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Abstract

We study the problem of computing the minimum cut in a weighted distributed message-
passing networks (the CONGEST model). Let λ be the minimum cut, n be the number of nodes
(processors) in the network, and D be the network diameter. Our algorithm can compute λ
exactly in O((

√
n log∗ n+D)λ4 log2 n) time. To the best of our knowledge, this is the first paper

that explicitly studies computing the exact minimum cut in the distributed setting. Previously,
non-trivial sublinear time algorithms for this problem are known only for unweighted graphs
when λ ≤ 3 due to Pritchard and Thurimella’s O(D)-time and O(D + n1/2 log∗ n)-time algo-
rithms for computing 2-edge-connected and 3-edge-connected components [ACM Transactions
on Algorithms 2011].

By using the edge sampling technique of Karger [STOC 1994], we can convert this algorithm
into a (1 + ε)-approximation O((

√
n log∗ n + D)ε−5 log3 n)-time algorithm for any ε > 0. This

improves over the previous (2 + ε)-approximation O((
√
n log∗ n + D)ε−5 log2 n log log n)-time

algorithm and O(ε−1)-approximation O(D + n
1
2+ε poly log n)-time algorithm of Ghaffari and

Kuhn [DISC 2013]. Due to the lower bound of Ω(D+n1/2/ log n) by Das Sarma et al. [SICOMP
2013] which holds for any approximation algorithm, this running time is tight up to a poly log n
factor.

To get the stated running time, we developed an approximation algorithm which com-
bines the ideas of Thorup’s algorithm [Combinatorica 2007] and Matula’s contraction algorithm
[SODA 1993]. It saves an ε−9 log7 n factor as compared to applying Thorup’s tree packing the-
orem directly. Then, we combine Kutten and Peleg’s tree partitioning algorithm [J. Algorithms
1998] and Karger’s dynamic programming [JACM 2000] to achieve an efficient distributed algo-
rithm that finds the minimum cut when we are given a spanning tree that crosses the minimum
cut exactly once.
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1 Introduction

Minimum cut is an important measure of networks. It determines, e.g., the network vulnerability
and the limits to the speed at which information can be transmitted. While this problem has been
well-studied in the centralized setting (e.g. [5, 10, 6, 7, 15, 14, 2, 21, 8]), very little is known in the
distributed setting, especially in the relevant context where communication links are constrained by
a small bandwidth – the so-called CONGEST model (cf. Section 2).

Consider, for example, a simple variation of this problem, called λ-edge-connectivity: given an
unweighted undirected graph G and a constant λ, we want to determine whether G is λ-edge-
connected or not. In the centralized setting, this problem can be solved in O(m + nλ2 log n) time
[2], thus near-linear time when λ is a constant. (Throughout, n, m, and D denotes the number
of nodes, number of edges, and the network diameter, respectively.) In the distributed setting,
however, non-trivial solutions exist only when λ ≤ 3; this is due to algorithms of Pritchard and
Thurimella [20] which can compute 2-edge-connected and 3-edge-connected components in O(D)
and O(D + n1/2 log∗ n) time, respectively, with high probability1. This implies that the λ-edge-
connectivity problem can be solved in O(D) time when λ = 2 and O(D + n1/2 log∗ n) time when
λ = 3.

For the general version where input graphs could be weighted, the problem can be solved
in near-linear time [8, 14, 6, 7] in the centralized setting. In the distributed setting, the first
non-trivial upper bounds are due to Ghaffari and Kuhn [4], who presented (2 + ε)-approximation
O((
√
n log∗ n+D)ε−5 log2 n log log n)-time and O(ε−1)-approximation O(D+ n

1
2

+ε poly log n)-time
algorithms. These upper bounds are complemented by a lower bound of Ω(D+ n1/2/ log n) for any
approximation algorithm which was earlier proved by Das Sarma et al. [1] for the weighted case and
later extended by [4] to the unweighted case. This means that the running times of the algorithms in
[4] are tight up to a polylog n factor. Yet, it is still open whether we can achieve an approximation
factor less than two in the same running time, or in fact, in any sublinear (i.e. O(D + o(n))) time.

Results. In this paper, we present improved distributed algorithms for computing the minimum
cut both exactly and approximately. Our exact deterministic algorithm for finding the minimum cut
takes O((

√
n log∗ n+D)λ4 log2 n) time, where λ is the value of the minimum cut. Our approximation

algorithm finds a (1 + ε)-approximate minimum cut in O((D+
√
n log∗ n)ε−5 log3 n) time with high

probability. (If we only want to compute the (1 + ε)-approximate value of the minimum cut,
then the running time can be slightly reduced to O((

√
n log∗ n+D)ε−5 log2 n log log n).) As noted

earlier, prior to this paper there was no sublinear-time exact algorithm even when λ is a constant
greater than three, nor sublinear-time algorithm with approximation ratio less than two. Table 1
summarizes the results.

Techniques. The starting point of our algorithm is Thorup’s tree packing theorem [23, Theo-
rem 9], which shows that if we generate Θ(λ7 log3 n) trees T1, T2, . . ., where tree Ti is the minimum
spanning tree with respect to the loads induced by {T1, . . . , Ti−1}, then one of these trees will
contain exactly one edge in the minimum cut (see Section 4 for the definition of load). Since we
can use the O(

√
n log∗ n + D)-time algorithm of Kutten and Peleg [12] to compute the minimum

spanning tree (MST), the problem of finding a minimum cut is reduced to finding the minimum
cut that 1-respects a tree; i.e., finding which edge in a given spanning tree defines a smallest cut
(see the formal definition in Section 3). Solving this problem in O(D +

√
n log∗ n) time is the first

key technical contribution of this paper. We do this by using a simple observation of Karger [8]
which reduces the problem to computing the sum of degree and the number of edges contained in

1We say that an event holds with high probability (w.h.p.) if it holds with probability at least 1− 1/nc, where c is
an arbitrarily large constant.

1



Reference Time Approximation
Pritchard&Thurimella [20] O(D) for λ ≤ 2 exact
Pritchard&Thurimella [20] O(

√
n log∗ n+D) for λ ≤ 3 exact

This paper O((
√
n log∗ n+D)λ4 log2 n) exact

Das Sarma et al. [1] Ω(
√
n

logn +D) any
Ghaffari&Kuhn [4] O((

√
n log∗ n+D)ε−5 log2 n log log n) 2 + ε

This paper O((
√
n log∗ n+D)ε−5 log3 n) 1 + ε

Table 1: Summary of Results

a subtree rooted at each node. We use this observation along with Garay, Kutten and Peleg’s tree
partitioning [12, 3] to quickly compute these quantities. This requires several (elementary) steps,
which we will discuss in more detail in Section 3.

The above result together with Thorup’s tree packing theorem immediately imply that we can
find a minimum cut exactly in O((D+

√
n log∗ n)λ7 log3 n) time. By using Karger’s random sampling

result [7] to bring λ down to O(log n/ε2), we can find an (1 + ε)-approximate minimum cut in
O((D +

√
n log∗ n)ε−14 log10 n) time. These time bounds unfortunately depend on large factors of

λ, log n and 1/ε, which make their practicality dubious. Our second key technical contribution is a
new algorithm which significantly reduces these factors by combining Thorup’s greedy tree packing
approach with Matula’s contraction algorithm [14]. In Matula’s (2 + ε)-approximation algorithm
for the minimum cut problem, he partitioned the graph into components according to the spanning
forest decomposition by Nagamochi and Ibaraki [15]. He showed that either a component induces a
(2 + ε)-approximate minimum cut, or the minimum cut does not intersect with the components. In
the latter case, it is safe to contract the components. Our algorithm used a similar approach, but we
partitioned the graph according to Thorup’s greedy tree packing approach instead of the spanning
forest decomposition. We will show that either (i) a component induces a (1 + ε)-approximate
minimum cut, (ii) the minimum cut does not intersect with the components, or (iii) the minimum
cut 1-respect a tree in the tree packing. This algorithm and analysis will be discussed in detail
in Section 4. We note that our algorithm can also be implemented in the centralized setting in
O(m + nε−7 log3 n) time. It is slightly worse than the current best O(m + nε−3 log3 n) by Karger
[6].

2 Preliminaries

Communication Model. We use a standard message passing network model called CONGEST
[19]. A network of processors is modeled by an undirected unweighted n-node graph G, where
nodes model the processors and edges model O(log n)-bandwidth links between the processors. The
processors (henceforth, nodes) are assumed to have unique IDs in the range of {1, . . . ,poly(n)}
and infinite computational power. We denote the ID of node v by id(v). Each node has limited
topological knowledge; in particular, it only knows the IDs of its neighbors and knows no other
topological information (e.g., whether its neighbors are linked by an edge or not). Additionally, we
let w : E(G)→ {1, 2, . . . ,poly(n)} be the edge weight assignment. The weight w(uv) of each edge
uv is known only to u and v. As commonly done in the literature (e.g., [4, 11, 13, 12, 3, 17]), we
will assume that the maximum weight is poly(n) so that each edge weight can be sent through an
edge (link) in one round.

There are several measures to analyze the performance of distributed algorithms. One fun-
damental measure is the running time defined as the worst-case number of rounds of distributed
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communication. At the beginning of each round, all nodes wake up simultaneously. Each node u
then sends an arbitrary message of B = log n bits through each edge uv, and the message will arrive
at node v at the end of the round. (See [19] for detail.) The running time is analyzed in terms of
number of nodes and the diameter of the network, denoted by n and D respectively. Since we can
compute n and 2-approximate D in O(D) time, we will assume that every node knows n and the
2-approximate value of D.

Minimum Cut Problem. Given a weighted undirected graph G = (V,E), a cut C = (S, V \ S)
where ∅ ( S ( V , is a partition of vertices into two non-empty sets. The weight of a cut, denoted
by w(C), is defined to be the sum of the edge weights crossing C; i.e., w(C) =

∑
u∈S,v /∈S w(uv).

Throughout the paper, we use λ to denote the weight of the minimum cut. A (1 + ε)-approximate
minimum cut is a cut C whose weight w(C) is such that λ ≤ w(C) ≤ (1 + ε)λ. The (approximate)
minimum cut problem is to find a cut C = (S, V \S) with the minimum or approximately minimum
weight. In the distributed setting, this means that nodes in S should output 1 while other nodes
output 0.

Graph-Theoretic Notations. For G = (V,E), we define V (G) = V and E(G) = E. When we
analyze the correctness of our algorithms, we will always treat G as an unweighted multi-graph by
replacing each edge e with w(e) by w(e) copies of e with weight one. We note that this assumption
is used only in the analysis, and in particular we still allow only O(log n) bits to be communicated
through edge e in each round of the algorithm (regardless of w(e)). For any cut C = (S, V \ S), let
E(C) denote the set of edges crossing between S and V \S in the multi-graph; thus w(C) = |E(C)|.
Given an edge set F ⊆ E, we use G/F to denote the graph obtained by contracting every edge in
F . Given a partition P of nodes in G, we use G/P to denote the graph obtained by contracting
each set in P into one node. Note that E(G/P) may be viewed as the set of edges in G that cross
between different sets in P. For any U ⊆ V , we use G | U to denote the subgraph of G induced by
nodes in U . For convenience, we use the subscript ∗H to denote the quantity ∗ of H; for example,
λH denote the value of the minimum cut of the graph H. A quantity without a subscript refer to
the quantity of G, the input graph.

3 Distributed Algorithm for Finding a Cut that 1-Respects a Tree

In this section, we solve the following problem: Given a spanning tree T on a network G rooted
at some node r, we want to find an edge in T such that when we cut it, the cut defined by edges
connecting the two connected component of T is smallest. To be precise, for any node v, define
v↓ to be the set of nodes that are descendants of v in T , including v. Let Cv = (v↓, V \ v↓). The
problem is then to compute c∗ = minv∈V (G)w(Cv). The main result of this section is the following.

Theorem 3.1. There is an O(D + n1/2 log∗ n)-time distributed algorithm that can compute c∗ as
well as find a node v such that c∗ = w(Cv).

In fact, at the end of our algorithm every node v knows w(Cv). Our algorithm is inspired by the
following observation used in Karger’s dynamic programming [8]. For any node v, let δ(v) be the
weighted degree of v, i.e. δ(v) =

∑
u∈V (G)w(u, v). Let ρ(v) denote the total weight of edges whose

end-points’ least common ancestor in T is v. Let δ↓(v) =
∑

u∈v↓ δ(u) and ρ↓(v) =
∑

u∈v↓ ρ(u).

Lemma 3.2 (Karger [8] (Lemma 5.9)). w(Cv) = δ↓(v)− 2ρ↓(v).

Our algorithm will make sure that every node v knows δ↓(v) and ρ↓(v). By Lemma 3.2, this
will be sufficient for every node v to compute w(Cv). The algorithm is divided in several steps, as
follows.
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Figure 1

Step 1: Partition T into Fragments and Compute “Fragment Tree” TF . We use the
algorithm of Kutten and Peleg [12, Section 3.2] to partition nodes in tree T into O(

√
n) subtrees,

where each subtree has O(
√
n) diameter2 (every node knows which edges incident to it are in

the subtree containing it). This algorithm takes O(n1/2 log∗ n + D) time. We call these subtrees
fragments and denote them by F1, . . . , Fk, where k = O(

√
n). For any i, let id(Fi) = minu∈Fi id(u)

be the ID of Fi. We can assume that every node in Fi knows id(Fi). This can be achieved in O(
√
n)

time (the running time is independent of D) by a communication within each fragment. Figure 1a
illustrates the tree T (marked by black lines) with fragments (defined by triangular regions).

Let TF be a rooted tree obtained by contracting nodes in the same fragment into one node. This
naturally defines the child-parent relationship between fragments (e.g. the fragments labeled (5),
(6), and (7) in Figure 1b are children of the fragment labeled (0)). Let the root of any fragment Fi,
denoted by ri, be the node in Fi that is nearest to the root r in T . We now make every node know
TF : Every “inter-fragment” edge, i.e. every edge (u, v) such that u and v are in different fragments,
either node u or v broadcasts this edge and the IDs of fragments containing u and v to the whole
network. This step takes O(

√
n + D) time since there are O(

√
n) edges in T that link between

different fragments and so they can be collected by pipelining. Note that this process also makes
every node know the roots of all fragments since, for every inter-fragment edge (u, v), every node
knows the child-parent relationship between two fragments that contain u and v.

Step 2: Compute Fragments in Subtrees of Ancestors. For any node v let F (v) be the set
of fragments Fi ⊆ v↓. For any node v in any fragment Fi, let A(v) be the set of ancestors of v in T
that are in Fi or the parent fragment of Fi (also let A(v) contain v). (For example, Figure 1c shows
A(15).) We emphasize that A(v) does not contain ancestors of v in the fragments that are neither

2To be precise, we compute a (
√
n+1, O(

√
n)) spanning forest. Also note that we in fact do not need this algorithm

since we obtain T by using Kutten and Peleg’s MST algorithm, which already computes the (
√
n+1, O(

√
n)) spanning

forest as a subroutine. See [12] for details.
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Fi nor the parent of Fi. The goal of this step is to make every node v knows (i) A(v) and (ii) F (u)
for all u ∈ A(v).

First, we make every node v know F (v): for every fragment Fi we aggregate from the leaves
to the root of Fi (i.e. upcast) the list of child fragments of Fi. This takes O(

√
n + D) time since

there are O(
√
n) fragments to aggregate and each fragment has diameter O(

√
n). In this process

every node v receives a list of child fragments of Fi that are contained in v↓. It can then use TF to
compute fragments that are descendants of these child fragments, and thus compute all fragments
contained in v↓.

Next, we make every node v in every fragment Fi know A(v): every node u sends a message
containing its ID down the tree T until this message reaches the leaves of the child fragments of
Fi. Since each fragment has diameter O(

√
n) and the total number of messages sent inside each

fragment is O(
√
n), this process takes O(

√
n) time (the running time is independent of D). With

the following minor modifications, we can also make every node v know F (u) (the fragment that u
is in) for all u ∈ A(v): Initially every node u sends a message (u, F ′), for every F ′ ∈ F (u), to its
children. Every node u that receives a message (u′, F ′) from its parent sends this message further
to its children if F ′ /∈ F (u). (A message (u′, F ′) that a node u sends to its children should be
interpreted as “u′ is the lowest ancestor of u such that F ′ ∈ F (u′)”.)

Step 3: Compute δ↓(v). For every fragment Fi, we let δ(Fi) =
∑

v∈Fi
δ(v) (i.e. the sum of

degree of nodes in Fi). For every node v in every fragment Fi, we will compute δ↓(v) by separately
computing (i)

∑
u∈Fi∩v↓ δ(u) and (ii)

∑
Fj∈F (v) δ(Fj). The first quantity can be computed in O(

√
n)

time (regardless of D) by computing the sum within Fi (every node v sends the sum
∑

u∈Fi∩v↓ δ(u)
to its parent). To compute the second quantity, it suffices to make every node know δ(Fi) for all
i since every node v already knows F (v). To do this, we make every root ri know δ(Fi) in O(

√
n)

time by computing the sum of degree of nodes within each Fi. Then, we can make every node know
δ(Fi) for all i by letting ri broadcast δ(Fi) to the whole network.

Step 4: Compute Merging Nodes and T ′F . We say that a node v is a merging node if there
are two distinct children x and y of v such that both x↓ and y↓ contain some fragments. In other
words, it is a point where two fragments “merge”. For example, nodes 0 and 1 in Figure 1a are
merging nodes since the subtree rooted at node 0 (respectively node 1) contains fragments (5), (6),
and (7) (respectively (5) and (6)).

Let T ′F be the following tree: Nodes in T ′F are both roots of fragments (ri’s) and merging nodes.
The parent of each node v in T ′F is its lowest ancestor in T that appears in T ′F (see Figure 1d for
an example). Note that every merging node has at least two children in T ′F . This shows that there
are O(

√
n) merging nodes. The goal of this step is to let every node know T ′F .

First, note that every node v can easily know whether it is a merging node or not in one round
by checking, for each child u, whether u↓ contains any fragment (i.e. whether F (u) = ∅). The
merging nodes then broadcast their IDs to the whole network. (This takes O(

√
n) time since there

are O(
√
n) merging nodes.) Note further that every node v in T ′F knows its parent in T ′F because

its parent in T ′F is one of its ancestors in A(v). So, we can make every node know T ′F in O(
√
n+D)

rounds by letting every node in T ′F broadcast the edge between itself and its parent in T ′F to the
whole network.

Step 5: Compute ρ↓(v). We now count, for every node v, the number of edges whose least
common ancestors (LCA) of their end-nodes are v. For every edge (x, y) in G, we claim that x and
y can compute the LCA of (x, y) by exchanging O(

√
n) messages through edge (x, y). Let z denote

the LCA of (x, y). Consider three cases (see Figure 1e).
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Case 1: First, consider when x and y are in the same fragment, say Fi. In this case we know that z
must be in Fi. Since x and y have the lists of their ancestors in Fi, they can find z by exchanging
these lists. There are O(

√
n) nodes in such list so this takes O(

√
n) time. In the next two cases we

assume that x and y are in different fragments, say Fi and Fj , respectively.
Case 2: z is not in Fi and Fj . In this case, z is a merging node such that z↓ contains Fi and Fj .
Since both x and y knows T ′F and their ancestors in T ′F , they can find z by exchanging the list of
their ancestors in T ′F . There are O(

√
n) nodes in such list so this takes O(

√
n) time.

Case 3: z is in Fi (the case where z is in Fj can be handled in a similar way). In this case z↓ contains
Fj . Since x knows F (x′) for all its ancestors x′ in Fi, it can compute its lowest ancestor x′′ such
that F (x′′) contains Fj . Such ancestor is the LCA of (x, y).

Now we compute ρ↓(v) for every node v by splitting edges (x, y) whose LCA is v into two types (see
Figure 1f): (i) those that x and y are in different fragments from v, and (ii) the rest. For (i), note
that v must be a merging node. In this case one of x and y creates a message 〈v〉. We then count
the number of messages of the form 〈v〉 for every merging node v by computing the sum along the
breadth-first search tree of G. This takes O(

√
n + D) time since there are O(

√
n) merging nodes.

For (ii), the node among x and y that is in the same fragment as v creates and keeps a message 〈v〉.
Now every node v in every fragment Fi counts the number of messages of the form 〈v〉 in v↓ ∩Fi by
computing the sum through the tree Fi. Note that, to do this, every node u has to send the number
of messages of the form 〈v〉 to its parent, for all v that is an ancestor of u in the same fragment.
There are O(

√
n) such ancestors, so we can compute the number of messages of the form 〈v〉 for

every node v concurrently in O(
√
n) time by pipelining.

4 Minimum Cut Algorithms

This section is organized as follows. In Section 4.1, we review properties of the greedy tree packing
as analyzed by Thorup [23]. We use these properties to develop a (1 + ε)-approximation algorithm
in Section 4.2. We show how to efficiently implement this algorithm in the distributed setting in
Section 4.3 and in the sequential setting in Section 4.4.

4.1 A Review of Thorup’s Work on Tree Packings

In this section, we review the duality connection between the tree packing and the partition of a
graph as well as their properties from Thorup’s work [23].

A tree packing T is a multiset of spanning trees. The load of an edge e with respect to T , denoted
by LT (e), is the number of trees in T containing e. Define the relative load to be `T (e) = LT (e)/|T |.
A tree packing T = {T1, . . . , Tk} is greedy if each Ti is a minimum spanning tree with respect to the
loads induced by {T1, . . . , Ti−1}.

Given a tree packing T , define its packing value pack_val(T ) = 1/maxe∈E `
T (e). The pack-

ing value can be viewed as the total weight of a fractional tree packing, where each tree has
weight 1/maxe∈E LT (e). Thus, the sum of the weight over the trees is |T |/maxe∈E LT (e), which
is pack_val(T ). Given a partition P, define its partition value part_val(P) = |E(G/P)|

|P|−1 . For any
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tree packing T and partition P, we have the weak duality:

pack_val(T ) =
1

maxe∈E `T (e)

≤ 1

maxe∈E(G/P) `T (e)

≤ |E(G/P)|∑
e∈E(G/P) `

T (e)
(since max ≥ avg)

≤ |E(G/P)|
|P| − 1

(since each T ∈ T contains at least |P| − 1 edges crossing P)

= part_val(P)

The Nash-Williams-Tutte Theorem [18, 25] states that a graph G contains minPb |E(G/P)|
|P|−1 c edge-

disjoint spanning trees. Construct the graph G′ by duplicating |P|− 1 edges for every edge in G. It
follows from the Nash-Williams-Tutte Theorem that G′ has exactly |E(G/P)| edge-disjoint spanning
trees. By assigning each spanning tree a weight of 1/(|P| − 1), we get a tree packing in G whose
packing value equals to |E(G/P)|

|P|−1 . Therefore,

max
T

pack_val(T ) = min
P

part_val(P).

We will denote this value by Φ. Let T ∗ and P∗ denote a tree packing and a partition with
pack_val(T ∗) = Φ and part_val(P∗) = Φ. Karger [8] showed the following relationship be-
tween Φ and λ (recall that λ is the value of the minimum cut).

Lemma 4.1. λ/2 < Φ ≤ λ

Proof. Φ ≤ λ is obvious because a minimum cut is a partition with partition value exactly λ.
Consider an optimal partition P∗. Let Cmin be the smallest cut induced by the components in P∗.
We have

λ ≤ w(Cmin) ≤
∑

S∈P∗ |E(S, V \ S)|
|P∗|

≤ 2|E(G/P∗)|
|P∗|

< 2Φ.

Thorup [23] defined the ideal relative loads `∗(e) on the edges of G by the following.

1. Let P∗ be an optimal partition with part_val(P∗) = Φ.
2. For all e ∈ G/P∗, let `∗(e) = 1/Φ.
3. For each S ∈ P∗, recurse the procedure on the subgraph G|S.

Define the following notations:

EX◦δ = {e ∈ E | `X(e) ◦ δ}

where X can be T or ∗, and ◦ can be <, >, ≤, ≥, or =. For example, E∗<δ denote the set of edges
with ideal relative loads smaller than δ.

Lemma 4.2 ([23], Lemma 14). The values of Φ are non-decreasing in the sense that for each
S ∈ P ∗,ΦG|S ≥ Φ

Corollary 4.3. Let 0 ≤ l ≤ 1/Φ. Each component H of the graph (V,E∗≤l) must have edge-
connectivity of at least Φ.
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Proof. Accroding to how the ideal relative load was defined and Lemma 4.2, we must have ΦH ≥ Φ.
By Lemma 4.1, λH ≥ ΦH ≥ Φ.

Thorup showed that the relative loads of a greedy tree packing with a sufficient number of trees
approximate the ideal relative loads, due to the fact that greedily packing the trees simulates the
multiplicative weight update method. He showed the following lemma.

Lemma 4.4 ([23], Proposition 16). A greedy tree packing T with at least (6λ lnm)/ε2 trees, ε < 2
has |`T (e)− `∗(e)| ≤ ε/λ for all e ∈ E.

4.2 Algorithms

In this section, we show how to approximate the value of the minimum cut as well as how to find
an approximate minimum cut.

Algorithm for computing minimum cut value. The main idea is that if we have a nearly
optimal tree packing, then either λ is close to 2Φ or all the minimum cuts are crossed exactly once
by some trees in the tree packing.

Lemma 4.5. Suppose that T is a greedy tree packing with at least 6λ lnm/ε2 trees, then λ ≤
(2 + ε) · pack_val(T ). Furthermore, if there is a minimum cut C such that it is crossed at least
twice by every tree in T , then (2 + ε) · pack_val(T ) ≤ (1 + ε/2)λ.

Proof. By Lemmas 4.1 and 4.4, 1/pack_val(T ) ≤ 1/pack_val(T ∗) + ε/λ ≤ 2/λ+ ε/λ. Therefore,
λ ≤ (2 + ε) · pack_val(T ).

If each tree in T crosses C at least twice, we have
∑

e∈C `
T (e) ≥ 2. Therefore,

2/λ ≤
∑
e∈C

`T (e)/w(C) ≤ max
e∈C

`T (e) ≤ 1/pack_val(T ) . (1)

This implies that (2 + ε) · pack_val(T ) ≤ (1 + ε/2)λ.

Using Lemma 4.5, we can obtain a simple algorithm for (1 + ε)-approximating the minimum cut
value. First, greedily pack Θ(λ log n/ε2) trees and compute the minimum cut that 1-respects the
trees (using our algorithm in Section 3). Then, output the smaller value between the minimum cut
found and (2 + ε) · pack_val(T ). The running time is discussed in Section 4.3.

Algorithm for finding a minimum cut. More work is needed to be done if we want to find
the (1 + ε)-approximate minimum cut (i.e. each node wants to know which side of the cut it is on).
Let ε′ = Θ(ε) be such that (1 − 2ε′) · (1 − ε′) = 1/(1 + ε). Let la = (1 − 2ε′)/pack_val(T ). We
describe our algorithm in Algorithm 4.1.

1: Find a greedy tree packing T with (6λ lnm)/ε′2 trees in G.
2: Let C∗ be the minimum cut among cuts that 1-respect a tree in T .
3: Let la = (1− 2ε′)/pack_val(T ).
4: if (V,ET<la) has more than (1− ε′)|V | components then
5: Let Cmin be the smallest cut induced by the components in (V,ET<la).
6: else
7: Let Cmin be the cut returned by Approx-Min-Cut(G/ET<la).
8: Return the smaller cut between C∗ and Cmin.

Algorithm 4.1: Approx-Min-Cut(G)

The main result of this subsection is the following theorem.
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Theorem 4.6. Algorithm 4.1 gives a (1 + ε)-approximate minimum cut.

The rest of this subsection is devoted to proving Theorem 4.6. First, observe that if a minimum
cut is crossed exactly once by a tree in T , then C∗ must be a minimum cut. Otherwise, C is crossed
at least twice by every tree in T . In this case, we will show that the edges of every minimum cut
will be included in ET≥la . As a result, we can contract each connected component in the partition
(V,ET<la) without contracting any edges of the minimum cuts.

If (V,ET<la) has at most (1 − ε′)|V | components, then we contract each component and then
recurse. The recursion can only happen at most O(log n/ε) times, since the number of nodes
reduces by a (1− ε′) factor in each level. On the other hand, if (V,ET<la) has more than (1− ε′)|V |
components, then we will show that one of the components induces an approximate minimum cut.

Lemma 4.7. Let C be a minimum cut such that C is crossed at least twice by every tree in T . For
all e ∈ C, `T (e) ≥ (1− 2ε′)/pack_val(T ).

Proof. The idea is to show that if an edge in E(C) has a small relative load, then the average
relative load over the edges in E(C) will also be small. However, since each tree cross E(C) twice,
the average relative load should not be too small. Otherwise, a contradiction will occur.

Let l0 = mine∈C `
∗(e) be the minimum ideal relative load over the edges in E(C). Consider

the induced subgraph (V,E∗≤l0). E(C) must contain some edges in a component of (V,E∗≤l0), say
component H. Notice that two endpoints of an edge in a minimum cut must lie on different sides
of the cut. Therefore, C ∩ H must be a cut of H. By Corollary 4.3, w(C ∩ H) ≥ Φ. Therefore,
more than Φ edges in C have ideal relative loads equal to l0. Since the maximum relative load of
an edge is at most 1

Φ ,
∑

e∈C `
T ∗(e) ≤ Φ · l0 + (λ−Φ) · 1

Φ = Φ · l0 + λ
Φ − 1 < Φ · l0 + 1, where the last

inequality follows by Lemma 4.1 that λ < 2Φ.
On the other hand, since each tree in T crosses C at least twice,

∑
e∈C `

T (e) ≥ 2. By Lemma
4.4,

∑
e∈C `

∗(e) ≥ 2− ε′. Therefore, Φ · l0 + 1 > 2− ε′, which implies

l0 ≥ (1− ε′) · 1

Φ
>

1

Φ
− 2ε′

λ
λ < 2Φ

≥ 1/pack_val(T )− 3ε′

λ
By Lemma 4.4

Therefore, by Lemma 4.4 again, for any e ∈ E(C), `T (e) ≥ l0 − ε′/λ > 1/pack_val(T )− 4ε′/λ ≥
(1− 2ε′)/pack_val(T ), where the last inequality follows from equation (1).

Lemma 4.8. Let Cmin be the smallest cut induced by the components in (V,ET<la). If (V,ET<la)
contains at least (1− ε′)|V | components, then w(Cmin) ≤ (1 + ε)λ.

Proof. Let comp(V,ET<la) denote the collection of connected components in (V,ET<la), and n′, the
number of connected components in (V,ET<la). By an averaging argument, we have

w(Cmin) ≤

∑
S∈comp(V,ET<la

) |E(S, V \ S)|

n′
=

2|E(G/ET<la)|
n′

≤
2|E(G/ET<la)|
(1− ε′) · |V |

(2)

Next we will bound |E(G/ET<la)|. Note that for each e ∈ E(G/ET<la), `T (e) ≥ (1−2ε′)/pack_val(T ).∑
e∈E(G/ET<la

)

`T (e) ≥ |E(G/ET<la)| · (1− 2ε′) ·
(

1

pack_val(T )

)

≥ |E(G/ET<la)| ·
(
1− 2ε′

)
· 2

λ
. (by Equation (1)) (3)
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On the other hand, ∑
e∈E(G/ET<la

)

`T (e) ≤ |V | − 1, (4)

since each tree in T contains |V | − 1 edges. Equations (3) and (4) together imply that

|E(G/ET<la)| ≤ λ · |V |
2(1− 2ε′)

.

By plugging in this into (Equation (2)), we get that

w(Cmin) ≤ λ

(1− 2ε′)(1− ε′)
≤ (1 + ε)λ .

4.3 Distributed Implementation

In this section, we describe how to implement Algorithm 4.1 in the distributed setting. To compute
the tree packing T , it is straightforward to apply |T | minimum spanning tree computations with
edge weights equal to their current loads. This can be done in O(|T |(D +

√
n log∗ n)) rounds by

using the algorithm of Kutten and Peleg [12].
We already described how to computes the minimum cut that 1-respects a tree in O(D +√

n log∗ n) rounds in Section 3. To compute la, it suffices to compute pack_val(T ). To do this,
each node first computes the largest relative load among the edges incident to it. By using the
upcast and downcast techniques, the maximum relative load over all edges can be aggregated and
boardcast to every node in O(D) time. Therefore, we can assume that every node knows la now.
Now we have to determine whether (V,ET<la) has more than (1−ε′)|V | components or not. This can
be done by first removing the edges incident to each node with relative load at least la. Then label
each node with the smallest ID of its reachable nodes by using Thurimella’s connected component
identification algorithm [24] in O(D +

√
n log∗ n) rounds. The number of nodes whose label equals

to its ID is exactly the number of connected component of the subgraph. This number can be
aggregated along the BFS tree in O(D) rounds after every node is labeled.

If (V,ET<la) has more than (1− ε′)|V | components, then we will compute the cut values induced
by each component of (V,ET<la). We show that it can be done in O(D+

√
n) rounds in Appendix A.

On the contrary, if (V,ET<la) has less than (1− ε′)|V | components, then we will contract the edges
with load less than la and then recurse. The contraction can be easily implemented by setting the
weights of the edges inside contracted components to be −1, which is strictly less than the load of
any edges. The MST computation will automatically treat them as contracted edges, since an MST
must contain exactly n′−1 edges with weights larger than −1, where n′ is the number of connected
components. 3

Time analysis. Suppose that we have packed t spanning trees throughout the entire algorithm,
the running time will be O(t(D+

√
n log∗ n)). Note that t = O(ε−3λ log2 n), because we pack at most

O(ε−2λ log n) spanning trees in each level of the recursion and there can be at most O(ε−1 log n)
levels, since the number of nodes reduces by a (1− ε′) factor in each level. The total running time
is O(ε−3λ log2 n · (D +

√
n log∗ n)).

3We note that the MST algorithm of [12] allows negative-weight edges.
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Dealing with graphs with high edge connectivity. For graphs with λ = ω(ε−2 log n), we can
use the well-known sampling result from Karger’s [7] to construct a subgraph H that perserves the
values of all the cuts within a (1± ε) factor (up to a scaling) and has λH = O(ε−2 log n). Then we
run our algorithm on H.

Lemma 4.9 ([6], Corollary 2.4). Let G be any graph with minimum cut λ and let p = 2(d +
2)(lnn)/(ε2λ). Let G(p) be a subgraph of G with the same vertex set, obtained by including each
edge of G with probability p independently. Then the probability that the value of some cut in G(p)
has value more than (1 + ε) or less than (1− ε) times its expected value is O(1/nd).

In particular, let ε′ = Θ(ε) such that (1 + ε) = (1 + ε′)2/(1 − ε′). First we will compute λ′, a
3-approximation of λ, by using Ghaffari and Kuhn’s algorithm. Let p = 6(d + 2) lnn/(ε′2λ′) and
H = G(p). Since p is at least 2(d + 2) lnn/(ε′2λ), by Lemma 4.9, for any cut C, w.h.p. (1 − ε′)p ·
wG(C) ≤ wHi(C) ≤ (1 + ε′)p · wG(C). Let C∗ be the (1 + ε′)-approximate minimum cut we found
in H. We have that w.h.p. for any other cut C ′,

wG(C∗) ≤ 1

p
· wHi(C

∗)

1− ε′
≤ 1

p
· (1 + ε′)λH

1− ε′
≤ 1

p
· (1 + ε′)wHi(C

′)

1− ε′
≤ (1 + ε′)2

1− ε′
·wG(C ′) = (1 + ε)wG(C ′)

Thus, we will find an (1 + ε)-approximate minimum cut in O(ε−5 log3 n(D+
√
n log∗ n)) rounds.

Computing the exact minimum cut. To find the exact minimum cut, first we will compute
a 3-approximation of λ, λ′, by using Ghaffari and Kuhn’s algorithm [4] in O(λ log n log log n(D +√
n log∗ n)) rounds.4 Now since λ ≤ λ′ ≤ 3λ, by applying our algorithm with ε = 1/(λ′+ 1), we can

compute the exact minimum cut in O(λ4 log2 n(D +
√
n log∗ n)) rounds.

Estimating the value of λ. As described in Section 4.2, we can avoid the recursion if we just want
to compute an approximation of λ without actually finding the cut. This gives an algorithm that
runs in O(ε−2λ log n · (D+

√
n log∗ n)) time. Also, the exact value of λ can be computed in O((λ3 +

λ log log n) log n(D+
√
n log∗ n)) rounds. Notice that the λ log log n factor comes from Ghaffari and

Kuhn’s algorithm for approximating λ within a constant factor. Similarly, using Karger’s sampling
result, we can (1 + ε)-approximate the value of λ in O(ε−5 log2 n log logn(D +

√
n log∗ n)) rounds.

4.4 Sequential Implementation

We show that Algorithm 4.1 can be implemented in the sequential setting inO(ε−3λ(m+n log n) log n)
time. To get the stated bound, we will show that the number of edges decreases geometrically each
time we contract the graph.

Lemma 4.10. If (V,ET<la) has less than (1−ε′)|V | components, then |E(G/ET<la)| ≤ |E(G)|/(1+ε′).

Proof. Consider a component S of (V,ET<la). Since E(S) ⊆ ET<la and |T ∩E(S)| ≥ |S| − 1, we have
|S| − 1 ≤

∑
e∈S `

T (e) < la|E(S)|. By summing this inequality over all components of (V,ET<la), we
have

la|ET<la | ≥ |V | − |V (G/ET<la)| > |V | − (1− ε′)|V | = ε′|V | (5)

If we sum up the relative load over each e ∈ E(G/ET<la), we have

la|E(G/ET<la)| ≤
∑

e∈E(G/ET<la
)

`T (e) ≤ |V | (6)

4Ghaffari and Kuhn’s result runs in O(log2 n log logn(D +
√
n log∗ n)) rounds. However, without using Karger’s

random sampling beforehand, it runs in O(λ logn log logn(D +
√
n log∗ n)) rounds, which will be absorbed by the

running time of our algorithm for the exact minimum cut.
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Dividing (5) by (6), we have |ET<la |/|E(G/ET<la)| > ε′ and therefore, |E(G/ET<la)| < (|ET<la | +
|E(G/ET<la)|)/(1 + ε′) = |E(G)|/(1 + ε′).

Let MST(n,m) denote the time needed to find an MST in a graph with n-vertices and m-edges.
Note that Karger [8] showed that the values of the cuts that 1-respect a tree can be computed in
linear time. The total running time of Algorithm 4.1 will be

O

(
ε′−2λ log n ·

∞∑
i=0

MST(n(1− ε′)i,m/(1 + ε′)i)

)
.

We know that MST(n,m) = O(m) by using the randomized linear time algorithm from [9] and notice
that ε = Θ(ε′), the running time will be at most O(ε−3λm log n).

If the graph is dense or the cut value is large, we may want to use the sparsification results to
reduce m or λ. First estimate λ up to a factor of 3 by using Matula’s algorithm [14] that runs
in linear time. By using Nagamochi and Ibaraki’s sparse certificate algorithm [15], we can get
the number of edges down to O(nλ). By using Karger’s sampling result, we can bring λ down to
O(log n/ε2). The total running time is therefore O(m+ ε−7n log3 n) (by plugging λ = log n/ε2 and
m = n log n/ε2 in the running time in the previous paragraph). 5

Acknowledgment: D. Nanongkai would like to thank Thatchaphol Saranurak for bringing Tho-
rup’s tree packing theorem [23] to his attention.

References

[1] A. Das Sarma, S. Holzer, L. Kor, A. Korman, D. Nanongkai, G. Pandurangan, D. Peleg, and
R. Wattenhofer. Distributed verification and hardness of distributed approximation. SIAM J.
Comput., 41(5):1235–1265, 2012. 1, 2

[2] H. N. Gabow. A matroid approach to finding edge connectivity and packing arborescences. J.
Comput. Syst. Sci., 50(2):259 – 273, 1995. 1

[3] J. A. Garay, S. Kutten, and D. Peleg. A sublinear time distributed algorithm for minimum-
weight spanning trees. SIAM J. Comput., 27(1):302–316, 1998. 2

[4] M. Ghaffari and F. Kuhn. Distributed minimum cut approximation. In DISC, pages 1–15,
2013. 1, 2, 11

[5] D. R. Karger. Global min-cuts in RNC, and other ramifications of a simple min-cut algorithm.
In SODA, pages 21–30, 1993. 1

[6] D. R. Karger. Random sampling in cut, flow, and network design problems. In STOC, pages
648–657, 1994. 1, 2, 11

[7] D. R. Karger. Using randomized sparsification to approximate minimum cuts. In SODA, pages
424–432, 1994. 1, 2, 11

[8] D. R. Karger. Minimum cuts in near-linear time. J. ACM, 47(1):46–76, 2000. 1, 3, 7, 12
[9] D. R. Karger, P. N. Klein, and R. E. Tarjan. A randomized linear-time algorithm to find

minimum spanning trees. J. ACM, 42(2):321–328, 1995. 12
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Appendix

A Finding cuts with respect to connected components

In this section, we solve the following problem. We are given a set of connected components
{H1, H2, . . . ,Hk} of the network G (each node knows which of its neighbors are in the same con-
nected component), and we want to compute, for each i, the value w(Ci) where Ci is the cut with
respect to Hi; i.e., Ci = (V (Hi), V (G) \ V (Hi)). Every node in Ci should know w(Ci) in the end.
We show that this can be done in O(n1/2 + D) rounds. The main idea is to deal with “big” and
“small” components separately, where a component is big if it contains at least n1/2 nodes and it
is small otherwise. There are at most n1/2 big components, and thus the cut value information for
these components can be aggregated quickly through the BFS tree of the network. The cut value
of each small component will be computed locally within the component. The detail is as follows.

First, we determine for each component Hi whether it is big or small, which can be done by
simply counting the number of nodes in each component, such as the following. Initially, every node
sends its ID to its neighbors in the same component. Then, for n1/2 + 1 rounds, every node sends
the smallest ID it has received so far to its neighbors in the same component. For each node v, let
sv be the smallest ID that v has received after n1/2 + 1 rounds. If sv is v’s own ID, it construct
a BFS tree Tv of depth at most n1/2 + 1, and use Tv to count the number of nodes in Tv. (There
will be no congestion caused by this algorithm since no other node within distance n1/2 + 1 from v
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will trigger another BFS tree construction.) If the number of nodes in Tv is at most n1/2, then v
broadcasts to the whole network that the component containing it is small.

Now, to compute w(Ci) for a small component Hi, we simply construct a BFS tree rooted at the
node with smallest ID in Ci and compute the sum

∑
u∈V (Hi),v /∈V (Hi)

w(u, v) through this tree. To
compute w(Ci) for a big component Hj , we compute the sum

∑
u∈V (Hi),v /∈V (Hi)

w(u, v) thorough
the BFS tree of network G. Since there are at most n1/2 big components, this takes O(n1/2 + D)
time.
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