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Fig. 1: The left half of the figure demonstrates the consistency in smoothing of our method compared to the existing method. The
right half of the figure demonstrates the de-noising capabilities of our method. All the images from (a-c) were obtained by rendering an
iso-surface of 153. (a) Diffused with an existing diffusion model proposed by Krissian et al. [20] with k = 40, and 100 iterations (b) The
original Sheep’s heart data. (c) Diffused with our method with σ = 1 and the same number of iterations. The yellow circle indicates
a region where the iso-surface has both high and medium range gradient magnitude, and the blue circle marks a region where the
gradient magnitude is much lower. Note the inconsistent smoothing in (a) inside the yellow circle. (d) The tooth data contaminated
with Poisson noise (SNR=12.8) (e) The original tooth data (f) Diffused with our method (SNR=25.76) with σ = 1 and 25 iterations. We
used the exact same transfer function to render all the images in (d-f).

Abstract— In this paper we present a novel anisotropic diffusion model targeted for 3D scalar field data. Our model preserves material
boundaries as well as fine tubular structures while noise is smoothed out. One of the major novelties is the use of the directional
second derivative to define material boundaries instead of the gradient magnitude for thresholding. This results in a diffusion model
that has much lower sensitivity to the diffusion parameter and smoothes material boundaries consistently compared to gradient
magnitude based techniques. We empirically analyze the stability and convergence of the proposed diffusion and demonstrate its
de-noising capabilities for both analytic and real data. We also discuss applications in the context of volume rendering.
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1 INTRODUCTION

The core of volume visualization and volume rendering has been the
extraction and presentation of the salient features in the volume. Of-
ten times, the data at hand has been corrupted by noise (e.g. Ultra-
sound [39], MRI or data range scanners [32]) or the salient features of
interest are fine structures, like the tubular vessel structures [20] or the
cell walls in microscopy [24]. Usually, these types of data can not be
properly processed by a volume rendering pipeline, since both transfer
function based approaches [33] as well as topological approaches [8]
will break down and not yield a comprehensible view of the data. In all
of these cases, a pre-processing step is needed in order to prepare the
data for visualization and analysis purposes. A very powerful frame-
work for this purpose is diffusion.

A simple Gaussian blur usually destroys a lot of features together
with noise artifacts in an isotropic / indiscriminate way. Hence, the
concept of anisotropic diffusion has been introduced by Perona and
Malik in 1990 [26] (summarized in Section 2) and has become one of
the most popular techniques in image and volume processing. Many
different variants of anisotropic diffusion have since been introduced.
One of the core drawbacks, however, of any diffusion model has been
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the non-intuitive setting of some parameters attached with it. This is
typically rooted in the fact that the diffusion is controlled by the gradi-
ent magnitude of the underlying function. In most practical cases the
distribution of gradient strength of salient boundaries is not known a
priori. In fact a single gradient magnitude threshold rarely defines all
the salient features within the data. Hence, the diffusion algorithm of-
ten needs to be re-fined for each new data set or each new application.

In this paper we attempt to address these problems of the existing
non-linear diffusion techniques. Our main contributions are:

• We derive an anisotropic diffusion equation with the following
features (see Section 3.1):

– No diffusion is performed along the gradient direction.

– Diffusion is stopped around the edge locations.

– Diffusion is performed anisotropically along the direction
of the minimum curvature.

– Isotropic diffusion on the tangent plane of the normal in
regions where the local iso-surface is isotropic in shape.

• We create a stopping function, that is based on the second deriva-
tive in the gradient direction, which allows us to create a robust
diffusion algorithm, insensitive to parameter tuning (see Sec-
tion 3.1).

Section 4 introduces an efficient way to compute our diffusion equa-
tion using the principal curvatures and therefore reducing the computa-
tional burden inherit in the scheme. In Section 5 we will discuss some
properties of our proposed diffusion model along with aptly demon-
strating its advantage over the gradient based method [20]. We will



follow this by demonstrating the de-noising property of our model in
Section 6. In Section 6.1, we will perform an empirical analysis of
convergence and stability and then critically compare the de-noising
performance of our method with a very recent anisotropic diffusion
based de-noising filter [19]. Finally, in Section 7 we will discuss some
potential applications in volume visualization.

2 PREVIOUS WORK

Throughout the paper we will use the notation f and t to denote a real
valued scalar function and the time dimension respectively.

2.1 The Perona and Malik Model

To alleviate the problem of isotropic diffusion, which is similar to
Gaussian blurring, Perona and Malik [26] proposed an anisotropic dif-
fusion scheme, which we will refer to as the PM model for brevity,
given by the following:

∂ f

∂ t
= div(h(‖∇ f‖)∇ f ) (1)

The function h(‖∇ f‖), termed stopping function, is usually a mono-
tonically decreasing function with function values around one for
smaller arguments. Perona and Malik [26] also proposed two such
h functions and one of them is given below:

h(α) = e−
1
2 (

α
S )

2

, (2)

With such an h(·) function this approach does tend to preserve certain
edges given the parameter S in Equation (2) is chosen carefully which
is often not trivial and data dependent.

2.2 Generalizations in 2D

Carmona et al. [7] generalized the classical PM [26] model (in 2D) in
a more intuitive way - performing diffusions along the gradient and
the orthogonal direction to the gradient as given by the following:

∂ f

∂ t
= c(·)

(

a(·) fnn +b(·) fvv

)

(3)

Here a and b are some scalar functions modulating diffusion along
the gradient direction n = ∇ f/‖∇ f‖ and the orthogonal direction to

the gradient, v = n⊥ respectively. Here, c is a scalar function, usually
called the stopping function, that modulates the overall diffusion. The
notation fnn and fvv denotes the directional second derivative along
the gradient direction n and the orthogonal direction v respectively.

2.3 Extensions to 3D

(a) Without curvatures (b) Original (c) With curvatures

Fig. 2: Iso-surface (iso-value=100) rendering of the tooth data showing
effects of taking principal curvatures into account during diffusion. (a)
Diffused isotropically on the tangent plane of gradients without taking
principal curvatures into account. (b) Without any diffusion. (c) Diffused
anisotropically taking principal curvatures into account.

A straightforward extension of the PM model to 3D, as it was gen-
eralized by Gerig et al. [11], remains isotropic on the tangent plane
of the gradient. This isotropic behavior on the tangent plane may de-
stroy fine tubular structures which are vital, for example, in 3D med-
ical imaging. Figure 2 clearly shows how tubular structures get de-
stroyed when diffusion is performed isotropically on the tangent plane

without taking principal curvatures1 into account. Therefore Weick-
ert [37] classifies the PM model and higher order diffusion processes
as non-linear rather than anisotropic. Thus far, the majority of pre-
vious work on these higher order PDEs are based on 2D solutions.
On the other hand, a true anisotropic diffusion in arbitrary dimension
is usually derived from the diffusion tensor notation [38] and has the
following form:

∂ f

∂ t
= div(D∇ f ) (4)

were D is a matrix known as diffusion tensor.
To address this, Krissian et al. [20] proposed a true anisotropic dif-

fusion model (referred to as KM model in the remainder of the paper)
whereby diffusion would be performed primarily along the direction
of the minimum curvature. However, their underlying formulation was
based on that of the gradient based PM model. They have a gradient
threshold parameter k and the edges in a volume get implicitly defined
by locations where ‖∇ f‖ > k. However, the tuning of this parameter
is difficult and very much data and application dependent. Different
values for this parameter can lead to drastically different smoothing
effects as we will demonstrate later. Therefore the KM model inher-
its similar problems related to this threshold parameter as the classical
PM model. Nonetheless, the KM model based on principal curvatures
is truly anisotropic in nature. In a later work, Krissian [18] proposed
a flux-based anisotropic diffusion which is based on a directional first
derivative, i.e. the gradient measured along a direction vector, while
the author himself acknowledged the difficulty of choosing a correct
threshold parameter for this directional first derivative.

Recently Mosaliganti et al. [24] reaffirm the problems of the gradi-
ent threshold based stopping function as found in PM or KM models
and proposed a new anisotropic diffusion in 3D that is able to automat-
ically detect and enhance specifically plate like structures in a 3D mi-
croscopy image of cell membranes. Beside being specific to a partic-
ular problem domain, i.e. detecting cell membranes which are largely
planar, their method has at least four different user tunable parameters
which makes it hard to apply in a practical setting.

Therefore, the problem of developing a robust general purpose
anisotropic diffusion that respects edges in a 3D volume in a mean-
ingful way remains open.

On the other hand, several interesting works have been done on
anisotropic diffusion using level sets, for example Nemitz et al. [25]
evolved a separate level set function to capture the tubular structures of
3D angiography data. This work is different in the sense that the level
set function attempts to restore tubular structure using shape priors
even when they may be broken. Other interesting level set methods
were proposed by Preusser et al. [28] and Tasdizen et al. [32] where
diffusion is performed on a level set and the definition of edge is based
on curvatures that is measured on the surface of the level set. This
is different from our method where edge is defined by the directional
second derivative along gradient and this is measured across level sets.

2.4 Denoising

A variant of anisotropic diffusion, also known as SRAD, has been de-
veloped to specifically de-noise speckle noise in 2D by Yu and Ac-
tion [40], which was then extended to 3D by Krissian et al. [21] and
Sun et al. [31]. Both SRAD and 3D SRAD use a local statistical mea-
sure to define the stopping function. Very recently Krissian and Aja-
Fernández [19] proposed a noise-driven anisotropic diffusion that is
able to remove Rician noise from a 3D MRI volume, and this method
too uses statistical measures similar to that of the 3D SRAD [21]. Both
of these methods require the user to specify a region of interest for the
estimation of noise.

State-of-the art image de-noising techniques are often based on
techniques such as bilateral filtering [34], mean-shift filtering [10], or
non-local means [6]. These techniques are often related to diffusion
processes. Barash et al. [4] showed that bilateral filtering, mean-shift,

1Principal curvatures, measured at a point, are the minimum and the maxi-
mum curvatures of the level set surface passing through that point.



and non-linear diffusion are indeed equivalent and use gradient mag-
nitude to decide on the amount of diffusion/smoothing.

3 PROPOSED ANISOTROPIC DIFFUSION

Kindlmann and Durkin [14] used the directional second deriva-
tive along the normal direction as a measure for edge locations.
They pointed out that, for a simple 1D case, an edge could be
modeled using the error function [16] as plotted in Figure 3.

Fig. 3: The red solid curve
is the error function while
the dashed black curve is
the second derivative of it.
Note the second derivative
crosses zero at the edge of
the error function.

This is a fair assumption as all mea-
suring devices are band-limited and
so sharp edges get convolved with a
Gaussian type point spread function
upon sampling. Therefore an edge
location can be defined by the zero-
crossing of the second derivative, a
technique commonly used in computer
vision [22]. The same idea can be ap-
plied in 3D by measuring the direc-
tional second derivative along the nor-
mal direction and checking for zero-
crossing to define the edge/boundary
locations.

For the rest of the paper we will re-
strict our attention to a 3D scalar func-
tion f : R3 → R. We will use the no-
tation fv to denote a directional first derivative along a unit vector v
which is simply given by fv = 〈∇ f ,v〉, where 〈·, ·〉 denotes the inner
product. Similarly, we will use the notation fvv to denote a directional
second derivative measured along a unit vector v and this is given by

fvv = vTHv, where H is the 3D Hessian (see Section A of the Ap-
pendix in the supplementary material for details). Therefore, using
the notation n = ∇ f/‖∇ f‖ as the normal vector we will denote the
directional second derivative along the normal with fnn.

In the following subsection we will derive a PDE with the following
objectives in mind:

O-1 No diffusion will be performed along the gradient direction.
This is one of the major differences our proposed diffusion model
has with that of the classical ones [20, 26]. An edge in a 3D
volume will be a surface which is perpendicular to the normal n.
Not diffusing along n prevents blurring across an edge.

O-2 Diffusion will be stopped around the edge locations. Diffusion
can be stopped in locations where fvv = 0, a condition which
will be satisfied in both constant homogeneous regions and edge
locations. However, stopping diffusion in constant homogeneous
regions creates no problem as diffusion in such regions would not
have any effect.

O-3 Diffusion will be performed anisotropically along the direc-
tion of the minimum curvature. In accordance to the work of
Krissian et al. [20], this motivation was derived from the fact
that fine tubular structures, e.g. blood vessels in a CT scan, get
preserved.

O-4 Diffuse isotropically on the tangent plane of the normal n in
regions where the local iso-surface has similar principal cur-
vatures. On the surface of a sphere, for example, where both the
principal curvatures are fairly close to each other, it makes more
sense to diffuse isotropically on the tangent plane of n, rather
than choosing one direction, which might lead to undesirable ar-
tifacts, as is the case with Krissian et al. [20].

3.1 Our PDE Model

Consider a simple 1D heat equation as follows:

∂ f

∂ t
= c fxx (5)

The solution of the above Equation (5) can be approximated very well
by convolving the function locally with a 1D Gaussian kernel. We will
use this insight to design our new anisotropic diffusion in 3D with the
goals described in the previous subsection in mind.

In 3D, we can use the directional derivatives along the directions
given by three orthonormal bases, r1,r2 and n at a point and write our
diffusion equation as the following:

∂ f

∂ t
= h(·) fr1r1 +g(·) fr2r2 +w(·) fnn (6)

where h(·),g(·) and w(·) are some scalar functions and the vector n
is the normal direction. We emphasize that the PDE model given
in Equation (6) is different from the diffusion tensor model (4). At
this point we will take the vectors r1 and r2 to be the directions
associated with the minimum curvature, κ1, and maximum curva-
ture, κ2, respectively such that |κ1| ≤ |κ2|. By definition, the vectors
r1,r2 and n form an orthonormal bases and thus fit our proposed diffu-
sion model. We will also set the scalar functions such that g(·) = τh(·)
and w(·) = ηh(·) where τ,η ∈ [0,1]. With this setup, Equation (6) can
be re-written:

∂ f

∂ t
= h(·)( fr1r1 + τ fr2r2 +η fnn) (7)

Without referring to the exact argument of the scalar function h(·) yet,
Equation (7) models an anisotropic diffusion which can be intuitively
thought of as the summation of the local convolutions of three different
1D Gaussian kernels oriented along the three associated vector fields
(compare each term of the diffusion with Equation (5)). The amount of
diffusion along the maximum curvature direction r2, and the normal
direction n are modulated by τ and η respectively, while diffusion
is always performed along the minimum curvature direction r1 and
finally the overall diffusion is modulated by the scalar function h(·),
which we will call the stopping function.

We will set η = 0 for the rest of the paper to achieve objective O-1.
To fulfill objectives O-3 and O-4 together we will replace the notation
τ with τρ which is defined by the following:

τρ =







(

κ1,ρ

κ2,ρ

)2λ
where |κ2,ρ |> 0,λ ∈ Z

1 κ2,ρ = 0
(8)

where the quantities, κ1,ρ (the minimum curvature) and κ2,ρ (the max-
imum curvature), are computed from a smoothed version of the data
fρ with a Gaussian filter having a small variance ρ2. The technique of
taking measurements from a smoothed volume fρ is common in many
PDE based methods specially under noisy conditions and we will dis-
cuss the effect of having a small ρ in section Section 6. We will use
the notation ρ = 0 to imply that f was used to compute the curva-
tures instead of the smoothed version fρ . With the above definition,
τρ drops quickly to values very close to 0 whenever the maximum
curvature |κ2,ρ | is higher than the minimum curvature |κ1,ρ |, i.e. the
surface is not isotropic. In this case, diffusion is performed primarily
along the minimum curvature direction r1. For an isotropic surface
where |κ1,ρ | = |κ2,ρ | and a degenerate case, where |κ2,ρ | = 0 (note
that |κ1,ρ |≤ |κ2,ρ |), τρ gets assigned to 1 which amounts to perform-
ing simple isotropic diffusion on the tangent plane of n. The exponent
of Equation (8) is always an even integer which makes sure that we
are comparing only the absolute values of the curvatures.

Objective O-2 can be addressed by computing the second derivative
along the gradient direction, fnn and stop diffusion whenever fnn ≈ 0.
To model this we can define the function h(·) such that it is continuous
and approaches 0 for an argument close to 0 and 1 otherwise. For this
we can simply modify the functions proposed by PM [26] as follows:

h(α) = 1− e− ln( 10
9 )(

α
σ )

2

= 1− (0.9)(
α
σ )

2

, σ ∈ R (9)

The scaling factor of ln(10/9) (Equation (9)) is there so that we have
h(α)< 0.1, which we considered to be very little diffusion, whenever
|α | < σ . This allows a more intuitive relationship between the argu-
ment α and the parameter σ . However, for a different purpose, this
scaling factor could be changed or just simply be omitted. Using fnn

as the input to h(·) we essentially fulfill all four objectives we had set
for ourselves. We finally present our anisotropic diffusion PDE by the
following equation:

∂ f

∂ t
= h( fnn)( fr1r1 + τρ fr2r2 +η fnn) (10)



(a) Original (b) ‖∇ f‖ map (c) KM method: k = 40 (d) KM method: k = 80 (e) Our method: σ = 1 (f) Our method: σ = 10

Fig. 4: Iso-surface (iso-value=153) rendering of the Sheep’s Heart dataset. A section of the front part of the iso-surface has been culled to make
the inner details visible. Except for (b) all the other images were rendered with shadows to clearly show the spatial arrangement of the iso-surface.
The blue circle shows a region of low gradient magnitude, while the yellow circle shows a region where medium and high gradient magnitude meet.
All diffusions were performed with 35 iterations and with the same time stepping. (a) Original dataset without any diffusion. (b) Gradient magnitude
on the iso-surface coded in gray-scale; magnitude greater or equal to 130 is mapped to white while 0 is mapped to black. (c) Diffused with the KM
method with k = 40. (d) Diffused with the KM method with k = 80. (e) Diffused with our method with σ = 1. (f) Diffused with our method with σ = 10

4 IMPLEMENTATION

Krissian et al. [20] have shown that we could skip computing the prin-
cipal curvature directions, which usually involves expensive eigen-
value decomposition of some matrix [15, 35], altogether and compute
the quantities fr1r1 and fr2r2 directly using the following relationships:

fr1r1 =−‖∇ f‖κ1, fr2r2 =−‖∇ f‖κ2 (11)

In the above, κ1 and κ2 can be computed in a straightforward fashion
by the following

κi = K ±
√

K2 −G, i ∈ {1,2} : |κ1|≤ |κ2| (12)

where G and K are the Gaussian and Mean curvatures respectively.
These can be computed directly from the first and second derivatives
as given by Goldman [12]:

G =
1

‖∇ f‖4
∇ fTHc∇ f

K =
1

2‖∇ f‖3

(

∇ fTH∇ f −‖∇ f‖2 trace(H)
)

where Hc (see Section A of the Appendix in the supplementary mate-
rial for details) is the co-factor matrix of the Hessian H. Computation
of both G and K can be implemented very efficiently without perform-
ing the actual matrix multiplications by expanding the equations as
summations first (see Section B of the Appendix in the supplementary
material).

Taking the relations given by (11), Equation (10) can be written
more compactly and in matrix form as the following:

∂ f

∂ t
=−h(nTHn)

(

‖∇ f‖(κ1 + τρ κ2)−ηnTHn
)

(13)

Note that κ1 and κ2 in the above equation are measured from f
whereas τρ is measured from fρ where ρ is usually 1 when diffusion
is used for the purpose of de-noising (see Section 6) and 0 otherwise.

5 RESULTS AND DISCUSSION

In this section we will first demonstrate the shortcomings of the clas-
sical anistropic diffusion, proposed by Krissian et al. [20] - referred
to as KM model for brevity - which in turn was based on the gradient
magnitude, i.e. PM model [26] and compare the results with our novel
approach. Next we will show the impact of the parameter σ , in Equa-
tion (9), of our method on the final output. We will then follow the
discussion showing diffusion results using higher order derivative fil-
ters and finally provide empirical analysis of stability and convergence
of our PDE.

5.1 Parameter Settings

For all the diffusion experiments performed in this section we have
set λ = 2 in Equation (8). Voxel spacing was assumed to be 1 in all

directions and scalar values, which ranged between [0,255], in the 3D
volumes were not scaled. For the time step we have chosen ∆t = 0.05,
and η = 0 (no diffusion along the gradient direction) for the rest of
the paper and we have used f without smoothing, i.e. ρ = 0. For all
derivative estimations we have used the standard second-order stencils
unless specified otherwise.

5.2 The Impact of the Stopping Function

In this section we will use the Sheep’s Heart dataset [29] and demon-
strate the sensitivity of the KM method to the parameter chosen. Like-
wise, we will show the robustness of our novel method with respect to
its parameter and yet give a compelling example of its importance.
In our experiment, we chose Equation (2) and Equation (9) as the
stopping functions in the KM method and h(α) in our new proposed
method, respectively, and used 35 iterations for both diffusion models.

Figure 4 demonstrates the sensitivity of the KM method to its pa-
rameter k. The yellow circle marks an area where regions of small
gradient magnitude merge with regions of higher gradient magnitude
(see Figure 4b). Figure 4c, which was diffused with the KM model
at k = 40 shows the selective nature of this method. Regions with a
low gradient magnitude diffused much more compared to regions with
higher gradient magnitude. On the other hand, regions having very
low gradient magnitude (the blue circle) got diffused the most. As the
value of k was increased to 80 (Figure 4d) a dramatically different out-
put was produced. Here, regions inside the blue circle got diffused to
the point of loosing structure while those with higher gradient mag-
nitude (the lower part of the yellow circle) just started to get diffused.
We also refer readers to Figure 1 (a-c) to see this selective nature of the
KM method based on gradient magnitude and the resulting artifacts af-
ter 100 iterations were performed. A single iso-surface rendering may
not tell the full story sometimes and for this reason we provide 2D
slices of the same experiment (as performed for Figure 4) in Section
D of the Appendix in the supplementary material.

On the other hand, our method has been found to be more robust
with respect to its parameter σ . Unlike the KM model, smoothing of
an iso-surface in our approach is performed consistently without any
discrimination based on the gradient magnitudes. Since the param-
eter σ in our model is tied to the directional second derivative, fnn,
it has a more intuitive impact on the overall diffusion process; i.e.
decreasing σ amounts to smoothing a larger range of fnn. This can
be thought of removing high frequencies from the 3D volume except
near the boundaries between relatively homogeneous regions, where
fnn approaches zero and the stopping function h( fnn) approaches zero
too making the diffusion stop (see Equation (13)). The sensitivity of
parameters in both the KM and our proposed model is further illus-
trated in two separate animations we provide as supplementary mate-
rials (KM K effect.avi and sigma effect.avi respectively).
For both animations, we only changed the parameters k and σ for the
KM and our model respectively and ran 35 iterations of diffusion while



all the other parameters were kept the same.

5.3 Significance of σ

In our previous examples, we have demonstrated the robustness of our
new diffusion model with regards to the parameter σ . However, this
robustness is observed for points away from zero. In this section, we
argue with an appropriate example that the role of σ around zero is
critical.

(a) Original (b) h(·) = 1 (c) σ = 40

Fig. 5: Iso-surface rendering of a sampled phantom data with spheres.
The value inside the spherical regions were 255 and 0 elsewhere. The
volumes in (b) and (c) were diffused with 300 iterations. (a) The original
volume (b) Diffused with h(·) = 1 (c) Diffused with Equation (9) set as
h(·) with σ = 40.

A quick look at Equation (13) immediately reveals that having the
stopping function h(·) always evaluate to 1 with η = 0 makes the diffu-
sion similar to the well known mean curvature motion [23] (assuming
τ ≈ 1, i.e. on isotropic surfaces, like a sphere) except for the extra
modulating term of ‖∇ f‖. However, on the surface of a sphere, for
example, ‖∇ f‖ is constant and simplifying h(·) to 1 essentially makes
Equation (13) a mean curvature motion diffusion in such a case. Mean
curvature motion is a well studied diffusion scheme where spheri-
cal structures shrink until they disappear, which may not be desirable
when preserving structures in a 3D volume.

To verify this we created a phantom dataset with several spherical
regions of different sizes and diffused it once by making h(·) a con-
stant 1 and the other by using Equation (9) with σ = 40. Figure 5
aptly demonstrates the significance of the parameter σ . When the
phantom data was diffused with σ = 40 (Figure 5c) the basic struc-
ture of the original data, Figure 5a, was retained except for the very
small spheres. On the other hand when the stopping function h(·) was
set to a constant 1, Figure 5b, the overall diffusion converged to a
simple mean curvature motion and the structure was destroyed. Our
supplemental material includes animations that show the full evolution
of the diffusions as given in Figure 5b (sigma unity.avi), and 5c
(sigma 40.avi).

5.4 Impact of Derivative Estimation Filters

To implement Equation (13) we need to compute the principal cur-
vatures which require second order derivatives for the Hessian H in
addition to the gradient components. Since we are computing all these
quantities from sampled data the quality of the derivative estimation
filters plays an important role.

We used the Taylor Series based framework proposed by Hossain et
al. [13] to construct discrete derivative estimation filters of error order
2-EF and 4-EF 2. Usually for real data where the polynomial order of
the underlying function is not known apriori, a 4-EF filter has been
found to yield more accurate results than 2-EF.

For our experiment, we used an Angiography dataset [5] in which
the blood vessel were the focus of the study. We used the same dif-
fusion parameters (σ = 1) and only varied the first and second order
derivative filters. Figure 6 demonstrates that the higher order filter
(4-EF) preserves more details in the blood vessels while still remov-
ing some of the spurious elements.

5.5 Stability and Convergence

We performed empirical tests of stability and convergence whose de-
tails can be found in Section C of the Appendix. We learned that with

2A filter is called n-EF , where EF stands for Error Filter, if it estimates a
given derivative with error bounded by O(hn), where h is the grid spacing.

(a) Original

(b) 2-EF (c) 4-EF
Fig. 6: Direct volume rendering of an angiography dataset of a human
head. The red circles mark the regions where the images had noticeable
differences. (a) The original dataset. (b) Derivatives estimated using
2-EF filters. (c) Derivatives estimated using 4-EF filters.

ρ = 1 (in voxel units) and all the other parameters kept the same as
Section 5.1, including σ = 1, the time stepping of ∆t ≤ 0.4 is stable
for most practical purposes. The choice of ρ = 1, which is common
in many diffusion methods, was made only to have a better smoothing
behavior in a relatively homogeneous region under noise, and this has
little effect on the stability. This parameter ρ is useful only for the
purpose of de-noising and the value of 1 yields best results for most
noise types as we will demonstrate in the next section. Therefore for
the rest of the paper we keep all the parameters the same as Section 5.1
except ρ = 1 and ∆t = 0.40.

6 DE-NOISING PROPERTIES OF OUR PROPOSED MODEL

Although our proposed PDE model is a general purpose smoothing
technique to evolve a 3D volume over time removing small high fre-
quency details while preserving edges it exhibits de-noising properties
too. On the other hand, general purpose de-noising techniques have
been formulated previously, e.g. simple bi-lateral filtering, which has
been shown to be a variant of gradient magnitude based non-linear dif-
fusion by Barash and Comaniciu [4]. Because of the drawbacks of the
gradient magnitude based models, the equivalent de-noising operators
inherit similar problems. Further, anistropic diffusion in 3D based on
the KM model is very sensitive to the parameter choice. Therefore,
none of these existing techniques would be well suited for de-noising
in 3D without facing difficulties.

In this subsection we will discuss, both qualitatively and quantita-
tively, the de-noising properties our proposed PDE model has in the
context of the four common noise types: additive Gaussian noise, ad-
ditive Poisson noise, multiplicative Speckle noise and Salt and Pepper
noise. We chose the Tooth dataset [29] which is relatively noise-free
and diffused it using our proposed method after adding a particular
type of noise. For all the experiments we have set the parameters as
described in Section 5.5.

Figure 11 summarizes the de-noising properties of our proposed
anistropic diffusion model and it shows that our proposed method
could de-noise the tooth data quite well in all four cases. Our method
works best with Salt and Pepper noise which is of no surprise be-
cause Salt and Pepper noise introduces random and very local blob
type artifacts in the volume that get removed immediately and remark-
ably well. For Gaussian noise and Poisson noise, our method per-
formed similarly well on both occasions. Speckle noise turned out
to be the hardest to tackle of all, which is not surprising, and yet
our method performed well achieving an SNR of over 24.5 dB (see
Figure 11). We also provide animation sequences to show the de-
noising process for each noise type listed in Figure 11 as supplemen-
tary materials: gaussian.avi, poisson.avi, speckle.avi,
and salt-pepper.avi.

In Figure 7 we present a qualitative result of our diffusion model
applied to a 3D Ultrasound data of human liver [27] with a size of



Table 1: Performance evaluation of different diffusion methods: our method, SRNRAD and ORNRAD, on different types of naturally occurring
noise. The best performing result for each metric is highlighted with a bold number while the second best is underlined. For the Rician noise we
used a standard deviation of 20 similar to [19]. Note that there can be ties.

Gaussian Rician Poisson Salt & Pepper Speckle
MSE SSIM QILV MSE SSIM QILV MSE SSIM QILV MSE SSIM QILV MSE SSIM QILV

Noise 558.750 0.540 0.503 450.558 0.561 0.712 482.905 0.678 0.492 2202.452 0.476 0.022 493.013 0.714 0.455
SRNRAD 162.017 0.816 0.886 232.459 0.792 0.913 91.766 0.917 0.914 1262.760 0.625 0.033 84.301 0.929 0.906
ORNRAD 153.873 0.819 0.859 226.405 0.795 0.889 78.731 0.924 0.899 1114.028 0.642 0.101 78.308 0.929 0.863
Our 75.878 0.900 0.860 173.851 0.795 0.820 70.671 0.930 0.857 33.210 0.968 0.924 85.129 0.922 0.838

247× 208× 86, which has been sub-sampled from the original data
by a factor of two in each dimension. Ultrasound data are usually
contaminated with speckle noise and it is noteworthy how the noise
was lessened keeping all the vital structures intact even for a relatively
low resolution volume. Note how the tubular structures, which were
barely discernible in Figure 7a, stick out clearly in Figure 7b. When
we attempted to apply the KM model on this same dataset we faced
real challenges to pick a right value for the parameter k as we had no
prior knowledge about the gradient magnitude distribution around the
tubular structures and this itself speaks in favor of our method where
we could pick within a wide range of values for σ and still got some
decent and consistent results.

(a) Original (b) Diffused
Fig. 7: A 3D Ultrasound data diffused with our method using σ = 1 and
5 iterations. (a) The original volume (b) The diffused volume using the
same transfer function.

6.1 Comparison with other de-noising methods

In this section we will compare our method with two very recent
PDE based de-noising filters, namely Scalar Rician Noise-Reducing
Anisotropic Diffusion SRNRAD and Oriented Rician Noise-Reducing
Anisotropic Diffusion ORNRAD, proposed by Krissian and Aja-
Fernández [19]. These filters were designed to de-noise specifically
Rician noise in 3D MRI data. At a higher SNR, Rician distribution
converges to Gaussian distribution. According to Aja-Fernández et
al. [3], the noise estimator used by [19] is based on the variance es-
timation of additive Gaussian noise. This is, however, not an unfair
mismatch because the Rician noise converges to additive Gaussian
noise after few iterations. Therefore, we will also apply their filters
on additive Gaussian noise. It is worth mentioning that both SRN-
RAD and ORNRAD require users to manually specify a sub-volume
for the noise estimator. Further, to demonstrate the versatility of our
proposed method, we will apply all three methods on other types of
noise and show that our method can be applied equally well in most
types of naturally occurring noise types using exactly the same set of
parameters values.

For comparison we have chosen the same dataset as [19]: the sim-
ulated structural MR data [9], and used the same quantitative met-
rics - namely Mean Squared Error MSE, Structural Similarity Index
SSIM [36], and Quality Index Based on Local Variance QILV [2] - for
the quality assessment. In accordance to [19], we also discarded the
background, where the original noise-free volume is zero, from any
assessments. It is noteworthy to mention that we have used the exact
same Matlab script to compute these metrics as the authors of [19] and

for SRNRAD and ORNRAD we have used their own C/C++ imple-
mentations in the AMILab software [17].

Table 1 summarizes the performance of the three diffusion tech-
niques and we provide the corresponding images in Figure 12. In
terms of MSE, our method performed significantly better than both
ORNRAD and SRNRAD for all noise types except Speckle and Pois-
son, where the differences are close for the MSE metric. For the
SSIM metric, we find that our method again performed better than
both ORNRAD and SRNRAD for all noise types except Speckle where
the numerical difference is only in the third decimal place. It is rather
intriguing to find that our method tied with ORNRAD and actually
performed better than SRNRAD for the SSIM metric in the case of Ri-
cian noise, for which those two filters were specifically designed for.
Using the QILV metric, our method performed only marginally differ-
ent from the ORNRAD for all the noise types except Salt and Pepper
noise for which case our method clearly outperformed both ORNRAD
and SRNRAD by a large margin for all the three metrics. However, we
acknowledge that ORNRAD and SRNRAD were designed for Rician
noise (and should also work well for Gaussian) but this experiment
reveals that our proposed method, unlike many de-noising methods,
can be applied generally for all common noise types and still produce
decent results if not better in some cases and that too without re-tuning
parameters.

Figure 12 corroborates our numerical results although we see the
results yielded by ORNRAD and SRNRAD are visually smoother in
homogeneous regions. On the other hand we argue that the fine fiber
like structures as seen in the bottom left region of the original volume
were preserved better by our method.

Our method was implemented in Matlab where the values of

τρ ,κ1,κ2 and nTHn in Equation (13) were computed using MEX files
(C/C++ extension for Matlab) using only a single thread. Other com-
putations including all first and second derivative estimations and con-
volutions were performed using Matlab scripts. On the other hand
SRNRAD and ORNRAD were implemented as multi-threaded C/C++
codes in AMILab as mentioned in [19]. Table 2 reports average time
(in seconds) each method took per iteration when we ran them on
an Intel CoreTM2 Duo (2.4 GHz on each core) based system using
the MRI dataset. Table 2 shows that our method performs ≈ 14.4
times faster than ORNRAD despite our Matlab implementation. On
the other hand, though SRNRAD runs faster, a clear winner is not yet
obvious as most computations in our method were performed in Mat-
lab.

Table 2: Average time (in seconds) for each method per iteration while
diffusing the MRI dataset (181×217×181).

Our SRNRAD ORNRAD

Time/Iteration (seconds) 7.52 3.75 108.48

The proposed method is not only superior in run-time performance,
but is superior or comparable in both qualitative (Figure 12) and quan-
titative (Table 1) measures. In addition, we would like to re-emphasize
the ease of parameter choice in our method as we achieved all of these
performances using exactly the same parameter settings without re-
tuning.



7 IMPACT ON VISUALIZATION: 2D TRANSFER FUNCTION

Kindlmann and Durkin [14] proposed a 2D transfer function which
proved to be very powerful at classifying homogeneous regions and
boundaries in a 3D volume. In their method a 2D histogram would
be generated where the horizontal axis would be the function value
and the vertical axis would be the directional first derivative along the
gradient fn, a quantity that happens to be just the gradient magnitude,
i.e. fv = ‖∇ f‖. For a clean 3D scalar data this histogram will have arc
like patterns for every unique boundary in the volume. Because of its
importance in visualization, we show the utility of our novel diffusion
method in the context of this 2D transfer function. The counts in the
histograms are compressed with the function log10(x+1) - where x is
the actual count - before plotting them as pixels. Darker pixels denote
higher count. For brevity, we will omit the axes labels from the 2D
histogram images in this section.

(a) Gaussian (b) Salt and Pepper
Fig. 8: 2D histogram of the tooth dataset with two different noise types.
Each pair of images correponds to a noise type as indicated by the cap-
tion. The histogram on the left column of each pair was computed after
adding the noise and that of the right column after performing diffusion.

In Figure 8 we present the 2D histogram before and after diffu-
sion for two different noise types while a reference histogram of the
original dataset is provided in Figure 9a. It is remarkable to see how
each noise type changes the 2D histogram so dramatically while our
diffusion method brings the original pattern back to a recognizable
form. A closer inspection of Figure 8b reveals that our diffusion not
only removes the Salt and Pepper noise but also enhances the pattern
in the 2D histogram. This indicates that running our diffusion on a
clean dataset for the purpose of smoothing will also enhance its 2D
histogram. To verify this, we diffused the tooth data without adding
any noise and computed the 2D histogram in Figure 9 which shows
that the patterns in the histogram are indeed enhanced. This makes
sense because our diffusion was modeled in a way such that edges and
tubular structures are well preserved while small, high frequency de-
tails are smoothed out. Figure 10 immediately demonstrates an even
greater problem with the gradient magnitude based KM model where
the patterns in the 2D histogram get virtually destroyed whereas the
patterns get enhanced with our method instead.

(a) Original (b) Diffused

Fig. 9: Tooth data diffused without adding any noise. (a) 2D histogram
of the original tooth (b) Histogram of the tooth data after diffusion.

8 CONCLUSION

Often times, the salient features in 3D data are not easily detectable
by volume visualization methods, especially those based on simple
transfer function designs. Therefore there is often a need to pre-
process data in a reliable manner so that the salient features are pre-
served. Such pre-processing methods are often based on a smoothing

(a) KM model (b) Original (c) Our method

Fig. 10: 2D histogram of the Sheep’s heart dataset corresponding to
Figure 1 (a-c).

or anisotropic diffusion framework, which requires laborious parame-
ter tuning.

In this paper we have presented a novel anisotropic diffusion model
for 3D scalar data to address these issues. We have used an intuitive
definition for edges based on the directional second derivative along
the gradient. This led us to the design of a PDE with a stopping
function that is much less sensitive to its parameter σ and smoothes
data while preserving edges. We have shown that with this new
stopping function diffusion is performed consistently on an iso-surface
regardless of the gradient magnitude, which is in contrast to previ-
ous methods, like KM. Even more so, our proposed diffusion model
remains second order and much simpler to implement unlike higher
order and existing de-noising PDEs.

On the other hand, our results demonstrate some remarkable de-
noising properties of the proposed diffusion model. On this end, we
have compared our results with a recent PDE based de-noising tech-
nique on five different noise types.

With such consistent edge preserving smoothing and denoising
properties our diffusion model has great utility in the context of vi-
sualization. We demonstrated the effect of our diffusion model on
the quality of the rendered images using a variety of datasets, includ-
ing both synthetic and real. Further, we showed its impact on multi-
dimensional histograms, which are the basis of many volume render-
ing algorithms. Specifically, we are able to recover the arc patterns in
the histogram even in the presence of strong noise. In the noiseless
case, our diffusion has been found to still enhance these histograms
without re-tuning a parameter for each new dataset. This will eventu-
ally let the practitioner use our diffusion model as a general purpose
smoothing and de-noising tool without destroying salient features or
tuning a parameter.

9 FUTURE WORK

Convergence, stability requirements, and continuity of the underly-
ing function are not well understood in our method from a theoretical
standpoint, which will be our next goal. Apart from the theoretical
treatments, our method can also be studied more rigorously in the do-
main of de-noising. In addition, a comparison to non-local means [1,6]
has been planned as a future study.

Another interesting area of research would be to extend our method
for point based models and geometric meshes. For example, the classi-
cal PM model has been used within a level set framework [32], photon
mapping [30], and we speculate similar applications of our method in
such areas.
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Fig. 11: Each of the Figures (11a, 11b, 11c, 11d), was derived from an experiment performed with one particular type of noise, as indicated by
the corresponding captions. All the diffusions were performed with identical settings and for 25 iterations. Identical transfer functions were used to
render all the 3D images above. The profile plot in each figure is a 1-D plot of the scalar values taken from a slice as indicated by the yellow line in
the 2D images. The red curve is a plot of the original scalar values, the green curve is that of the noisy scalar values while the black curve is the
plot of the de-noised scalar values. Note how the black curve approximates the red curve for different noise types. SNR (in dB) of the noisy and
the diffused data are also provided for each experiment.
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Fig. 12: Comparison of x = 90 slice of the synthetic MRI data for each type of noise after diffusing with three different methods. The image in the
first row is taken from the original volume. After that, each row, going from top to bottom, corresponds to a particular noise type: Gaussian, Rician,
Poisson, Speckle and Salt and Pepper respectively. Images in the first column are taken from the noisy volumes, while those in the second, third
and fourth columns are taken from the volumes diffused with our, SRNRAD, and ORNRAD filters respectively.
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A CO-FACTOR MATRIX OF THE HESSIAN

Given a 3D scalar function f : R3 → R we will use the notation fxy to

denote the partial derivative ∂
∂x

∂ f
∂y

and the notation fxx to denote the

second derivative along x, i.e. ∂ 2 f
∂x2 and so forth. Using these notations

a Hessian matrix H can be written as the following:

H =





fxx fxy fxz

fxy fyy fyz

fxz fyz fzz





The co-factor of the Hessian, denoted by Hc, is another matrix where
every element is replaced by the co-factor of the corresponding ele-
ment in H, and the simplification is given below:

Hc =





fyy fzz − fyz fyz fyz fxz − fxy fzz fxy fyz − fyy fxz

fxz fyz − fxy fzz fxx fzz − fxz fxz fxy fxz − fxx fyz

fxy fyz − fxz fyy fxy fxz − fxx fyz fxx fyy − fxy fxy





B GAUSSIAN AND MEAN CURVATURE

Gaussian Curvature G is given by the following

G =
1

‖∇ f‖4

[

f 2
x

(

fyy fzz − f 2
yz

)

+2 fy fz
(

fxz fxy − fxx fyz

)

+

f 2
y

(

fxx fzz − f 2
xz

)

+2 fx fz
(

fyz fxy − fyy fxz

)

+

f 2
z

(

fxx fyy − f 2
xy

)

+2 fx fy
(

fxz fyz − fzz fxy

)

]

and the Mean Curvature K is given by

K =
1

2‖∇ f‖3

[

2 fy fz fyz − f 2
x

(

fyy + fzz

)

+

2 fx fz fxz − f 2
y ( fxx + fzz)+

2 fx fy fxy − f 2
z

(

fxx + fyy

)

]

where the gradient magnitude is ‖∇ f‖=
√

f 2
x + f 2

y + f 2
z .

C EMPIRICAL ANALYSIS OF STABILITY AND CONVERGENCE

For this analysis we only varied ∆t for each diffusion experiment keep-
ing all the other parameters the same. Let L2(i, j) denote the l2 norm
between the volumes f (x, i) and f (x, j) at iterations i and j respec-
tively during the evolution. This is given by the following:

L2(i, j) =

√

∑
x∈R3

(

f (x, i)− f (x, j)
)2

(1)

The Root Mean Squared Difference RMSD between two volumes at
iterations i and j, which is just the scaled l2 norm, can now be given
by:

RMSD(i, j) =
L2(i, j)√

V
(2)

where V is the total number of voxels and is a constant for a given
dataset. Considering the volume f (x,n) as a V dimensional point in

RV , the RMSD can be thought of as the Euclidean distance between

the volume at iterations i and j but only scaled by a constant 1/
√

V .
We define a quantity D(n), that measures the RMSD of the volume

at iteration n ∈ {0 . . .N} from the original volume, i.e. f (x,0) as given
below:

D(n) = RMSD(n,0) =
L2(n,0)√

V
(3)

Finally we define the rate of change of the Euclidean distance, scaled

by the constant 1/
√

V , with respect to time t between two successive
volumes at iterations n−1 and n by the following:

S(n) =
RMSD(n,n−1)

∆t
=

L2(n,n−1)

∆t
√

V
(4)

Note that the quantity S(n) is nothing but a numerical approximation

of the instantaneous speed, scaled by the 1/
√

V , of the evolution of

the volume f (x,n) ∈ RV at iteration n.
Now, for every ∆t we ran N iterations of diffusion on a dataset and

measured D(n) and S(n). The quantity D(n) will show how a volume
evolves with respect to the original volume in an l2 norm sense and as
well provide evidence of de-noising, which we will show later. On the
other hand S(n)→ 0 as n → ∞ will provide evidence of convergence
of our proposed PDE.

We used a simulated structural MR data, obtained from the Brain-
Web database (http://mouldy.bic.mni.mcgill.ca/brainweb/) for
this study. This data is noise free yet realistic with many details
and variation. Therefore, it is a good candidate for our test scenario.
The structural MR data contains 256 gray levels and has a size of
181×217×181.

In the first phase of the experiment we kept all the parameters the
same as Section 6 of the paper and only varied ∆t. Therefore, the
other parameters were: λ = 2, σ = 1, ρ = 1 (in voxel units) and voxel
spacing was assumed to be 1 in all directions and scalar values, which
ranged between (0,255). The 3D volumes were not scaled and a sim-
ple central differencing 2-EF filter-set was applied for all the derivative
estimations.

For each ∆t we ran N = 25 iterations. Figure 2 plots D(n) and S(n)
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Fig. 2: Plot of (a) D(n) and (b) S(n) for each ∆t (indicated by the legend),
with the noise-free MRI data.

for different values of ∆t as indicated by the legend. With the noise-
free MRI data, Figure 2b shows that for ∆t ≤ 0.4 the PDE behaves
well. However for ∆t ≥ 0.5, the speed S(n) drops less quickly until
∆t ≥ 0.55 when the PDE becomes unstable. However, the plot for
D(n) (Figure 2a) does not reveal anomalies until ∆t ≥ 0.6.

In the second phase of the experiment we added Gaussian noise
with zero mean and a variance of 0.01 (in a normalized scale) to the
synthetic MR data to add random high frequency variation to pose
a more challenging test for our proposed diffusion PDE in terms of
stability. This noisy volume has an SNR of 11.3056 dB. All other pa-



(a) Original (b) KM method: k = 40 (c) KM method: k = 80 (d) Our method: σ = 1 (e) Our method: σ = 10

Fig. 1: The 2D slice (z = 65) of the Sheep’s Heart dataset, after diffusing with the KM method and our method as used in Figure 4 of the paper. We
have also marked the same iso-surface of 153, as used in Figure 4 of the paper, with blue lines.

rameters were kept the same. For this experiment D(n) was measured
from the original noise-free MRI data. In Figure 3a, the slope of D(n)
is negative initially because the D(n) was measured from the original
noise-free MRI data and diffusion would bring the noisy data closer to
the original in an l2 sense with each iteration, i.e. the l2 norm would
progressively get reduced. This is an indication of de-noising taking
place. This time however, both Figure 3a and Figure 3b indicate that
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Fig. 3: Plot of (a) D(n) and (b) S(n) for each ∆t (indicated by the legend),
with the MRI data corrupted with the Gaussian noise.

for ∆t ≥ 0.55 the PDE becomes unstable. It is noteworthy that even a
bad SNR of 11.3056 dB did not drastically change the stability from
the one we found with the noise-free MRI data.

Finally, in the third phase, we used a 40×40×40 data volume of a
random signal uniformly distributed for values in (0,255). This poses
an even more challenging test of stability and convergence. Figure 4b
shows that even in the case of this random noisy volume the stability of
the PDE did not change for ∆t < 0.55. For 0.4 < ∆t < 0.55, although
the PDE eventually converged, Figure 4a reveals some oscillation in
D(n) in the first few iterations.

In all three experiments, the plot of S(n) showed that the PDE con-
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Fig. 4: Plot of (a) D(n) and (b) S(n) for each ∆t (indicated by the leg-
end), with a random data volume (40×40×40) uniformly distributed for
(0,255).

verged for ∆t ≤ 0.4 with ∆t = 0.4 yielding the fastest convergence. On
the other hand, the plot of D(n) in all three experiments revealed that
for ∆t ≤ 0.4 the PDE evolves without any oscillation. This led us to
believe that for the parameter settings used in the paper, augmented
with ρ = 1, our proposed PDE is stable for ∆t ≤ 0.4 for most practical
purposes.

D 2D SLICE OF SHEEP’S HEART WITH ISO-SURFACE MARK-

ING

Figure 1 shows 2D slices of the Sheep’s Heart dataset after diffusing it
with our method and the KM method as described in the paper. These
slices were taken from the 3D volumes as shown in Figure 4 of the
paper and the same iso-surface of 153 is marked with blue lines. Fig-
ure 1 demonstrates that our method is more robust with its parameter
σ compared to the gradient based KM method. A closer inspection
into the “inside” of the iso-surface reveals that our method preserves
structures better.


