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Abstract
In this paper, we develop an interactive analysis and visualization tool for probabilistic segmentation results in
medical imaging. We provide a systematic approach to analyze, interact and highlight regions of segmentation
uncertainty. We introduce a set of visual analysis widgets integrating different approaches to analyze multivariate
probabilistic field data with direct volume rendering. We demonstrate the user’s ability to identify suspicious
regions (e.g. tumors) and correct the misclassification results using a novel uncertainty-based segmentation editing
technique. We evaluate our system and demonstrate its usefulness in the context of static and time-varying medical
imaging datasets.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.3]: Picture/Image
Generation—Display algorithms

1. Introduction

Medical image segmentation is the procedure by which med-
ical images are partitioned into disjoint regions of homoge-
neous properties. In 3D magnetic resonance imaging (MRI)
or computed tomography (CT) images, the homogeneous re-
gions are those with similar anatomical information. In dy-
namic positron emission tomography (dPET) or dynamic
single photon emission computed tomography (dSPECT)
images, the homogeneous regions are those with similar
functional behavior. Image segmentation is often the precur-
sor to quantification and visualization, which in turn aids in
statistical analysis, diagnosis, and treatment evaluation.

Traditionally, domain experts were required to manually
segment images. Even in 2D, this is a time consuming pro-
cess, and can rapidly become infeasible for vector and tensor
field images. In recent years, a variety of semi- and fully au-
tomatic techniques have been developed to address the seg-
mentation problem [OS01]. However, the current state-of-
the-art approaches fall short of providing a “silver bullet”
for medical image segmentation. The majority of the exist-
ing segmentation methods rely on and are sensitive to user-
initialized seeds, contours, and/or setting of low level param-
eters. Existing segmentation algorithms are yet to achieve
full automation while producing completely correct results,

and hence cannot be relied upon in clinical settings without
user intervention. Also, most segmentation techniques are
problem-specific, and all have limitations due to the differ-
ent image degradation factors, such as low signal-to-noise
ratio and partial volume effect (PVE). Therefore, the result-
ing segmentation is imperfect, requiring further expert edit-
ing, which is usually done manually relying largely on vi-
sual assessment. The manual editing becomes very difficult
for vector or tensor based images.

In direct volume rendering, the transfer function plays the
role of the image segmenter by assigning optical proper-
ties (color and opacity) to different regions. Several methods
have been proposed for transfer function design [EHK∗06].
The most common ones are based on exploring a 2D data-
derived feature layout. Those features might be corrupted
due to different image degradation factors. Thus feature ex-
traction becomes an error-prone process. Further, most of
those techniques are not scalable with regard to encoding
multiple features or incorporating higher levels of knowl-
edge. Another major concern about volume rendering is the
absence of quantitative evaluation of the underlying classifi-
cation, which, for example, prohibits the provision of volu-
metric tumor measurements. This limits the usability of ren-
dering in quantitative diagnosis procedures. The challenge is
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to take the results of the segmentation and present it to the
expert user for approval or improvement in an interactive
manner, while allowing quantitative analysis of the under-
ling segmentation results.

In this work, we focus on analyzing the results of proba-
bilistic segmentation techniques that provide an uncertainty
measure for each voxel instead of a crisp labeling. We pro-
pose “ProbExplorer” to analyze and visualize the probabilis-
tic fields and provide intuitive means for the user to influence
the segmentation outcome. We allow the user to investigate
different tissue interaction scenarios (Sec. 3.3.2). By tissue
interaction we mean that there are multiple classes interact-
ing and competing for the label of a particular voxel. For
example, having probabilities close to 1/C; where C is the
number of classes; makes it uncertain to which class should
the voxel be assigned. In addition to visualizing the uncer-
tainty in the datsets, we allow the user to interact with the
underlying uncertainty and edit the segmentation result in a
systematic manner (Sec. 3.4). We will show the usability and
efficacy of our framework within the context of segmenting
static and time-varying medical imaging datasets (Sec. 4).
This tool will allow the research clinicians to explore the un-
certainty in the resulting segmentation. In addition, medical
image analysis researchers can use this tool to analyze the
behavior of their probabilistic segmentation algorithms.

2. Related work
Three main forms of user input have been adopted for in-
teractive segmentation [OS01] by specifying: (1) a nearby
complete boundary that evolves to the desired boundary
[KWT88, MT96], (2) a small set of voxels belonging to the
desired boundary, followed by the application of minimal
path techniques to extract the complete boundary [MB98,
BM97], and (3) few voxels belonging to the core of dif-
ferent regions to overcome the limitation of the ill-defined
boundaries [BVZ01,APB07,Gra06], followed by the classi-
fication of all unlabeled voxels. In this paper, the proposed
framework does not depend on a particular segmentation
technique as long as it provides probabilistic results such as
Gaussian mixture model [ZBS01], random walker [Gra06]
and a variant of graph cuts [KT08]. Unlike most of the in-
teractive segmentation techniques, we don’t require the re-
peated execution of the algorithm in order to obtain better
results, which is expensive.

Few papers tackled the segmentation editing problem
[OS01]. This can be due to the fact that scientific publica-
tions on segmentation mostly emphasize the automatic part
while necessary manual corrections are considered flaws in
the automated process. Kang et al. [KEK04] introduced a
set of 3D segmentation editing tools based on morphologi-
cal operators for hole filling and surface editing. The intro-
duced tools require a good segmentation to start with. Grady
& Funka-Lea [GFL06] formulated the editing task as an en-
ergy minimization problem. The user-supplied seeds, pre-

segmentation and image content all impact the segmenta-
tion. Our proposed approach is different from those methods
in that we operate on the probabilistic fields instead of the
crisp labeling. We leverage the uncertainty encoded into the
segmentation results to highlight those problematic regions
that need more attention from the user, as well as provide an
uncertainty-driven segmentation editing scheme that is not
possible using only the crisp labeling.

Different methods have been proposed for transfer func-
tion design in volume rendering [EHK∗06]. For 3D med-
ical volumes, data-driven features such as scalar, gradient
values [KKH02], curvature [KWTM03], spatial information
[RBS05, LLY06] are represented as multi-dimensional his-
tograms. Also, transfer functions play an important role for
visualizing time-varying datasets [JKM01]. The user is re-
quired to identify different regions in the feature space which
might be problematic with noisy data or complex anatomical
structures. Tzeng & Ma [TM04] used ISODATA hierarchical
clustering to classify volumetric data. Tzeng et al. [TLM05]
incorporated an artificial neural network and a support vec-
tor machine as a supervised learning mechanism for clas-
sification. As a supervised learning algorithm, only a small
number of voxels was used for training and all the remain-
ing voxels were used as a test set. Thus, a longer interaction
time is needed for complex structures. Editing the classifi-
cation result in all of those algorithms is based on the user
knowledge of the data alone with no guidance to enhance the
classification result more quickly.

Uncertainty visualization is considered one of the top
visualization research challenges [Joh04]. Different visual
mapping methods have been proposed to convey the uncer-
tainty information such as glyphs [PWL97, WPL96], opac-
ity [DKLP02], color [Hen03], texture [RLBS03], and sur-
face displacement [GR04]. Few research papers tackled the
problem of visualizing the classification uncertainty given
a probabilistic segmentation result. Kniss et al. [KUS∗05]
proposed a Bayesian risk minimization framework, in which
the final classification can be altered by changing the risk
of each class instead of applying the maximum-a-posteriori
(MAP) estimate directly on the probabilistic result. Lund-
ström et al. [LLPY07] applied different animation schemes
to convey the uncertainty at each voxel. Although, we con-
sider the methods of Kniss et al. [KUS∗05] and Lundström et
al. [LLPY07] to be the closest work to our contribution, ours
is different in multiple aspects: instead of only trying to con-
vey the uncertainty information in the rendered image, we
provide a set of novel multivariate visual analysis widgets
(e.g. graphs, spreadsheets, and 2D histograms) to summa-
rize the underlying multivariate probabilistic field and their
associated semantic information; we allow the user to high-
light those probabilistic regions in 2D and 3D; and finally,
the user can change the final classification by using a novel
uncertainty-based editing technique instead of being solely
a user-driven process.
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Figure 1: ProbExplorer consists of three main steps: preprocessing, voxel selection, and highlighting and editing.

3. Method
ProbExplorer consists of three main steps: preprocessing, se-
lecting voxels, and highlighting and editing, that facilitate
the exploration process (Fig. 1). In the preprocessing step, a
number of quantities are extracted to represent the uncer-
tainty in the segmentation results (Sec. 3.2). Then, in the
voxel selection step (Sec. 3.3), the user specifies a region
of interest (ROI) using a number of novel interaction wid-
gets. These widgets are used to highlight different aspects of
the multivariate probabilistic field in order to reveal a spe-
cific tissue interaction or a suspicious region. Finally, in the
last highlighting and editing step (Sec. 3.4), the user applies
a certain action over the selected voxels. The selected voxels
are highlighted in a 2D slice and a 3D image. Further, the
user corrects any misclassification by editing the probability
field. This exploration process is iterative (Fig. 1), where the
user can highlight or edit different regions multiple times.

3.1. Synthetic example
We introduce a synthetic example that simulates the com-
mon image generation model in medical imaging [BVZ01].
A grey-level image of size 128 × 128 consists of three
circular regions representing three materials in addition
to the background. We start with a piece-wise constant
model in each region with the following grey-level values
(30,60,90) while the background receives the grey-level of
zero (Fig. 2(a)). We blur the image with a rotationally sym-
metric Gaussian lowpass filter of size 30 voxels with stan-
dard deviation 3, (Fig. 2(b)). Gaussian noise is added with
a variance of 4, (Fig. 2(c)). Further, we add two smaller cir-
cles which represent two types of suspicious regions (e.g.
different types of tumors) with grey-levels 17 and 100, re-
spectively (Fig. 2(d)). We segment this image with a mixture
of four Gaussians centered at the known means of the four
main regions with variance of 56 to account for the PVE.
Fig. 3(a) shows the unnormalized mixture of Gaussians used
in the segmentation process, where the x-axis represents the

Figure 2: Synthetic example. a) piecewise constant image,
b) blurred with a Gaussian kernel, c) Gaussian noise added,
d) two-suspicious regions added.

grey-level value and the y-axis is the probability for each
region marked with a distinct color. Fig. 3(b) shows the nor-
malized version of the mixture when the probabilities sum
to 1. The normalized probabilities will be the actual output
of a probabilistic segmentation algorithm and the input for
our tool. The intensity values of the two suspicious regions
are shown as magenta and orange bars, respectively. Note
that the intensity range of one of those suspicious regions
falls in-between the intensity ranges of two other materials,
whereas the intensities of the other outlier region falls near
the tail of the distribution (Fig. 3(a)) and (Fig. 3(b)).
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Figure 3: Mixture of Gaussians used to segment the image
in Fig. 2(d). a) unnormalized mixture of Gaussians, b) nor-
malized mixture of Gaussians. The magenta and orange bars
represent the intensity values of the two small suspicious,
tumor-like regions.

Fig. 4(a) shows the ground truth segmentation. The mix-
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Figure 4: Segmentation of synthetic example. a) ground
truth segmentation, b) crisp segmentation result showing dif-
ferent misclassification artifacts as well as inability to high-
light the suspicious regions.

ture of Gaussians based segmentation gives erroneous re-
sults shown in Fig. 4(b) when applying the MAP principle
on the resulting probabilistic segmentation. By analyzing the
results shown in Fig. 4(b), we can identify different artifacts
that are not specific to this example but rather common in
medical imaging in general. The first artifact is the misclas-
sification which appears as the green strip around the red
circle and also the green and red strips around the blue cir-
cle. We need to allow the user to identify those implausi-
ble voxels and replace them with correct ones. For example,
around the blue circle, we need to reclassify the green and
red voxels to black (background) or blue. We will show that
an uncertainty-based segmentation editing will allow us to
do the reclassification operation in an intuitive way.

Another artifact is the misclassification of the two small
circles. Note that we used only four regions during the seg-
mentation which mimics the fact that during the segmen-
tation, we usually have a-priori knowledge only about the
expected normal regions (e.g. in our case three circles plus
the background). This applies especially to common auto-
matic segmentation techniques that rely on building inten-
sity and shape priors from datasets of healthy subjects. In
general, the suspicious regions are difficult to identify since
they come from more challenging pathological cases. Patho-
logical cases usually do not have well-defined models. The
small magenta circle in Fig. 4(a) has a mean intensity value
of 17 which falls in-between the intensity ranges of both the
green and black regions even though it does not lie along the
boundary between these two regions in the image domain
Fig. 3(a). The small orange circle in Fig. 4(a) has a mean
intensity value of 100 which lies in the intensity range of the
tail of the probability distribution in Fig. 3(a). This region
is uncertain with respect to the blue distribution but it is not
similar to any other class considered in the segmentation.
This leads to the conclusion that this region is considered
very certain after the probability normalization as shown in
Fig. 3(b). This necessitates a way to isolate this region by
analyzing the probability field with additional information
derived from the raw data.

3.2. Preprocessing
We assume that we have a probabilistic segmentation tech-
nique that produces a probabilistic vector field P(x) =
[P1(x),P2(x), ...PC(x)] where x is a spatial location in <3

(i.e. x = [x y z]) and Pi(x) is the probability of the voxel at

location x belonging to class i out of C classes such that
∑

C
i=1 Pi(x) = 1. The traditional procedure to obtain a crisp

classification from a probabilistic result is by applying the
MAP Bayesian principle [DHS00], where we assign a voxel
located at x to the class i with the maximum probability as
the first best guess (FBG). Formally

PFBG(x) = max
i∈{1..C}

Pi(x) (1)

where FBG = argmaxi∈{1..C}Pi(x). Note that throughout
the paper, we interchangeably refer to PFBG as maxP.
In order to study regions of uncertainty, we study the
two-way interaction at a point x, where two classes are com-
peting for the labeling of that voxel. This is defined by

M(x) = PFBG(x)−PSBG(x) (2)

where PSBG(x) = maxi∈{1..C}\FBG Pi(x) is the second best
guess (SBG) probability entry. Further, regions where more
than two materials compete can also be studied. For exam-
ple, the three-way interaction

M23(x) = PSBG(x)−PT BG(x) (3)

where PT BG(x) = maxi∈{1..C}\{FBG,SBG}Pi(x) is the third
best guess (TBG) probability entry. In this paper, we did
not consider any interaction beyond the three-way interac-
tion but the underlying visual exploration framework is eas-
ily extensible to higher order interactions if needed.

A common assumption in medical image segmentation
is that the image consists of piecewise homogeneous re-
gions. Typically, this assumption is valid only in the tissue
cores and not along their boundaries because of the PVE
that causes the overlap between two or more materials. In
order to properly analyze the tissue cores, we incorporate a
Euclidean distance transform map D. This map is obtained
by calculating the Euclidean distance from each voxel to the
nearest boundary for each class i according to the MAP prin-
ciple. D is zero along the boundary and increases gradually
to a maximum, normalized to one, at the core.

3.3. Selecting voxels
In the following subsections, we introduce a set of widgets
that highlight the uncertainty in the data and therefore allow
a user-guided improvement of the segmentation results. In
order to localize the effect of the analysis, the user has the
ability to specify an axis-aligned ROI using sliders.

3.3.1. Interaction overview widget
The purpose of this widget is to give the user a summary of
the segmentation inside the ROI. It shows a 2D layout of the
different classes and their connectivity. It consists of an undi-
rected weighted graph, where each node represents a specific
class shown in a specific color associated with the class la-
bel. The size of each node is proportional to the number of
voxels belonging to that class according to the MAP prin-
ciple. The edges represent the connectivity inside the ROI
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Figure 5: Interaction overview widget. a) ROI selection de-
marcated by a red border, b) interaction overview widget.
Each node represents a specific class with size proportional
to the number of voxels in that class in the image. The edges
represent the connectivity between classes.

between different classes. The thickness of each edge is pro-
portional to the strength of the spatial connectivity between
these two classes. The connectivity strength is measured by
the number of neighboring voxels between the two classes.

The user has the ability to select specific nodes for fur-
ther analysis. For example, the user can select implausible
voxel labels in the ROI by selecting the appropriate nodes
in this widget. Fig. 5(a) shows the selection of the ROI for
the lower half of the image. Fig. 5(b) shows the interaction
overview of this ROI. It shows that the main (largest size)
classes are the background (black) and the blue circle. It also
shows that they are not directly connected to each other but
rather through two other regions represented by the smaller
red and green circles. This connectivity is a direct conse-
quence of the PVE, where implausible regions (green and
red) appear due to the overlapping tissues corresponding to
the black and blue circles. Later, we will show how we can
select the implausible regions and correctly relabel them.

3.3.2. Uncertainty interaction overview widget
The purpose of this widget is to give the user a summary
of the different interactions embedded into the probabilistic
information. We used a spread-sheet to represent the uncer-
tainty interaction. Each row represents a specific interaction
(e.g. row 5 in Fig. 6 represents all the voxels that have red as
the highest probability, green as the second best guess and
blue as the third best guess). The first three columns rep-
resent the different classes as the first guess, second guess
and third guess, respectively. The remaining columns repre-
sent summary statistics about this particular interaction. The
fourth column displays the size, i.e. the number of voxels
contained in this interaction. The fifth column (mean maxP)
represents the mean value of the maximum probability (1)
in this region. The sixth and seventh columns represent the
mean M (2) and mean M23 (3) values, respectively. Each
value is represented visually by a color bar as well as a nu-
merical value. All the columns can be sorted by clicking on
the column headings. Multiple-row selection is allowed to
highlight multiple regions. The user has the ability to select
specific types of interaction that involve a particular class
(Fig. 7(a)). Given the ROI shown in Fig. 5, Fig. 7(b) shows
the result of sorting all one-way interactions in an ascend-
ing order by the mean maxP (fifth column). It shows that red

and green circles have lower values as well as being smaller
in size. Given our prior knowledge, this might be an indica-
tion for misclassification. Indeed, this results from the PVE
in this case.

Figure 6: The uncertainty interaction overview widget
represents different tissue interactions with their summary
statistics extracted from the probabilistic information. Each
row represents a specific interaction. a) 1-way (unary) inter-
action where blue marks FBG, b) 2-way interaction where
red marks FBG and green marks SBG, c) 3-way interaction
where green marks FBG, black marks SBG and red marks
TBG, d) row filtering using a specific tissue interaction (1-
way, 2-way, and 3-way), e) row filtering using a specific
class, f) summary statistics, such as number of voxels in that
interaction, mean maxP, mean M, and mean M23.

3.3.3. Uncertainty distribution widget
The uncertainty interaction overview widget, in the previ-
ous section, gives summary statistics over different interac-
tion regions but it does not give a detailed overview of the
distribution of the probability vectors inside the selected re-
gion. The detailed view is important to avoid missing small
anomalies. In order to obtain that detailed view, we propose
two different widgets. The first one is a 2D histogram be-
tween maxP (1) and M (2). This widget shows the distri-
bution of the probability vectors to help differentiating the
voxels with one dominant class vs. voxels with multiple in-
teracting classes.

The motivation for this is demonstrated in Fig. 8 (note
that maxP = PFBG by definition). The case when we have
only one dominant class defined by PFBG = 1.0 and all
other probabilities are equal to zero is shown as point A.
A two-way interaction is characterized by 1/2 ≤ PFBG ≤ 1
and 0 ≤ PSBG ≤ 1/2 and all other probabilities are zero.
Alternatively, using PFBG + PSBG = 1.0 and substituting
(2) yields PFBG = M/2 + 1/2. This is shown as a blue
line in the maxP-M graph in Fig. 8, connecting point A
and B. Similarly, for a three-way interaction, we start with
PFBG + PSBG + PT BG = 1, which yields PFBG ≤M/2 + 1/2
(line AB) after applying (2) once and PFBG ≥ 2M/3 + 1/3
(line AC) after applying (2) twice. For a constant PT BG (e.g.
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PT BG = 0.15 for the red line in Fig. 8) we get the equality
PFBG = M/2+1/2−PT BG/2.

(a)

(b)

Figure 7: Uncertainty interaction overview filtering and
sorting for the ROI shown in Fig. 5(a). a) uncertainty inter-
action overview showing only two-way interactions for the
red material, b) sorting all one-way interactions in an as-
cending order by the mean maxP (fifth column).

We use this widget to analyze the green circle in Fig. 9.
Fig. 9(a) shows the ROI selection, Fig. 9(b) shows the nor-
malized distance transform map that corresponds to the
green material. In order to restrict the analysis to the core
of the region, we threshold the distance transform > 0.1 as
shown in Fig. 9(c). This threshold will be used through-
out the paper when needed. Note that the other classes are
mapped using a grey-level map to maintain the context of
those regions. Fig. 9(d) shows the 2D log normalized his-
togram between maxP and M, It shows that most voxels are
constrained to (1,1) (i.e. the most reddish region) trailed by
a line. We use a selection tool (Fig. 9(e)) to highlight this
region which is shown in Fig. 9(f). This reveals the suspi-
cious region which was not available in the crisp segmenta-
tion case. We used larger circular color glyphs for the non-
zero entries of the histogram for illustration purposes but a
normal grey-level 2D histogram will be used in Sec. 4.

The suspicious region in the lower half of the image (mean
value = 100) is different as it does not exist in the overlap-
ping between two classes but rather in the tail of the distri-
bution of the blue circle (Fig. 3(a)). After normalizing the
distribution (Fig. 3(b)), it becomes very certain to belong to
the blue class. This case is rather difficult to detect as the
provided uncertainty information by the segmentation tech-
nique is already normalized. Hence, we need another fea-
ture besides the uncertainty information to detect those re-
gions. In our case, we use the grey-level value for static im-
ages and the grey-level value for an average time frame for
time-varying datasets. We construct a 2D log normalized his-
togram between maxP and the grey-level value. Fig. 10(d)
shows an example of such a histogram. It shows two peaks
near the line of maxP = 1, the more reddish (more voxels)
peak corresponds to the majority of the voxels inside the re-
gion while the less reddish region is selected to highlight the
suspicious region (Fig. 10(f)).
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Figure 8: MaxP vs. M model. The green cross on the top
right represents the one-way interaction. The blue line rep-
resents the two-way interaction. The red line represent the
three-way interaction for a constant third best guess.
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Figure 9: Suspicious region highlighting. a) ROI over the
upper left quarter, b) normalized distance transform map
with respect to the green material, c) thresholding the dis-
tance transform map to obtain the core of the organ, d) 2D
log normalized histogram of maxP vs M representing the
normalized number of voxels with a colormap, e) selection
in magenta, f) suspicious region pops out in magenta.

3.4. Highlighting and editing
In the previous section, a subset of voxels is selected using
our visual analysis widgets. There are two main actions we
can apply over this subset: we can highlight them visually or
we can edit their classification.

For highlighting in 2D, we use the common three slice
views, one for each axis of the 3D data (see Fig. 13(a) where
each view is split into a raw data view and the current crisp
segmentation results). For segmentation results, we use a
distinct color for each class. When a particular tissue inter-
action is selected using one of the overview widgets intro-
duced in Sec. 3.3.1 or Sec. 3.3.2, we move the unselected
classes to a grey-level map to maintain the context as shown
in Fig. 9(c). When the user selects a subregion in the 2D fea-
ture layout introduced in Sec. 3.3.3, we use a highlight color
for those voxels (Fig. 9(f)). In 3D, we use volume rendering
similar to [KUS∗05] with the same color mapping as for 2D
and an opacity map determined by simple sliders. Fig. 13(c)
shows a 3D example of a highlighted tumor.
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Due to the large anatomical and functional variability
between individuals, segmentation results are usually not
perfect and need further editing to allow accurate analy-
sis. Usually segmentation editing is done manually or uti-
lizing morphological operators that act only on the crisp re-
sults. In this paper, we provide a simple interface to allow
segmentation editing by operating on the probability field.
We tackle two main problems that are common in segmen-
tation, over-segmentation and under-segmentation. In over-
segmentation, too many voxels are assigned to a particular
class whereas in under-segmentation, too few voxels are as-
signed to a particular class. In order to overcome these prob-
lems, we provide two actions push and pull that the user can
apply over the probabilistic field. The push action moves the
voxels from a set of classes (source class set SCS) to an-
other set of classes (destination class set DCS). The moving
of voxels is done by interchanging the probability entries for
the affected classes. The priority of replacing a particular
voxel with another depends on the probability vector associ-
ated with this voxel. The pull action is the reverse of the push
action. Details are shown in Alg. 1. Our approach requires
only one slider for the editing process versus one slider per
class [KUS∗05]. We enable changing of the decision bound-
ary between multiple classes simultaneously.

We apply our editing algorithm to remove the red and
green strips surrounding the blue circle. Fig. 11(b) shows
the selection of the two regions in the interaction overview
widget. Fig. 11(c) shows selection of the push action as well
as the SCS and DCS. Fig. 11(d) shows how the user changes
the δ threshold to act as an input for Alg. 1. Fig. 11(e) and
Fig. 11(f) show the result of changing δ to 0.7 and 1.0 re-
spectively removing the red and green strips completely. The
user has the ability to commit that change and start a new
editing process.
Algorithm 1 uncertainty-based segmentation editing

Input: (i) Probabilistic segmentation P(x), (ii) uncer-
tainty threshold δ ∈ [0,1], (iii) Required action (push or
pull), (iv) ROI
Result: Modified probabilistic segmentation result P̂(x).
for all locations x ∈ ROI do

if required action = push then
if PFBG(x) ∈ SCS then

if mini∗, j∗ |Pi∈SCS−Pj∈DCS| ≤ δ then
swap(Pi∗ ,Pj∗)

end if
end if

else if required action = pull then
if PFBG(x) ∈ DCS then

if mini∗, j∗ |Pi∈SCS−Pj∈DCS| ≤ δ then
swap(Pi∗ ,Pj∗)

end if
end if

end if
end for

(a) (b) (c)

(d) (e) (f)

Figure 10: Suspicious region highlighting. a) ROI selected,
b) normalized distance transform map with respect to the
blue material, c) thresholding the distance transform map
to obtain the core of the organ, d) 2D log normalized his-
togram between maxP vs. grey-level representing the nor-
malized number of voxels with a colormap, e) selection in
orange, f) suspicious region pops out in orange.

4. Results
In this section, we demonstrate the effectiveness of our
framework to analyze and visualize different probabilistic
segmentations of real static anatomical and time-varying
functional datasets. We will show how we can highlight sus-
picious regions as well as misclassifications.

(a) (b) (c)

(d) (e) (f)

Figure 11: Uncertainty-based segmentation editing. a) ROI
over the lower half, b) selecting the implausible regions, c)
source class set (SCS) on the left and destination class set
(DCS) on the right with push action, d) changing the editing
threshold δ, e) δ = 0.7, f) δ = 1.0.

A renal dynamic SPECT study results in a time se-
ries of 3D images. From these images, the clinician’s
goal is to extract information about the spatio-temporal
behavior of a radioactive tracer (e.g. 99mtechnetium −
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diethylenetriaminepentaacetic), which in turn is used to as-
sess the renal system function. We used a 4D image of size
64×64×32 with 48 time steps with an isotropic voxel size
of (2 mm)3. A 2D coronal slice is shown in Fig. 12(a). A
mixture of Gaussians [ZBS01] combined with the random
walker [Gra06] technique is used to segment the data into
four regions (background, abdomen, left kidney, and right
kidney). Analyzing the uncertainty interaction overview in-
formation for two-way interactions reveals (third row of
Fig. 12(b)) that the SBG for the right kidney is the left
kidney. This is not surprising as the two kidneys functions
should behave similar in healthy individuals. The first two
rows show that the SBG for the left kidney is split between
the right kidney and the abdomen. Fig. 12(d) shows the se-
lection of row 2 in the ROI shown in Fig. 12(c). Fig. 12(e)
shows the selection of row 1 which reveals the lower third
of the left kidney. Our clinical collaborators confirmed that
there is indeed abnormality.

(a) (b)

(c) (d) (e)

Figure 12: Dynamic SPECT case study with abnormal re-
nal behavior in the lower third of the left kidney. a) 2D coro-
nal slice out of the 4D dataset, b) uncertainty interaction
overview widget, c) ROI over the left kidney, d) voxels that
are labeled left kidney and SBG is right kidney that corre-
spond to row 2, e) voxels that are labeled left kidney and
SBG is abdomen that correspond to row 3.

In dPET imaging, a series of 3D images are reconstructed
from list-mode data obtained by Gamma coincidence detec-
tors. Kinetic modeling is the process of applying mathemat-
ical models to analyze the temporal tracer activity, in order
to extract clinically or experimentally relevant information.
We will analyze the probabilistic segmentation result ob-
tained from the application of a kinetic modeling based K-
means algorithm [SSHM07]. The 4D [11C] Raclopride dPET
dataset size is 128× 128× 63 with 26 time steps and voxel
size of 2.11× 2.11× 2.42 mm3. The dataset is segmented
into six regions (background, skull, white matter, grey mat-
ter, cerebellum and putamen). It is clear from Fig. 14(a) that
the dataset is suffering from low signal-to-noise ratio as well
as severe PVE. This results in an oversegmenation of the
putamen which is crucial for diagnosis of Parkinson’s dis-
ease. We use our editing technique to correct the misclassi-
fication. We need to apply a push action where the SCS con-

sists of the putamen only. In order to determine the DCS, we
study the two-way interaction rows for the putamen (green)
in Fig. 14(d). It is clear from row 4 that the white matter is
the SBG, the most confident (mean maxP = 0.4 and mean M
= 0.22) and it has the largest size (2310). Fig. 14(e) shows a
highlight of that region with most voxels correctly classified.
Due to the space limitation, we can not show other interac-
tions, however, all are located in the upper part of the brain
or near the cerebellum away from the putamen. We put the
background, skull, grey matter, and cerebellum voxels into
the DSC, then apply the push action. Due to the fact that
some voxels from the vascular structure of the brain have
similar behavior to the putamen, it was trivial to exclude
them using the ROI widget. The result of the second edit-
ing step is shown in Fig. 14(f) which was verified clinically.

A static [18F ] FDG-PET data from Osirix
(http://pubimage.hcuge.ch/) is used in this experiment.
The image size is 73× 87× 73 with an isotropic voxel size
of (1 mm)3. A mixture of Gaussians [ZBS01] combined
with the random walker [Gra06] technique is used to
segment the data into three regions (background, active, and
inactive). It is normal for this tracer to travel to the brain,
so we will focus our analysis on the neck area (Fig. 13(a)).
By analyzing the two-way interactions in Fig. 13(b), we
note that most of the inactive voxels have background as the
SBG but there are a number of voxels that have the active
region as the SBG with a mean maxP = 0.6. Selecting this
row (2) (Fig. 13(c)), clearly shows a tumor in the neck area.
Further analysis of the tumor shows interesting patterns
in the 2D uncertainty layout widget. We note two lines
in the maxP-M graph, as well as a Gaussian like shape
in the maxP-grey-level graph. Selecting those patterns
demonstrate that the tumor is not homogeneous but rather
decomposed into two (internal and external) functionally
distinct regions. This conclusion was also verified clinically.

Our last study shows a simulated prob-
abilistic field from the brainweb database
(http://www.bic.mni.mcgill.ca/brainweb/). It is a brain
MRI dataset with multiple sclerosis lesions. In addition to
a main line along the two-way interaction line, Fig. 15(a)
shows another stray line underneath. Fig. 15(b) and
Fig. 15(c) show the white matter highlighted in a 2D slice
and a 3D image, respectively. Highlighting the stray region
(Fig. 15(d)) reveals the multiple sclerosis lesion in the white
matter region in 2D (Fig. 15(e)) and in 3D (Fig. 15(f)).

5. User evaluation
Our clinical collaborators have already started using our
software system to identify suspicious regions, as well as
to correct segmentation misclassifications [HSC∗09]. They
showed how ProbExplorer can be used to achieve highly ac-
curate segmentation from a very noisy dSPECT renal study,
similar to the one shown in Fig. 12. The resulting segmen-
tations have been incorporated into a novel dSPECT image
reconstruction algorithm and have shown to improve the re-
construction [HSC∗09]. Although ProbExplorer allowed our
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(a) (b)

(c) (d) (e)

(f) (g) (h) (i)

Figure 13: PET study showing a cervical tumor. a) ROI
around the neck area, b) two-way interaction overview, c)
voxels labeled inactive that have SBG active, d) M vs maxP,
e) grey-level vs. maxP, f) selection, g) zoomed-in version of
the outer shell of the tumor, h) selection, i) zoomed-in version
of the inner core of the tumor.

(a) (b) (c)

(d)

(e) (f)

Figure 14: Dynamic PET case study with over-segmented
putamen showing the efficiency of segmentation editing. a)
2D axial slice of the 4D dataset, b) a 3D image, c) over-
segmented putamen, d) uncertainty interaction overview
widget, e) voxels that have white matter as SBG, f) classi-
fication after two editing iterations.

(a) (b) (c)

(d) (e) (f)

Figure 15: Simulated brain MRI data from the brainweb
database multiple sclerosis lesion. a) maxP vs. M of the
white matter, b) white matter highlighted in a 2D slice, c)
a 3D image of the white matter, d) selecting the outlier pat-
tern from the main two-way interaction line, e) a 2D slice of
the white matter with the lesion highlighted in green, f) a 3D
image of the white matter with the lesion highlighted.

clinical collaborators to achieve accurate segmentation in-
stead of performing manual editing, the tool would be more
valuable if it could learn from previous segmentation edits.
This way the user will not have to perform repeated editing
actions when working with novel but similar datasets.
6. Conclusion and Discussion
In this paper, we presented ProbExplorer, a framework for
the analysis and visualization of probabilistic segmentation
results. We provided a number of visual data analysis wid-
gets to reveal the different class interactions that are usu-
ally hidden by a simple MAP (i.e. crisp) visualization. We
demonstrated the ease in which we can highlight suspi-
cious regions which often correspond to easily missed patho-
logical cases. Also the misclassification due to low signal-
to-noise ratio and PVE can be edited efficiently with a
novel uncertainty-based segmentation editing technique. We
demonstrated the efficiency of the algorithm in the context
of segmenting multiple simulated and real medical image
datasets. Our uncertainty-based segmentation editing tech-
nique focused on changing the probability vector of a spe-
cific voxel without taking into account its neighboring vox-
els. We are working on a variation of our method that no
longer assume spatial independence between voxels during
interactive segmentation. Also, we plan to investigate the
behavior of the resulting probabilistic results from different
segmentation techniques (e.g. graph cuts and levelsets).
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