
Harmonizing Architectural Decisions with Component
View Models using Reusable Architectural Knowledge

Transformations and Constraints

Ioanna Lytra, Huy Tran, Uwe Zdun
Research Group Software Architecture

University of Vienna, Austria
Email: firstname.lastname@univie.ac.at

Abstract

Architectural design decisions (ADDs) have been used in recent years for cap-
turing design rationale and documenting architectural knowledge (AK). However,
various architectural design views still provide the most common means for de-
scribing and communicating architectural design. The evolution of software sys-
tems requires that both ADDs and architectural design views are documented
and maintained, which is a tedious and time-consuming task in the long run.
Also, in lack of a systematic and automated support for bridging between ADDs
and architectural design views, decisions and designs tend to become inconsis-
tent over time. In our proposal, we introduce a reusable AK transformation lan-
guage for supporting the automated transformation of reusable AK knowledge to
component-and-connector models, the architectural design view used most com-
monly today. In addition, reusable consistency checking rules verify the consis-
tency between decisions and designs. We evaluate our approach in an industrial
case study and show that it offers high reusability, provides automation, and can,
in principle, deal with large numbers of recurring decisions.

Keywords: architectural decisions; architectural design; architectural
knowledge; AK transformation language; consistency checking

1. Introduction

From the various architectural views [8, 14, 42] used to document software
architectures the component-and-connector (C&C) view is often considered the

Preprint submitted to Future Generation Computer Systems October 24, 2014

one that contains the most significant architectural information [8]. In many en-
terprises today, software architecture is mainly documented using component-
and-connector diagrams, usually in an informal or semi-formal fashion (e.g., as
box-and-line diagrams). However, architectural documentations based only on
components and connectors have many disadvantages, such as limited reusability
of and reasoning about architectural knowledge (AK), and lack of sharing support
of this knowledge among stakeholders [3]. Therefore, the software architecture
community has proposed a new perspective on software architecture through the
explicit documentation of architectural design decisions (ADDs) [16]. The actual
solution structure, or architectural design, is merely a reflection of those design
decisions.

Several approaches have been proposed for capturing architectural design de-
cisions. Akerman and Tyree defined a rich decision capturing template [42].
Kruchten et al. presented an ontology for architectural decisions that defines types
of architectural decisions, dependencies between them, and a decision lifecy-
cle [21]. Zimmermann et al. suggested a meta-model for decision capturing and
modeling [45]. To minimize the effort of documenting architectural decisions,
approaches for reusable architectural decision modeling [46] and using design
patterns as a basis for documenting reusable ADDs (see, e.g., [12]) have been
proposed.

ADDs play a crucial role not only during architectural design but also during
development, evolution, reuse, and integration of software architectures [16]. In
practice, the ADDs frequently are neither maintained nor synchronized over time
with the corresponding C&C diagrams (or other design views), that is decisions
and designs drift apart over time [16]. This leads potentially to the loss of archi-
tectural knowledge, a phenomenon which is known as architectural knowledge
vaporization [12, 16]. Lacking of an adequate harmonization between software
architectures and design decisions often leads to more severe consequences [7].

Until now, the establishment and preservation of consistency between deci-
sions and designs have not been addressed or supported systematically. That is,
so far there is no formal mapping or automated translation between ADDs and
design views. Thus, the task of harmonizing decisions and designs remains ad
hoc and tedious. Making matters worse, the actual documentation of ADDs is
also time consuming [46], especially for kinds of ADDs that need to be made
repeatedly throughout a software design process, such as many of the ADDs doc-
umented in [23, 24].

In our previous work [25], we partially addressed the problem of bridging
ADDs and designs. This approach introduced a formal mapping model between

2

different ADD types, on the one hand, and elements and properties of C&C mod-
els, on the other hand. Based on this formal mapping model, preliminary com-
ponent models and OCL-like constraints for consistency checking can be derived.
Yet, so far this mapping model had to be manually created and modified for each
ADD separately, making this approach inefficient for large numbers of ADDs
and/or complex design models. Moreover, in reality, several ADDs can be reused
in different software design contexts and domains [45]. Thus, taking advantage
of the reusability of such recurring decisions would significantly enhance the pro-
ductivity in creating and maintaining the formal mappings between the decisions
and the designs. Unlike our previous work [25], we now set the focus on reusable
architectural knowledge.

The approach presented in this paper aims at addressing the aforementioned
challenges. In particular, our proposal introduces an architectural knowledge
transformation language. This domain-specific language supports the specifica-
tion of primitive and complex actions whose enactment leads to automatic updates
of design models (i.e., C&C diagrams) based on the corresponding documented
ADDs. The outcomes of a certain decision can be expressed either by executing
individual actions, such as the creation of new elements or the deletion, modifi-
cation, or grouping of existing elements in the C&C diagrams, or by executing
composite actions (e.g., for capturing reusable pattern-based ADDs) that can be
formally modeled through certain architectural primitives [44] or other composite
actions. To ensure consistency between ADDs and C&C views, constraints are
automatically generated from the execution of transformation actions. That is, the
constraints ensure, for instance, that manual changes in C&C views do not violate
the ADDs.

In our approach, we exploit template-based generation rules and model-driven
techniques for automatically instantiating and enacting the actions, as well as
generating corresponding constraints. The linking of reusable ADDs to reusable
actions and constraints (in template form) offers higher reusability and automa-
tion and results in less complexity and modeling effort for software architects.
The reusability is achieved here (1) through the automatic derivation of parts of
the C&C diagrams and consistency checking rules using model-driven templates
and (2) by reusing common abstractions shared among common design patterns
(see [44]).

In order to demonstrate our approach, we integrated two tools from our pre-

3

vious work: ADvISE1—a tool for assisting architectural decision making for
reusable ADDs, and VbMF2—a tool for describing architectural view models and
performing model-driven code generation. Using this prototypical implementa-
tion we evaluated our proposal in the context of an industrial case study from the
warehouse automation area, in terms of reusability and modeling effort.

Our approach solely addresses C&C views at the moment, but it is possible
to integrate other architectural design aspects with architectural decisions. The
incorporation of other views is supported in VbMF via its view integration tech-
niques [40]. Illustrative examples of different aspects that are integrated using
VbMF include data [29], human [13], event and runtime monitoring [33], and
compliance [41]. Investigating architecture-specific information leveraging the
integration of different VbMF views is beyond the scope of this paper and part of
our future work.

This article is an extension of our conference publication [26] with following
significant additions and improvements: (a) a more complete list of compound
transformation actions and reusable constraints has been included along with fur-
ther elaborations, (b) the case study and evaluations have been extended, and (c)
the related work has been discussed further and compared to our contributions.

The remainder of the paper is structured as follows. First, in Section 2 we in-
troduce some basic concepts and present briefly the ADvISE and VbMF tools and
their meta-models. In Section 3 we describe the details of our approach, namely
we present the reusable AK transformations and consistency checking rules along
with some illustrative examples. We apply our approach in an industrial case study
in Section 4 and discuss the evaluation results in Section 5. Finally, we compare
to the related works in Section 6 and summarize the key contributions of our work
in Section 7.

2. Background

The main focus of our study is the harmonization of architectural design deci-
sions and architectural models. This involves the tasks of making and document-
ing design decisions and creating and manipulating architectural models. Thus,
in this section we briefly present ADvISE and VbMF, the two tools that support

1http://swa.univie.ac.at/Architectural_Design_Decision_Support_

Framework_(ADvISE)
2http://swa.univie.ac.at/View-based_Modeling_Framework

4

these tasks and are leveraged to illustrate our approach. Before that, we introduce
some key concepts that we will use throughout the paper.

2.1. Basic Concepts
According to the ISO/IEC/IEEE 42010 standard [14] an ADD affects various

architectural elements, pertains to or raises concerns, and is justified by archi-
tecture rationale. ADDs capture knowledge that may concern a software system
as a whole, or one or more components of a software architecture. Rather than
documenting the structure of software systems (e.g., components and connectors)
ADDs entail the design rationale that led to that structure (e.g., justification about
the ADDs that were made and the architectural alternatives not chosen).

For capturing reusable ADDs, architectural decision modeling has been intro-
duced in the existing literature (refer to [36] for a comparison of existing archi-
tectural decision models and tools). The advantage of these architectural decision
models is that they are reusable and can thus provide guidance for architectural
decision making activities, whenever recurring design issues emerge. Reusable
architectural models share common concepts with patterns (see [12]) which give
proven solutions to recurring problems that arise in particular contexts and do-
mains [35]. The relationship between architectural patterns and reusable decision
models is eventually synergetic [45], for instance, reusable decision models can be
used for pattern selection. In our approach, we use mainly pattern-based reusable
decision models to capture ADDs and relate them to reusable AK transformations.

A richer taxonomy in the areas of software architecture and architectural de-
sign can be found elsewhere, for instance in [16, 19, 38, 42].

2.2. Architectural Design Decision Support Framework
The Architectural Design Decision Support Framework (ADvISE) provides

tool support for modeling of reusable ADDs using Questions, Options, and Crite-
ria (QOC) [27] and architectural decision making. In particular, ADvISE assists
the architectural decision making process by introducing for each design issue a
set of questions along with potential options related to specific criteria, answers,
and pattern-based solutions. In some cases a question may expect a free-text an-
swer. The provided tooling also supports the specification of dependencies and
constraints among decisions, questions, and solutions. These dependencies and
constraints are then used by ADvISE to determine the logical flow of making
decisions for particular architectural design problems.

5

ADvISE introduces a reusable ADD meta-model (see Figure 1) for the design
space of certain application domains (e.g., service-oriented integration of indus-
trial automation platforms in our case study below), consisting of decisions, ques-
tions, options, criteria, solutions, design patterns, and relationships among them.
Examples of relationships are that a question triggers a next decision or an option
is incompatible with another option. For each option, related criteria are posi-
tively or negatively evaluated and the selection of a specific option may lead to
a suggested solution (pattern-based or not). The advantage of the reusable ADD
models is that they need to be created only once for a recurring design situation.
In similar application contexts, corresponding questionnaires can be automatically
instantiated and used for making concrete decisions. Based on the outcomes of
the questionnaires answered by software architects through the decision making
process, ADvISE can automatically resolve potential constraints and dependen-
cies, recommend best-fitting design solutions and patterns, and generate ADD
documentations.

Decision Question

Option Solution

Pattern
1..*

1..* 1..*
1..*

0..1

0..*

1..*

implies

leadsTo

triggers
provides

provides

incompatible

triggers

enforces1..*

Criterion

influencesPositivelyinfluencesNegatively 0..* 0..*

Answer

0..1 provides

Figure 1: Reusable ADD meta-model

Our approach in this paper aims at devising an architectural knowledge trans-
formation framework (c.f. Section 3) that supports the specification of reusable
actions and the association of these actions with the elements of the aforemen-
tioned ADD models for automatically transforming actual design decisions into
corresponding design models and generating constraints for consistency checking
between them.

6

ComponentView

core::View

name : String
type : String
value : String
defaultValue : String

Property

core::Annotation

Stereotype

Component

Connector

kind : PortKind

Port*
port

nestedComponent*

1

1 source

connectorconnector

target 1

1

PROVIDED
REQUIRED

<<enum>>
PortKind

name: String
id: String

NamedElement

Elementname: String
id: String

View
*

element

Core ComponentView

AnnotatedElement

text: String

Annotation

*

* annotation

target
core::Element

Figure 2: VbMF’s Core and Component Model

2.3. View-based Modeling Framework
The View-based Modeling Framework (VbMF) [39] implements a model-

driven, architectural view model. That is, it leverages the notion of view mod-
els for describing various aspects of the software systems at different abstraction
levels and model-driven development techniques for generating code and config-
urations out of the view models [39]. The Core model shown in Figure 2 is the
basis for defining various view models as well as integrating the view models
using name-based matching techniques [40].

Among other views, VbMF provides a high-level component view model (see
Figure 2)—similar to a typical C&C model such as UML component model—for
representing essential architectural design elements such as components, ports,
connectors, annotations, and properties that are independent from the underlying
platforms and technologies. Technology- and platform-specific information will
be described separately in the low-level view models that refine and enrich the
high-level counterparts.

In this paper, we use the high-level component view model of VbMF (or in
short form, the VbMF C&C view) for describing the architectural design of a
software system. The advantage of using VbMF is that we can leverage the ex-
isting view model integration and transformation mechanisms of VbMF, which
are based on Eclipse technologies, and therefore can be integrated well with AD-

7

vISE. Nevertheless, we note that the Core model is introduced in VbMF mainly
for integrating various view models, which is not the main focus of this approach.
Therefore, any other C&C models, for instance, UML component model [10], can
be easily adapted to be used in our approach with reasonable extra effort.

3. Reusable AK Transformations

3.1. Approach Overview
We depict in Figure 3 an overview of our approach in terms of the involved

stakeholders, tool suites, tools and artifacts along with their relationships. Tools
are indicated with rounded rectangles while manually edited and automatically
generated artifacts are denoted by rectangles having light-gray and dark-gray
background, respectively.

model/make ADDs edit C&C views

Software Architects

ADvISE AK Transformation
Language

map to

bind execute on

edit
actions

generate

Reusable
ADDs (QOC)

Actual ADDs

Transformation
Action Templates

Transformation
Actions

derive

C&C View
Model
Editor

C&C
Diagram

VbMF

Constraints applied on

use

Constraint Validator

derive

ADD Model
Editor

Questionnaires

Questionnaire
Editor

use for
use
for

use
for

use for

AK Transformation
Language Editor

use for

Software Architects
check
consistency

Figure 3: Approach Overview

The ADD Model Editor is a graphical editor provided by ADvISE and can
be used by software architects to create the reusable ADD models (i.e., Reusable

8

ADDs in Figure 3). This step is intended to be performed by senior software ar-
chitects with significant expertise and experience in software architecture design,
possibly together with domain experts. The advantage of the reusable ADD mod-
els is that they have to be created only once per application domain. Based on
these ADD models, ADvISE will automatically generate Questionnaires that can
be used for making actual architectural decisions (see Actual ADDs). With the
support of the Questionnaire Editor tool, software architects—now in the role of
end-users—can navigate the provided design space (e.g., by selecting question
options, viewing follow-on questions and decisions, etc.) in order to make and
document actual design decisions. Questionnaires containing ADDs instantiated
from the same reusable ADD model can be generated and answered (but also
modified) multiple times in similar design situations.

For manipulating C&C Diagrams, VbMF provides a graphical C&C View
Model Editor. In order to assist software architects and developers in greenfield
scenarios (i.e., where a completely new C&C model needs to be derived from de-
cisions that have been made) our approach supports generating initial instances of
the C&C Diagrams automatically from ADDs through the execution of Transfor-
mation Actions. Transformation Actions can be also applied for updating existing
view models. In a typical development scenario, design models can be changed
independently of the documented decisions. This is also the case in VbMF where
C&C Diagrams can be manually manipulated. In this case, in order to ensure
that changes in the C&C models do not invalidate existing ADDs, our approach
allows the generation of Constraints based on the corresponding Transformation
Actions. The constraint validation is achieved using an external Constraint Val-
idator, which is integrated with our AK transformation language tooling. The
validation of the C&C Diagrams against these constraints can be enacted manu-
ally by the software architects or automatically upon changes.

To achieve the generation of transformation actions and constraints in a
reusable fashion, the Reusable ADDs are formally mapped to Transforma-
tion Language Templates, which can be edited with the AK Transformation
Language Editor. This way, for Actual ADDs we can instantiate the corre-
sponding Transformation Actions and subsequently the Constraints. Using
model-driven techniques, the transformation actions are automatically enacted on
the corresponding VbMF C&C diagram.

The AK transformation language and its enactment engine play an important
role in our approach for enabling the automated and reusable transformation of
ADDs into design models. In the subsequent parts of this section, we elaborate
the language and its illustrative usage in realistic development circumstances.

9

3.2. Approach Steps
We illustrate in Figure 4 the steps of our proposal that shall be performed by

software architects, as well as the tools that will be used in each step and phase.
In the first phase of the preparation of the reusable ADDs and their mappings
to C&C views, the software architect uses the ADD Model Editor to create the
reusable ADD models (i.e., define questions, options and criteria that will pro-
vide architectural decision guidance through corresponding questionnaires) based
on the ADD meta-model. Then the software architect creates the transformation
action templates that will transform actual ADDs into C&C view elements and
consistency checking rules between decisions and designs respectively. We note
that the aforementioned steps (1–2, Figure 4(a)) need to be done only once to de-
fine an architectural design space for particular application domains or contexts
and are supposed to be performed by experienced software architects, as men-
tioned before. Given such a design space, the following steps (1–4, Figure 4(b))
will be carried out by software architects at design time who will make and docu-
ment appropriate architectural design decisions and create the corresponding de-
sign models.

The software architect follows ADvISE’s guidance to make and document
ADDs which will trigger the instantiation of the corresponding transformation
actions and constraints. The transformation actions will then be enacted using
our tools to generate initial C&C views. Finally, the software architect will be
able to view and edit the C&C view(s) with the VbMF editor and validate the
aforementioned constraints applied on the C&C view(s). These steps are sup-
posed to be performed repeatedly in one or different projects and are based on
the configuration that has been done by the experienced software architects in
the Steps 1 and 2 of Figure 4(a). In the following subsections, we focus on the
main contribution of this paper, namely, the AK Transformation Language; fur-
ther instructions how to use the rest of the tools can be found at the corresponding
websites. While AK Transformation Language constitutes the central element of
our approach and needs to be managed by the software architects, the knowledge
of a template language is essential for editing the transformation action templates
which correspond to the reusable ADDs, as well as the knowledge of an OCL-like
language in which the constraints are edited.

3.3. Architectural Knowledge (AK) Transformation Language
In the following subsections we present the main goal and central concepts of

the AK transformation language and discuss some usage examples.

10

1. Create Reusable ADD Models
ADvISEADvISE

2. Edit Transformation Action Templates and
map them to the ADDs of the Reusable ADD
Models

AK Transformation LanguageAK Transformation Language

1. Make and document ADDs with the assistance
of Questionnaires (transformation actions and
constraints are automatically generated)

ADvISEADvISE

2. Execute derived transformation actions from
actual ADDs to generate C&C views

4. Check consistency of C&C views with respect to
the actual ADDs by validating the constraints

3. Edit C&C views

Experienced
Software Architects

VbMFVbMF

Software Architects

(a) Steps performed once (b) Steps performed repeatedly

AK Transformation LanguageAK Transformation Language

Constraint ValidatorConstraint Validator

Figure 4: Approach Steps Performed by Software Architects

3.3.1. Main Concepts
Essentially, the goal of the AK transformation language is to support the har-

monization of ADDs and architectural design models via transformation actions
that, when being enacted, shall create or update corresponding design models
(e.g., C&C models) with respect to the intentions of the software architects re-
flected in the design decision models. One simple example is that making an
architectural design decision on using a proxy between a client and server will
lead to the creation of a new “proxy component” along with its properties, as well
as appropriate connectors with the existing “client” and “server” components. In
case none of them exists (e.g., in a “greenfield” scenario), these components must
be created and wired accordingly.

There are many existing languages and techniques, for example, QVT3, ATL4,
ETL5, Xtend6, to name but a few, that target generic and abstract concepts and
elements in model transformations. They provide expressive languages and pow-

3http://www.omg.org/spec/QVT
4http://www.eclipse.org/atl
5http://www.eclipse.org/epsilon/doc/etl
6http://www.eclipse.org/xtend

11

erful transformation engines for both endogenous and exogenous model transfor-
mations [31].

Yet, these approaches provide no adequate abstractions and concepts for
architecture-specific transformations. As a consequence, it will be inefficient to
use such full-blown languages for architectural knowledge transformations as
software architects must get familiar with several model transformation concepts
instead of solely focusing on their particular domain of expertise. Therefore, we
aim to bring the bests of both worlds by developing AK transformation language
as a domain-specific language (DSL) in order to provide simple but succinct
and comprehensible concepts and elements for describing and formulating the
transformation of architectural design decisions into design models in a reusable
manner.

We use the meta-model of Figure 5 to illustrate the main elements of the AK
transformation language. The fundamental concept of our DSL is Action that
represents the potential effects on an architectural design model such as adding
(Add), deleting (Delete), and updating (Update) individual or a set of architec-
tural elements such as components, connectors, ports, and their properties (e.g.,
AddComponent, DeleteConnector, UpdatePort, etc.). The enactment of an Ac-
tion will lead to changes in the corresponding architectural design model such
as the creation of a new component, the deletion of an existing connector, or the
modification of a port, and so on. Apart from that, the user of AK transformation
language can define a set of components as sub-components of another compo-
nent (Group) and refine a high level component onto one or more low-level com-
ponents (Refine). A Compound is, firstly, used to represent a composite construct
containing multiple actions. Secondly, it can inherit the definitions of existing
Compounds, and therefore, reduce redundancy and duplicated efforts. The seman-
tics of a Compound ensures atomic (i.e., all-or-nothing) sequential execution of its
inherited compounds and constituting actions. In addition, the AK transformation
language allows the execution of transformation actions under conditions (Con-
dition). Finally, a ForLoop and a WhileLoop can be used in order to define one
or more actions that are performed over a predefined set of design elements or
under certain boolean constraints respectively.

As we mentioned above, the AK transformation language aims at aiding soft-
ware architects in focusing on transforming AK into design models instead of be-
ing overwhelmed by model transformation concepts and techniques. Therefore,
the language is designed to mainly emphasize on architecture-specific notions.
The actions and constructs of the AK transformation language aim at express-
ing tentative changes to the elements of the corresponding VbMF C&C view and

12

ActionDSL

AddCompound AddComponent AddConnector AddPort AddStereotype AddProperty

Action Add

Update

Delete

UpdateComponent

UpdateConnector

UpdatePort

UpdateStereotype

UpdateProperty

DeleteComponent

DeleteConnector

DeletePort

DeleteStereotype

DeleteProperty

Condition

WhileLoop

ForLoop

Group Refine

Compound
0..*

1..*

1..*

1

1..*

1..* 1..*

*

Figure 5: AK Transformation Language meta-model

can be used either independently or along with ADvISE. In the latter case, the
software architects, in the first and second steps of creating the design space (see
Figure 4(a)), need to relate the options and answers of a certain ADD model with
one or many transformation actions in the design decision templates. This en-
ables the automation of creating and/or updating of the architectural C&C models
when actual ADDs are made (in the Step 1–4 shown in Figure 4(b)), i.e., the tem-
plates are bound to concrete values. That is, once the generated questionnaires
from the ADD model are answered resulting in concrete design decisions, the re-
lated actions will also be instantiated and bound to the concrete elements of the
corresponding architectural models.

In the scope of our work, we developed the AK transformation language us-
ing the Eclipse Xtext framework7. The biggest and pragmatic advantage of using
Xtext framework is its integration with Eclipse’s modeling and development en-
vironment, which is widely used and supported in practice. Additionally, Xtext

7http://www.eclipse.org/Xtext

13

can generate Eclipse-based textual editors that deliver several powerful features
such as syntax highlighting, content assistance and auto-completion, validation
and quick fixes, automated external cross-references resolutions, and so on. More-
over, Xtext allows for partially dealing with some contextual aspects such as typ-
ing (by using Xtext type system framework8), uniqueness of identifiers (by using
the notion of namespaces and scoping), and visibility (by scoping).

Please refer to Appendix A for a complete specification of the AK Transfor-
mation Language using the Xtext grammar.

3.3.2. Usage Examples
Let us use the reusable ADD to introduce a remote proxy for calling a remote

service from an application’s component. This task will require a new component
being created and annotated as “Remote Proxy” to denote an invocation of the
remote service from the application’s component. We illustrate the tentative set
of transformation actions in Listing 1, in which the parameters to be replaced
are indicated with ${}. These actions are only valid when they are bound to
concrete C&C view elements. Therefore, the use of this set of actions requires
that following information is provided: the name of the C&C view model (cv),
the name of the remote service (A) and the name of the component which calls
this remote service (B).
add component "${A}Proxy"

add stereotype <<"Remote Proxy">> to ${cv}.${A}Proxy

add port "${A}Proxy_p1" kind=REQUIRED to ${cv}.${A}Proxy

add port "${A}Proxy_p2" kind=PROVIDED to ${cv}.${A}Proxy

add port "${A}_p" kind=PROVIDED to ${cv}.${A}

add port "${B}_p" kind=REQUIRED to ${cv}.${B}

add connector "${A}Proxy_${A}" from ${cv}.${A}Proxy.${A}Proxy_p1 to ${cv}.${A}.${A}_p

add connector "${B}_${A}Proxy" from ${cv}.${B}.${B}_p to ${cv}.${A}Proxy.${A}Proxy_p2

Listing 1: Example of Parameterized Transformation Actions for Creating a Proxy
in Template Form

When the software architects make concrete choices in the design decisions,
the corresponding architectural models, which either exist or are newly created,
are determined. As a result, the parameters of the aforementioned set of transfor-
mation actions can be bound to concrete values, for instance, cv ∼ model, A ∼
Service, and B ∼ CompA. The binding (denoted above as ∼) will be done auto-
matically by our tools, resulting in the executable transformation actions shown
in Listing 2.

8https://code.google.com/a/eclipselabs.org/p/xtext-typesystem

14

add component "ServiceProxy"

add stereotype <<"Remote Proxy">> to model.ServiceProxy

add port "ServiceProxy_p1" kind=REQUIRED to model.ServiceProxy

add port "ServiceProxy_p2" kind=PROVIDED to model.ServiceProxy

add port "Service_p" kind=PROVIDED to model.Service

add port "CompA_p" kind=REQUIRED to model.CompA

add connector "ServiceProxy_Service" from model.ServiceProxy.ServiceProxy_p1 to model.

Service.Service_p

add connector "CompA_ServiceProxy" from model.CompA.CompA_p to model.ServiceProxy.

ServiceProxy_p2

Listing 2: Example of Transformation Actions for Creating a Proxy

The transformation actions presented above add new elements in the C&C
view. Nonetheless, updating and removing existing components, connectors, etc.
in a C&C view may be necessary when certain ADDs are revised or removed.
Listing 3 illustrates three “Delete” actions that reverse the effects of the transfor-
mation actions shown in Listing 2 and an “Update” action that changes the name
of the port Service p of the component Service.
delete component model.ServiceProxy

delete port model.Service.Service_p

delete port model.CompA.CompA_p

...

update port model.Service.Service_p name="IService"

Listing 3: Examples of Delete and Update Actions

The use of templates enables the reuse of transformation actions whenever
ADDs from the reusable ADD model are made. The enactment of transforma-
tion actions will update the corresponding C&C diagram. This is achieved by
performing model-to-model transformations from single transformation actions
into model actions that modify the underlying C&C view models. Compound ac-
tions, conditionals and loops are translated into their containing single actions that
are afterwards enacted on the C&C view. Thus, the AK transformation language
offers simplicity and reusability by providing adequate abstractions for hiding
unnecessary details of model transformation techniques, and therefore, helps soft-
ware architects to better focus on architecture-specific concepts. In our example,
the execution of the actions of Listing 2 will lead to the C&C view of Figure 6.

3.4. Recurring Pattern Primitives as Reusable AK Transformations
In the course of design decision making, software architects often deal with

several recurring architectural elements and structures such as proxies, adapters,
gateways, layers, and so forth. The idea of proposing primitive abstractions as fun-
damental elements for describing such recurring design patterns and architectural

15

Figure 6: C&C View Editor

styles has been investigated by various studies. For example, Zdun and Avgeriou
described architectural patterns through a number of recurring architectural prim-
itives in the component-and-connector view using UML profiles [44]. Mehta and
Medvidovic developed a framework for defining abstract primitives shared by all
architectural styles for composing their elements [30]. In our AK transformation
language, we provide support for expressing such primitive abstractions. In this
section, we will describe how our approach can be used to define and use recurring
architectural primitives for modeling certain patterns or styles as compounds.

In particular, the expressiveness of our AK transformation language and the
support for compositions and extensions through the composite structures men-
tioned above enable us to define recurring architectural primitives in a reusable
and extensible way. In our approach, we specify such recurring primitives using
parameterized sets of actions that are based on compounds and can be inherited
and extended further. Each compound represents one primitive abstraction that
can be used to realize a number of patterns that use this particular primitive as
part of their solution (as defined in [44]). The compounds are used via their name
and appropriate parameters. In a compound specification, we use variable access
in the form ${p-name} to refer to the parameter p-name. When concrete com-
pounds are “instantiated” via the command type add compound, the compound
parameters are replaced with the provided parameter values, which also leads to

16

the variable binding of their primitive actions.
In Listing 4, we illustrate the indirection compound. Indirection is applica-

ble in case one or more related “proxy” components receive a message on behalf
of one or more “target” components, forward the message to these “targets”, and
receive results from these “targets” also through the “proxy” components [44].
Proxies and adapters are examples of indirection. The parameters cv, A, and B

refer to the target component view, the target component, and the client respec-
tively. The variable n will be bound to the name of the compound “instance” (e.g.,
Proxy, Adapter, etc.).
compound indirection (cv A B) {

add component "${A}${n}"

add port "${A}${n}_I1" kind=REQUIRED to ${cv}.${A}${n}

add port "${A}${n}_I2" kind=PROVIDED to ${cv}.${A}${n}

add port "${A}_I" kind=PROVIDED to ${cv}.${A}

add port "${B}_I" kind=REQUIRED to ${cv}.${B}

add connector "${A}${n}_I1_${A}_I" from ${cv}.${A}${n}.${A}${n}_I1 to ${cv}.${A}.${A}_I

add connector "${B}_I_${A}${n}_I2" from ${cv}.${B}.${B}_I to ${cv}.${A}${n}.${A}${n}_I2

add stereotype <<"${n}">> to ${cv}.${A}${n}

}

Listing 4: Indirection Compound Action Specification

A usage example of the indirection compound is presented in Listing 5.
add compound indirection "Proxy" (model Service Facade)

Listing 5: Example Usage of the Compound “indirection”

This compound action will create a proxy for invoking the component “Ser-
vice” from the component “Facade”. The command add compound contains a
reference to a compound definition. When a compound action is executed, the
reference to the compound definition is resolved and the actual variables are re-
placed. In our example, the variables n, cv, A, and B will get the values “Proxy”,
the C&C view model name “model” and the components “Service” and “Facade”,
respectively. The transformation of the C&C view includes the creation of a com-
ponent, two connectors, the corresponding ports, and a stereotype. The execution
of the compound transformation action triggers the execution of its containing ac-
tions. In our example, the enactment of Listing 5 will trigger the execution of the
primitive actions in Listing 6.
add component "ServiceProxy"

add port "ServiceProxy_I1" kind=PROVIDED to model.ServiceProxy

add port "ServiceProxy_I2" kind=REQUIRED to model.ServiceProxy

...

Listing 6: Binding of Primitive Actions of Indirection Compound Action

17

A compound can extend other compounds, and therefore, inherit the corre-
sponding sets of actions contained in these compounds. For instance, in Listing 7,
we specify a new compound integrationAdapter which extends the existing
compound adapter.
compound integrationAdapter extends adapter {...}

Listing 7: Example of Compound Extension

The advantage of the compounds is that they specify a group of transformation
actions that can be reused with a simple parametrized transformation action “add
compound ...”. In this way, we can increase the reusability of the AK trans-
formations. Therefore, apart from the reuse of the low-level model actions that
apply on the C&C views, the reusability of the AK transformations can be further
increased by the introduction of compound actions which group other transforma-
tion actions.

For the needs of a case study that we discuss in detail in the next section,
we have modeled the following six compounds and have reused them in various
design situations covering 21 design patterns in total:

Indirection: Indirection happens when a “proxy” component receives a message
on behalf of a “target” component and forwards the message to that “target”. Af-
terwards the result is sent back through the “proxy” component again.
Shield: A component can act as a “shield” for a set of components that form a
subsystem. In this case, a client can access the members of the subsystem only
through this “shield”.
Grouping: A group member is part of an abstract or virtual entity. That is, there
is no component in the software architecture for representing the group as a whole,
but it is made only of its parts.
Callback: A callback denotes an invocation to a component B that is stored as an
invocation reference in a component A. Between two components A and B, a set
of callbacks can be defined, also usually implemented as methods.
Transformer: A transformer performs transformation as well as enrichment,
splitting, aggregation, etc. of data that is sent from component A to component B.
Router: A router routes requests of a component to a set of other components
according to specified criteria.

In Table 1 we present the compound specifications along with the patterns that
share these common abstractions. For these compound specifications the primitive

18

abstractions modeled in [44] were used as reference with slight modifications.
While Zdun and Avgeriou use OCL to document architectural primitives [44],
we express these abstractions using compounds. For a detailed description of the
patterns for service-based platform integration that are included in Table 1 you
can refer to [23, 24].

Compound Name Compound Specification Design Patterns

Indirection compound indirection (cv A B) {

add component "${A}${n}"

add port "${A}${n}_I1" kind=REQUIRED to ${cv}.${A}${n}

add port "${A}${n}_I2" kind=PROVIDED to ${cv}.${A}${n}

add port "${A}_I" kind=PROVIDED to ${cv}.${A}

add port "${B}_I" kind=REQUIRED to ${cv}.${B}

add connector "${A}${n}_I1_${A}_I" from ${cv}.${A}${n}.

${A}${n}_I1 to ${cv}.${A}.${A}_I

add connector "${B}_I_${A}${n}_I2" from ${cv}.${B}.${B}

_I to ${cv}.${A}${n}.${A}${n}_I2

add stereotype <<"${n}">> to ${cv}.${A}${n}

}

PROXY, REMOTE
PROXY, ADAPTER,
REMOTE ADAPTER

Shield compound shield (cv T L) {

add component "${T}"

add stereotype <<"${n}">> to ${cv}.${T}

add port "${T}_S" kind=REQUIRED to ${cv}.${T}

for (c : ${L})

add port "${c}_S" kind=PROVIDED to ${cv}.${c}

add connector "${T}_S_${c}_S" from ${cv}.${T}.${T}_S

to ${cv}.${c}.${c}_S

end

}

FACADE, REMOTE
FACADE, GATE-
WAY, SERVICE
INTERFACE

Grouping compound grouping (cv T L) {

add component "${T}"

add stereotype <<"${n}">> to ${cv}.${T}

add port "${T}_G" kind=PROVIDED to ${cv}.${T}

for (c : ${L})

group ${cv}.${c} container ${cv}.${T}

end

}

SERVICE ABSTRAC-
TION LAYER

Continued on next page

19

Table 1 – continued from previous page

Compound Name Compound Specification Design Patterns

Callback compound callback (cv A B) {

add port "${A}_E" kind=PROVIDED to ${cv}.${A}

add stereotype <<"EventPort">> to ${cv}.${A}.${A}_E

add port "${A}_C" kind=REQUIRED to ${cv}.${A}

add stereotype <<"CallbackPort">> to ${cv}.${A}.${A}_C

add port "${B}_E" kind=REQUIRED to ${cv}.${B}

add stereotype <<"EventPort">> to ${cv}.${B}.${B}_E

add port "${B}_C" kind=PROVIDED to ${cv}.${B}

add stereotype <<"CallbackPort">> to ${cv}.${B}.${B}_C

add connector "${B}_E_${A}_E" from ${cv}.${B}.${B}_E to

${cv}.${A}.${A}_E

add connector "${A}_C_${B}_C" from ${cv}.${A}.${A}_C to

${cv}.${B}.${B}_C

add stereotype <<"${n}">> to ${cv}.${A}_E_${B}_E

add stereotype <<"${n}">> to ${cv}.${B}_C_${A}_C

}

RESULT CALL-
BACK, REQUEST-
REPLY, REQUEST-
ACKNOWLEDGE
CALLBACK

Transformer compound transformer (cv A B) {

add component "${A}${n}"

add port "${A}${n}_T1" kind=REQUIRED to ${cv}.${A}${n}

add port "${A}${n}_T2" kind=PROVIDED to ${cv}.${A}${n}

add port "${A}_T" kind=PROVIDED to ${cv}.${A}

add port "${B}_T" kind=REQUIRED to ${cv}.${B}

add connector "${A}${n}_T1_${A}_T" from ${cv}.${A}.${A}

${n}_T1 to ${cv}.${A}.${A}_T

add connector "${B}_T_${A}${n}_T2" from ${cv}.${B}.${B}

_T to ${cv}.${A}.${A}${n}_T2

add stereotype <<"${n}">> to ${cv}.${A}${n}

}

DATA MAPPER,
MESSAGE TRANS-
LATOR, SPLITTER,
AGGREGATOR,
CONTENT EN-
RICHER, CONTENT
FILTER

Router compound router (cv T A L) {

add component "${T}"

add stereotype <<"${n}">> to ${cv}.${T}

add port "${T}_R1" kind=PROVIDED to ${cv}.${T}

add port "${A}_R" kind=REQUIRED to ${cv}.${A}

add connector "${A}_R_${T}_R1" from ${cv}.${A}.${A}_R

to ${cv}.${T}.${T}_R1

add port "${T}_R2" kind=REQUIRED to ${cv}.${T}

for (c : ${L})

add port "${c}_R" kind=PROVIDED to ${cv}.${c}

add connector "${T}_R2_${c}_R" from ${cv}.${T}.${T}

_R2 to ${cv}.${c}.${c}_R

end

}

PUBLISH-
SUBSCRIBER,
MESSAGE ROUTER,
CONTENT-BASED
ROUTER

cv: component view n: design pattern T : component name A,B: components L: list of components

Table 1: Reusable AK Transformation Compounds

20

3.5. Generation of Constraints
Consistency checking is an important mechanism to ensure the integrity of

the design models under consideration. For this, we developed a set of prede-
fined parameterized constraint templates that are related to the basic actions of
the AK transformation language shown in Listing 17. As a result, the instanti-
ation and binding of the parameterized constraint templates for each action are
performed automatically at the same time and in the same manner as the trans-
formation actions, without requiring any additional effort from the developers
and architects. Please note that these constraint templates have been developed
only for the specific transformation actions to demonstrate how constraint-based
consistency checking can be achieved. Further constraint templates for particu-
lar circumstances can be formulated assuming a basic knowledge of an OCL-like
language. Depending on the reusable ADDs to be related with AK reusable trans-
formations, constraints can be reused or/and adapted from other approaches that
use similar constraints in order to express decisions formally at architectural de-
sign level [18, 20, 44].

As mentioned before, constraint templates only need to be defined once at the
model-level (i.e., Step 1–2 in Figure 4(a)) and can then be reused for concrete
instantiations of the ADD model (i.e., Step 3–6 in Figure 4(b)). For instance,
let us consider the following transformation action from the previous example of
Listing 6:
add component "ServiceProxy"

Listing 14: Example of a Transformation Action

The resulting C&C model can be checked for its consistency against the re-
lated decision (e.g., ADD1) by the constraint of Listing 15, which checks that the
underlying component is present in the C&C model. Please note that this con-
straint derives from the corresponding template once the transformation action is
executed.
context component::ComponentView ERROR "ADD ADD1: Component ServiceProxy does not exist":

element.typeSelect(component::Component).exists(c|c.name == "ServiceProxy");

Listing 15: Example of a Generated Constraint

We have designed and developed respective constraint templates for each AK
transformation language element and each architectural primitive defined above.
Similar to the AK transformation language, the ${...} syntax in the constraint
rule templates allows to access a variable that is instantiated and bound to particu-
lar values of the related actions and models. The outcomes of the instantiation and

21

binding of the parameterized constraint templates are concrete constraints that can
be enacted using the constraint validator. The combination of transformation ac-
tions with automatically generated constraints that check that the transformation’s
semantics are not violated in the C&C diagram, enables us to allow developers and
architects to manually change the C&C model. If a manual change violates an ar-
chitectural decision that has triggered transformation actions, the corresponding
constraint checking will signal an error.

We show in Table 2 an excerpt of the set of reusable constraints in template-
based form that correspond to the actions defined in the AK transformation lan-
guage. The table does not include transformation actions that delete elements
of the C&C view (in our proposal, constraints should check the existence and
not non-existence of elements) as well as non-primitive transformation actions
such as add compound (these can be analyzed in primitive actions). The current
form of the reusable constraint templates is designed for better understanding and
maintaining. The set of constraint templates is not yet complete but rather for
illustrating how consistency constraints can be defined in a reusable manner that
can be then instantiated after being bound to concrete parameters.

3.6. Tool Implementation
For the sake of demonstration, validation, and evaluation of our approach we

have developed a prototype in the form of Eclipse plugins9. The AK transfor-
mation language (DSL) and its editor were developed with Xtext framework10.
The Eclipse Modeling Framework (EMF)11 project is used to create all required
models (e.g., architectural decision models) and the code for editing these models.
The template binding of transformation actions and constraints in template form is
done by the Velocity Template Engine12. Finally, the constraints for consistency
checking between decisions and designs are formulated in the OCL-like Check
language13.

9You can install the prototype in the Eclipse environment from the ADvISE Update Site http:
//indenica.swa.univie.ac.at/public/advise and download the source code from http:

//indenica.swa.univie.ac.at/public/advise/ADvISE-src.zip
10http://www.eclipse.org/Xtext
11http://www.eclipse.org/modeling/emf
12http://velocity.apache.org
13http://www.eclipse.org/modeling/m2t/?project=xpand

22

Transformation Action Reusable constraint in template form

– add component

– update component

context component::ComponentView ERROR

"${ADD}:Component ${component} does not exist": element.typeSelect(

component::Component).exists(c|c.name=="${component}");

– add connector

– update connector

context component::ComponentView ERROR

"${ADD}:Component ${componentA} and ${componentB} are not connected

": element.typeSelect(component::Component).exists(c1|c1.name

=="${componentA}" && element.typeSelect(component::Component).

exists(c2|c2.name=="${componentB}" &&

element.typeSelect(component::Connector).exists(conn|(c1.port.

exists(p|conn.source==p) && c2.port.exists(p|conn.target==p))

|| (c1.port.exists(p|conn.target==p) && c2.port.exists(p|conn.

source==p)))));

– add port

– update port

context component::ComponentView ERROR

"${ADD}:Port ${port} of kind ${portKind} for component ${component}

does not exist":

element.typeSelect(component::Component).exists(c|c.name=="${

component}" && c.port.exists(p|p.name=="${port}" && p.kind==

component::PortKind::${portKind}));

– add property

– update property

context component::ComponentView ERROR

"${ADD}:Property ${type}=${value} of ${element} does not exist":

annotation.typeSelect(component::Property).exists(p|element.exists(c

|c.annotation.exists(a|a==p) && c.name=="${element}" && p.type==

"${type}" && p.value=="${value}"));

– add stereotype

– update stereotype

context component::ComponentView ERROR

"${ADD}: ${element} is not annotated as ${stereotype}":

annotation.typeSelect(component::Stereotype).exists(s|element.

exists(c|c.annotation.exists(a|a==s) && c.name=="${element}"

&& s.text=="${stereotype}"));

– group component context component::ComponentView ERROR

"${ADD}:Component ${container} does not contain ${component}":

element.typeSelect(component::Component).exists(c|c.name=="${

container}" && c.nestedComponent.exists(c|c.name=="${component

}"));

Table 2: List of Reusable Constraints in Template Form

4. Case Study

In this Section, we introduce a case study on service-based platform integra-
tion in the area of warehouse automation and discuss in the context of this case

23

study the application of our proposal, i.e., the integration of design decisions with
C&C views using the AK transformation language. Three heterogeneous service
platforms, a Warehouse Management System—WMS (storage of goods or stor-
age bins into racks via conveyor systems), a Yard Management System—YMS
(scheduling, coordination, loading and unloading of trucks), and an Enterprise
Resource Planning System—ERP (overall commissioning and handling of goods
on an abstract level beyond real storage places) need to provide domain-specific
services in an integrated manner. An intermediate platform integration layer will
provide services to operator applications developed on top of it. The integra-
tion layer must handle various integration aspects including interface adaptation
between the platforms, integration of service-based and non-service-based solu-
tions, routing, enriching, aggregation, splitting, etc. of messages and events, syn-
chronization and concurrency issues, adaptation, and monitoring of events. For
instance, as shown in Figure 7, two Proxies (i.e., Proxy1 and Proxy2) and one
Adapter will need to be developed at the platform integration layer for communi-
cating with the three heterogeneous platforms.

App

Facade

Proxy2Proxy1 Adapter

WarehouseOperator

Platform Integration

ERP YMS WMS

Platform

Figure 7: Example from Service-based Platform Integration Case Study

In our previous work, we have introduced an ADD model to handle various
integration aspects in the service-based platform integration domain, i.e., integra-
tion and adaptation, interface design, communication style, and communication

24

flow [23, 24]. We present in Table 3 an excerpt of the ADD model of the platform
integration scenario consisting of questions and different alternative options (or
answers) along with the corresponding transformation actions that translate the
underlying decisions into elements of the C&C view. This ADD model is mod-
eled using ADvISE. Please note that the dependencies and constraints between the
questions, decisions, and options are not present in Table 3 for simplicity reasons.

This example shows the support in the decision making on the type of inte-
grating components between a platform service PS of one of the three platforms
in our case study (WMS, YMS and ERP) and a component of the integration layer
IC (note: cv refers to the target C&C view). Every ADD option (or answer) in
the ADD model is associated with a set of primitive and compound actions based
on pattern primitives in template form as defined in Section 3. The excerpt of
the ADD model consists of six questions, uses eight primitive actions and two
compound actions (integrationAdapter once and indirection twice) and is
related to three patterns: Proxy (local or remote), Adapter (local or remote) and
Integration Adapter.

The integration of the Velocity template language with our AK transformation
language allows us not only to use placeholders (${...}) but also statements (if,
foreach, etc.), which begin with the # character and are parsed by the template
engine, but ignored by the AK transformation language editor.

When actual ADDs are made, the parameters of the transformation actions of
Table 3 are bound to concrete values. For instance, let us assume that the software
architect opts for a remote proxy as an integrating component between a YMS
service, namely, TruckMgmnt, and an integration layer’s component, namely, Op-
eratorFacade. The actual ADDs will be reflected in the corresponding C&C view
by executing the derived transformation actions of Listing 16.
add compound indirection "Proxy" (example TruckMgmnt OperatorFacade)

add stereotype <<"Remote Proxy">> to example.TruckMgmntProxy

Listing 16: Transformation Actions Example from Case Study

In Table 4, we report a set of reusable ADDs that we leveraged in the ware-
house case study. We also document on the number of constraints that were gener-
ated in order to check the consistency between the ADDs and the resulting C&C
view. In total, we documented 24 ADDs and, using our tools, we transformed
them into C&C view elements and generated 222 corresponding constraints. We
note that the actual benefit of our proposed reusable constraint templates does
not merely rely on the generation of concrete constraints but on the ability to be
leveraged in the application context of recurring design decisions. For instance,

25

ADD Options AK Transformation Actions

Type of Integrating
Component

– None

– Same Interface

– Different Interface

#if(${TypeOfComponent} == "None")

add port "${PS}_p1" kind=PROVIDED to ${cv}.${PS}

add port "${IC}_p1" kind=REQUIRED to ${cv}.${IC}

add connector "${IC}_${PS}" from ${cv}.${IC}.${IC}_p1 to ${cv}.${PS

}.${PS}_p1

add stereotype <<"Direct call">> to ${cv}.${IC}_${PS}

#elseif(${TypeOfComponent} == "Same Interface")

add compound indirection "Proxy" (${cv} ${PS} ${IC})

#elseif(${TypeOfComponent} == "Different Interface")

add compound indirection "Adapter" (${cv} ${PS} ${IC})

#end

Type of Proxy

– Local

– Remote

add stereotype <<"${TypeOfProxy} Proxy">> to ${cv}.${PS}Proxy

Type of Adapter

– Local

– Remote

add stereotype <<"${TypeOfAdapter} Adapter">> to ${cv}.${PS}Adapter

Heterogeneous systems

– No

– Yes

#if(${HeterogeneousSystems} == "Yes")

add compound integrationAdapter "Integration Adapter" (${cv} ${PS}

${IC})

#end

Interchangeability

– No

– Yes

add property "${PS}Adapter_Interchangeability" type="

Interchangeability" value="${Interchangeability}" to ${cv}.${PS}

Adapter

Adaptation Parameters
(String)

add property "${PS}Adapter_params" type="Parameters" value="${

Parameters}" to ${cv}.${PS}Adapter

Table 3: An Excerpt of the Service-based Platform Integration ADD Model and
its Corresponding AK Transformation Actions

without support from our techniques the software architects must manually make
24 decisions and define (or copy/paste) 222 constraints for integrating each plat-
form service, which is a tedious and error-prone task.

5. Evaluation Results

5.1. Reusability
Notwithstanding the initial efforts for creating the reusable AK transforma-

tions, architects will benefit from reduced total efforts in case of recurring ADDs
and AK transformations in the long term. In our approach, reusability can be

26

ADD Times Reused Constraints

Proxy 3 3 x 9
Adapter 1 1 x 11
Result Callback 7 7 x 12
Facade 1 1 x 8
Gateway 2 2 x 6
Publish-Subscriber 7 7 x 8
Data Mapper 2 2 x 8
Content Enricher 1 1 x 8

Total 24 222

Table 4: Reusable ADDs and Generated Constraints in the Warehouse Case Study

achieved at three different levels: 1) First of all, the AK transformation language
hides the low-level model actions that are needed to transform the C&C view
models. These model actions are embedded in the enactment engine of the DSL;
2) In addition, the AK transformations are edited only once for each ADD model
and are afterwards instantiated when actual ADDs are made. This kind of reuse is
possible by taking advantage of the benefits of model-driven techniques and tem-
plate engines; 3) Finally, the use of compound actions that can be extended and
inherited increases reusability, as it allows the introduction of new transformation
actions with parameters which group other transformation actions. In the same
way, loops also contribute to the reusability of transformation actions.

In order to show the reusability of our approach, we document the number
of actions (primitive and compound), primitive actions and model actions that
are needed per number of recurring ADDs and for four different ADDs that have
been already documented in Section 4. Regarding the definition of the action
templates of Table 3, the numbers of actions that have to be edited manually for
the reusable decisions Direct Calls, Proxy, Adapter, and Integration Adapter, are
four, two, four, and three actions, respectively. By defining compound actions,
we can reduce the number of required actions in the last three cases where single
actions were contained in the compound actions add compound indirection and
add compound integrationAdapter (extends indirection).

Table 5 shows the actions that need to be edited manually per decision—both
compound and primitive actions—along with the primitive actions, as well as the
model actions in which the primitive actions are translated from the enactment
engine of the AK transformation language. The model actions are the actions that
eventually apply on the C&C views. The number of the actions that are directly
applied on the C&C model are 13, 25, 26 and 42 respectively for the four ADDs,
which means that without the use of the AK transformation language the effort for

27

editing and executing these actions would increase significantly. Clearly, primitive
actions already scale much better in terms of modeling effort than manual change
actions in models; reusable actions with compounds offer an additional level of
support.

Reusable ADD Actions (with
compounds)

Primitive
Actions

Model
Actions

Direct Calls 4 4 13
Proxy 2 9 25
Adapter 4 11 26
Integration Adapter 3 15 42

Table 5: Comparison of Number of Actions for Reusable ADDs

5.2. Modeling Effort
We performed a quantitative evaluation by measuring the modeling effort for

editing transformation actions. In particular, we measured the increase of model-
ing effort if the compound actions in the AK transformation language are replaced
by primitive or model actions. The results are presented in Table 6 for the ADDs
we have documented in the warehouse case study. We notice that the modeling ef-
fort would increase up to 1100% and up to 3700% if the compound actions would
be replaced by primitive or model actions respectively (i.e., for Result Callbacks).
On average, we have an increase of modeling effort of 549% and 2041% for the
aforementioned cases and for the setting we created for the needs of the case study.

ADD (Times reused) Actions (with
compounds)

Primitive
Actions

Model
Actions

Average increase of modeling effort
for Primitive Actions for Model Actions

Proxy (3) 6 27 75 350% 1150%
Adapter (1) 4 11 26 175% 550%
Result Callback (7) 7 84 266 1100% 3700%
Facade (1) 3 8 24 167% 700%
Gateway (2) 2 12 30 500% 1400%
Publish-Subscriber (7) 7 56 189 700% 2600%
Data Mapper (2) 2 16 50 700% 2400%
Content Enricher (1) 1 8 25 700% 2400%

Total 32 222 685 549% (on average) 2041% (on average)

Table 6: Modeling Effort for Reusable ADDs

Figure 8 compares the increase of the number of compound, primitive, and
model actions on average for the ADDs that were reused in the warehouse case

28

study discussed in this section. We notice that the number of actions edited with
the AK transformation language remains low in comparison to the primitive and
model actions that need to be executed as the number of reusable ADDs increases.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10 20 30 40 50 60 70 80 90 100

of

 A
ct

io
ns

of Reusable ADDs

With Compounds
Primitive Actions

Model Actions

Figure 8: Comparison between Numbers of Actions on average for the Warehouse
Case Study

5.3. Discussion and Limitations
Although we have implemented and demonstrated our proposal using two spe-

cific tools, we claim that our approach can be generalizable to a certain extent. The
transformation actions and constraint templates constitute reusable AK assets that
can be customized and re-used in various reusable decisions. These templates
can be applied for any existing ADD model or ADD documentation because the
essential concepts and elements of these models and those in the ADvISE ADD
model are almost equivalent. In most cases, the binding between the template
variables and the elements of ADD models might need human intervention. That
is, in order to properly associate a reusable parameterized action template contain-
ing some input parameters with a certain ADD, we need to align the parameters
with the corresponding values in the ADD. This is similar to the way we pass
parameters when invoking a function in traditional programming languages.

The C&C view that is created or updated by enacting the transformation ac-
tions contains all the information captured by the corresponding ADDs derived
from the ADD meta-model. Nevertheless, the AK transformation language is

29

generic and can be applied to similar C&C models or architectural views on dif-
ferent scenarios as well. Please note that the VbMF C&C view contains very sim-
ilar elements to elements of other typical C&C views. Therefore, our approach is
also applicable for most of existing component models such as the UML compo-
nent diagram with marginal effort for adapting the actions to accommodate new
elements. This effort will be added to the effort for editing the AK transformation
language templates and constraint templates.

In case the underlying component models are different from the model pre-
sented in this paper, we can reuse most of the aforementioned AK transformation
actions and only need to add additional actions in order to accommodate the spe-
cific elements that do not exist in our model. As the commonality between our
component model and the widely-used models is substantial, the effort to adapt
the AK transformation actions to specific needs is mostly marginal. Moreover,
the notion of compound inheritance and extension would help to alleviate such
adaptation effort.

Regarding the manual steps of our approach, namely the editing of reusable
ADD models and constraint templates with the mappings between them, many of
the participating assets can be customized and reused in various design situations.
The reusability and automation of our approach is based on reusable and recurring
ADDs. Nevertheless, some non-reusable ADDs can also be integrated to the C&C
views with small extra efforts.

By implementing our proposal in a real-life design setting—in the context of
the warehouse case study—we showed that it offers high reusability and reduces
the efforts for documenting and maintaining two important design artifacts, the
design decisions and C&C views. However, in the scope of our study, we have
not conducted any usability studies within human designers, thus we were not able
to assess the effectiveness and usefulness of our approach in the design process
and in the long term. Lacking such an empirical evaluation, we are not able,
for instance, to predict the time needed by software architects to learn and use
the AK transformation language and from what number of reusable decisions the
initial modeling effort pays off. Such empirical evidence would also be useful
for introducing this or similar methods in the industrial practice. An empirical
evaluation of our proposal, nonetheless, is part of our future work.

6. Related Work

Our approach presented in this paper is motivated by the current gaps be-
tween architectural design decisions and architectural models that have partially

30

or not been addressed in the literature yet. In this section, we will discuss related
techniques and methods, especially existing approaches for architectural decision
support and for mapping among software modeling and development artifacts.

6.1. Existing Approaches for Architectural Decision Support
The documentation of the design rationale, as well as the gathering of Archi-

tectural Knowledge (AK), have promoted ADDs to first class citizens in software
architecture [16]. There are numerous attempts on documentation and leveraging
of design rationales. Clements et al. suggest a general outline for documenting ar-
chitectures and guidelines for justifying design decisions [8]. Tyree and Akerman
present a rich template for capturing and documenting several aspects of archi-
tectural design decisions [42]. Another technique proposed by Lee and Kruchten
aims at establishing formalized ontological description of architectural decisions
and their relationships [21] whilst Harrison et al. use patterns—which are proven
knowledge—for capturing recurring decisions [12]. Zimmermann et al. proposed
decision meta-models and guidelines for formulating and documenting design de-
cisions, and illustrated their methods in the context of the SOA design space [45].

Several tools and techniques have been developed to assist software archi-
tects in capturing, managing, and sharing of ADDs [36]. In [16], Jansen and
Bosch advocate for considering software architecture as a set of design decisions
and propose a new approach, namely Archium, for describing ADDs. The SEU-
RAT toolkit developed by Burge and Brown provides means for browsing and
analyzing architectural design rationales [4]. Similar tools proposed by Babar
and Gorton can also be used for capturing and managing software architecture
knowledge [1]. Capilla et al. also emphasize the importance of recording and
maintaining architectural design decisions and present a Web-based architecture
design decision support system, namely ADDSS, for this purpose [5]. These ap-
proaches mainly target reasoning on software architectures, capturing and reusing
of AK and have not considered the maintenance and consistency of ADDs with
architectural views.

Architectural decisions are the result of making trade-offs for the quality at-
tribute requirements. For example, in the Architecture Tradeoff Analysis Method
(ATAM) and Attribute-Driven-Design Method (ADD) [3] the analysis of architec-
tural trade-offs is an important part of the architectural decision making process.
Bachmann et al. suggest a reasoning framework with quality attribute knowledge
to help architects make trade-offs that impact individual quality attributes in an
architecture [2]. These and other approaches for supporting architectural decision

31

making have not been integrated with tools for modeling and documentation of
architectural decisions.

Existing methods and techniques, as we discussed above, were grounded on
the main idea of considering ADDs first-class citizens in software architecture
design. Therefore, these approaches lay a solid foundation on capturing and man-
aging design decisions for several successive studies, including our approach pre-
sented in this paper. For instance, the ADD model supported by ADvISE inherits
common concepts and elements of existing meta-models and templates for record-
ing design decisions. Nevertheless, our approach goes beyond with not only sup-
porting reusable ADDs but also providing an extensible, reusable AK transforma-
tion language for transforming architectural design intentions and knowledge onto
architectural models (such as C&C models). The AK transformation language
also supports automatically generating constraints for checking the consistency
between ADDs and the corresponding architectural models.

6.2. Relating ADDs and Software Architectures
Our approach is not the first one in relating ADDs to software architectures.

The problem of not documenting and not maintaining ADDs that cause design
knowledge vaporization has been discussed before [7, 16]. For instance, Choi et
al. suggest to make ADDs more explicit by introducing a meta-model for relating
decisions with architectural elements and a decision constraint graph for repre-
senting decision relationships and studying decision change impact analysis [7].
Compared to our proposal, this approach demands that most of the work is done
manually: decision making, architectural design and change propagation during
software evolution.

STREAM-ADD [9] also relates architectural decisions documented in deci-
sion templates with requirements and architectural models generated from these
requirements. This approach focuses rather on the integration of systematic docu-
mentation of structural and technological decisions with requirements and archi-
tectural models than on the consistency checking between decisions and designs.
Küster has proposed to intertwine ADDs with standard architecture documenta-
tion processes by defining architecture-specific decision types along with OCL
constraints used for decision conformance checking of component and deploy-
ment views [20]. The aforementioned approach uses similar concepts for check-
ing the conformance of ADDs to architectural views, however, comparing to our
proposal, it does not support the transformation of ADDs into components and
connectors.

32

Another popular technique for relating ADDs and software architecture aims
at establishing trace links between design decisions and architectural elements.
Capilla et al. [6] introduce fine-grained traceability links between design deci-
sions and other software artifacts. Könemann and Zimmermann [18] establish
links between design decisions and design models in model-based software de-
velopment in order to support architectural knowledge documentation and reuse,
as well as to check consistency. Mirakhorli and Cleland-Huang [32] introduce
the TTIM approach that provides a reusable infrastructure for tracing architecture
tactics to designs used to trace from tactic-related design decisions to architecture
components in which a decision is realized. Recently, Malavolta et al. present an
approach that enables analysis of change impact of certain change in architectural
decisions [28]. This is mainly achieved by manually defining trace links between
design decisions and other artifacts. Although this is not the focus of our approach,
the AK transformation language could be easily extended to automatically estab-
lish trace links between design decisions and consistency checking constraints as
well. Also, none of the aforementioned approaches target the reusability of these
links between ADDs and architectural views, nor do they tackle the complexity
of large numbers of reusable ADDs. Furthermore, our approach can also pro-
vide support for automatically transforming architectural design intentions and
knowledge to concrete architectural elements and configurations through the AK
transformation language.

6.3. Mapping to and Generating Software Architectures
The generation of architectural design views from specifications or other ar-

chitectural views has been studied extensively in the literature. Pérez-Martı́nez
and Sierra-Alonso use semi-automated model-to-model transformations to gener-
ate component-and-connector (C&C) architecture models from classes and pack-
ages analysis models by using 32 OCL-based mapping rules [34]. In this ap-
proach, architects can use the analysis model, which is a UML class diagram
extended with additional profiles for the Unified Development Process [15], to
describe architectural design intentions. After that, the elements of the analysis
model will be coerced to the concepts of the C&C model according to the mapping
rules.

In a different approach [22], variability elements from the problem space are
connected to architecture elements in the solution space using a Variability Mod-
eling Language (VML) that provides primitives for referencing and invoking deci-
sions which result in fine-grained or coarse-grained compositions of variable and
common core architectural elements. Different from our approach, this approach

33

supports rather the composition than the generation of software architectures as
it requires that all architectural elements are prescribed. Moreover, consistency
checking between the different models or the documentation of design rationale
are not considered in any of the approaches.

A considerable amount of research has been conducted in relating require-
ments with software architectures. For example, Kaindl et al. show that using
model-driven development techniques can help in mapping requirements to archi-
tectural design [17]. Grünbacher et al. introduce the mapping from requirements
to intermediate models that are closer to software architecture [11]. A different
approach presented by van Lamsweerde et al. derives software architectures from
the formal specifications of a system goal model (KAOS) using transformation
rules and refines the architectures incrementally using patterns that satisfy quality
of service goals such as availability and fault-tolerance [43].

Sochos et al. present an approach, namely Feature-Architecture Mapping
(FArM), that focuses on providing a strong mapping between features and soft-
ware product line architectures [37]. The drawback of this approach is to assume
a one-to-one mapping, that is, each component of the resulting product line
architecture encapsulates the business logic of a feature. In reality, a high-level
abstraction concept (such as a requirement or feature) might relate to more than
one architectural elements and vice versa.

In the aforementioned approaches, in which requirements are related to soft-
ware designs, although the transformations are done automatically, the mapping
mostly has to be performed manually and is not reusable. We note that, in these
approaches, the rationales that led from the requirements to the architectural views
are neither considered nor documented. That is, because the requirements belong
to the problem space while ADDs to the solution space. In our work, we assume
that architectural decision making follows the collection of requirements and pre-
cedes the design of software architectures, and set our focus on the linking of
reusable ADDs to C&C models.

7. Conclusions

We present a novel approach that provides reusable and extensible transforma-
tion actions and consistency checking rules for (semi-)automatically mapping of
the design rationale and knowledge reflected by ADDs onto architectural compo-
nent models. In particular, our approach introduces AK transformation language
for specifying reusable actions that need to be enacted to automatically create or
update the underlying architectural models with respect to particular ADDs. The

34

transformation language provides basic actions for updating individual model el-
ements, as well as expressive composite structures for describing actions applied
in a set of elements such as compounds and loops. This enables us, for instance,
to define recurring architectural primitives, e.g., to realize reusable specifications
for architectural patterns or styles in the transformation language. In addition,
our approach supports the specification and automatic generation of consistency
checking rules to make sure no manual changes of the component models vio-
late the ADDs. The application of our approach in an industrial case study shows
that our approach is applicable in a realistic scenario. Our evaluation illustrates
the benefits of our approach in terms of potential modeling effort reduction and
reusability. As discussed, the use of a template engine and model-driven tech-
niques, as well as the support for inheritance and extension in the transformation
language significantly enhance its reusability and extensibility.

In our research agenda, we aim to generalize the harmonization of other ar-
chitectural design views with architectural decisions using similar reusable AK
transformations. We also plan to study repair actions for resolving inconsistencies
between reusable ADDs and component views as well as investigate the possibil-
ity of bidirectional transformations, i.e., also from component views onto deci-
sions. Part of our future work is, finally, to consider other aspects of architectural
designs apart from the elements of C&C models.

Appendix A. AK Transformation Language Specification

Listing 17 presents a formal definition of the AK transformation language in
terms of the EBNF-like notation provided by Xtext. We note that square brack-
ets denote the cross-references between different models. For instance, the rule
“AddConnector” defined in Line 37–38 refers to the components’ ports at the
two ends of the newly added connector. Using AK transformation language sim-
ple actions that add, delete, or update components, connectors, and other elements
or properties of C&C views can be edited (e.g., AddComponent, UpdateConnec-
tor, etc.). Apart from that, AK transformation language supports the following
actions: Condition, ForLoop, WhileLoop, Compound, Group, and Refine. A
ForLoop (see Line 21–22) can be used in order to define one or more actions
that are performed over a predefined set of design elements. The WhileLoop will
do the same as ForLoop but under certain boolean constraints. A Group (see
Line 91–92) can be used to define the grouping of a finite set of components as
sub-components of another component, while Refine (see Line 94–95) indicates
a mapping of an abstract and high-level component onto one or more low-level

35

components. A Compound (see Line 25–26) is used to represent a composite
construct containing multiple actions. It can inherit the definitions of existing
Compounds via the keyword “extends”, and therefore, reduce redundancy and
duplicated efforts.

1 grammar at.ac.univie.cs.swa.dsl.action.ActionDSL with org.eclipse.xtext.common.Terminals

3 ActionDSL:

4 {ActionDSL}

5 "module" name=FQN

6 (compounds+=Compound)*

7 (actions+=Action)+;

9 Action:

10 Add | Delete | Update | Group | Refine | Condition | WhileLoop | ForLoop;

12 Condition:

13 "if" "(" condition=BooleanExpression ")"

14 (thenActions+=Action)+

15 (=>"else" (elseActions+=Action)+)?;

17 WhileLoop:

18 {WhileLoop}

19 "while" expression=BooleanExpression "do" (actions+=Action)+ "end";

21 ForLoop:

22 {ForLoop}

23 "for" "("element=ID ":" params=LIST")" (actions+=Action)+ "end";

25 Compound:

26 "compound" name=ID ("extends" (parent+=[Compound|FQN])+)? spec=Spec;

28 Spec:

29 "("(args+=ID)+")" "{" (actions+=Action)* "}";

31 Add:

32 AddComponent | AddConnector | AddPort | AddProperty | AddStereotype | AddCompound;

34 AddComponent:

35 "add component" name=STRING;

37 AddConnector:

38 "add connector" name=STRING "from" source=[component::Port|FQN] "to" target=[component::

Port|FQN];

40 AddPort:

41 "add port" name=STRING "kind=" kind=PortKind "to" component=[component::Component|FQN];

43 enum PortKind:

44 provided="PROVIDED" | required="REQUIRED";

46 AddStereotype:

47 "add stereotype" "<<" text=STRING ">>" "to" target=[core::Element|FQN];

49 AddProperty:

36

50 "add property" name=STRING "type=" type=STRING "value=" value=STRING "to" target=[core::

Element|FQN];

52 AddCompound:

53 "add compound" compound=[Compound|FQN] name=STRING "("(args+=ID)+")";

55 Delete:

56 DeleteComponent | DeleteConnector | DeletePort | DeleteProperty | DeleteStereotype;

58 DeleteComponent:

59 "delete component" component=[component::Component|FQN];

61 DeleteConnector:

62 "delete connector" conn=[component::Connector|FQN];

64 DeletePort:

65 "delete port" port=[component::Port|FQN];

67 DeleteProperty:

68 "delete property" property=[component::Property|FQN];

70 DeleteStereotype:

71 "delete stereotype" stereotype=[component::Stereotype|FQN];

73 Update:

74 UpdateComponent | UpdateConnector | UpdatePort | UpdateProperty | UpdateStereotype;

76 UpdateComponent:

77 "update component" component=[component::Component|FQN] "name=" newName=STRING;

79 UpdateConnector:

80 "update connector" conn=[component::Connector|FQN] "name=" newName=STRING;

82 UpdatePort:

83 "update port" port=[component::Port|FQN] ("name=" newName=STRING)? ("kind=" newKind=

PortKind)?;

85 UpdateProperty:

86 "update property" prop=[component::Property|FQN] ("name=" newName=STRING)? ("type="

newType=STRING "value=" newValue=STRING)?;

88 UpdateStereotype:

89 "update stereotype" stereotype=[component::Stereotype|FQN] "text=" newText=STRING;

91 Group:

92 "group" component=[component::Component|FQN] "container" container=[component::Component|

FQN];

94 Refine:

95 "refine" component=[component::Component|FQN] "in" (refinedComp+=STRING)+;

Listing 17: AK transformation language specification

37

References

[1] M. A. Babar and I. Gorton. A Tool for Managing Software Architec-
ture Knowledge. In Proceedings of the Second Workshop on SHAring and
Reusing architectural Knowledge Architecture, Rationale, and Design In-
tent, SHARK-ADI’07, pages 11–, Washington, DC, USA, 2007. IEEE Com-
puter Society.

[2] F. Bachmann, L. Bass, M. Klein, and C. Shelton. Designing Software Ar-
chitectures to Achieve Quality Attribute Requirements. Software, IEEE Pro-
ceedings, 152(4):153–165, Aug. 2005.

[3] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice,
volume 2. Addison-Wesley Professional, 2003.

[4] J. E. Burge and D. C. Brown. An Integrated Approach for Software Design
Checking Using Design Rationale. In 1st Int’l Conf. on Design Computing
and Cognition (DCC’04), pages 557–576. Kluwer Academic Press, 2004.

[5] R. Capilla, F. Nava, S. Pérez, and J. C. Dueñas. A web-based tool for man-
aging architectural design decisions. SIGSOFT Software Engineering Notes,
31(5), Sept. 2006.

[6] R. Capilla, O. Zimmermann, U. Zdun, P. Avgeriou, and J. M. Küster. An En-
hanced Architectural Knowledge Metamodel Linking Architectural Design
Decisions to other Artifacts in the Software Engineering Lifecycle. In 5th
European Conf. in Software Architecture (ECSA), Essen, Germany, pages
303–318. Springer, 2011.

[7] Y. Choi, H. Choi, and M. Oh. An architectural design decision-centric ap-
proach to architectural evolution. In 11th Int’l Conf. on Advanced Commu-
nication Technology (ICACT), Gangwon-Do, South Korea, pages 417–422.
IEEE Press, 2009.

[8] P. Clements, D. Garlan, L. Bass, J. Stafford, R. Nord, J. Ivers, and R. Little.
Documenting Software Architectures: Views and Beyond. Pearson Educa-
tion, 2002.

[9] D. Dermeval, J. Pimentel, C. T. L. L. Silva, J. Castro, E. Santos, G. Guedes,
M. Lucena, and A. Finkelstein. STREAM-ADD - Supporting the Docu-
mentation of Architectural Design Decisions in an Architecture Derivation

38

Process. In 36th Annual IEEE Computer Software and Applications Conf.
(COMPSAC), Izmir, Turkey, pages 602–611. IEEE Computer Society, 2012.

[10] O. M. Group. Uml 2.4.1 superstructure specification. http://www.omg.

org/spec/UML/2.4.1. Last accessed: 2014-06-10.

[11] P. Grünbacher, A. Egyed, and N. Medvidovic. Reconciling Software Re-
quirements and Architectures with Intermediate Models. Softw. Syst. Model.,
3(3):235–253, 2003.

[12] N. B. Harrison, P. Avgeriou, and U. Zdun. Using Patterns to Capture Archi-
tectural Decisions. IEEE Software, 24(4):38–45, 2007.

[13] T. Holmes, H. Tran, U. Zdun, and S. Dustdar. Modeling Human Aspects of
Business Processes - A View-Based, Model-Driven Approach. In European
Conf. Model Driven Architecture - Foundations and Applications (ECMDA-
FA), pages 246–261, Berlin, Germany, 2008. Springer-Verlag.

[14] ISO/IEC/IEEE. Systems and software engineering – architecture descrip-
tion. ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC 42010:2007 and
IEEE Std 1471-2000), pages 1–46, 1 2011.

[15] I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software Development
Process. Addison-Wesley Professional, 1999.

[16] A. Jansen and J. Bosch. Software Architecture as a Set of Architectural
Design Decisions. In 5th Working IEEE/IFIP Conf. on Software Architecture
(WICSA), Pittsburgh, PA, USA, pages 109–120. IEEE Computer Society,
2005.

[17] H. Kaindl and J. Falb. Can We Transform Requirements into Architec-
ture? In 3rd Int’l Conf. on Software Engineering Advances (ICSEA), Sliema,
Malta, pages 91–96. IEEE Computer Society, 2008.

[18] P. Könemann and O. Zimmermann. Linking Design Decisions to Design
Models in Model-Based Software Development. In 4th European Conf.
in Software Architecture (ECSA), Copenhagen, Denmark, pages 246–262.
Springer, 2010.

[19] P. Kruchten, R. Capilla, and J. C. Dueñas. The Decision View’s Role in
Software Architecture Practice. IEEE Software, 26(2):36–42, Mar. 2009.

39

[20] M. Küster. Architecture-Centric Modeling of Design Decisions for Valida-
tion and Traceability. In Proceedings of the 7th European Conf. on Software
Architecture (ECSA), pages 184–191, Berlin, Heidelberg, 2013. Springer.

[21] L. Lee and P. Kruchten. Capturing Software Architectural Design Decisions.
In 2007 Canadian Conf. on Electrical and Computer Engineering, pages
686–689. IEEE Computer Society, 2007.

[22] N. Loughran, P. Sánchez, A. Garcia, and L. Fuentes. Language Support for
Managing Variability in Architectural Models. In Software Composition,
pages 36–51, 2008.

[23] I. Lytra, S. Sobernig, H. Tran, and U. Zdun. A Pattern Language for Service-
Based Platform Integration and Adaptation. In 17th Annual European Conf.
on Pattern Languages of Programs, pages 111–120. Hillside, Jul. 2012.

[24] I. Lytra, S. Sobernig, and U. Zdun. Architectural Decision Making for
Service-Based Platform Integration: A Qualitative Multi-Method Study. In
Joint 10th Working IEEE/IFIP Conf. on Software Architecture & 6th Eu-
ropean Conf. on Software Architecture (WICSA/ECSA), Helsinki, Finland.
IEEE Computer Society, 2012.

[25] I. Lytra, H. Tran, and U. Zdun. Constraint-Based Consistency Checking be-
tween Design Decisions and Component Models for Supporting Software
Architecture Evolution. In 16th European Conf. on Software Maintenance
and Reengineering (CSMR), Szeged, Hungary, pages 287–296. Springer,
2012.

[26] I. Lytra, H. Tran, and U. Zdun. Supporting Consistency between Architec-
tural Design Decisions and Component Models through Reusable Architec-
tural Knowledge Transformations. In European Conf. on Software Architec-
ture (ECSA), LNCS 7957, pages 224–239. Springer, July 2013.

[27] A. MacLean, R. Young, V. Bellotti, and T. Moran. Questions, Options, and
Criteria: Elements of Design Space Analysis. Human-Computer Interaction,
6:201–250, 1991.

[28] I. Malavolta, H. Muccini, and V. S. Rekha. Supporting Architectural De-
sign Decisions Evolution through Model Driven Engineering. In Proceed-
ings of the 3rd Int’l Conf. on Software Engineering for Resilient Systems,
SERENE’11, pages 63–77, Berlin, Heidelberg, 2011. Springer-Verlag.

40

[29] C. Mayr, U. Zdun, and S. Dustdar. Model-Driven Integration and Manage-
ment of Data Access Objects in Process-Driven SOAs. In First European
Conf., ServiceWave 2008, Proceedings, LNCS 5377, pages 62–73, Madrid,
Spain, 2008. Springer-Verlag.

[30] N. R. Mehta and N. Medvidovic. Composing Architectural Styles from
Architectural Primitives. In 9th European Software Engineering Conf.
held jointly with 11th ACM SIGSOFT Int’l Symposium on Foundations of
Software Engineering (ESEC/FSE-11), Helsinki, Finland, pages 347–350.
ACM, 2003.

[31] T. Mens and P. Van Gorp. A Taxonomy of Model Transformation. Electron.
Notes Theor. Comput. Sci., 152:125–142, Mar. 2006.

[32] M. Mirakhorli and J. Cleland-Huang. Using Tactic Traceability Informa-
tion Models to Reduce the Risk of Architectural Degradation during System
Maintenance. In 27th IEEE Int’l Conf. on Software Maintenance (ICSM),
Williamsburg, VA, USA, pages 123–132. IEEE Computer Society, 2011.

[33] E. Mulo, U. Zdun, and S. Dustdar. An Event View Model and DSL for
Engineering an Event-based SOA Monitoring Infrastructure. In Proceedings
of the Fourth ACM Int’l Conf. on Distributed Event-Based Systems, DEBS
2010, Cambridge, United Kingdom, July 12-15, 2010, pages 62–72, 2010.

[34] J. E. Pérez-Martı́nez and A. Sierra-Alonso. From Analysis Model to Soft-
ware Architecture: A PIM2PIM Mapping. In Model Driven Architecture
- Foundations and Applications (ECMDA-FA), Biblao, Spain, pages 25–39,
2006.

[35] D. C. Schmidt and F. Buschmann. Patterns, Frameworks, and Middleware:
Their Synergistic Relationships. In 25th Int’l Conf. on Software Engineering
(ICSE), pages 694–704, 2003.

[36] M. Shahin, P. Liang, and M. R. Khayyambashi. Architectural design de-
cision: Existing models and tools. In Joint Working IEEE/IFIP Conf. on
Software Architecture and European Conf. on Software Architecture (WIC-
SA/ECSA), Cambridge, UK, pages 293–296. IEEE Computer Society, 2009.

[37] P. Sochos, M. Riebisch, and I. Philippow. The Feature-Architecture Map-
ping (FArM) Method for Feature-Oriented Development of Software Prod-

41

uct Lines. In IEEE Int’l Conf. on the Engineering of Computer-Based Sys-
tems, pages 308–318, Los Alamitos, CA, USA, 2006. IEEE Computer Soci-
ety.

[38] R. N. Taylor, N. Medvidovic, and E. Dashofy. Software Architecture: Foun-
dations, Theory, and Practice. Wiley, 2009.

[39] H. Tran, U. Zdun, and S. Dustdar. View-based and Model-driven Approach
for Reducing the Development Complexity in Process-Driven SOA. In Int’l
Conf. Business Process and Services Computing (BPSC), pages 105–124.
Lecture Notes in Informatics (LNI), 2007.

[40] H. Tran, U. Zdun, and S. Dustdar. Name-based view integration for enhanc-
ing the reusability in process-driven SOAs. Int’l Journal of Business Process
Integration and Management, 5(3):229–239, 2011.

[41] H. Tran, U. Zdun, T. Holmes, E. Oberortner, E. Mulo, and S. Dustdar. Com-
pliance in service-oriented architectures: A model-driven and view-based
approach. Information and Software Technology, 54(6):531–552, June 2012.

[42] J. Tyree and A. Akerman. Architecture Decisions: Demystifying Architec-
ture. IEEE Software, 22(2):19–27, 2005.

[43] A. van Lamsweerde. From System Goals to Software Architecture. In
M. Bernardo and P. Inverardi, editors, School on Formal Methods, volume
LNCS 2804, pages 25–43. Springer, 2003.

[44] U. Zdun and P. Avgeriou. Modeling Architectural Patterns Using Architec-
tural Primitives. In 20th ACM Conf. on Object-Oriented Programming, Sys-
tems, Languages & Applications (OOPSLA), pages 133–146. ACM, 2005.

[45] O. Zimmermann, T. Gschwind, J. Küster, F. Leymann, and N. Schuster.
Reusable Architectural Decision Models for Enterprise Application Devel-
opment. In 3rd Int’l Conf. on Quality of Software Architectures (QoSA),
Medford, MA, USA, pages 15–32. Springer, 2007.

[46] O. Zimmermann, U. Zdun, T. Gschwind, and F. Leymann. Combining Pat-
tern Languages and Reusable Architectural Decision Models into a Com-
prehensive and Comprehensible Design Method. In 7th Working IEEE/IFIP
Conf. on Software Architecture (WICSA), Vancouver, BC, Canada, pages
157–166. IEEE Computer Society, 2008.

42

