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Abstract

In this paper, we introduce the concept of isosurface similarity maps for the visualization of volume data. Iso-
surface similarity maps present structural information of a volume data set by depicting similarities between
individual isosurfaces quantified by a robust information-theoretic measure. Unlike conventional histograms, they
are not based on the frequency of isovalues and/or derivatives and therefore provide complementary information.
We demonstrate that this new representation can be used to guide transfer function design and visualization pa-
rameter specification. Furthermore, we use isosurface similarity to develop an automatic parameter-free method
for identifying representative isovalues. Using real-world data sets, we show that isosurface similarity maps can
be a useful addition to conventional classification techniques.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms

1. Introduction

The field of volume visualization aims to provide insightful
depictions of three-dimensional data. Modalities such as CT,
MRI, or laser-scanning confocal microscopy allow physi-
cians, scientists, and engineers to investigate the interior of
complex objects. However, providing clear visualizations of
the structures contained in a volume data set is a major chal-
lenge. One of the issues is the lack of explicit geometric in-
formation and limited semantics. A volume data set contains
a large number of isosurfaces at different target scalar field
values, while its structure is typically characterized by a fi-
nite number of feature isosurfaces that segment the data set
into several important components. The data may be visu-
alized directly by mapping the scalar values and/or derived
attributes to optical properties, or a geometric surface repre-
sentation may be extracted using techniques like the popular
Marching Cubes algorithm [LC87]. Irrespective of the cho-
sen visualization method, providing guidance in the identi-
fication of salient isovalues plays an important role in im-
proving the exploration process. In this paper, we present a
new approach for the visualization and detection of relevant
isovalues which provides additional information compared
to conventional histograms.

Histogram-based methods typically infer similarity from

the frequency at which isovalues occur. While there are cases
where this assumption holds, in general only limited infor-
mation can be deduced using this approach. Moreover, the
presence of large homogenous regions, acquisition artifacts,
and noise introduces additional problems. Instead of the fre-
quency of individual data values and/or derived attributes,
our method is based on the global notion of isosurface sim-
ilarity. Using the information-theoretic measure of mutual
information, we compare all combinations of isosurfaces to
determine their degree of dependency. This process results
in an isosurface similarity map which provides a compact
overview of the similarities.

The main contribution of this paper is a new approach
for quantifying and visualizing the similarity between iso-
surfaces in a scalar field. We demonstrate its applicabil-
ity for simplifying isovalue selection and enhancing scalar-
field visualization. However, we want to stress that we do
not directly compete with the plethora of techniques which
employ multi-dimensional transfer functions based on local
voxel properties. We recognize that it is useful and, for many
types of data, unavoidable to employ such classifiers in order
to separate features which share the same value ranges. In-
deed, as the isovalue is one axis in many multi-dimensional
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transfer function domains, our approach complements these
techniques.

2. Related Work

Due to the complex nature of volumetric data sets, tech-
niques for providing a simplified view of the data are fre-
quently used. Their purpose is to guide the user to inter-
esting regions which can subsequently be investigated in
a three-dimensional view. Histograms are one of the most
common representations employed for this purpose. They
visualize the data set by depicting the number of voxels for
each data value. Carr et al. [CDD06], in a result later refined
by Scheidegger et al. [SSD∗08], demonstrated that this ac-
tually converges to the distribution of isosurface areas but
is formally equivalent to the nearest neighbor interpolant.
They proposed several practical measures which show bet-
ter convergence behavior. Isosurface area, however, still con-
veys limited information about the nature and structure of a
data set. For this reason, Bajaj et al. [BPS97] displayed a va-
riety of additional isosurface statistics in their contour spec-
trum. Pekar et al. [PWH01] suggested the use of a Laplacian-
weighted histogram to assist in the detection of significant
isovalues.

Several approaches apply topological analysis to volume
data. The contour tree [CSVDP10] is an abstraction of a
scalar field that encodes the nesting relationships of isosur-
faces. Takahashi et al. [TTFN06] employed a volume skele-
ton tree to identify isosurface embeddings in order to provide
additional structural information. Hyper Reeb graphs, pro-
posed by Fujishiro et al. [FTAT00], capture the topological
skeleton of a volumetric data set and can serve as a refer-
ence structure for designing comprehensible volume visual-
izations. One problem of these methods is that they rely on
geometric extraction processes which suffer from noise in
real-world data.

Much work has focused on the collection of local prop-
erties such as first and second derivatives. Plotting these at-
tributes against isovalues provides guidance for feature se-
lection. Kindlmann and Durkin [KD98] demonstrated that a
two-dimensional histogram of data value and gradient mag-
nitude enables the identification of boundary regions which
manifest themselves as arches. Kniss et al. [KKH02] ex-
tended this idea to the common notion of two-dimensional
transfer functions and developed a direct manipulation in-
terface for their specification. Lum et al. [LM04] used ad-
ditional gradient-aligned samples depicted in a line-based
histogram. Šereda et al. [ŠVSG06] extended this idea by
searching for high and low values in paths that follow
the gradient. Tenginakai et al. [TLM01] employed multi-
dimensional histograms based on local higher-order mo-
ments to detect important data values. To better charac-
terize the shape of local features, Sato et al. [SWB∗00]
used the matrix of second derivatives. The role of curva-
ture was investigated by Kindlmann et al. [KWTM03] and

Hladůvka et al. [HKG00]. Roettger et al. [RBS05] extended
histograms by incorporating spatial information. Lundström
et al. [LLY06] proposed the use of local histograms to
better represent the distribution of intensity values in a
given neighborhood which improves tissue separation for
the case of overlapping intensity ranges. Correa and Ma pro-
posed classification approaches based on size [CM08], oc-
clusion [CM09a], and visibility [CM09b].

Due to this large number of different classification cri-
teria, several approaches proposed the use of dimensional-
ity reduction techniques to identify regions based on high-
dimensional voxel signatures. Tzeng et al. [TM04] used ma-
chine learning methods to generate classifications based on
a simple painting interface. They also presented a cluster-
space approach for interacting with multiple classification
criteria [TLM05]. Šereda et al. [ŠVG06] employed hierar-
chical clustering of material boundaries. Pinto et al. [PF07]
utilized self-organizing maps to reduce the dimensionality of
the classification space.

Previous methods attempt to characterize volume data sets
by analyzing global isosurface statistics, extracting topo-
logical relationships, or collecting local voxel signatures.
Our approach is fundamentally different in that we mea-
sure similarities of isosurfaces as a whole based on a robust
information-theoretic measure. We show that this notion can
yield additional insights into the structure of the data and can
serve as the basis for enhanced visualization.

3. Isosurface Similarity

Isosurfaces play a crucial role in visualizing and interpret-
ing volumetric data. In many cases they represent important
object and/or material boundaries. However, in practice it
is difficult to identify salient isovalues. Traditionally, one-
and two-dimensional histograms have been employed to as-
sist the user in this process. These approaches depict the fre-
quency of isovalues and other attributes (e.g, gradient mag-
nitude). Peaks or clusters in these plots then guide the explo-
ration and visualization process. Frequency, however, can be
a problematic measure as large regions such as the back-
ground intensity tend to dominate.

We propose isosurface similarity as an alternative mea-
sure for identifying features and guiding visualization pa-
rameter specification. Instead of collecting statistics of in-
dividual isosurfaces and using their variation to obtain in-
formation about their significance, we are interested in in-
vestigating similarities between individual isosurfaces di-
rectly, i.e., how much does knowledge about one surface
tell us about the others. In this section, we first introduce
our new measure for isosurface similarity. We then apply
this measure to the isosurfaces of a scalar field to provide
an overview of the mutual similarities which complements
traditional frequency-based depictions.
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3.1. Similarity Measure

An isosurface, or level set, of a volumetric scalar-valued
function f : R3 → R is the locus of all points at which f
attains the isovalue h:

Lh =
{

x ∈ R3 : f (x) = h
}

(1)

A popular information-theoretic measure of similarity which
has been applied in many areas including shape registra-
tion [HPM06], multi-modality fusion [HBKG08], and view-
point selection [VFSG06] is mutual information. The mutual
information of two discrete random variables X and Y can be
defined as [Yao03]:

I(X ,Y ) = ∑
x∈X

∑
y∈Y

pX ,Y (x,y) log
(

pX ,Y (x,y)
pX (x)pY (y)

)
(2)

where pX ,Y is the joint probability distribution function of X
and Y , and pX and pY are the marginal probability distribu-
tion functions of, respectively, X and Y . Mutual information
quantifies the information that X and Y share by measur-
ing how much knowing one of these variables reduces the
uncertainty about the other. In other words, mutual informa-
tion measures the dependence between the joint distribution
of X and Y and what the joint distribution would be if X
and Y were independent. The mutual information of X and
Y is zero if and only if they are statistically independent.
In the case of identity of X and Y , the mutual information
is equal to the uncertainty associated with the random vari-
able, i.e., its entropy. Mutual information can be equivalently
expressed in terms of entropy as:

I(X ,Y ) = H(X)+H(Y )−H(X ,Y ) (3)

with

H(X) = − ∑
x∈X

pX (x) log(pX (x)) (4)

H(Y ) = − ∑
y∈Y

pY (y) log(pY (y)) (5)

H(X ,Y ) = − ∑
x∈X

∑
y∈Y

pX ,Y (x,y) log
(

pX ,Y (x,y)
)

(6)

where H(X) and H(Y ) denote the marginal entropies and
H(X ,Y ) is the joint entropy of X and Y . As it is convenient
to work with values in [0,1], a normalized measure can be
obtained by [Kvå87]:

Î(X ,Y ) =
2I(X ,Y )

H(X)+H(Y )
(7)

Volume data frequently exhibit an onion-peel-like structure
and contain material inhomogeneities, partial volume ef-
fects, and noise. This results in several redundant isosur-
faces, i.e., they do not represent substantial additional infor-
mation. We would like to obtain a measure which classifies
these kind of isosurfaces as similar. In the registration liter-
ature, shape representations based on implicit distance func-
tions are commonly used as they have proven to be stable
and robust to shape perturbations and noise [HPM06]. For

these reasons, we choose to represent individual isosurfaces
using their distance transform. The distance transform Dh of
an isosurface with isovalue h gives the minimum distance of
a point x to the surface [JBŠ06]:

Dh(x) = min
∀y∈Lh

d(x,y) (8)

where d is a distance measure (for the remainder of this pa-
per we will assume the Euclidean distance). We can now
consider the distances from any point to a pair of isosurfaces
Lp and Lq as random variables X and Y . In order to com-
pute the mutual information between the two isosurfaces, we
need to estimate the joint distribution of X and Y . This can
be accomplished using the joint histogram of Dp and Dq: for
every voxel position x, we record the distances Dp(x) and
Dq(x) in a two-dimensional histogram where each bin rep-
resents a certain range of distances. The marginal probability
distributions of X and Y can be estimated by summing over
the columns and rows, respectively, of the joint histogram.
This allows us to directly compute H(X ,Y ), H(X), and H(Y )
to evaluate the normalized mutual information, as defined in
Equation 7, of the two isosurfaces as a measure of their sim-
ilarity.

3.2. Similarity Maps

In order to obtain information about the similarity relation-
ships in a data set, we introduce the isosurface similarity
map. Given the discrete set of N isovalues V = {h1, . . . ,hN}
in a data set, we generate a N ×N matrix SMV (i, j) con-
taining the isosurface similarity, computed as described in
the previous section, for each combination of isovalues hi
and h j. We will also use the notation SMV (x,y) to denote
the matrix element SMV (i, j) with x = hi and y = h j when
convenient. Due to the properties of mutual information, the
map is symmetric and one along the main diagonal. As it
records the similarity between every pair of isosurfaces, it
provides an overview of the similarity relationships in the
data set. In contrast to histograms, which visualize the fre-
quency of individual values, it instead depicts the similarity
of isosurfaces measured by the mutual information of their
distance fields.

By summing over the rows (or columns) of the isosur-
face similarity map and normalizing the result by the number
of isovalues, we obtain the isosurface similarity distribution
SDV :

SDV (i) =
1
|V |

|V |

∑
j=1

SMV (i, j) (9)

The isosurface similarity distribution describes the average
similarity for each individual isosurface. Peaks in the simi-
larity distribution correspond to those isosurfaces which are
most similar to others while valleys indicate regions of rapid
change. As will be shown in Section 4, it is frequently useful
to investigate the similarity distribution for a specific subset
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Figure 1: Example of our isosurface similarity measure. Row (1): column (a) shows an image of three concentric circles, in
column (b) the innermost sphere is replaced by a square of approximately equal area, and columns (c) and (d) show the same
two images with added noise. In row (2) the respective histograms are shown. Row (3) depicts the corresponding isosurface
similarity maps. Row (4) shows the isosurface similarity distributions.

of isovalues. In practice, a summed-area table of the similar-
ity map enables the efficient evaluation of similarity distri-
bution values for arbitrary continuous subranges.

Figure 1 shows a simple example. The image in row (1),
column (a) contains three concentric circles with different
isovalues. In column (b) the innermost circle is replaced by
a square of approximately equal area. Expectedly, the corre-
sponding histograms shown in row (2) are essentially identi-
cal. The isosurface similarity maps depicted in row (3), how-
ever, show considerable differences. Similarity is linearly
mapped to grayscale intensity where white means a simi-
larity of zero and black corresponds to a similarity of one.
While row (3), column (a) shows a high degree of mutual
similarity between the three spheres, the square’s presence
is clearly indicated in row(3), column (b). This is also re-

flected in the corresponding similarity distributions depicted
in row (4). Columns (c) and (d) of the figure demonstrate that
the basic structure of similarity map and distribution remains
the same even though noise has been added to the images.

4. Applications

In this section, we present applications of isosurface simi-
larity maps and distributions for the visualization of volume
data. We do not advocate replacement of well-proven meth-
ods such as histograms which are clearly useful for many
purposes nor do we propose similarity as a sole classifica-
tion criterion. Instead, we want to demonstrate that isosur-
face similarity provides additional information which can be
exploited to build improved tools for volume visualization.
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Figure 2: Result images for similarity-enhanced isosurface visualization are shown in (a) and (b), (c) depicts the isosurface
similarity map of the data set, and (d) shows the isosurface similarity distribution for the highlighted region in the similarity
map. The isovalues depicted in (a) and (b) are marked with corresponding colors in (c) and (d).

4.1. Similarity-Enhanced Isosurface Visualization

A common problem in volume visualization is that even mi-
nor changes in the selected isovalues can have dramatic im-
pact on the depicted features. The importance of providing
the user with information on this kind of uncertainty was
demonstrated by Lundström al al. [LLPY07] in the context
of stenosis assessment. In a similar spirit, isosurface simi-
larity allows us to indicate the stability of an isosurface by
visually encoding the similarity of a sample point with re-
spect to a specified isovalue.

We want to depict the isosurface at an user-selected iso-
value hu in a focus+context manner using direct volume ren-
dering [HMBG01]. In addition to the isosurface itself (fo-
cus), information about similar regions (context) should be
conveyed to the user. To prevent visual overload, the con-
textual regions should be depicted in a sparse way. We use
the following importance function γ(x) which determines the
degree-of-interest in a sample at location x:

γ(x) = ∏
y∈C(x)

SMV (hu, f (y)) (10)

where f is the scalar field and C(x) denotes a local neighbor-
hood of samples around x. In practice, we reuse the sample
values required for gradient estimation using central differ-
ences as the sample neighborhood. The effect of this func-
tion is that, due to the product of similarities of neighbor-
ing voxels, only contextual regions with high local similar-
ity will tend to exhibit high importance. For visualizing the
isosurface hu we specify the opacity of a sample α(x) as:

α(x) =

{
1 if f (x)≥ hu

γ(x) otherwise
(11)

To clearly distinguish between focus and context, γ is also
used to control the color and the degree of surface shad-
ing. Additionally, the directional occlusion model of Schott
et al. [SPH∗09] is used uniformly for all samples.

An example is shown in Figure 2. The isovalue selected

in Figure 2 (a) is very unstable – the extent of the cloud sur-
rounding the surface indicates that it only captures part of
the structure of interest. Figure 2 (b) shows more stability.
Note that the similarity cloud has the same shape in both im-
ages – this means that both isosurfaces are part of a cluster
of high mutual similarity. This is confirmed by locating the
isovalues in the similarity map shown in Figure 2 (c) – both
lie within one large cluster. Figure 2 (d) shows the similarity
distribution for the indicated square region. It can be seen
that the isovalue used in Figure 2 (a) has low average simi-
larity, while the value from Figure 2 (b) is located at a peak,
i.e., it represents the region well.

4.2. Similarity-Based Isovalue Remapping

Isovalues are typically selected and modified using user
interface widgets such as sliders or by linearly mapping
them to mouse movement. This, however, can be quite non-
intuitive: if a subrange of isovalues corresponds to very sim-
ilar isosurfaces, large changes of the value will have almost
no effect on the depicted structures. Conversely, in regions of
high dissimilarity even a minor modification can completely
alter the appearance. Ideally, the effects in the visualization
should correspond to the magnitude of change in the corre-
sponding user interface component. Thus, instead of directly
translating changes of the controlling element to changes in
the isovalue, we use a nonlinear mapping based on isosur-
face similarity. Let MLV be the conventional direct mapping
function which maps values [0,1] linearly to the range of
isovalues [hmin,hmax] in the set V :

MLV (x) = hmin + x(hmax−hmin) (12)

The idea is to use a monotonous function MSV (x) with
MSV (0) = MLV (0) and MSV (1) = MLV (1) whose deriva-
tive is controlled by the similarity of neighboring isovalues.
For this purpose, we define the cumulative similarity of an
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Figure 3: Transition using linear mapping MLV (x) (top row) and similarity-based mapping MSV (x) (bottom row) for x ∈
[0.22,0.32].

ordered set of isovalues V :

SCV (i) =
i

∑
j=1

SMV ( j−1, j) (13)

where SMV (0,1) = 0. Our similarity-based mapping func-
tion can then be written as:

MSV (x) = MLV

(
SCV (x(|V |−1)+1)

SCV (|V |)

)
(14)

The fact that this function is piecewise constant does not
matter in practice, since we are typically only interested in
discrete isovalues. However, one can simply use any inter-
polant for SCV to remedy this.

Figure 3 depicts a transition using MLV (x) (top row) and
MSV (x) (bottom row) with x varying from 0.22 to 0.32 in in-
crements of 0.02. Even though the differences are subtle, the
images generated using the similarity-based mapping func-
tion show a more uniform progression. The isosurface sim-
ilarity map for the data set is shown an Figure 4 (a) – the
highlighted area indicates the range of isovalues of the tran-
sition. Note that the dissimilar nature of the isosurfaces in the
interval is clearly visible. The graph in Figure 4 (b) depicts
the function MLV (x)−MSV (x) for the chosen interval, i.e.,
the difference in isovalue resulting from using the similarity-
based mapping function instead of the linear one.

4.3. Representative Isovalue Selection

An important problem in volume visualization has been the
identification of relevant isovalues. Many approaches com-
bine different isosurface statistics to infer salient isovalues
which characterize the function well. The isosurface simi-
larity map can be used to provide guidance in finding rep-
resentative isovalues. By selecting rectangular regions in the
map and investigating their similarity distribution, insight on
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Figure 4: Similarity-based isovalue remapping. (a) Isosur-
face similarity map for the data set shown in Figure 3 –
the highlighted area indicates the interval of isovalues in
the transition. (b) Plot of the difference between the linear
mapping function MLV (x) and the similarity-based mapping
function MSV (x) for x ∈ [0.22,0.32].

the relationships of isovalues and the corresponding struc-
tures can be gained. While manual analysis is useful and un-
avoidable for many exploratory tasks as the intent of the user
is not known, the highly structured nature of the isosurface
similarity map also provides us with means to automatically
identify relevant isovalues. Regions of high similarity man-
ifest themselves as distinct squares in the isosurface simi-
larity map. We developed a simple algorithm which allows
us to automatically identify these regions and, based on their
similarity distributions, select the most representative isoval-
ues for each of them:

Step 1 – Our aim is to identify representative isovalues, i.e.,
values with high similarity to many other values. Initially,
the value with the highest average similarity to all others is
identified. Then, the maxima of the similarity distribution
for only the values below and above this value are cho-
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Figure 5: Representative isovalue selection algorithm applied to a CT data set. The isosurface similarity map is shown on the
left and the six most representative isovalues are marked. The corresponding isosurfaces are depicted in the middle section
numbered from one to six with decreasing relevance. The image on the right shows a cutaway view of the data set classified
according to maximum similarity with the six isovalues.

sen, one so on. Thus, our strategy recursively partitions
the set of isovalues V by selecting the maximum of the
similarity distribution for the current subset. The chosen
isovalue m is inserted into a priority queue Q based on its
similarity distribution value weighted by the number of
isovalues in the current subset. The following procedure
prioritize(Q,V ) summarizes these operations:

m ← argmax
hi∈V

SDV (i)

p ← |V |SDV (m)

enqueue(Q,m, p)

V1 ← {hi ∈V : 1≤ i < m} (15)

prioritize(Q,V1)

V2 ← {hi ∈V : m < i≤ |V |}
prioritize(Q,V2)

Step 2 – Next, we remove the isovalue hm with maximum
priority from the queue. To prevent similar values from
being chosen, all remaining entries are penalized based
on their similarity with the selected value in the following
manner:

pi←
pi

1+SMV (hm,hi)
(16)

where pi is the priority of the i-th item in the queue and hm
is the selected value with the highest priority. This process
repeats until no more items remain in the queue.

This simple algorithm results in a reordering of the isoval-
ues. Early values in the resulting order have high similarity
with many other isovalues, i.e., they represent a certain range
of isovalues well, but low mutual similarity meaning that
they are likely to correspond to distinct structures. One ma-
jor advantage of this approach is that it does not require any
kind of threshold or parameter. The user can simply exam-
ine the isosurfaces in the order generated by the algorithm.
After the first few isovalues corresponding to distinct fea-
tures of the data set, subsequent values will typically be less

Figure 6: Automatically classified CT data set using the
eight most representative isovalues.

representative values for the same structures as no further
dissimilar values can be found.

An example is shown in Figure 5. The six most repre-
sentative isovalues of a CT data set determined using the
described algorithm are marked in the isosurface similarity
map and the corresponding isosurfaces are shown numbered
from 1 to 6 with decreasing relevance. While the first three
values correspond to distinct structures, the remaining ones
only partially segment these features. The righthand side of
the figure depicts a cutaway view where each voxel is clas-
sified according to its maximum similarity with any of the
six isovalues – as the first three isovalues exhibit more sim-
ilarity, the three less relevant isosurfaces are not visible. A
further result for the classification of CT data using the most
representative isovalues is shown in Figure 6. In CT data
sets, there is a clear correspondence between isovalues and
different tissue types. Even though other types of volume
data do not exhibit the same kind of relationships and are
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Figure 7: Representative isovalue selection algorithm applied to an MRI angiography data set. The isosurface similarity map
is shown on the left and the eight most representative isovalues are marked. The corresponding isosurfaces are depicted in the
middle section numbered from one to eight with decreasing relevance. The image on the right shows a cutaway view of the data
set classified according to maximum similarity with the eight isovalues.

therefore difficult to classify based on isovalues alone, our
approach can still identify salient structures in these cases.
Figure 7 shows an MRI data set and its eight most represen-
tative isovalues as identified by our method. In all depicted
examples the only manual interventions were specification
of the viewpoint and clipping.

5. Implementation

Our tool for the generation of isosurface similarity maps was
implemented in C++. The computation process involves two
steps. First, the distance transforms for all isovalues are com-
puted. As this can, depending on the resolution, require a
substantial amount of space they are immediately written to
disk in compressed form. In the second step, we compute
the mutual information of the distance transforms for each
pair of isovalues. Since mutual information is a symmetric
measure, only half of the combinations need to be evaluated.
The computation is performed by generating the joint his-
togram of the two distance transforms which allows estima-
tion of the joint and marginal entropies as described in Sec-
tion 3.1 using the CUDA-based implementation of Shams
and Barnes [SB07].

6. Discussion

In our experiments we found that isosurface similarity maps
provide a concise overview of a data set. Distinct features
manifest themselves as squares and their size informs the
user about the corresponding value range. Transitional re-
gions can be detected through the nesting structure of these
squares. In contrast to histograms, large regions do not tend
to dominate the depiction. Due to the choice of mutual infor-
mation as a similarity measure, uncorrelated noise has little
influence. These properties indicate that the presented con-
cept has the potential to improve the visualization and anal-
ysis of volume data even beyond the examples shown in this
paper.

One obvious disadvantage of our approach is the consid-
erable cost of generating the isosurface similarity map. Our
implementation can require several hours of processing time.
Even though this is a one-time preprocess, we consider this
fact a serious limitation of our current method. The most
performance-critical component is the construction of the
joint histogram of two distance transforms since it has to be
performed for each pair of isovalues. In order to reduce the
computation time, we performed experiments with down-
sampled distance transforms. Interestingly, it seems that the
resolution can be considerably reduced without substantial
changes in the resulting similarity map. Figure 8 compares
similarity maps computed from distance transforms at sev-
eral resolutions. Note that the distance transforms are gener-
ated at the original resolution of the data set and then down-
sampled as opposed to computing them from a downsampled
version of the volume. We believe that the reason for this
stability is that the distance transform captures the unique
characteristics of an isosurface even at reduced resolutions.
Since it is not used to perform accurate spatial comparisons
but rather as a shape descriptor, we consider downsampling
a viable strategy. Table 1 lists the distance transform resolu-
tions and similarity map computation times for all data sets
used in the paper. On a typical notebook, generation of the
isosurface similarity map using a distance transform resolu-
tion of approximately 64× 64× 64 takes about 25 minutes
for standard data sets. Throughout the paper, we used a fixed
number of 128× 128 bins in the computation of the joint
histogram.

Even though lowering the resolution of the distance trans-
form dramatically reduces the computation time to a level we
consider acceptable, our generation method is still a brute-
force approach. For a more fundamental improvement, one
potential direction is the use of a different method for joint
probability density estimation. While joint histograms are
widely used, other methods are gaining increasing recog-
nition. It may even be possible to use an alternative ap-
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Figure 8: Comparison of isosurface similarity maps com-
puted with different distance transform resolutions for the
data set shown in Figure 5. The total compuation times (in
minutes) were (a) 569.1, (b) 35.8, (c) 22.1, and (d) 20.6.

proach which does not require explicit computation of the
distance transform. Interesting recent work by Rajwade et
al [RBR09] points in this direction and remains to be ex-
plored. Additionally, an adaptive strategy for approximat-
ing the full similarity map could also be employed. While
our current method for generating isosurface similarity maps
can be considered a proof-of-concept, we have shown that
they have useful applications for the visualization of volume
data. There are several other areas, however, where the pro-
posed concept may be of interest. In closing, we would like
to briefly list some avenues which could be promising direc-
tions for further exploration:

Volume quantization and compression. The notion of
similarity may be useful in developing new approaches
for quantizing and/or compressing volume data with
higher fidelity. Isosurfaces which exhibit a high degree
of redundancy could be grouped together while still
preserving essential features in the data set.

Volume segmentation. Isosurface similarity could also
be employed as an alternate metric for segmentation
algorithms such as region growing. These methods
typically use similarity criteria based on the difference
between isovalues, so our measure may help to increase
robustness.

Multi-dimensional classification. While there is noth-

Figure(s) Orig. Resolution DT Resolution Time
2 512×512×361 64×64×45 23.9

3, 4 512×512×333 64×64×41 21.8
5 256×256×230 64×64×57 22.1
6 512×512×361 64×64×45 23.7
7 512×512×125 64×64×15 21.6

Table 1: Depicting figure, original data set resolution, res-
olution of the downsampled distance transform, and total
computation time (in minutes) for the isosurface similarity
maps used in the paper are listed. System configuration: In-
tel Core 2 Duo 2.53 GHz CPU, 4 GB RAM, NVidia GeForce
9600M GT GPU.

ing in our approach that prevents combination with
multi-dimensional classification approaches using gradi-
ent magnitude [KKH02], curvature [KWTM03], occlu-
sion [CM09a], or other measures proposed in the litera-
ture, we did not investigate this area. Indeed, as the iso-
value typically represents one axis in multi-dimensional
transfer function schemes, similarity could help to better
separate features and to decrease the influence of noise.

7. Conclusions

In this paper, we introduced the notion of isosurface similar-
ity for the visualization of volume data. This new measure
quantifies the similarity of two isosurfaces as the normalized
mutual information of their respective distance transforms.
The resulting isosurface similarity map provides a visual-
ization of these similarities and gives an overview of a data
set which complements traditional depictions. Additionally,
the similarity map can be used to improve rendering and pa-
rameter specification. Its structured nature enables automatic
detection of representative isovalues to assist the exploration
process. The presented concept opens up several interesting
directions for future investigation.
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