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Abstract
In this paper we study the comprehensive effects on volume rendered images due to numerical errors caused by
the use of finite precision for data representation and processing. To estimate actual error behavior we conduct
a thorough study using a volume renderer implemented with arbitrary floating-point precision. Based on the
experimental data we then model the impact of floating-point pipeline precision, sampling frequency and fixed-
point input data quantization on the fidelity of rendered images. We introduce three models, an average model,
which does not adapt to different data nor varying transfer functions, as well as two adaptive models that take
the intricacies of a new data set and transfer function into account by adapting themselves given a few different
images rendered. We also test and validate our models based on new data that was not used during our model
building.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Graphics data structures and data types

1. Introduction

The reliance on volume visualization is increasingly com-
mon in a wide range of critical application areas such as
medical diagnosis. The confidence of the user in the quality
of the generated images therefore becomes of highest im-
portance and is manifested in a renewed interest in the vi-
sualization community as uncertainty visualization [JS03].
This puts emphasis on software and system properties such
as reliability, accuracy, stability and predictability. These re-
quirements are often traded for the need of real-time interac-
tion and efficiency of the rendering pipeline. While there has
been significant effort to achieve the latter, less has gone into
a comprehensive treatment of the resulting overall accuracy.

Our goal with this work is to increase understanding of
the compound effects of uncertainty in the volume rendering
pipeline. Specifically, we analyze the adverse effects of per-
forming the computational steps in the rendering pipeline us-
ing finite precision. In contrast to previous work we study the
effects of varying floating-point precision. This is motivated
by the fact that floating-point numbers are the standard nu-
merical representation in scientific computing. Furthermore,
along with the development of modern High Dynamic Range
imaging [YNCP06], the constraint of 8-bit fixed-point out-
put is lifted. As volumetric data sets in many application ar-

eas today are increasingly large, understanding the effects of
using different bit quantizations (e.g. during compression) is
important for boosting data handling and increasing render-
ing performance. The precision requirements are also depen-
dent on the number of computations, indirectly given by the
sampling frequency. We therefore study the co-dependency
effects of using varying input data quantization and sampling
frequencies on various data sets and transfer function com-
binations. We analyze the resulting errors and their propa-
gation through the pipeline. This analysis forms the basis
for developing algorithms of high confidence, and a high
fidelity standard for volume rendering. It can also be used
to minimize the required rendering time given specific im-
age fidelity requirements and parameter constraints. The pre-
sented analysis is applicable to both volume rendering users
relying on floating point formats in todays hardware, and
also the development of new rendering software and hard-
ware with novel floating-point format implementations.

While a theoretical error analysis, typically based on max-
imum error estimations [Hig02], of the compound effect
of the pipeline precision serves as a starting point, the er-
ror propagation through the rendering pipeline is either in-
tractable or unrealistic when using maximum error bounds.
Hence, in order to investigate the actual effects of limited
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precision in practice, we perform a comprehensive study -
first, via an experimental study we observe and tabulate the
actual error behavior (Sections 3 and 4), which we then gen-
eralize into a model (an average, an adaptive and a hybrid
model) (Section 5). These models have then been validated.
Our experimental setup is realized using a renderer with
arbitrary numerical precision. To make our study feasible,
we have limited the investigation to an emission-absorption
model for volume rendering, and do not include the effects
of more advanced illumination models and derivative filters.
We consider the standard linear interpolation filter for data
reconstruction. Furthermore, we focus on the prediction of
numerical error propagation and thus do not employ percep-
tual error metrics.

2. Background

Verification and validation of results are increasingly impor-
tant topics for computer science in general [BO04]. This
includes numerical errors, studied extensively in the past,
both with regard to maximal error analysis and statistical
error propagation [Hig02, WK08]. For rendering, previous
work has mostly focused on assessing image fidelity based
on separate stages of the pipeline, e.g. errors due to the sam-
pling density [BMWM06], the impact of post-classified vs
pre-classified pipelines [WMG98], bounds of integration er-
rors [NA92], error metrics and properties of filters both for
data reconstruction [MMMY97b, ML94] and gradient esti-
mation [MMMY97a]. Due to the complexity of the inter-
actions and co-dependencies between pipeline parameters,
estimating such effects by a theoretical approach is often in-
tractable, and instead a practical methodology is often pre-
ferred. An early attempt to such an analysis was made by
Williams et al. [WU99] who derived guidelines and met-
rics for comparing volume rendered images. In the work
by Kwansik et al. [KWP01], a set of test data sets is pre-
sented along with a discussion of parameters affecting im-
age fidelity. More recently Giesen et al. [GMS∗07] proposed
a user study design to measure the impact of parameters.

The importance of numerical precision in volume render-
ing has been pointed out by several researchers. Meissner
et al. [MHB∗00] noted the importance of sufficient precision
when comparing different volume rendering techniques. The
implications of a limited numerical precision for the com-
positing step is also discussed by Engel et al. [EHK∗06].
In the context of pre-classified volume rendering Witten-
brink et al. [WMG98] discussed the need for more than 8-
bit fixed-point formats. A more detailed derivation of er-
rors due to fixed-point precision was presented by Bitter et
al. [BNMK04]. They derived the minimal fixed-point preci-
sion needed at each step in the pipeline for a required output
precision. They also investigated the maximum error bounds
for each step and showed that they are dependent on sam-
pling frequency and volume size. However, due to the con-
sideration of maximum errors, the analysis leads to unrealis-
tic demands.

To our knowledge, no previous work has conducted a rig-
orous investigation of the compound effects of actual er-
rors caused by varied floating-point pipeline precision, data
quantization, and ray sampling frequency on real data sets
and transfer functions. The need for such an analysis forms
the starting point for the work presented here.

2.1. Volume rendering integral

In this paper, we consider an emission-absorption model of
volume rendering [Max95] for which the volume rendering
integral can be formulated as

I(D) =

D∫
0

τ(s(x))c(s(x))∗ exp
(
−

x∫
0

τ(s(x́))dx́
)

dx (1)

where s(x) denotes the scalar field, τ(s) the absorption and
c(s) the color intensity. We solve the integral as a Riemann
sum by discretizing the ray into equidistant segments of
length d [KE04]. Neglecting self-attenuation within ray seg-
ments and approximating opacity as αi ≈ τ(s(x(id)))d we
can derive the front-to-back compositing scheme

C
′
i =C

′

i−1 +(1−α
′

i−1)Ci (2)

α
′
i = α

′

i−1 +(1−α
′

i−1)αi (3)

where Ci is the approximated (associated) color Ci ≈
c(s(x(id))) ∗αi, and α ′

i and C
′
i are the accumulated opac-

ity and (associated) color for the ith step. We limit our study
to the standard DVR technique [EHK∗06] – ray casting in
a post-classified pipeline [WMG98]. We use transfer func-
tions which specify an opacity value for a reference sam-
pling step size dr = 1 step/voxel. To use a sampling dis-
tance, d, other then the reference a correction of the optical
properties is necessary. We calculate the corrected value as
αd = 1− (1−αdr )

d
dr [EHK∗06].

2.2. Floating-point arithmetic

We describe a binary floating-point system, F , by the pa-
rameters precision, p, and the minimal and maximal expo-
nent range, [emin,emax]. The set of representable numbers
in F(p,emin,emax) is given by {x̂ : x̂ = ±m ∗ 2e}, where e
is an integer in the range [emin,emax] and m the mantissa,
in binary form m = 0.d1d2d3...dp [Gol91]. In floating-point
arithmetic as opposed to fixed-point arithmetic, an exact re-
sult is not guaranteed for the elementary operations of ad-
dition and subtraction. Errors, due to out-shifting, are intro-
duced when operations involving numbers with a large dif-
ference in the exponent are performed. For a comprehensive
overview of the numerical properties of floating-point sys-
tems see Higham [Hig02] or Goldberg [Gol91]. The limited
number of bits in the exponent implies that x̂ is limited in
magnitude to an interval defined as the range of the floating-
point system, F . Using a low exponent range could intro-
duce errors due to underflow and overflow. However most
floating-point formats offer a large dynamic range for the
context of volume rendering, and the accumulated color and
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opacity resulting from the compositing equations is a mono-
tonically increasing function. In this work we have there-
fore focused our efforts towards studying the precision, p,
of a floating-point representation and use a fixed large ex-
ponent range of emin = −1000, emax = 1000 to marginal-
ize the effects of underflow and overflow. For example when
comparing a large set of images rendered for the Carp data
set (see Section 5 and Supplementary Material) we found
no difference between the exponent ranges emin = −1000,
emax = 1000 and emin =−128, emax = 128.

3. Numerical investigation
To select which parameters and co-dependencies to explore,
we have conducted an analysis of the propagation and accu-
mulation of errors due to a limited precision in the pipeline.
We group the parameters into two categories: scalar param-
eters that can be sampled arbitrarily dense, and scenario pa-
rameters that do not easily lend themselves to dense sam-
pling and exhibit more complex behavior.
Scalar parameters p,q,s - The main focus of our study is
the pipeline precision, p, affecting all stages of computation
in the pipeline (sample positions, interpolation, classifica-
tion, opacity correction, and compositing). We also consider
the co-dependencies and effects of using a finite fixed-point
input data quantization, q, which previously has often been
assumed to be fixed to 8 or 12 bits (despite the fact that the
results of flow simulations and tomography algorithms of-
ten are of higher precision). Previous work [BNMK04] has
indicated that the number of samples composited affects the
requirements on a fixed-point pipeline precision. In this pa-
per we include the effects of sampling frequency, s, denoting
how many samples are taken per voxel. While s only indi-
rectly models the total number of samples, we consider the
total number of samples directly during our model building
(Section 5).
Scenario parameters d, l, t - To investigate the effect of ac-
tual rounding errors we have explored a series of scenarios.
Each scenario is defined by a data set, d, with fixed lattice
resolution, l, and a transfer function, t. These parameters are
important as they define the frequency and opacity content
of the input signal. They are, however, difficult to vary con-
tinuously since the input data needs to be well defined and
only a small subset of all possible transfer functions are use-
ful. The investigated scenarios span a number of different
data sets from different application domains and, for each
data set, a set of different transfer functions with varying
frequency content and opacities. The data sets and transfer
functions used are described in Section 3.4.

3.1. Parameter sampling

For each scenario we render a large set of images, where the
pipeline precision, p, and one of the two parameters q or s
are varied while keeping all other parameters fixed. Compar-
ing each rendered image to a reference image and encoding
their difference in a scalar error, a 2D scalar field we call

error landscape, describing the co-dependencies between p
and q or s is generated. To explore the correlation between
p and q we study both synthetic and real data sets. The syn-
thetic data sets allow us to systematically vary both p and
q in the range from 2 to 40 bits. However, for real data sets
the upper bound of the data quantization, q, is determined by
the source of data acquisition. When investigating p vs. q we
typically fix the sampling rate s to 2 steps per voxel but, for
comparison, we also investigate a sampling frequency of 20
steps per voxel. For an overview of the scenarios see Table 1.
For the co-dependence of p and s, we consider p in the range
from 2 to 40 bits and s in the range 1 to 20 steps per voxel.
This was performed for several data sets, lattice resolutions
and transfer function settings, see Table 2.

3.2. Measuring image fidelity

While previous work has presented techniques to measure
image quality by e.g. user studies [GMS∗07], we have lim-
ited ourselves to investigate image fidelity. Image fidelity
measures the similarity between an image and a reference,
and does not convey information about how a human ob-
server would classify the quality of the image. The focus
on image fidelity is motivated by the fact that we consider
a general property of the rendering pipeline, and not a spe-
cific visualization task. Modeling the human visual system
is an ongoing research challenge, and previous work has
presented several models to measure perceptual error, often
yielding different results [PSC00]. Instead we seek a solid
understanding of the numerical issues before we move on to
incorporate more advanced perceptual error norms. For nu-
merical comparisons, we use the Signal to Noise Ratio (dB):
SNRdB(X ,Y ) = 10log10(

||X ||2
||X−Y ||2 ), a standard in numerical

analysis and image processing.

For image comparisons and the creation of error land-
scapes we would ideally want to compare to the ’true’ im-
age. However, even for synthetic data sets, there is no ana-
lytical solution we can apply [KE04]. Hence, we are forced
to compute our reference image numerically. We use Rie-
mann integration which converges to the correct result in
the context of our study when using a very high sampling
frequency s, pipeline precision p, and data quantization q.
As we choose to vary two parameters at a time, fixing the
third parameter can sometimes manifest itself as masking
of the SNR increase of the two parameters under investiga-
tion. Consider, for example, an experiment where p and q
are varied with a fixed s = 2. Comparing to a reference ren-
dered using s = 100 typically yields an error landscape with
a truncated pyramidal shape, see Figure 1(a). This truncation
stems from the much higher s in the reference, and indicates
that further increase of either q or p is masked by the differ-
ence in s. Instead comparing to a reference image rendered
with the same sampling frequency, i.e s = 2, an error land-
scape without truncation is obtained, see Figure 1(b). This
second type of reference still utilizes a very high data quan-
tization and pipeline precision. Similarly, for p vs. s scenar-
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Dataset (d) Volume # Considered Camera Pipeline precision Data quantization Sampling frequency
resolution (l) TFs (t) position (p) in bits (q) in bits (s) in steps/voxel

Marchner-Lobb 40x40x40 3 (1,1,2) 2-40 2-40 2
Marchner-Lobb 40x40x40 3 (1,1,2) 2-40 2-40 20
Shepp-Logan 128x128x128 2 (2, 0, 0) 2-40 2-40 2

CFD Jet 104x129x129 2 (0, 0, 1) 2-40 2-24 2
Mouse Embryo 449x663x449 2 (2, 0, 0) 2-40 2-24 2
Golden Lady 512x512x624 2 (2, 0, 0) 2-40 2-12 2

Table 1: Scenarios considering relationship between input data quantization q and pipeline precision p.

Dataset (d) Volume # Considered Camera Pipeline precision Data quantization Sampling frequency
resolution (l) TFs (t) position (p) in bits (q) in bits (s) in steps/voxel

Marchner-Lobb 40x40x40 3 (1,1,2) 2-40 8 1-20
Marchner-Lobb 40x40x40 3 (1,1,2) 2-40 12 1-20
Shepp-Logan 128x128x128 2 (2, 0, 0) 2-40 8 1-20

CFD Jet 104x129x129 2 (1,0,0) 2-40 8 1-20
Hydrogen 128x128x128 3 (0,2,0) 2-40 8 1-20

Engine 256x256x256 2 (2,0,0) 2-40 8 1-20
Mouse 449x663x449 2 (2,0,0) 2-40 8 1-20

Golden Lady 512x512x624 2 (2,0,0) 2-40 8 1-20
Golden Lady 512x512x624 2 (2,0,0) 2-40 12 1-20

Table 2: Scenarios considering relationship between sampling frequency s and pipeline precision p.

ios we set up the reference image, such that our error land-
scape would converge for the specific q considered. To study
the dependencies between p and q or s separately without
masking effects suppressing the landscapes, we focus on the
second type of reference image rendered with the masking
parameter fixed at the level that was used in the experiment.

3.3. Arbitrary precision DVR pipeline

For our investigations we have implemented a volume ren-
derer in which all calculations are performed with arbitrary
floating-point precision. It is implemented on the CPU, and
utilizes the multi-precision GNU libraries GMP 4.2.4 and
MPFR 2.4.0 [FHL∗07]. This allows us to vary the floating-
point precision from 2 bits to thousands of bits at any stage
of the pipeline. The framework also allows for varied pre-
cision of the input data and varied sampling frequencies.
As the allocation and deallocation of arbitrary precision
floating-point numbers are not natively supported by the
hardware they are time-consuming operations. Rendering a
256×256×256 volume sampled at 2 steps per voxel with a
resolution of 250×250 pixels takes 2-3 minutes on a 2.4 Ghz
Intel Core 2 Duo processor and 667 MHz DDR2 SDRAM.

3.4. Data sets and transfer functions

We consider two synthetic data sets: the Marschner-Lobb
test signal [ML94], a data set with a well-defined band-limit,
and the Shepp-Logan MRI phantom [SL74], a standard vol-
ume for assessing medical reconstruction algorithms. As an
example of a simple real data set, we consider a simulation
of a hydrogen atom given with 8-bit fixed-point precision.
As examples from the engineering and medical domains,
we consider two X-ray Computed Tomography (CT) scans:
the Engine data set given in 8-bit fixed-point precision, and

the higher resolution Golden Lady data set given at 12-bit
fixed-point precision. To study the effects of increased data
quantization for real data sets we consider the Mouse Em-
bryo data set obtained from a set of 2D Optical Projection
X-Ray Tomography scans, and the CFD Jet data set repre-
senting vorticity values from a simulation of turbulent flow,
given in IEEE single precision, corresponding to 24 bit pre-
cision. To emulate fixed-point precision, we preprocess the
data and quantize it with fixed-point spacing. The transfer
functions used were chosen to be both realistic for com-
mon application scenarios as well as to explore the space
of different frequency and opacity settings, and include both
transfer functions with wide envelopes and low overall opac-
ity (transparent-like setting), as well as higher frequency
envelopes using higher opacity values (iso-surface-like set-
ting). To explore the impact of lattice resolution, we have
chosen data sets ranging from 40x40x40 to 512x512x624
voxels, see Tables 1 and 2. A detailed specification of the
transfer functions and sample renderings can be found in the
supplementary material.

4. Numerical results

For the experimental study we have rendered more than
35,000 images. All images were rendered in greyscale with
a 250×250 resolution. Details of each experiment, the gen-
erated error landscapes, and a corresponding experimental
analysis can be found in the supplementary material.

4.1. Pipeline precision and input data quantization (p-q)

A typical error landscape for scenarios with varying pipeline
precision, p, and data quantization, q, can be seen in Figure
1(b). Investigating the set of generated error landscapes re-
veals that they all exhibit a very similar topology. In this
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Figure 1: SNR, p-q landscape, where each image was generated using a fixed step size s = 2, and compared to a reference with: a) s = 100,
p = 100 and q = 100, and b) s = 2, p = 100 and q = 100 . c) A typical error landscape for scenarios with varying p and s using a fixed data
quantization q = 8, and a reference with s = 100, p = 100 and q = 8.

study, we have focused on three prominent features, denoted
(I),(II), and (III) in Figure 1(b).

• Feature (I) is the ridge that corresponds to the limit where,
for a given data quantization, q, an increase in pipeline
precision, p, will no longer improve the SNR, and vice
versa.

• Feature (II) describes, for a fixed q, the gain in SNR as a
function of p, until reaching feature (I).

• Feature (III) describes, for a fixed p, the gain in SNR as
a function of q, until reaching feature (I).

By tracing the values of the generated error landscape, we
extracted the features and analyzed their variation across ex-
periments. Using a linear least squares fitting of the form
p = k ∗ q+m, the slope of Feature (I) for a general land-
scape can be approximated as k ≈ 1 with an offset m along
the p axis that varies in the range from 5 to 15 bits among
the experiments as different data sets, transfer functions and
sampling frequencies are used. The increase in SNR as a
function of p or q (as represented by (II) and (III) respec-
tively) has been well approximated by a linear least squares
fitting in each scenario.

We have found that the average slope for feature (II) is
fairly constant around 5 − 7 db/bit with a small variation
between scenarios (see Section 4.2). Note that each extra
pipeline precision bit doubles the quantization levels of the
resulting image representation, which in the ideal case yields
an SNR increase of ≈ 6 db/bit [WK08]. We found that the
slope of feature (II) is constant in each scenario for q above
7− 8 bits. Hence, the influence of q in this region is negli-
gible. For lower quantization, the co-dependency between p
and q is difficult to determine due to masking effects. Such
low values of q are, however, not the focus of this paper,
as most data use 8 bits or more. As can be seen in Figure
1(b), there is a flat area with zero SNR leading up to the
start of feature (II). This is due to inaccuracies in the op-
eration (1−α), performed both in composting and opacity
correction. We have found that using a low opacity transfer
function or a high sampling frequency shifts the start of fea-

ture (II) towards higher precision. For low frequency trans-
fer functions, we have noticed that the slope of feature (II) is
generally steeper than for high frequency transfer functions.
This can clearly be observed when comparing the different
transfer functions for the Marschner Lobb data set.

For feature (III), the variation in SNR as a function of q
for fixed p, the slope is close to constant for p larger than
the values suppressed by feature (I). The average slope over
scenarios is ≈ 6.3 db/bit (represented by k1 in Table 3). We
have found no clear co-dependency between feature (III)
and the sampling frequency used (s = 2,20).

4.2. Pipeline precision vs. sampling frequency (p-s)

Figure 1(c) displays a typical SNR error landscape for sce-
narios studying the co-dependency between pipeline preci-
sion p and sampling frequency s. The topology of the set of
generated error landscapes is very similar, and three promi-
nent features can be noted:

• Feature(IV ) is the ridge, where, for a fixed s, an increase
in p has no further effect on the SNR, and vice versa.

• Feature (V ) is the gain in SNR with higher p for a fixed s,
until reaching feature (IV )

• Feature (V I) is the gain in SNR with higher s for a fixed
p, until reaching feature (IV ) or the end of the landscape.

Feature (V ) starts at the end of the flat zero signal SNR
region introduced at low p. It can be observed that this start-
ing position varies with s, and that this variation follows a
staircase behavior with increasing step length. Feature (V )
is close to linear for a fixed s, but the parameters for a linear
least squares fitting varies for different s. Note, that this be-
havior was also noticed for feature (II), which corresponds
to feature (V ) for a fixed sampling frequency. This shows
that there exists a co-dependance between s and p for both
feature (II) and feature (V ). We have also noted that the co-
dependency between p and s for feature (V ) is more em-
phasized for high resolution volumes, that is when l is large.
This conforms to the theory, see Section 3, since the num-
ber of samples given by s · l affects the precision require-
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ments during compositing. The observed numerical values
for both the slope and co-dependency effects are discussed
more closely in Section 5.

Feature (V I) clearly exhibits a non-linear behavior, and
varies between scenarios. We have found that this feature
gives especially large errors for combinations of both high
data frequency and high transfer function frequency (sharper
envelopes), for example the Marschner Lobb data set with
the isosurface like transfer function. However, for the scope
of this paper, the experimental results have not provided us
with all the details needed for an exact understanding of the
complex effects of transfer functions and data sets on the
sampling frequency. We did not, for example, find clear ev-
idence for the essential band-limiting frequencies in our er-
ror landscapes as discussed in previous work [BMWM06].
We have, however, found that the effect of changing s for
each pipeline precision, p, can, with sufficient accuracy for
our investigation, be approximated by a quadratic function.
In Section 5 and the supplementary material, the parameters
for this quadratic approximation are presented in detail.

The extracted ridge, feature (IV ), exhibits a non-linear
slope with a small variation between the experiments. This
is due to the non-linear nature of feature (V I) and co-
dependency between p and s in the region of feature (V ). We
observed a similar behaviour no matter whether the quanti-
zation of the input was 8 or 12 bit leading us to believe that
increasing q has a negligible effect on the relationship be-
tween s and p.

5. Model building

Given an error landscape for a specific scenario a user is able
to pick suitable rendering parameters for achieving a partic-
ular image fidelity. However, the creation of error landscapes
is impractical and time-consuming. Our goal in this section
is to create a set of predictive models, that require few or no
previously rendered images to accurately estimate the error
landscape for arbitrary real application scenarios.

From the numerical results presented in Section 4, a num-
ber of conclusions can be drawn: The overall topology of all
generated error landscapes is similar for both the p vs. q and
p vs. s scenarios, respectively. We have identified a number
of features, that define these topologies. We conclude that
the ridges, features (I) and (IV ), are a direct consequence
of feature masking, that is one parameter effect dominating
the others. These masking effects allow us to model feature
(II),(III),(V ), and (V I) separately, and base our model on
the minimum of two functions either describing features (II)
and (III) or (V ) and (V I). For features (II) and (V ) there
is a co-dependence between pipeline precision, p, and sam-
pling frequency, s, which is especially apparent for large
data sets. Here, we denote p vs. q error landscapes, with
fixed sampling frequency, s f , and lattice resolution, l f , as
SNRpq(p,q), and p vs. s landscapes as SNRps(p,s). The er-
ror landscapes SNRpq(p,q) and SNRps(p,s) can be modeled

as:

SNRpq(p,q) = max(0,min(SNRIII(q),SNRII,V (p,s f , l f )))

SNRps(p,s) = max(0,min(SNRV I(s),SNRII,V (p,s, l f )))

SNRIII(q) = k1q+m1 (4)

SNRV I(s) = k3s2 + k4s+m3 (5)

SNRII,V (p,s, l) = k2(s, l)p+m2(s, l) (6)

where SNRIII(q) describes feature (III) as a linear function
of q, SNRV I(s), feature (V I) as a quadratic function of s,
SNRII,V (p,s, l) feature (II) as a linear function of p, while
keeping s fixed, and SNRII,V (p,s, l) feature (V ) as a linear
function with coefficients that change when s is varied. Since
both theoretical and numerical results indicate that the co-
dependency between p and s is due to the number of sam-
ples composited (s · l), we model the variation of feature (V )
as functions of both s and l. Specifically we model the co-
dependency by linear functions as k2(s, l) = kk2 · s · l +mk2
and m2(s, l) = km2 · s · l +mm2.

The ridges ((I) and (IV )) describe when for a given q
or s the increase of the pipeline precision no longer has
an effect on image fidelity, and vice versa. These ridges
can be modeled directly by considering where the func-
tions (6) and (4) or (6) and (5) are equal. Specifically we
can describe feature (I) with p(I)(q,s f , l f ), by consider-
ing where SNRIII(q) = SNRII,V (p,s f , l f ). Similarly we de-
scribe feature (IV), with p(IV )(s, l f ), by considering where
SNRV I(s) = SNRII,V (p,s, l f ). That is

p(I) =
k1

k2(s f , l f )
·q+

m1 −m2(s f , l f )

k2(s f , l f )

p(IV ) =
k3

k2(s, l f )
· s2 +

k4

k2(s, l f )
· s+

m3 −m2(s, l f )

k2(s, l f )

Mean model fitting - To estimate the values of the model
parameters k1...4 and m1...3, the simplest option is to average
the extracted parameters over all training scenarios. In order
to avoid unnecessary bias, we do not consider the scenar-
ios where the third parameter is varied. For example for the
Marschner-Lobb data set we only consider the scenario of 8
bit data and not 12 bit data, since the additional data bits have
been found not to affect the SNRps significantly, see Sec-
tion 4. Table 3 displays the mean, standard deviation, max
and min for the extracted parameters from the conducted
training scenarios (see Table 1 and 2). The mean model pa-
rameter fitting has the disadvantage of not considering the
variation of parameters for different transfer functions and
data sets. Such effects are very hard to model explicitly, since
the parameter space of possible transfer functions and data
sets does not have a reasonable parameterization. Hence, we
turn instead to adaptive models, that fit the model parameters
to specific data sets and transfer functions by rendering and
comparing a few specific images.

Instance based model fitting - Our instance based model
adapts itself to a specific scenario by directly sampling the
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Figure 2: The CFD Vort validation data set. Top row: SNRps landscape for pipeline precision p vs. sampling frequency s. a) instance based
model estimation, using 25 rendered images for model adaption, red dots indicate images for tracing start of feature (V) and the ridge, orange
dots indicate the sampling of the feature (V) and (VI) parameters. b) generated validation set where each point in the error landscape is
rendered. c) error plot of difference between estimation a) and validation b) data in dB. Bottom row: SNRpq for pipeline precision p vs. input
data quantization q. d) instance based model estimation, using 20 rendered images for model adaption, red dots indicate images for tracing
start of feature (II) and the ridge, orange dots indicate the sampling of the feature (II) and (III) parameters. e) generated validation data set
where each point in the error landscape is rendered. f) error plot of difference between d) and e) in dB.

parameter fitting for k1...4 and m1...3. To adapt the model pa-
rameters to a specific scenario, given by d, l, and t, a number
of images need to be rendered and compared to a reference.

1. To estimate the linear effect of q, feature (I), one needs
to render at least two images for large enough p to be
unaffected by masking, and compare them to a reference
image using the highest obtainable q.

2. To estimate the quadratic effect of s, feature (V I), at least
three images need to be rendered, for large enough p to
be unaffected by the masking effects below the ridge.

3. To estimate the direct effects of p, one can either model
it as a linear increase if an SNRpq landscape is desired or
a linear function with linear co-dependency effects if an
SNRps landscape is sought.

SNRpq: Two images at a value for q > 8 above the start
of feature (II) is the minimal requirement. To find the
start of feature (II), one can render images with in-
creasing p until a change is detected.

SNRps: At least two linear fittings of feature (V ) for dif-
ferent s have to be extracted. The image samples for
each fixed s should be placed after the start of feature
(V ) and before the ridge, feature (IV ). The start of

Feature Parameter mean std. dev. max min
(III) k1 6.34 0.591 7.41 5.90
(III) m1 -1.53 13.7 25.8 -17.8
(II), (V ) kk2 ∗104 6.96 8.26 31.7 0.385
(II), (V ) km2 4.92 1.44 7.75 3.28
(II), (V ) mk2 ∗102 -1.13 1.39 -0.213 -5.87
(II), (V ) mm2 -19.8 11.7 -8.43 -53.1
(V I) k3 -0.106 0.0434 -0.0259 -0.163
(V I) k4 3.50 1.64 5.86 0.666
(V I) m3 34.0 16.6 64.5 3.13

Table 3: Mean, standard deviation, maximum and minimum over
extracted parameters from the training scenarios.

feature (V ) and the ridge can be found by tracing the
landscape using several images with a fixed s.

Some of the SNR landscapes exhibit noise, especially in the
region dominated by feature (V ). In this case additional im-
ages can lower the influence of noise on the model estima-
tion. For highly anisotropic data sets, where the data signal
varies with viewpoint, the model can be improved by render-
ing the volume from a few different viewpoints and either
use a mean or a pessimistic estimate over the obtained error
landscapes.

Hybrid model fitting - The drawback of the instance
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Figure 3: For the CFD Vort validation data set. Mean based model for a): SNRps landscape. and b): SNRpq landscape. c): Hybrid based
SNRps landscape. The red lines at p = 11 and p = 24 corresponding to IEEE Half and Single (float) precision.

SNRps Landscapes SNRpq Landscapes
Instance model Hybrid model Mean model Instance model Mean model

Dataset/TF mean std. dev. #img mean std. dev. mean std. dev. mean std. dev. #img mean std. dev.
MRI/TF1 1.12 1.00 23 1.73 2.21 34.7 18.5 2.45 2.43 11 6.45 2.40
MRI/TF2 1.23 1.08 23 2.87 3.54 42.2 21.2 1.85 2.31 11 1.85 1.93
Vort/TF1 1.16 0.86 24 3.74 3.58 34.2 15.7 2.19 1.42 19 4.39 4.94
Vort/TF2 1.77 2.32 28 5.88 4.72 43.1 21.5 1.68 1.98 20 19.2 8.64
Carp/TF1 1.36 1.27 26 2.37 2.93 30.8 18.4 1.31 1.85 13 11.2 4.37
Carp/TF2 1.22 1.08 25 2.33 3.14 31.8 18.4 3.76 2.72 12 10.3 4.21

Table 4: Mean error in dB, standard deviation (std. dev.) and number of rendered images (#img) for model estimation of validation scenarios.
For the Hybrid model 9 images have been rendered with varied setting for s at p = 24 for each validation scenario.

model is the large number of images that need to be rendered
using an arbitrary precision pipeline. It can be observed that
the gain in SNR over the region dominated by feature (V I),
and thus also the ridge represented by feature (IV ), varies
noticeably between different scenarios. On the other hand,
feature (V ) exhibits less variation between scenarios. To im-
prove the mean based fitting for SNRps landscapes, we there-
fore propose a hybrid model. For this hybrid model the pa-
rameters k3...4 and m3 for SNRV I are adapted to the data and
transfer function under investigation in the same way as for
the instance based model. However, feature (V ) is based on
the mean parameters. Note that the reference images in this
case are rendered with high sampling frequency, but at the
same pipeline precision as the rendered images. The hybrid
model thus has the advantage that it does not require an ar-
bitrary precision pipeline. Instead only a standard pipeline
with the possibility to vary s is necessary.

5.1. Model validation

To validate our models, we have used three additional data
sets: the Carp data set obtained from a CT scan given in
12 bit fixed-point quantization and the MRI Head a MRI
scan given in 12 bit fixed-point quantization. To validate our
model on higher precision data we have used the CFD Vort,
a CFD simulation data set given in 24 bit floating-point pre-
cision. For each data set we consider two transfer functions,
one with a single higher frequency envelope and one with
lower frequency envelopes.

For the CFD Vort data set, Figure 2(b) depicts a densely
sampled (true) SNRps landscape where each SNR measure

is based on a rendered image. Similarly Figure 2(e) de-
picts a densely sampled SNRpq landscape. Examples of the
SNRps and SNRpq generated from the mean based model
are displayed in Figures 3(a) and 3(b). From a comparison
with Figures 2(b) and 2(e), the model captures the overall
topology but lacks some of the accuracy of the true land-
scapes. Figure 2 displays an example of two instance based
SNRpq and SNRps landscapes. Figure 2(a) shows the esti-
mated SNRps, and 2(c) an error plot of the difference be-
tween 2(b) and 2(a). Similarly, Figure 2(d) displays the es-
timated SNRpq landscape, and 2(f) an error plot of the dif-
ference between 2(e) and 2(d). Figure 3(c) displays a hybrid
fitting of the SNRps landscape.

Table 4 displays the error mean and standard deviation
for the three validation data sets for the instance, mean and
hybrid based parameter fittings. The error for each point in
the landscapes is computed as the absolute value of the dif-
ference in SNR between the model landscape and the true
landscape, where we do not consider errors in SNRpq land-
scapes where q < 8. Note that most model errors are small
compared to the increase in SNR gained from increasing p,
q and s. A complete overview of all model errors for all con-
ducted scenarios can be found in the supplementary material.

6. Visual artifacts
The greyscale images used in the numerical investigations
and a set of rendered color images with various data sets
and transfer function settings were visually inspected. One
of the most common visual artifacts introduced by a low
pipeline precision are quantization errors or banding arti-
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Figure 4: Upper row: Greyscale images of Hydrogen atom rendered using 6,7,8,9, and 10 bits of pipeline precision at two steps/voxel.
Bottom row: Color images of Golden Lady rendered with a 512x512 pixel resolution using two steps/voxel, From the left: Rendered using 10
bits of pipeline precision, the normalized difference image between 8 and 12 bits and close ups of images using 7,8,9, and 10 bits of precision

facts in the images. With increased precision these bands
shrink until eventually, an apparently continuos change in in-
tensity/color is reached. This artifact can be seen in the upper
row of Figure 4, which displays the hydrogen atom rendered
using 6,7,8,9, and 10 bits of pipeline precision. These ef-
fects also have a co-dependence with sampling frequency,
where higher sampling frequencies tend to increase the im-
print of the artifacts, this corresponds to the observed co-
dependency in the error landscapes between sampling fre-
quency and pipeline precision, also modeled in Section 5.
Another artifact is related to the transparency of different
envelopes. High transparency materials require higher preci-
sion to be rendered correctly. For example, when rendering
the Golden Lady, the bone structures are rendered correctly
for lower precisions while the skin and blood structures (hav-
ing a lower assigned opacity) require a higher precision. In
Figure 4 (bottom row) the difference between 7 and 8 bits
of pipeline precision is shown. Examining the normalized
difference image between precision settings, see Figure 4,
edges and contours in the volume are often emphasized. We
have also found that artifacts due to a limited pipeline pre-
cision are often very similar to so called wood-grain arti-
facts [EHK∗06], assumed to be introduced by low sampling
frequencies. This can e.g. be seen in Figure 4 (bottom row),
in which the Golden Lady data set is rendered with varied
pipeline precision. We have also noticed that this type of ar-
tifact is more noticeable when high pipeline precision is used
for the computation of ray sample locations and the rest of
the pipeline uses low precision.

7. Conclusion and future work

We have found that, generally, image quality improves by ≈
6db/bit increased pipeline precision with a small variation
for different sampling frequencies, volume resolutions, data
sets and transfer functions. By studying the co-dependency
effects with sampling frequency and data quantization, we
found that there exists a limit, above which increasing the
pipeline precision further does not increase the SNR signifi-
cantly. Using our models, we can predict where such ridges

occur. Given such a predictive model, a practitioner could
e.g. set sampling distance, given an input data quantization
while constrained to a particular pipeline precision. Based
on the mean error landscapes, one can conclude that the
standard IEEE half and single precision formats, see Figures
3(a) and 3(b), give acceptable numerical quality (SNR & 40)
for reasonable sampling frequencies and data quantizations.
However, if very high sampling frequencies are used, IEEE
single precision may not be enough, since there is a clear
increase in precision requirements with higher sampling fre-
quencies. For the non-truncated landscapes, Figures 3(a) and
3(b), an upper SNR value is given according to a fixed third
parameter. The true SNR value (corresponding to a truncated
landscape) is, however, given by the minimum SNR value
from the two types of model landscapes. This corresponds to
a 3D model, obtained by considering the min over the three
features (4)(5)(6) presented in section 5. We can also con-
clude that for visualization tasks not requiring absolute accu-
racy, or given requirements for coarse sampling frequencies
and/or data quantizations, half precision, corresponding to
11 mantissa bits, should be sufficient as the error introduced
by pipeline precision is negligible compared to the low sam-
pling frequency and/or coarse data quantization.

The paths to explore in future work include the effect of
a limited precision in other parts of the pipeline such as
higher order interpolation filters, shading methods etc. This
study will furthermore be extended to include perceptual er-
ror metrics. We will also further explore the detailed effects
of varying the sampling frequency using different data sets
and transfer functions.
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