions may be comparably small (they
usually do not exceed dimensions of 1283), the typical amount of data
still consists of several hundreds of these volumes and cannot be held
in main memory. We employ NVidia’s CUDA GPU computing plat-
form, which allows synchronous execution of GPU processing tasks
and memory transfers. Both can also be performed concurrently with
CPU processing using CUDA’s stream concept. This high degree of
parallelism allows for excellent latency hiding and a fully controllable
memory footprint. In our architecture, each individual volume – re-
ferred to as a data item – is identified by a unique index. A component
which requires access to one or multiple data items places an asyn-
chronous request for the desired index range and continues operation.
The data access component collects and schedules these requests ac-
cording to priority and access pattern. Two memory pools are used to
cache data: one in main memory and one on the GPU. When placing a
data request, the caller can indicate whether it wants to access the data

Fig. 6. Parameter view for three clusters of a set of flame simulations
together with renderings of representative cluster members.

on the CPU, the GPU, or both and cache replacement is performed ac-
cordingly. For example, if the data is only required on the GPU, e.g.,
for volume rendering, the corresponding slot in the main memory pool
can be marked as available for replacement immediately after transfer
to GPU memory has been completed. A background thread is respon-
sible for loading data items from hard disk into main memory and, if
requested, initiates transfer to GPU memory. For each data item in the
requested index range a notification is sent when it is available in the
indicated memory pool. Before the requesting component is notified,
the data item is marked as locked to prevent cache replacement until
processing has finished. The requesting component is responsible for
releasing the item as soon as the data is no longer required. Both the
CPU and the GPU memory pool use a Least-Recently Used (LRU)
cache replacement policy. Requests can also be marked as optional,
i.e., they are scheduled whenever no other items are being transferred.
In this case, no locking occurs and the caller is not notified of avail-
ability. This is useful for prefetching data during animation rendering.

7 EVALUATION

While we described the capabilities of our system and attempted to il-
lustrate them in static images, it is difficult to fully capture interactive
processes in this manner. We therefore refer the reader to the accom-
panying video for a live demonstration. Table 1 lists information on
the depicted data sets as well as simulation and preprocessing times.

The research presented in this paper was motivated by animation
professionals who deal with the problem of missing visual guidance in
choosing simulation parameters on a daily basis. Their requirements
guided our development process. In order to evaluate the functional-
ity, usability, and potential practical impact of our system, as well as
to identify areas which require further research, we performed a user
study. Based on previous demonstrations to practitioners and our own
experience with the system, we had the following hypotheses:

1. Our general approach for visualizing fluid simulations for visual
effects design will be considered useful and valuable.



Table 1. Statistics and performance numbers for the processing of two
data sets. Timings are given for simulation, segmentation of the simula-
tion sequences, computation of the dissimilarity matrix, and clustering.
System configuration: Intel Core 2 Duo 2.53 GHz CPU, 4 GB RAM,
NVidia GeForce 9600M GT GPU.

Data set Flame Bullet
Sequences 128 128
Time steps 25 150
Resolution 30×30×30 100×40×30
Disk space 230 MB 8.8 GB
Segments 899 3183
Clusters 8 22

Simulation 23 min 448 min
Segmentation 1 min 7 min
Dissimilarity 2 min 76 min

Clustering < 1 s 8 s

2. The cluster timeline will be considered helpful in exploring the
variations in the set of simulations.

3. There will be difficulties in understanding the parameter view
and it will be considered less helpful.

The study was performed one participant at a time using the follow-
ing protocol: Each participant was first asked to fill out a background
questionnaire and then received a general verbal introduction into the
concepts behind our approach, followed by a live tutorial on how to
use the software. Each participant also received a one-page summary
of the mouse and keyboard mappings in the application. Next, the
participant was asked to perform a list of simple tasks. We employed
the think-aloud protocol, i.e., the participants were asked to verbalize
their thoughts and actions. We specifically designed the tasks to be
open-ended and to rely on the subjective judgement of the user, for
example ”Find the simulation sequence that provides, in your judge-
ment, the most realistic appearance”. No time limit was given and the
study participants were encouraged to freely explore all aspects of the
application. Screen capture and audio recordings were made to docu-
ment the user interaction with the system. After completing the tasks,
the participants were asked to fill out a post-questionnaire in which
they had to rate 25 statements on a 5-point attitude Likert scale. The
questionnaire covered general application functionality, suitability and
difficulty of tasks, as well as the assessment of individual components
(e.g., ”I found the cluster timeline was more helpful in completing the
tasks than the sequence view”). Additionally, it also included the ten
items of the System Usability Scale (SUS). This evaluation technique
provides a global assessment of overall usability and user satisfaction
on a scale ranging from 0 to 100 and has been shown to yield reli-
able results even for small user groups [7]. Finally, a semi-structured
interview consisting of questions on the overall impression as well as
several specific topic areas was performed.

Using this protocol, the study was performed on a total of 12 sub-
jects (9 male, 3 female) divided into two groups. Group A consisted of
7 (5 male, 2 female) interactive arts students with moderate to expert
knowledge in 3D modeling and animation, but generally less experi-
ence with fluid simulation. Group B consisted of 5 (4 male, 1 female)
visual effects professionals with several years of expertise in the sub-
ject matter who routinely employ fluid simulation in their work. While
the targeted duration of an evaluation session was approximately one
hour per person, there were considerable variations with some sub-
jects choosing to spend more time on exploring different aspects of
the system and/or making extensive comments during the interview.

All participants agreed that the functionality provided by the sys-
tem was useful. Most subjects found that the cluster timeline pro-
vided a good summary of the variations within the set of simulations
(10 agree, 2 disagree). Interestingly, while all subjects from group B
found that the cluster timeline was useful in completing the tasks, the
corresponding scores of group A showed more variability (4 agree, 1

disagree, 2 neutral). Similarly, most subjects from group B (4 agree,
1 disagree) thought that the cluster timeline was more helpful than the
sequence view in completing the tasks, while the response of group A
was less uniform (3 agree, 2 disagree, 2 neural). Only a minority of
the subjects found the parameter view useful (5 agree, 3 disagree, 4
neutral). In general, the selected tasks were considered to be easy to
understand (10 agree, 2 disagree), appropriate for assessing the func-
tionality of the system (8 agree, 1 disagree, 3 neutral), and relatively
easy to complete (8 agree, 1 disagree, 3 neutral).

Most subjects found that the system was generally easy to use (10
agree, 1 disagree, 1 neutral). However, the average SUS score of 62.7
with a standard deviation of 13.1 also indicates that our current pro-
totype needs additional work on user interface and interaction design.
According to the work of Bangor et al. [8], this corresponds to an
adjective rating between ”OK” (50.9) and ”Good” (71.4). During
the interviews, we identified several issues that negatively affected the
usability assessment. For example, almost all participants found the
highlighting of the currently selected sequence path too subtle and
therefore had difficulties identifying it. Furthermore, many partici-
pants found it hard to understand the relationship between individual
simulation sequences and clusters. The behavior when selecting multi-
ple items in the cluster timeline was also considered to be confusing by
several subjects. The most commonly requested features were a way
to easily mark certain simulation sequences as favorites and the ability
to compare them side-by-side. As we had anticipated, many partic-
ipants did not find the parameter view particularly useful. However,
several subjects indicated that the integration of additional interaction
functionality such as the filtering of parameter values would make this
component more valuable.

In general, the response of the visual effects specialists was par-
ticularly encouraging. All of them indicated that they would like to
use our system in production as soon as some minor quirks are re-
solved and some of them were interested in having the current version
of the software installed on their workstations immediately. The abil-
ity to visually explore parameter variations was highly appreciated,
and comments such as ”This can save me many hours of work” and
”Instead of spending my time doing guesswork, this system does the
guesswork for me” left us with the impression that our approach can
provide a valuable addition to the production process. A common use-
case the professionals found particularly exciting was the ability to
easily generate multiple variations of a particular effect for review by
supervisors and clients. Additionally, there were many requests about
applying our general concept to other common tasks such as cloth and
crowd simulation. Based on the overwhelmingly positive feedback
we received, we are currently working on addressing the main usabil-
ity issues and integrating feature suggestions. Within the upcoming
months, we plan to provide an updated version of the software to the
visual effects artists for beta testing in production use.

8 CONCLUSION

In this paper, we presented a visualization system for the exploration
of simulation parameter settings in visual effects design. Current soft-
ware tools provide no visual guidance in the parameter selection pro-
cess and artists have to resort to a time-consuming and cumbersome
trial-and-error strategy. Our system samples the parameter space and
employs a novel approach for clustering the resulting volumetric time
sequences in order to discover characteristic variations in relation to
their temporal evolution. Our novel visual representation of the clus-
tering results enables exploration of the simulation space at different
temporal levels-of-detail and provides an instant overview. Using our
result-driven interactive visual exploration environment gives users the
ability to find simulation sequences based on a particular artistic vi-
sion.

The main contribution of this paper is the general concept of a vi-
sualization system for the phenological exploration of simulation data.
To the best of our knowledge, our system is the first that specifically at-
tempts to make modeling of difficult natural phenomena accessible to
the non-technical practitioner. Our approach for segmenting and clus-
tering volumetric time series deliberately makes minimal assumptions



and attempts to classify the data based on their observable characteris-
tics. Although our methods were developed with a specific application
in mind, the proposed techniques may also be useful in other scenarios.
In particular, cloth modeling and other animation effects that are based
on intrinsically computationally expensive or mathematically complex
models may benefit from the described methods. Furthermore, the in-
vestigation of the parameter distribution in relation to clusters solely
based on the characteristics of the output data may be an interesting
alternative approach to conventional analysis methods for general sim-
ulation data.

A further direction for future work involves the integration of com-
putational steering into our system. Ideally, one would like to be able
to derive the parameters for a set of desired output characteristics from
a sparse set of samples. One approach could be to employ key frame
information specified using our blending mechanism directly as the
basis for an optimization strategy based on a multi-objective evolu-
tionary algorithm [29].

ACKNOWLEDGMENTS

The authors wish to thank Steve DiPaola and Blair Tennessy for their invaluable
help in conducting the user study as well as Melanie Tory for her assistance in
designing the protocol. The work presented in the paper was funded by the
Natural Sciences and Engineering Research Council of Canada (NSERC).

REFERENCES

[1] W. Aigner, S. Miksch, W. Müller, H. Schumann, and C. Tominski. Visu-
alizing time-oriented data - a systematic view. Computers & Graphics,
31(3):401–409, 2007.

[2] H. Akiba and K.-L. Ma. A tri-space visualization interface for analyzing
time-varying multivariate volume data. In Proceedings of EuroVis 2007,
pages 115–122, 2007.

[3] H. Akiba, K.-L. Ma, and N. Fout. Simultaneous classification of time-
varying volume data based on the time histogram. In Proceedings of
EuroVis 2006, pages 1–8, 2006.

[4] H. Akiba, C. Wang, and K.-L. Ma. AniViz: A template-based animation
tool for volume visualization. IEEE Computer Graphics and Applications
(to appear), 2010.

[5] N. Andrienko, G. Andrienko, and P. Gatalsky. Exploratory spatio-
temporal visualization: an analytical review. Journal of Visual Languages
& Computing, 14(6):503–541, 2003.

[6] M. Ankerst, S. Berchtold, and D. Keim. Similarity clustering of dimen-
sions for an enhanced visualization of multidimensional data. Proceed-
ings of IEEE InfoVis 1998, pages 52–60, 1998.

[7] A. Bangor, P. Kortum, and J. Miller. An empirical evaluation of the sys-
tem usability scale. International Journal of Human-Computer Interac-
tion, 24(6):574–594, 2008.

[8] A. Bangor, P. Kortum, and J. Miller. Determining what individual SUS
scores mean: Adding an adjective rating scale. Journal of Usability Stud-
ies, 4(3):114–123, 2009.

[9] D. Birant and A. Kut. ST-DBSCAN: An algorithm for clustering spatial-
temporal data. Data & Knowledge Engineering, 60(1):208–221, 2007.

[10] G. Daniel and M. Chen. Video visualization. In Proceedings of IEEE
Visualization 2003, pages 409–416, 2003.

[11] N. Elmqvist, J. Stasko, and P. Tsigas. Datameadow: A visual canvas for
analysis of large-scale multivariate data. In Proceedings of VAST 2007,
pages 187–194, 2007.

[12] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. In Proceed-
ings of Knowledge Discovery and Data Mining 1996, pages 226–231,
1996.

[13] J. Fails, A. Karlson, L. Shahamat, and B. Shneiderman. A visual interface
for multivariate temporal data: Finding patterns of events across multiple
histories. In Proceedings of VAST 2006, pages 167–174, 2006.
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