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Abstract
Online social networks allow the collection of large amounts of data about the influence between
users connected by a friendship-like relationship. When distributing items among agents forming
a social network, this information allows us to exploit network externalities that each agent
receives from his neighbors that get the same item. In this paper we consider Friends-of-Friends
(2-hop) network externalities, i.e., externalities that not only depend on the neighbors that get
the same item but also on neighbors of neighbors. For these externalities we study a setting where
multiple different items are assigned to unit-demand agents. Specifically, we study the problem
of welfare maximization under different types of externality functions. Let n be the number of
agents and m be the number of items. Our contributions are the following: (1) We show that
welfare maximization is APX-hard; we show that even for step functions with 2-hop (and also with
1-hop) externalities it is NP-hard to approximate social welfare better than (1−1/e). (2) On the
positive side we present (i) an O(

√
n)-approximation algorithm for general concave externality

functions, (ii) an O(logm)-approximation algorithm for linear externality functions, and (iii)
an (1 − 1/e) 1

6 -approximation algorithm for 2-hop step function externalities. We also improve
the result from [6] for 1-hop step function externalities by giving a (1 − 1/e)/2-approximation
algorithm.
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1 Introduction

Assume you have to form a committee and need to decide whom to choose as a member. It
seems like a good strategy to select members from your network that are well-connected to
the whole field so that not only the knowledge of the actual members but also of their whole
network can be called upon when needed. Along the same vein assume you want to play a
multiplayer online game but you do not have enough friends who are willing to play with
you. Then it is a good idea to ask these friends to contact their friends whether they are
willing to play as well. Both these settings can be modeled by a social network graph and
in both settings not the direct (or 1-hop) neighbors alone, but instead the 1-hop neighbors
in combination with the neighbors of neighbors (or 2-hop neighbors) are the decisive factor.
Note that the 2-hop neighborhoods cannot be modeled by 1-hop neighborhoods through the
insertion of an additional edge (to the neighbor of the neighbor) as we require that every
participating neighbor of a neighbor is adjacent to a participating neighbor. In the above
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example, we can only get the opinion of a contact of a contact if we asked the contact before.
In the same way, the participation of a friend of a friend will only be possible if there is a
participating friend that invites him.

There has been a large body of work by social scientists and, in the last decade, also by
computer scientists (see e.g., the influential paper by Kempe, Kleinberg, and Tardos [22] and
its citations) to model and analyze the effect of 1-hop neighborhoods. The study of 2-hop
neighborhoods has received much less attention (see e.g., [11, 21]). This is surprising as a
recent study [16] of the Facebook network shows that the median Facebook user has 31k
people as “friends of friends” and due to some users with very large friend lists, the average
friends-of-friends reach in their study is even 156k. Thus, even if each individual friend of
a friend has only a small influence on a Facebook user, in aggregate the influence of the
friends-of-friends might be large and should not be ignored.

We, therefore, initiate the study of the influence of 2-hop neighborhoods in the popular
assignment setting, where items are assigned to users whose values for the item depend on
who else in their neighborhood has the item. There is a large body of work on mechanisms
and pricing strategies for this problem with a single [5, 17, 4, 1, 7, 24, 12, 3, 15] or multiple
items [8, 2, 6, 14, 26, 27, 25, 20] when the valuation function of a user depends solely on
the 1-hop neighborhood of a user and the user itself. All this work assumes that there is
an infinite supply of items (of each type if there are different items) and the users have
unit-demand, that is want to buy only one item. This is frequently the case, for example, if
the items model competing products or if the user has to make a binary decision between
participating or not participating. In the above examples, this requirement would model
that each user can only be in one committee or play one game at a time.

Thus, we study the allocation of items to users in a setting with 2-hop network externalities,
where the valuation that a user derives from the products depends on herself, her 1-hop, and
her 2-hop neighborhood with the goal of maximizing the social welfare of the allocation. The
prior work that is most closely related to our work is the work by Bhalgat et al. [6], where
they study the multi-item setting with 1-hop externality functions and give approximation
algorithms for different classes of externality functions. For linear externalities they give a
1/64-approximation algorithm and for step function externalities they get an approximation
ratio of (1 − 1/e)/16 ≈ 0.04. Additionally they present a 2O(d)-approximation algorithm
for convex externalities that are bounded by polynomials of degree d and a polylogarithmic
approximation algorithm for submodular externalities.

1.1 Our Results

The Model: Let G = (V,E) be an undirected graph modeling the social network. Consider
any agent j ∈ V who receives item i ∈ I, and let Sij ⊆ V \ {j} denote the (2-hop) support
of agent j for item i: this is the set of agents who contribute towards the valuation of j.
Specifically, an agent j′ ∈ V \ {j} belongs to the set Sij iff j′ gets item i and the following
condition holds: either j′ is a neighbor of j (i.e., (j, j′) ∈ E), or j and j′ have a common
neighbor j′′ who also gets item i. The valuation received by agent j is equal to λij ·extij(|Sij |),
where λij is the agent’s intrinsic valuation and extij(|Sij |) is her 2-hop externality for item
i. The goal is to compute an assignment of items to the agents that maximizes the social
welfare, which is defined as the sum of the valuations obtained by the agents.

We study three types of 2-hop externality functions, namely concave, linear and step
function externalities.
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Step-function externalities: Consider a game requiring a minimal or fixed number of
players (larger than two), e.g., Bridge or Canasta, then the externality is a step function.
For step functions we show that it is NP-hard to approximate the social welfare within a
factor of (1− 1/e). The result holds for 1-hop and 2-hop externalities. We also show that
the problem remains APX-hard when the number of items is restricted to 2. Then we give
an (1− 1/e)/6 ≈ 0.1-approximation algorithm for 2-hop step function externalities. Note
that this is within a factor of 1/6 of the hardness bound. Our technique also leads to a
combinatorial (1−1/e)/2 ≈ 0.3-approximation algorithm for 1-hop step function externalities,
improving the approximation ratio of the LP-based algorithm in [6].

Linear externalities: First we show that social welfare maximization for linear 2-hop ex-
ternality functions is NP-hard. 1 Then we give an O(logn)-approximation algorithm for
linear 2-hop externalities. For these externality functions we can relax the unit-demand
requirement. Specifically, we can handle the setting where each user j can buy up to cj
different items, where cj is a parameter given in the input2.

Concave externalities: We give an O(
√
n) -approximation algorithm when the externality

functions extij(.) are concave and monotone.

Extensions: Our algorithms for linear and concave externalities can be further generalized
to allow a weighting of 2-hop neighbors so that 2-hop neighbors have a lower weight than
1-hop neighbors. This can be useful if it is important that the influence of 2-hop neighbors
does not completely dominate the influence of the 1-hop neighbors.

Techniques: The main challenge in dealing with 2-hop externalities is as follows. Fix an
agent j who gets an item i, and let Vi ⊆ V denote the set of all agents who get item i. Recall
that the agent j’s externality is given by extij(|Sij |), where the set Sij is called the support
of agent j. The problem is that |Sij |, as a function of Vi \ {j}, is not submodular. This is in
sharp contrast with the 1-hop setting, where the support for the agent’s externality comes
only from the set of her 1-hop neighbors who receive item i.

All the mechanisms in [6] use the same basic approach: First solve a suitable LP-relaxation
and then round its values independently for each item i. In the 2-hop setting, however, the
lack of submodularity of the support size (as described above) leads to many dependencies
in the rounding step. Nevertheless, we show how to extend the technique in [6] to achieve
the approximation algorithm for linear 2-hop externality functions, using a novel LP. We
further give a simple combinatorial algorithm with an approximation guarantee of O(

√
n)

for 2-hop concave externalities. For this, we show that either an Ω(1/
√
n)-fraction of the

optimal social welfare comes from a single item, or we can reduce our problem to a setting
with 1-hop step function externalities by losing an (1− Ω(1/

√
n))-fraction of the objective.

Our approach for 2-hop step functions is different. We use a novel decomposition of the
graph into a maximal set of disjoint connected sets of size 3, 2, and 1. We say an assignment
is consistent if it assigns all the nodes (i.e., users) in the same connected set the same item.

1 Theorem 3.1 in [6] claims that the welfare maximization problem for linear 1-hop externality functions
in complete graphs is MaxSNP-hard, which would imply our result, but, as we show in Appendix G ,
this claim is not true.

2 This is also true for the results in [6]. In both results, the assumption is that the valuation functions
are additive over the items.
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We show first that restricting ourself to consistent assignments reduces the maximum welfare
by at most a factor of 1/6. Finally, we show that finding the optimal consistent assignment
is equal to maximizing social welfare in a scenario where agents are not unit demand, do
not influence each other, and have valuation functions that are fractionally subadditive in
the items they get assigned. For the latter we use the (1− 1/e)-approximation algorithm by
Feige [10].

2 Notations and Preliminaries

We are given a simple undirected graph G = (V,E) with |V | = n nodes. Each node j ∈ V in
this graph is an agent, and there is an edge (j, j′) ∈ E iff the agents j and j′ are friends with
each other. There is a set of m items I = {1, . . . ,m}. Each item is available in unlimited
supply, and each agent wants to get at most one item. An assignment A : V → I specifies
the item received by every agent, and under this assignment, uj(A, G) gives the valuation
of an agent j ∈ V . Our goal is to find an assignment that maximizes the social welfare∑
j∈V uj(A, G), i.e., the sum of the valuations of the agents.
Let F 1

j (G) (resp. F 2
j (G)) be the 1-hop (resp. 2-hop) neighborhood of node j.

F 1
j (G) = {j′ ∈ V : (j, j′) ∈ E}, F 2

j (G) =
⋃
j′∈F 1

j
(G) F

1
j′(G) \ (F 1

j (G) ∪ {j}).

Define Vi(A, G) = {j ∈ V : A(j) = i} to be the set of agents who receive item i ∈ I under
the assignment A. Let N1

j (i,A, G) = F 1
j (G) ∩ Vi(A, G) denote the set of agents in F 1

j (G)
who receive item i under the assignment A. Further, let N2

j (i,A, G) = F 2
j (G) ∩ Vi(A, G) ∩(⋃

j′′∈N1
j

(i,A,G) F
1
j′′(G)

)
denote the set of agents in F 2

j (G) who receive item i under the
assignment A and are adjacent to some node in N1

j (i,A, G).
The support of an agent j ∈ V for item i ∈ I is defined as Sij(A, G) = N1

j (i,A, G) ∪
N2
j (i,A, G). This is the set of agents contributing towards the valuation of j for item i.

Let λij be the intrinsic valuation of agent j for item i, and let extij(|Sij(A, G)|) be the
externality of the agent for the same item. The agent’s valuation from the assignment A is
given by the following equality.

uj(A, G) = λA(j),j · extA(j),j(|SA(j),j(A, G)|).

We consider three types of externalities in this paper.

I Definition 1. In concave externality it holds that extij(t) is a monotone and concave
function of t, with extij(0) = 0, for every item i ∈ I and agent j ∈ V .

I Definition 2. In linear externality it holds that for all j ∈ V , i ∈ I and every nonnegative
integer t, we have extij(t) = t.

We extend the step function definition of [6] as follows to 2-hop neighborhoods.

I Definition 3. For integer s ≥ 1, in s-step function externality it holds that for all j ∈ V ,
i ∈ I and every nonnegative integer t, we have extij(t) is 1 if t ≥ s and 0 otherwise.

We omit the symbol G from these notations if the underlying graph is clear from the context.
All the missing proofs from Sections 4, 5 appear in the Appendix.



S. Bhattacharya, W. Dvořák, M. Henzinger, M. Starnberger 5

3 An O(
√

n)-Approximation for Concave Externalities

For the rest of this section, we fix the underlying graph G, and assume that the agents have
concave externalities as per Definition 1. We also fix the intrinsic valuations λij and the
externality functions extij(.).

Let A∗ ∈ argmaxA
{∑

j∈V uj(A)
}

be an assignment that maximizes the social welfare,
and let Opt =

∑
j∈V uj(A∗) be the optimal social welfare.

Let X∗ = {j ∈ V : |SA∗(j),j(A∗)| ≥
√
n} be the set of agents with support size at least√

n under the assignment A∗, and let Y ∗ = V \X∗ be the remaining set of agents.
Since X∗ and Y ∗ partition the set of agents V , there can be two possible cases. Half of the
social welfare under A∗ is coming (1) either from the agents in X∗, or (2) from the agents
in Y ∗. Lemma 4 shows that in the former case there is a uniform assignment, where every
agent gets the same item, that retrieves 1/(2

√
n)-fraction of the optimal social welfare. We

consider the latter case in Lemma 5, and reduce it to a problem with 1-hop externalities.

I Lemma 4. If
∑
j∈X∗ uj(A∗) ≥Opt/2, then there is an item i ∈ I such that

∑
j∈V uj(Ai) ≥

Opt/(2
√
n), where Ai is the assignment that gives item i to every agent in V , that is,

Ai(j) = i for all j ∈ V .

Proof. Define the set of items I(X∗) =
⋃
j∈X∗{A∗(j)}.

We claim that |I(X∗)| ≤
√
n. To see why the claim holds, let V ∗i = {j ∈ V : A∗(j) = i}

be the set of agents who receive item i under A∗. Now, fix any item i ∈ I(X∗), and note that,
by definition, there is an agent j ∈ X∗ with A∗(j) = i. Thus, we have |V ∗i | ≥ |Sij(A∗)| ≥

√
n.

We conclude that |V ∗i | ≥
√
n for every item i ∈ I(X∗). Since

∑
i∈I(X∗) |V ∗i | ≤ |V | = n, it

follows that |I(X∗)| ≤
√
n.

To conclude the proof of the lemma, we now make the following observations.

∑
j∈X∗

uj(A∗) =
∑

i∈I(X∗)

∑
j∈X∗ :A∗(j)=i

uj(A∗) ≤ |I(X∗)| · max
i∈I(X∗)

 ∑
j∈X∗ :A∗(j)=i

uj(A∗)


≤
√
n · max

i∈I(X∗)

 ∑
j∈X∗ :A∗(j)=i

uj(Ai)

 ≤ √n · max
i∈I(X∗)

∑
j∈V

uj(Ai)


The lemma holds since Opt/(2

√
n)≤

∑
j∈X∗ uj(A∗)/

√
n ≤ maxi∈I(X∗)

(∑
j∈V uj(Ai)

)
. J

For every item i ∈ I and agent j ∈ V , we now define the externality function ˆextij(t) and
the valuation function ûj(A).

ˆextij(t) =
{
extij(1) if t ≥ 1;
0 otherwise.

ûj(A) = λA(j),j · ˆextij(|N1
j (i,A)|) (1)

Clearly, for every assignment A : V → I, we have 0 ≤
∑
j∈V ûj(A) ≤

∑
j∈V uj(A). Also

note that the valuation function ûj(.) depends only on the 1-hop neighborhood of the agent
j. Specifically, if an agent j gets an item i, then her valuation is λij · extij(1) if at least
one of her 1-hop neighbors also gets the same item i, and zero otherwise. Bhalgat et al. [6]
gave an LP-based O(1)-approximation for finding an assignment A : V → I that maximizes
the social welfare in this setting (also see Section 5 for a combinatorial algorithm). In the
lemma below, we show that if the agents in Y ∗ contribute sufficiently towards Opt under the
assignment A∗, then by losing an O(

√
n)-factor in the objective, we can reduce our original

problem to the one where the externalities are ˆextij(.) and the valuations are ûj(.).
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I Lemma 5. If
∑
j∈Y ∗ uj(A∗) ≥ Opt/2, then

∑
j∈V ûj(A∗) ≥ Opt/(2

√
n).

Proof. Consider a node j ∈ Y ∗ that makes nonzero contribution towards the objective (i.e.,
uj(A∗) > 0) and suppose that it gets items i (i.e., A∗(j) = i). Since uj(A∗) > 0, we have
Sij(A∗) = N1

j (i,A∗) ∪N2
j (i,A∗) 6= ∅, which in turn implies that N1

j (i,A∗) 6= ∅. Thus, we
have ûj(A∗) = λij ·extij(1). Since |Sij(A∗)| ≤

√
n and extij(.) is a concave function, we have

extij(1) ≥ extij(|Sij(A∗)|)/|Sj(A∗)| ≥ extij(|Sij(A∗)|)/
√
n. Multiplying both sides of this

inequality by λij , we conclude that ûj(A∗) ≥ uj(A∗)/
√
n for all agents j ∈ Y ∗ with uj(A∗) >

0. In contrast, if uj(A∗) = 0, then the inequality ûj(A∗) ≥ uj(A∗)/
√
n is trivially true.

Thus, summing over all j ∈ Y ∗, we infer that
∑
j∈Y ∗ ûj(A∗, G) ≥

∑
j∈Y ∗ uj(A∗, G)/

√
n ≥

Opt/(2
√
n). The lemma now follows since

∑
j∈V ûj(A∗, G) ≥

∑
j∈Y ∗ ûj(A∗, G). J

The algorithm for concave externalities. We run two procedures. Procedure (1) returns
an assignment A′ ∈ arg maxi∈I

(∑
j∈V uj(Ai)

)
, where Ai(j) = i for all i ∈ I and j ∈

V . Procedure (2) invokes the algorithm in [6] and returns an assignment A′′ such that∑
j∈V ûj(A′′) ≥ (1/α) ·maxA

(∑
j∈V ûj(A)

)
for some constant α ≥ 1, where the function

ûj(.) is defined as in equation 1. Our algorithm now compares these two assignments A′ and
A′′ and returns the one that gives maximum social welfare, i.e, we output an assignment
A′′′ ∈ arg maxA∈{A′,A′′}

(∑
j∈V uj(A)

)
.

I Theorem 6. The algorithm described above gives an O(
√
n)-approximation for social

welfare under 2-hop, concave externalities.

Proof. Recall the notations introduced in the beginning of Section 3. Since the set of
agents V is partitioned into X∗ ⊆ V and Y ∗ = V \ X∗, either

∑
j∈X∗ uj(A∗) ≥ Opt/2

or
∑
j∈Y ∗ ≥ Opt/2. In the former case, Lemma 4 guarantees that

∑
j∈A′′′ uj(A′′′) ≥∑

j∈A′ uj(A′) ≥ Opt/(2
√
n). In the latter case, by Lemma 5 we have

∑
j∈A′′′ uj(A′′′) ≥∑

j∈A′′ uj(A′′) ≥
∑
j∈A′′ ûj(A′′) ≥

∑
j∈A∗ ûj(A∗)/α ≥ Opt/(2α

√
n). Since α is a constant,

we conclude that the social welfare returned by our algorithm is always within an O(
√
n)-factor

of the optimal social welfare. J

4 An O(log m)-Approximation for Linear Externalities

In this section, we assume that the input graph G = (V,E) is of the following form. The set
V is partitioned into three groups V1, V2 and V3. Further, an edge in E either connects a
node in V1 with a node in V2, or connects a node in V2 with a node in V3. Our goal is to
assign the items to the agents in such a way as to maximize the social welfare from the set V1.
We refer to this problem as Restricted-Welfare, and prove Theorem 7 in Appendix A.

I Theorem 7. Any α-approximation algorithm for the Restricted-Welfare problem can
be converted into an O(α)-approximation algorithm for the welfare-maximization problem in
general graphs with linear (or even concave) externalities.

Consider the LP below. Here, the variable α(i, j, k) indicates if both the agents j ∈ V1
and k ∈ F 1

j received item i ∈ I. If this variable is set to one, then agent j gets one unit
of externality from agent k. Similarly, the variable β(i, j, l) indicates if both the agents
j ∈ V1, l ∈ V3 ∩ F 2

j received item i ∈ I and there is at least one agent k ∈ F 1
j ∩ F 1

l who
also received the same item. If this variable is set to one, then agent j gets one unit of
externality from agent l. Clearly, the total valuation of agent j for item i is given by∑
k∈V2∩F 1

j
λij · α(i, j, k) +

∑
l∈V3∩F 2

j
λij · β(i, j, l). Summing over all the items and all the

agents in V1, we see that the LP-objective encodes the social welfare of the set V1.



S. Bhattacharya, W. Dvořák, M. Henzinger, M. Starnberger 7

Maximize:
∑
j∈V1

∑
i∈I

λij ·
( ∑
k∈V2∩F 1

j

α(i, j, k) +
∑

l∈V3∩F 2
j

β(i, j, l)
)

(2)

β(i, j, l) ≤ min{w(i, l), y(i, j)} ∀i ∈ I, j ∈ V1, l ∈ V3 ∩ F 2
j (3)

β(i, j, l) ≤
∑
k∈F 1

j
∩F 1

l
z(i, k) ∀i ∈ I, j ∈ V1, l ∈ V3 ∩ F 2

j (4)

α(i, j, k) ≤ min{y(i, j), z(i, k)} ∀i ∈ I, j ∈ V1, k ∈ V2 ∩ F 1
j (5)∑

i y(i, j)≤ 1,
∑
i z(i, k) ≤ 1,

∑
i w(i, l) ≤ 1 ∀j, k, l (6)

0 ≤ z(i, k), y(i, j), w(i, l), α(i, j, k), β(i, j, l) ∀i, j, k, l (7)

The variables y(i, j), z(i, k) and w(i, l) respectively indicate if an agent j ∈ V1, k ∈ V2,
l ∈ V3 received item i ∈ I. Constraints 6 state that an agent can get at most one item.
Constraint 5 says that if α(i, j, k) = 1, then both y(i, j) and z(i, k) must also be equal to
one. Constraint 3 states that if β(i, j, l) = 1, then both y(i, j) and w(i, l) must also be equal
to one. Finally, note that if an agent l ∈ V3 contributes one unit of externality to an agent
j ∈ V1 for an item i ∈ I, then there must be some agent k ∈ F 1

j ∩ F 1
l in V2 who received the

same item. This condition is encoded in constraint 4. Thus, we have the following lemma.

I Lemma 8. The LP is a valid relaxation of the Restricted-Welfare problem.

Before proceeding towards the rounding scheme, we perform a preprocessing step as
described in the next lemma, whose proof appears in Appendix B.

I Lemma 9. In polynomial time, we can get a feasible solution to the LP that gives an
O(logm) approximation to the optimal objective, and ensures that each α(i, j, k), β(i, j, l),
y(i, j), w(i, l) ∈ {0, γ} for some real number γ ∈ [0, 1], and that each z(i, k) ≤ γ.

We now present the rounding scheme for LP (see Algorithm 1). Here, the set Wi denotes
the set of agents that have not yet been assigned any item when the rounding scheme enters
the For loop for item i (see Step 2). Note that the sets Ti might overlap, but these conflicts
are resolved in Line 9 by intersecting Ti with Wi, which is disjoint with all previous Tj , j < i.

Algorithm 1 Rounding Scheme for LP
1. In accordance with Lemma 9, compute a feasible solution to the LP.

Set T0 ← ∅, and W0 ← V = V1 ∪ V2 ∪ V3.
2. For all items i ∈ I = {1, . . . ,m}:
3. Set Wi ←Wi−1 \ Ti−1, and Ti ← ∅.
4. Pick a value ηi uniformly at random from [0, 1].
5. If ηi ≤ γ:
6. For all nodes j ∈ V1:

If y(i, j) = γ, then with probability 1/4, set Ti ← Ti ∪ {j}.
7. For all nodes l ∈ V3:

If w(i, l) = γ, then with probability 1/4, set Ti ← Ti ∪ {l}.
8. For all nodes k ∈ V2:

With probability z(i, k)/(4γ), set Ti ← Ti ∪ {k}.
9. Assign item i to all nodes in Wi ∩ Ti, i.e., set A(t)← i for all t ∈Wi ∩ Ti.
10. Return the (random) assignment A.

I Lemma 10. For all t ∈ V and all i ∈ I, we have P[t ∈Wi] ≥ 3/4. Thus, P[{t1, t2, t3} ⊆
Wi] ≥ 1/4 for all t1, t2, t3 ∈ V .
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Proof. We will prove the lemma for a node in V1, the argument extends to V2 ∪ V3.
Fix any node j ∈ V1 and any item i ∈ I, and consider an indicator random variable Γi′j

that is set to one iff j ∈ Ti′ . It is easy to check that E[Γi′j ] = y(i′, j)/4 for all items i′ ∈ I. By
constraint 6 and linearity of expectation, we thus have: E[

∑
i′<i Γi′j ] =

∑
i′<i y(i′, j)/4 ≤ 1/4.

Applying Markov’s inequality, we get P[
∑
i′<i Γi′j = 0] ≥ 3/4. In other words, with

probability at least 3/4, we have that j /∈ Ti′ for all i′ < i. Under this event, we must have
j ∈Wi.

We have P[t /∈ Wi] ≤ 1/4 for all t ∈ {t1, t2, t3}. P[{t1, t2, t3} ⊆ Wi] ≥ 1/4 now follows
from applying union-bound over these three events. J

In the first step, when we find a feasible solution to the LP in accordance with Lemma 9,
we lose a factor of O(logm) in the objective. Below, we will show that the remaining steps in
the rounding scheme result in a loss of at most a constant factor in the approximation ratio.

For all items i ∈ I, nodes j ∈ V1, and nodes k ∈ F 1
j , l ∈ F 2

j , we define the random
variables X(i, j, k) and Y (i, j, l). Their values are determined by the outcome A of our
randomized rounding. To be more specific, we have that X(i, j, k) = 1 if both j and k receive
item i, and X(i, j, k) = 0 otherwise. Further, Y (i, j, l) = 1 if both j and l receive item i and
there is some node in F 1

j ∩ F 1
l that also received item i, and Y (i, j, l) = 0 otherwise. Now,

the valuation of any agent j ∈ V1 from the (random) assignment A is:

uj(A) =
∑
i∈I

(∑
k∈F 1

j

λij ·X(i, j, k) +
∑
l∈F 2

j

λij · Y (i, j, l)
)

(8)

We will analyze the expected contribution of the rounding scheme to each term in the
LP-objective. Towards this end, we prove the following lemmas. The proof of Lemma 11
appears in Appendix C.

I Lemma 11. For all i ∈ I, j ∈ V1, k ∈ F 1
j , we have EA[X(i, j, k)] ≥ δ · α(i, j, k), where

δ > 0 is a sufficiently small constant.

I Lemma 12. For all i ∈ I, j ∈ V1, l ∈ F 2
j , we have EA[Y (i, j, l)] ≥ δ · β(i, j, l), where δ is a

sufficiently small constant.

Proof. Fix an item i ∈ I, a node j ∈ V1 and a node l ∈ F 2
j . If β(i, j, l) = 0 the lemma is

trivially true. Otherwise suppose for the rest of the proof that β(i, j, l) = y(i, j) = w(i, l) = γ.
Let Ei be the event that ηi ≤ γ (see Step 4 in Algorithm 1). Let Z(i, k) be an indicator

random variable that is set to one iff node k ∈ V2 is included in the set Ti by our rounding
scheme (see Step 8 in Algorithm 1). We have:

P[Ei] = γ, and P[Z(i, k) = 1 | Ei] = z(i, k)/4γ for all k ∈ V2 (9)

Thus, conditioned on the event Ei, the expected number of common neighbors of j and l
who are included in the set Ti is given by

µi := E
[ ∑
k∈F 1

j
∩F 1

l

Z(i, k)
∣∣∣ Ei] =

∑
k∈F 1

j
∩F 1

l

z(i, k)/4γ ≥ 1/4 (10)

Note that conditioned on the event Ei, the random variables Z(i, k) are mutually independent.
Thus, applying Chernoff bound on Equation 10, we infer that with constant probability, at
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least one common neighbor of j and l will be included in the set Ti. To be more precise,
define Ti,j,l = Ti ∩ F 1

j ∩ F 1
l . For some sufficiently small constant δ1, we have:

P
[
Ti,j,l 6= ∅

∣∣∣ Ei] = P
[ ∑
k∈F 1

j
∩F 1

l

Z(i, k) > 0
∣∣∣ Ei] ≥ 1− e−1/8 = δ1 (11)

Let Ei,j,l be the event that the following two conditions hold simultaneously: (a) Ti,j,l 6= ∅,
and (b) j, l, and an arbitrary node from Ti,j,l—each of these three nodes is included in Wi.
Now, Equation 11 and Lemma 10 imply that P[Ei,j,l | Ei] ≥ δ2 for δ2 = δ1/4. Putting all
these observations together, we obtain that P[Y (i, j, l) = 1] = P[Ei] · P[Ei,j,l | Ei] · P[j, l ∈
Ti | Ei,j,l ∩ Ei] = γ · δ2 · (1/4) · (1/4) = δ · γ = δ · β(i, j, l) for δ = δ2/16.

J

I Theorem 13. The rounding scheme in Algorithm 1 gives an O(logm)-approximation to
the Restricted-Welfare problem.

Proof. In the first step, when we find a feasible solution to the LP in accordance with
Lemma 9, we lose a factor of O(logm) in the objective. At the end of the remaining steps,
the expected valuation of an agent j ∈ V1 is given by:

EA[uj(A)] =
∑
i∈I

λij ·
(∑
k∈F 1

j

EA[X(i, j, k)] +
∑
l∈F 1

l

EA[Y (i, j, l)]
)

= Θ
(∑
i∈I

λij ·
(∑
k∈F 1

j

α(i, j, k) +
∑
l∈F 1

l

β(i, j, l)
))

The first equality follows from linearity of expectation, while the second equality follows
from Lemma 11 and Lemma 12. Thus, the expected valuation of any agent in V1 is within a
constant factor of the fractional valuation of the same agent under the feasible solution to
the LP obtained at the end of Step 1 (see Algorithm 1). Summing over all the agents in V1,
we get the theorem. J

We can generalize the above approach to the following setting: Each user j is given
an integer cj and can be assigned up to cj different items (each at most once). For this
we replace for each item i and node j the constraint

∑
i y(i, j) ≤ 1 by the two constraints∑

i y(i, j) ≤ cj and y(i, j) ≤ 1 and adapt the proof of Lemma 10.
We give the modified proof in Appendix D.
Finally, we show NP-hardness for linear externalities, not only in the 2-hop setting but

also for 1-hop. The proof is provided in Appendix G. 3

I Theorem 14. Maximizing social welfare under linear externalities is NP-hard.

5 Constant Approximation for Step Function Externalities

In this section, our goal is to maximize the social welfare when the agents have general
step function externalities, i.e., to receive externality an agent needs a certain number of

3 As mentioned before Theorem 3.1 in [6] claims that the welfare maximization problem for linear 1-hop
externality functions in complete graphs is MaxSNP-hard, which would imply our result, but, as we
show in Appendix G, this claim is not true.
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1- and 2-hop neighbors having the same product. We will show that no constant factor
approximation is possible unless a bound on the number of neighbors an agent needs to
receive externality is given. Thus we consider the case of 2-step function externalities, where
only two neighbors are needed (see Definition 3) and give a 1

6 · (1 − 1/e)-approximation
algorithm for this problem. Notice that if we consider step functions that just require one
neighbor the problem reduces to the 1-hop step function scenario in [6]. However, our
algorithm gives a 1

2 · (1− 1/e)-approximation for this scenario improving the result in [6].
In the following we assume 2-step function externalities. Let GV ′ denote the subgraph

induced by V ′ ⊆ V . For the rest of this section, the term “triple” will refer to any (unordered)
set of three nodes T = {j1, j2, j3} such that GT is connected. Similarly, the term “pair” will
refer to any (unordered) set of two nodes {j1, j2} that are connected by an edge in E.

We first compute a maximal collection of mutually disjoint triples in the graph G. We
denote this collection by T , and let V (T ) =

⋃
T∈T T ⊆ V . The graph GV \V (T ), by definition,

consists of a mutually disjoint collection of pairs (say P) and a set of isolated nodes (say B).
We thus have the following lemma.

I Lemma 15. In G = (V,E), there is no edge that connects a node j ∈ B with another node
in B or with a node belonging to a pair in P. Furthermore, there is no edge that connects
two nodes j, j′ belonging to two different pairs P, P ′ ∈ P.

I Definition 16. An assignment A is consistent iff two agents get the same item whenever
they belong to the same triple or the same pair. To be more specific, for all j, j′ ∈ V , we
have that A(j) = A(j′) if either (a) j, j′ ∈ T for some triple T ∈ T or (b) {j, j′} ∈ P.

The next lemma shows that by losing a factor of 6 in the approximation ratio, we can
focus on maximizing the social welfare via a consistent assignment.

I Lemma 17. The social welfare from the optimal consistent assignment is at least (1/6)·Opt,
where Opt is the maximum social welfare over all assignments.

Proof. Let A∗ be an assignment (not necessarily consistent) that gives maximum social
welfare. We convert it into a (random) consistent assignment A as follows. For each triple
{j1, j2, j3} ∈ T , we pick one of the items A∗(j1),A∗(j2),A∗(j3) uniformly at random, and
assign that item to all the three agents j1, j2, j3. Similarly, for each pair {j1, j2} ∈ P , we pick
one of the items A∗(j1),A∗(j2) uniformly at random, and assign that item to both the agents
j1, j2. The events corresponding to different triples and pairs are mutually independent.
Finally, the remaining agents (those who are in B) get the same items as in A∗. It is easy to
see that the resulting assignment A is consistent. We claim that E[uj(A)] ≥ (1/6) · uj(A∗)
for all j ∈ V . To prove this claim, we consider three cases.
Case 1 (j ∈ B): Let A∗(j) = i. Since j ∈ B, it always gets the same item under A, i.e.,
A(j) = i. Now, if uj(A∗) = 0, then the claim is trivially true. Otherwise it must be the case
that A∗(j′) = i for some neighbor j′ of j. Since j ∈ B, this neighbor j′ must be part of some
triple T ∈ T (see Lemma 15). With probability at least 1/3 all the three nodes in T are
assigned item i under A and at least two nodes of T are in the 2-hop neighborhood of j. In
that event j gets the same valuation as in A∗, and we have that E[uj(A)] ≥ (1/3) · uj(A∗).
Case 2 (j belongs to a pair in P): Consider the pair P = {j, j′} ∈ P , which has j and another
node (say j′) as its members. Let A∗(j) = i. As in Case 1, if uj(A∗) = 0, then the claim is
trivially true. Otherwise it must be the case that there exists a node j′′ with A∗(j′′) = i

such that j′′ is either a neighbor of j or a neighbor of j′. Since {j, j′} ∈ P, this agent j′′
must be part of some triple T ∈ T (see Lemma 15). Let E1 be the event that all the three
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nodes in T are assigned item i under A. Similarly, let E2 be the event that both the nodes
j, j′ ∈ P get the same item i under A. Since these two events are mutually independent, we
have that P[E1 ∩E2] ≥ (1/3) · (1/2) = 1/6, and in the event E1 ∩E2, we have uj(A) = uj(A∗).
It follows that E[uj(A)] ≥ (1/6) · uj(A∗).

Case 3 (j belongs to a triple in T ): Consider the triple T = {j, j′, j′′} ∈ T which has, besides
j, two other nodes (say j′ and j′′) as its members. With probability at least 1/3, all these
three nodes are assigned item A∗(j) under A, and in this event we have uj(A) ≥ uj(A∗). It
follows that E[uj(A)] ≥ (1/3) · uj(A∗).

Now, we take a sum of the inequalities E[uj(A)] ≥ (1/6) · uj(A∗) over all agents j ∈ V ,
and by linearity of expectation infer that the expected social welfare under the consistent
assignment A is within a factor of 6 of the optimal social welfare. This concludes the proof
of the lemma. J

Next, we will give an (1−1/e)-approximation algorithm for finding a consistent assignment
of items that maximizes the social welfare. Along with Lemma 17, this will imply the main
result of this section (see Theorem 20).

We use the term “resource” to refer to either a pair P ∈ P or an agent j ∈ B. Let
R = P ∪B denote the set of all resources. We say that a resource r ∈ R neighbors a triple
T ∈ T iff in the graph G = (V,E) either (a) r = {j, j′} ∈ P and some node in {j, j′} is
adjacent to some node in T , or (b) r = j ∈ B and j is adjacent to some node in T . We
slightly abuse the notation (see Section 2) and let N(T ) ⊆ R denote the set of resources that
are neighbors of T ∈ T .

By definition, every consistent assignment ensures that if two agents belong to the same
triple in T (resp. the same pair in P), then both of them get the same item. We say that
the item is assigned to a triple (resp. resource). Note that the triples do not need externality
from outside. To be more specific, the contribution of a triple T ∈ T to the social welfare is
always equal to

∑
j∈T λi,j , where i is the item assigned to T . Resources, however, do need

outside externality, which by Lemma 15 can come only from a triple in T .

I Lemma 18. In a consistent assignment, if a resource r ∈ R makes a positive contribution
to the social welfare, then it neighbors some triple Tr ∈ T , and both the resource r and the
triple Tr receive the same item.

Proof. If a resource contributes a nonzero amount to the social welfare, then it must receive
nonzero externality from the assignment. By Lemma 15, such externality can come only
from a triple in T . The lemma follows. J

Thus, given a consistent assignment A consider the following mapping TA(r) of a resource
r ∈ R to triples in T in accordance with Lemma 18: If the resource r makes zero contribution
towards the social welfare (a case not covered by the lemma), then we let TA(r) be any
arbitrary triple from T . Otherwise TA(r) denotes an (arbitrary) neighboring triple of T that
receives the same item as r. We say that the triple TA(r) claims the resource r.

For ease of exposition, let λi,r(T ) be the valuation of the resource r when both the
resource and the triple T that claims it get item i ∈ I, i.e.,

λi,r(T ) =


λi,j + λi,j′ if r = {j, j′} ∈ P and r ∈ N(T );
λi,j if r = j ∈ B and r ∈ N(T );
0 if r /∈ N(T ).
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Now, any consistent assignmentA can be interpreted as follows. Under such an assignment,
every triple T ∈ T claims the subset of the resources ST = {r ∈ R : TA(r) = T}; the
subsets corresponding to different triples being mutually exclusive. A triple T and the
resources in ST all get the same item (say i ∈ I). The valuation obtained from them is
uT (ST , i) =

∑
j∈T λi,j +

∑
r∈ST

λi,r(T ).
If our goal is to maximize the social welfare, then, naturally, for every triple T , we will pick

the item that maximizes uT (ST , i), thereby extracting a valuation of uT (ST ) = maxi uT (ST , i).
The next lemma shows that this function is fractionally subadditive.

I Lemma 19. The function uT (ST ) is fractionally subadditive in ST .

The preceding discussion shows that the problem of computing a consistent assignment
for welfare maximization is equivalent to the following setting. We have a collection of triples
T , and a set of resources R. We will distribute these resources amongst the triples, i.e., every
triple T will get a subset ST ⊆ R, and these subsets will be mutually exclusive. The goal is
to maximize the sum

∑
T∈T uT (ST ), where the functions uT (·)’s are fractionally subadditive.

By a celebrated result of Feige [10], we can get an (1− 1/e)-approximation algorithm for this
problem if we can implement the following subroutine (called demand oracle) in polynomial
time: Each resource r is given a “cost” p(r) and we need to determine for each triple T a set
of resources S∗T that maximizes uT (ST )−

∑
r∈ST

p(r) over all sets ST . Such a demand oracle
can be implemented in polynomial time using a simple greedy algorithm for each T and each
item i: Add a resource r to S∗T iff λi,r(T ) > p(r). The result of the approximation algorithm
assigns each triple T a subset ST and we then pick the item i that maximizes uT (ST , i) over
all items i. Together with Lemma 15, this implies the theorem stated below.

I Theorem 20. We can get a polynomial-time 1
6 · (1− 1/e)-approximation algorithm for the

problem of maximizing social welfare under 2-step function externalities.

The algorithm can be easily adapted for 1-hop step function externalities. The difference
being that instead of computing a maximal collection T of mutually disjoint triples, one
computes a maximal collection of mutually disjoint pairs.

I Theorem 21. We can get a polynomial-time 1
2 · (1 − 1/e)-approximation algorithm for

maximizing social welfare under 1-step function externalities.

Finally, we present our hardness results for step functions. By a reduction from Max
Independent Set (see Appendix I) we can show that, for unbounded s, there is no constant
factor approximation. The main idea is that we modify the graph such that we replace each
edge by a path of length three and each of the original nodes j wants a different item, while
j can only get positive externalities when having a support of 2δj (δj the node degree of j).
The valuations of the newly introduced nodes are set to 0. That is, nodes that are adjacent
in the original graph have two common neighbors in the constructed graph, want different
items, need all their neighbors as support, and thus only one of them can have positive
valuation.

I Theorem 22. For any ε > 0 the problem of maximizing social welfare under arbitrary
s-step function externalities is not approximable within O(n1/4−ε) unless NP = P, and not
approximable within O(n1/2−ε) unless NP = ZPP.

Second, we show that maximizing social welfare under 2-step function externalities is
APX-hard and thus no PTAS can exists. This is by a reduction from Max Coverage. The
APX-hardness for two items is by a reduction from SAT.
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I Theorem 23. The problem of maximizing social welfare under step function externalities
is APX-hard, in particular, there is no polytime 1− 1

e + ε-approximation algorithm (unless
P = NP). Furthermore, the problem remains APX-hard even if there are only two items.
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A Proof of Theorem 7

Theorem 7. Any α-approximation algorithm for the Restricted-Welfare problem can
be converted into an O(α)-approximation algorithm for the welfare-maximization problem in
general graphs with linear externalities.

We want to maximize the social welfare in a general graph G = (V,E) under linear
externality functions. First, we randomly partition the set of nodes V into three groups:
V1, V2, V3. To be more precise, we iterate over all the nodes in the graph. While considering
a specific node j ∈ V we randomly add it to one of the sets V1, V2, or V3, and we ensure that
these random events corresponding to the different nodes in V are mutually independent.
Next, we delete all the edges that join a node in V1 with a node in V3, and all the edges
whose both endpoints lie within the same subset Vt, t ∈ {1, 2, 3}. Let this new (random)
tripartite graph be G∗ = (V = V1 ∪ V2 ∪ V3, E

∗). Finally, given any assignment A of the
items to the nodes in this graph, we define the restricted social welfare to be the sum of the
valuations obtained by the agents in V1. Thus, we ignore the contributions of the nodes in
V2 ∪ V3. These nodes only serve the purpose of building up the externalities of the nodes in
V1. A node in V2 can only be a 1-hop neighbor of a node in V1, whereas a node in V3 can
only be a 2-hop neighbor of a node in V1.

Theorem 7 will follow from Lemma 24 and Lemma 25.

I Lemma 24. The social welfare from an assignment A : V → I in the input graph
G = (V,E) is at least the restricted social welfare from the same assignment A in the graph
G∗ = (V,E∗).

Proof. Follows from the facts that E ⊇ E∗ and that in restricted social welfare we only
consider the valuations of the nodes in V1 ⊆ V . J

I Lemma 25. The social welfare from any assignment in the graph G is within a constant
factor of the expected value of the restricted social welfare from the same assignment in the
random graph G∗.
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Proof. Throughout the proof of the lemma, fix any assignment A : V → I, and let SW (A, G)
(resp. SW ∗(A, G∗)) denote the social welfare (resp. restricted social welfare) from A in the
graph G (resp. G∗). We will show E[SW ∗(A, G∗)] = δ · SW (A, G) for some constant δ > 0.

Fix any node j ∈ V and let i ∈ I be the item assigned to it. By definition:

uj(A, G) = λij ·
(
|N1

j (i,A, G)|+ |N2
j (i,A, G)|

)
(12)

For every node k ∈ N1
j (i,A, G) (resp. l ∈ N2

j (i,A, G)) we define an indicator random
variable Xk (resp. Yl) as follows.

Xk =
{

1 if j ∈ V1 and k ∈ V2;
0 otherwise.

Yl =


1 if j ∈ V1 and l ∈ V3, and at least one node

from N1
j (i,A, G) ∩N1

l (i,A, G) is included in V2;
0 otherwise.

Next, we define a random variable Wj as follows.

Wj =
{
uj(A, G∗) if j ∈ V1;
0 otherwise.

It is easy to see that

Wj ≥
∑

k∈N1
j

(i,A,G)

λij ·Xk +
∑

l∈N2
j

(i,A,G)

λij · Yl (13)

Since the nodes in V are partitioned into the subsets V1, V2, V3 uniformly and independently
at random, we have:

E[Xk] = P[Xk = 1] = (1/3) · (1/3) = 1/9 ∀k ∈ N1
j (i,A, G) (14)

E[Yl] = P[Yl = 1] ≥ (1/3) · (1/3) · (1/3) = 1/27 ∀l ∈ N2
j (i,A, G) (15)

From equations 13, 14 15, and linearity of expectation, it follows that

E[Wj ] ≥ δ · λij ·
{
|N1

j (i,A, G)|+ |N2
j (i,A, G)|

}
for some constant δ > 0. (16)

Equation 12 and 16 imply that

E[Wj ] ≥ δ · uj(A, G) (17)

Now, the expected value of the restricted social welfare from A in G∗ is:

E[SW ∗(A, G∗)] =
∑
j∈V

E[Wj ] ≥ δ ·
∑
j∈V

uj(A, G) = δ · SW (A, G)

This concludes the proof of the lemma. J

B Proof of Lemma 9

Lemma 9. In polynomial time, we can get a feasible solution to the LP that gives an
O(logm) approximation to the optimal objective, and ensures that each α(i, j, k), β(i, j, l),
y(i, j), w(i, l) ∈ {0, γ} for some real number γ ∈ [0, 1], and that each z(i, k) ≤ γ.
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Proof. We compute the optimal solution to LP 2, and partition the α(i, j, k) and β(i, j, l)
variables into two groups (large and small) depending on whether they are greater than or
less than 1/m2. By losing at most a 1/m fraction of the objective, we can set all the small
variables to zero. To see this, suppose that the claim is false, i.e., the contribution of these
small variables exceeds 1/m fraction of the total objective. Then we can scale up all these
small variables by a factor of m, set all the large α(i, j, k), β(i, j, l)’s to zero, and set every
z(i, k), y(i, j), w(i, l) to 1/m. This will satisfy all the constraints, and the total contribution
towards the objective by the erstwhile small variables will get multiplied by m, which, in
turn, will imply that their new contribution actually exceeds the optimal objective. Thus,
we reach a contradiction.

We discretize the range [1/m2, 1] in powers of two, thereby creating O(logm) intervals,
and accordingly, we partition the large variables into O(logm) groups. The variables in
the same group are within a factor 2 of each other. By losing an O(logm) factor in the
approximation ratio, we select the group that contributes the most towards the LP-objective.
Let all the variables in this group lie in the range [γ, 2γ]. We now make the following
transformation. All the α(i, j, k), β(i, j, l)’s in this group are set to γ. This way we lose
another factor of at most 2 in the LP-objective. All the remaining α(i, j, k), β(i, j, l)’s are set
to zero. At this stage, we have ensured that each α(i, j, k), β(i, j, l) ∈ {0, γ}.

Now, it is easy to check that if a y(i, j) or a w(i, l) is set to a value less than γ, then it plays
no role whatsoever in ensuring the feasibility of the LP-solution. This holds as constraints 3, 4
ensure that any α(i, j, k) or β(i, j, l) corresponding to those variables must be set to zero
(recall that each α(i, j, k), β(i, j, l) is either γ or zero). Thus, we set any y(i, j), w(i, l) < γ to
zero, and we set the remaining y(i, j), w(i, l)’s to γ. Since each α(i, j, k), β(i, j, l) ∈ {0, γ},
the latter transformation does not violate the feasibility of the solution. Finally, we set
z(i, k)← min(z(i, k), γ) for each i ∈ I, k ∈ V2.

J

Note that after the processing according to Lemma 9 there might exists i, j, k, and l such
that z(i, k) and β(i, j, l) both equal γ, but α(i, j, k) equals 0. In this case we could increase
the value of the solution by setting α(i, j, k) to γ but this is not necessary for our rounding
procedure as it ignores both the α as well as the β values.

C Proof of Lemma 11

Lemma 11. For all i ∈ I, j ∈ V1, k ∈ F 1
j , we have EA[X(i, j, k)] ≥ δ · α(i, j, k), where

δ > 0 is a sufficiently small constant.

Proof. Fix an item i ∈ I, a node j ∈ V1 and a node k ∈ F 1
j . If α(i, j, k) = 0 the lemma is

trivially true. Otherwise suppose for the rest of the proof that α(i, j, k) = y(i, j) = z(i, k) = γ.
Now, we have:

EA[X(i, j, k)] = P[X(i, j, k) = 1]
= P[j, k ∈Wi] ·P[ηi ≤ γ | j, k ∈Wi] ·P[j, k ∈ Ti | (ηi ≤ γ) ∧ (j, k ∈Wi)]
≥ 1/2 · γ · (1/4) · (z(i, k)/4γ)
= δ · γ = δ · α(i, j, k) (where δ = 1/32)

The last but one equality holds since z(i, k) = γ. J
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D Multi-Demand Settings

We show how to adapt the proof of Lemma 10 to the more general setting.

I Lemma 26. For every node t ∈ V and every i ∈ I, we have P[t ∈Wi] ≥ 3/4.

Proof. We will prove the lemma for a node in V1, the argument being exactly similar for a
node in V2 ∪ V3.

Fix any node j ∈ V1 and any item i ∈ I, and consider an indicator random variable Γi′j
that is set to one iff j ∈ Ti′ . It is easy to check that E[Γi′j ] = y(i′, j)/4 for all items i′ ∈ I.
By constraint 6 and linearity of expectation, we thus have: E[

∑
i′<i Γi′j ] =

∑
i′<i y(i′, j)/4 ≤

cj/4. Applying Markov’s inequality, we get P[
∑
i′<i Γi′j < cj ] ≥ 3/4. In other words, with

probability at least 3/4, we have that less than cj many items have been assigned to j when
item i is processed. Under this event, we must have j ∈Wi. The lemma follows. J

E Proof of Lemma 19

Lemma 19. The function uT (ST ) is fractionally subadditive in ST .

Proof. Note that the function uT (ST , i) is linear in ST , for every item i ∈ I. The lemma
follows from the fact that the maximum of a set of linear functions is fractionally sub-additive.

J

F p-hop Externalities

In this Section we generalize our notation for the p-hop case. For p ≥ 2, let the p-hop
neighborhood F pj be defined as follows.

F pj =
⋃
j′∈Fp−1

j
(F 1
j′) \ (

⋃
q<p F

q
j ∪ {j}).

and let the p-neighborhood F≤pj be
⋃
q≤p F

q
j .

Then the p-hop support Np
j (i,A) is defined as

Np
j (i,A) = F pj (G) ∩ Vi(A) ∩

 ⋃
j′∈Np−1

j
(i,A)

F 1
j′(G)


and N≤pj (i,A) =

⋃
q≤pN

q
j (i,A).

Finally the p-support of an agent j ∈ V for item i ∈ I is then defined as Spij(A, G) =
|N≤pj (i,A, G)|

G Hardness for Linear Externalities

Bhalgat et al. [6] state that “The welfare maximization problem for linear externality and
complete graphs is MaxSNP-hard”. As on complete graphs there is no difference between
1-hop, 2-hop and in general p-hop linear externalities this would imply MaxSNP hardness
for our setting. Unfortunately, as we explain next, their claim is not true. There is a quite
simple method to find the optimal assignment in the case of a complete graph. Consider only
the assignments that pick one item i ∈ I and assign it to every agent, and select the optimal
assignment among them. This can be done in linear time in the number of items m and the
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number of agents n. Lemma 27 shows that such an assignment is also optimal among all
possible assignments. Assuming NP 6= P the incorrectness of Theorem 3.1 in [6] follows.

I Lemma 27. Given convex functions fi,j : N0 → R≥0 with fi,j(0) = 0 for all i ∈ I :=
{1, . . . ,m} and all j ∈ V , and a partition of V into m sets S1, . . . , Sm (i.e.,

⋃
i∈I Si = V and

Si ∩ Si′ = ∅ for all i 6= i′ ∈ I) it holds that
∑
i∈I
∑
j∈Si

fi,j(|Si|) ≤ maxi∈I
∑
j∈V fi,j(|V |).

Proof. For the proof we set n = |V | and define i∗ ∈ arg maxi∈I
∑
j∈V fi,j(|V |).∑

i∈I

∑
j∈Si

fi,j(|Si|) ≤
∑
i∈I

∑
j∈Si

fi,j(n) |Si|
n

(18)

=
∑
i∈I

|Si|
n

∑
j∈Si

fi,j(n) (19)

≤
∑
i∈I

|Si|
n

∑
j∈V

fi,j(n) (20)

≤
∑
i∈I

|Si|
n

∑
j∈V

fi∗,j(n) (21)

=
∑
j∈V

fi∗,j(n)
∑
i∈I

|Si|
n

=
∑
j∈V

fi∗,j(n) (22)

Equality 18 follows from the convexity of fi,j(·) and fi,j(0) = 0. Equality 19 holds because
|Si|
n does not depend on j. Inequality 20 follows from the non-negativity of fi,j(·). For

Inequality 21 observe that for any fixed i ∈ I it holds that
∑
j∈V fi,j(n) ≤

∑
j∈V fi∗,j(n)

by the definition of i∗. Further,
∑
j∈V fi∗,j(n) does not depend on i, which implies the

left-hand side of Equality 22. For the right-hand side of Equality 22 recall that S1, . . . , Sm
is a partition of V , and thus,

∑
i∈I |Si| = |V | = n. This gives

∑
j∈V fi∗,j(n) which is by

definition maxi∈I
∑
j∈V fi,j(|V |).

J

Notice that the valuation of an agent with linear externality is indeed a convex function
fi,j with fi,j(0) = 0 and in a complete graph the externality of a node only depends on
the number of nodes having the same item. Moreover if no one has the item the valuation
an agent gets from this item is clearly 0.4 Thus the above lemma implies that there is an
optimal assignment assigning the same item to all nodes. From that the following theorem
follows immediately.

I Theorem 28. The welfare maximization problem for linear externalities and complete
graphs can be solved in polynomial time.

However, on general graphs the problem becomes NP-hard. We next show show this
NP-hardness in a generalized version of Theorem 14. That is we consider p-hop linear
externalities (p ≥ 1), i.e. the support of an agent j ∈ V for item i ∈ I be defined as
Spij(A, G) = |N≤pj (i,A, G)| (see also Appendix F). To this end we consider a simpler version
of Max Coverage (where all weights wi are set to 1) which is still NP-hard [9, 23].

4 Notice that all these observations hold for both, our definition of linear externalities and the slightly
different definition of linear externalities in [6].



S. Bhattacharya, W. Dvořák, M. Henzinger, M. Starnberger 19

x1 x2

y1 y2

1 2 3

e2
1,1 e2

1,2 e2
2,1 e2

2,2 e2
3,1 e2

3,2

e1
1,1 e1

1,2 e1
2,1 e1

2,2 e1
3,1 e1

3,2

Figure 1 An illustration of the graph constructed in the above reduction for p = 3, D = {1, 2, 3}
and k = 2.

I Definition 29. The input to the Max Coverage problem is a set of domain elements
D = {1, 2, . . . , n}, a collection S = {E1, . . . , Em} of subsets of D and a positive integer k.
The goal is to find a collection S ′ ⊆ S of cardinality k maximizing

∣∣⋃
E∈S′ E

∣∣.
Theorem 14 The problem of maximizing social welfare under p-hop linear function extern-
alities is NP-hard.

Proof. The proof is by a reduction from the NP-hard problem Max Coverage (see Def.
29). The reduction maps an instance (D,S, k) of the Max Coverage problem to our
problem as follows. It constructs a graph G with a node set V containing X = {x1, . . . , xk},
Y = {y1, . . . , yk}, D and {ehi,j : i ∈ D, 1 ≤ j ≤ k, 1 ≤ h < p}. The undirected edges are given
by
{(xl, yl) : 1 ≤ l ≤ k};
{(ehi,j , eh+1

i,j ) : i ∈ D, 1 ≤ j ≤ k, 1 ≤ h < p− 1}; and
If p > 1 we have edges {(i, e1

i,j), (e
p−1
i,j , yj) : i ∈ D, 1 ≤ j ≤ k}.

Otherwise if p = 1 then there are edges {(i, yj) : i ∈ D, 1 ≤ j ≤ k}.

The items are given by {Ei,l : Ei ∈ S, 1 ≤ l ≤ k}. Finally the intrinsic values of an agent
j ∈ D for getting item Ei,l are given by

λEi,l,j =
{

1 if j ∈ Ei
0 otherwise.

while the intrinsic values of and agent xj are given by

λEi,l,xj =
{
n · k · p if l = j

0 otherwise.

and for all other agents j and items i the weight λi,j = 0.

I Lemma 30. The above reduction maps each instance of the Max Coverage problem to
a network of agents with linear function externalities in p-neighborhoods such that for the
value optMC of the optimal selection for the Max Coverage instance and optSW the social
welfare of the optimal item assignment it holds that optSW = k2np(1 + (p− 1)n) + p · optMC .
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Proof. (1) We first show that optSW ≥ k2np(1 + (p− 1)n) + p · optMC : W.l.o.g., we assume
that that an optimal coverage OptMC is given by {S1, . . . , Sk}. Consider the following
assignment A. For each 1 ≤ j ≤ k, the nodes xj , yj and {ehi,j : i ∈ D, 1 ≤ h < p} are
assigned the item Ej,j . If a node d ∈ D is covered by OptMC , i.e., it is contained in some
Sl ∈ OptMC , then d is assigned the item El,l (if there are several such Sl pick the one with
the lowest index). Otherwise, if d is not covered by OptMC then item E1,1 is assigned to
d. Now consider the social welfare of A. First of all, by construction, only the nodes in
X and D contribute social welfare. A node x ∈ X has a p-neighborhood of 1 + (p− 1) · n
many nodes, and all of his p-neighbors get the same item. Thus, x has a valuation of
n · k · p · (1 + (p− 1) ·n). As |X| = k the set X has a social welfare of n · k2 · p · (1 + (p− 1) ·n).
Now consider d ∈ D. If d is covered by an Sl ∈ OptMC , i.e., d ∈ El, then it was assigned
the item El,l. Moreover, El,l is also assigned to the nodes {ehd,l : 1 ≤ h < p} and yl which
are in the p-neighborhood of d. Thus each covered d ∈ D has valuation ≥ p and therefore
optSW ≥ k2np(1 + (p− 1)n) + p · optMC .

(2) It remains to show that optSW ≤ k2np(1 + (p− 1)n) + p · optMC : We first show that
in an optimal assignment OptSW each xl ∈ X must have valuation n · k · (1 + (p− 1) · n), i.e.,
xl is assigned to the one of the items {Ei,l : Ei ∈ S}, and {ehi,j : i ∈ D, 1 ≤ h < p} and yl
are assigned to the same item. Towards a contradiction assume that there is an assignment
A with one x ∈ X that has lower valuation. Then the social welfare of X in A is bounded
by nk2p(1 + (p− 1)n)− nkp. Each d ∈ D has a p-neighborhood of size k · p. Thus the social
welfare of D in A is bounded by n · k · p. We have that the social welfare of A is bounded
by nk2p(1 + (p− 1)n). But from (1) we know that optSW ≥ k2np(1 + (p− 1)n) + p · optMC

where optMC ≥ 1 for all none trivial instances. We obtain the desired contradiction. Thus
we know that in OptSW the social welfare of X is given by n · k2 · (1 + (p− 1) · n).

Now consider a i ∈ D. The p-neighborhood of i consists connected sets {ehi,j : 1 ≤
h ≤ p − 1} ∪ {yj}. By the above observation in optSW all nodes in such set are assigned
the same item but all sets are assigned different items (as they belong to different xj).
Hence for i ∈ D the valuation is either p if it gets an item Ei,l with d ∈ Ei and one
of its neighbor sets gets the same item. Otherwise d has valuation 0. We obtain that
optSW = k2np(1 + (p− 1)n) + p · |{d ∈ D : d has positive valuation in optSW }|. Finally, we
can construct an k-covering by choosing the sets Si corresponding to the items assigned
to X. By the construction, this k-covering covers all d ∈ D with positive valuation and
thus optMC ≥ |{d ∈ D : d has positive valuation in optSW }|. Hence we obtain optSW ≤
k2np(1 + (p− 1)n) + p · optMC .

J

By the above lemma, the presented reduction maps each Max Coverage instance to an
instance of our problem. Moreover it can be also performed in polynomial time and thus
Theorem 14 follows from the corresponding result for Max Coverage [9, 23].

J

H Generalization of Step-Function Externalities

We can generalize the result in Section 5 as follows (Recall the definitions from Appendix F).

I Definition 31. In an s-step externality function in a p-neighborhood for all j ∈ V , i ∈ I
and A : V → I it holds that uj(A, G) = λA(j),j · extA(j),j(|SpA(j),j(A, G)|) with extij(t) is 1
if t ≥ s and 0 otherwise.
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Note that we can assume p ≤ s as the p-hop neighborhood cannot be reached with fewer
than p nodes. We show next how to generalize the algorithm of the previous setting to
s-step externality functions in s neighborhoods. We leave it as an open question to give an
approximation algorithm for s-step externality functions in p-neighborhoods for arbitrary
p ≤ s. Moreover the algorithm can be also applied to scenarios where different nodes j
have different sj-step functions. Then the parameter s is set to the maximum of all sj .
The generalized algorithm works as follows: Analogous to triples in the previous section we
compute a maximal collection of mutually disjoint connected sets of size s+ 1 in the graph
and decompose the remaining graph into maximal collections of connected sets of size s, . . . , 1.
The definition of a consistent assignment carries directly over to this new decomposition of
the graph and Lemma 17 can be generalized as follows.

I Lemma 32. The social welfare from the optimal consistent assignment is at least 1
(s+1)s ·

Opt, where Opt is the maximum social welfare over all assignments under s-step function
externalities in a s-neighborhood.

Proof. Let A∗ be an assignment (not necessarily consistent) that gives maximum social
welfare. We convert it into a (random) consistent assignment A as follows. For each of the
connected components {j1, . . . , jl}, we pick one of the items A∗(j1), . . . ,A∗(jl) uniformly
at random, and assign that item to all the agents in the component. We claim that
E[uj(A)] ≥ ( 1

(s+1)s ) · uj(A∗) for all j ∈ V . To prove this claim, we consider two cases.

1. (j belongs to a component of size s+ 1): Consider a component {j, j2, . . . , js+1} which
has, besides j, s other nodes as its members. With probability at least 1/(s+ 1), all these
nodes are assigned item A∗(j) under A, and in this event we have uj(A) ≥ uj(A∗). It
follows that E[uj(A)] ≥ (1/(s+ 1)) · uj(A∗).

2. (j belongs to a component of size ≤ s): Consider a component P = {j, j2, . . . , jl} which
has, besides j, l−1 other nodes as its members. Let A∗(j) = i. As in Case 1, if uj(A∗) = 0,
then the claim is trivially true. Otherwise it must be the case that there exists a node j′
with A∗(j′) = i such that j′ is either a neighbor of j or a neighbor of one of the j2, . . . , jl.
By construction this agent j must be part of some component T of size s. Let E1 be the
event that all nodes in T are assigned item i under A. Similarly, let E2 be the event that
all the nodes in P get the same item i under A. Since these two events are mutually
independent, we have that P[E1 ∩ E2] ≥ (1/(s+ 1)) · (1/l) ≥ 1/((s+ 1)s). In the event
E1 ∩ E2, we have uj(A) = uj(A∗) and therefore that E[uj(A)] ≥ 1/((s+ 1)s) · uj(A∗).

Now, we take a sum of the inequalities E[uj(A)] ≥ ( 1
(s+1)s ) ·uj(A∗) over all agents j ∈ V ,

and by linearity of expectation infer that the expected social welfare under the consistent
assignment A is within a factor of 1/((s+ 1)s) of the optimal social welfare. This concludes
the proof of the lemma. J

The remaining arguments carry through without any changes.

I Theorem 33. We have a polynomial-time 1
(s+1)s · (1− 1/e)-approximation algorithm for

maximizing social welfare under s-step function externalities in a s-neighborhood.

For s = 1 this leads to a 1
2 · (1− 1/e)-approximation algorithm, improving the 1

16 · (1− 1/e)-
approximation algorithm of [6].
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Figure 2 An illustration of the reduction in the proof of Theorem 22.

I Hardness of Approximation

Theorem 22 For any ε > 0 the problem of maximizing social welfare under arbitrary
s-step function externalities is not approximable within O(n1/4−ε) unless NP = P, and not
approximable within O(n1/2−ε) unless NP = ZPP.

Proof. The proof is by an approximation ratio preserving reduction from the Max Inde-
pendent Set problem defined below.

I Definition 34. The input to the Max Independent Set problem is a (undirected) graph
G = (V,E). The goal is to find an independent set, i.e. a set S ⊆ V such that no two vertices
in S are incident to the same edge, of maximal cardinality.

Now consider the following reduction from the Max Independent Set instance G = (V,E)
to our problem. We first compute the degree δj of each node j ∈ V . We then construct the
graph G̃ = (Ṽ , Ẽ) as follows:

Ṽ = V ∪ {(v, v′), (v′, v) : (v, v′) ∈ E}
Ẽ = {(v, (v, v′)), ((v, v′), (v′, v))((v′, v), v′) : (v, v′) ∈ E}

The set of items is given by I = {ij : j ∈ V }. and the valuations uj for j ∈ V are given by:

uj(A, G̃) =
{

1 if A(j) = ij and |N1
j (i,A, G̃) ∪N2

j (i,A, G̃)| ≥ 2δj
0 otherwise

That is each agent j ∈ V just wants one item, the item ij and only if at least 2δj 1- or 2-hop
neighbors in G̃ have the same product. Also for each item there is just one agent that can
get revenue from it. For nodes j ∈ Ṽ \ v the valuation uj(A, G̃) is always zero. Moreover, by
construction each node j ∈ V has exactly 2δj 1- and 2-hop neighbors in G̃, i.e. for an agent
j to get a positive externality all his 1- and 2-hop neighbors have to get the same item. The
construction is illustrated in Figure 2.

I Lemma 35. The above reduction maps each instance of Max Independent Set to a
network of agents with step function externalities in 2-neighborhoods such that the cardinality
of the maximum independent set is equal to the social welfare of the optimal item assignment.

Proof. We will show that (a) given an independent set of size k we can construct an item
assignment with social welfare ≥ k and (b) given an item assignment with social welfare k
we can construct an independent set of size ≥ k.
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(a) Given an independent set S ⊆ V we define AS as follows. Each j ∈ S and all of its
1- or 2-hop neighbors get item ij assigned. A is well-defined as nodes in j, j′ ∈ S are not
adjacent in G and thus have a distance of at least 6 in G. Hence no node of Ṽ has more
than one item assigned. Now, by construction, for each node j ∈ V we have uj(A, G̃) = 1
and thus the social welfare is at least |V | = k.

(b) Given an item assignment A we social welfare k, we consider the set S of nodes j ∈ Ṽ
that have positive utility, i.e. S = {j ∈ V : uj(A, G̃) = 1}. We used that only nodes in V can
have positive utility and that the utility of a node is either 0 or 1. As the social welfare is
the sum over the utilities we have that |S| = k. It remains to show that S is an independent
set. Suppose that not, then there are j, j ∈ S with (j, j′) ∈ E. But that means that in G̃
the nodes (j, j′) and (j′, j) are neighbors of both j and j′. As j has utility 1 it must be
assigned item ij and as its threshold is 2 δj also all its neighbors must be assigned item ij ,
in particular (j, j′),(j′, j) must be assigned item ij . A symmetric argument for j′ results
that (j, j′),(j′, j) must be assigned item ij′ . As A can only assign one item to each node this
yields or desired contradiction. Hence S is an independent set of size k. J

By the above lemma, the presented reduction is approximation ratio preserving and, it
can be also performed in polynomial time. We know that Max Independent Set is not
approximable within |V |1/2−ε unless P = NP [18] and not approximable within |V |1−ε unless
ZPP = NP [18]. By the above we get the same ratio for our problem but in terms of |V | and
not |Ṽ |. Now as n = |Ṽ | = |V |+ 2|E| ≤ 3|V |2 we get that our problem is not approximable
within O(n1/4−ε), and O(n1/2−ε) respectively. J

Here we restate and prove Theorem 23 for the more general s-step externality functions
in a p-neighborhood (for the formal definitions see Appendix H). This results immediately
imply the statement in Section 5 as in 2-step externality functions in a 2-neighborhood
correspond to the step function externalities from Definition 3.
Theorem 23 (Part 1). The problem of maximizing social welfare under s-step function
externalities in a p-neighborhood is APX-hard (even for s = p), that is there is no polynomial-
time 1− 1

e + ε-approximation algorithm (unless P = NP).

Proof. The proof is by an approximation ratio preserving reduction from the Max Coverage
problem defined below.

I Definition 36. The input to the Max Coverage problem is a set of domain elements
D = {1, 2, . . . , n}, together with non-negative integer weights w1, . . . , wn, a collection S =
{E1, . . . , Em} of subsets of D and a positive integer k. The goal is to find a collection S ′ ⊆ S
of cardinality k maximizing

∑
j∈
⋃

E∈S′
E wj .

Now consider the following reduction from instance (D,S, k) of the Max Coverage
problem to our problem. We constructs a bipartite graph G with node set V and an item set
I with I = S. We build G as follows: For each element j ∈ D we create one node j in V and
s− 1 nodes gtj for 1 ≤ t ≤ s− 1. Additionally V contains k nodes el with 1 ≤ l ≤ k. There
is an edge in G from each node j to every node gtj for all 1 ≤ t ≤ s− 1. Additionally there is
an edge from each node j to every node el for 1 ≤ l ≤ k. Finally the intrinsic values of an
agent j ∈ D for getting item E ∈ S are given by

λE,j =
{
wj if j ∈ E
0 otherwise.
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Figure 3 An illustration of the reduction for 2-step functions and (D, S, k) =
({1, 2, 3, 4, 5}, {{1, 2}, {2, 3}, {3, 4}, {4, 5}}, 2). Notice that the graph does not depend on S.

while the intrinsic values of an agent j 6∈ D are given by λE,j = 0 for all E. The valuations of
the agents for a given assignment are then given by uj(A) = λA(j),j · extA(j),j(|SpA(j),j(A)|),
where exti,j(t) are s-step function externalities.

I Lemma 37. The above reduction maps each instance of the Max Coverage problem to
a network of agents with s-step function externalities in p-neighborhoods such that the value
of the optimal selection for the Max Coverage problem is equal to the social welfare of the
optimal item assignment.

Proof. We will show that (a) given a solution for the Max Coverage instance with valueW
we can construct an assignment for the s-step function externalities in p-neighborhoods with
social welfare at least W and (b) given an assignment for the s-step function externalities in
p-neighborhoods with social welfare W we can construct a solution for the Max Coverage
instance with value at least W . The lemma then follows.

(a) Consider a feasible solution S ′ for the Max Coverage instance with value W =∑
j∈
⋃

E∈S′
E wj . W.l.o.g. we can that assume S ′ = {E1, . . . , Ek}. One can construct an item

assignment to the nodes as follows: For each 1 ≤ l ≤ k assign item El to node el and for each
j ∈

⋃
E∈S′ E pick one El ∈ S ′ such that j ∈ E and assign El to j and gtj for 1 ≤ t ≤ s− 1.

Finally, assign arbitrary items to the remaining nodes. It remains to show that the social
welfare of this assignment is at least W . To this end consider an arbitrary j ∈

⋃
E∈S′ E.

For this j the corresponding node has utility wj as there are at least s neighbors in his
p-neighborhood having the same item. This is because there is a node el such that (i) j ∈ El
and (ii) el, j, and all gtj for 1 ≤ t ≤ s− 1 get the same item El. By construction of the graph
j is connected to all these s nodes by an edge. As this holds for each j ∈

⋃
E∈S′ E the social

welfare of the given assignment is at least W .
(b) Given an item assignment A one can construct a feasible solution for the Max

Coverage instance as follows. Consider the nodes e1, . . . ek and the collection S ′ of assigned
items {Ee1 , . . . , Eek

}. Now if we consider the items Eej again as subsets of D we have that
S ′ is a feasible solution for the Max Coverage instance (as |S ′| ≤ k). Now let D∗ be the
set of nodes j in the graph with j ∈ D such that j contributes a positive amount to the
social welfare in A. Each node j ∈ D∗ contributes exactly wj to the social welfare. For
each j ∈ D∗ there is at least one node el with the same item El s.t. j ∈ El, as j has only
s − 1 neighbors that are not el nodes and none of these neighbors has further edges. By
construction El ∈ S ′ and thus j is covered by S ′ and contributes wj to the value of S ′. As
this holds for each j ∈ D∗ the value achieved by the feasible solution S ′ is at least as high as
the social welfare of the item assignment A. J
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So, by the above lemma, the presented reduction is approximation ratio preserving and, as it
can be also performed in polynomial time, Theorem 23 follows from the corresponding result
for Max Coverage [9, 23]. J

Notice that the above reduction introduces an arbitrary large number m of items. So the
critical reader might ask whether the problem admits a PTAS if one bounds the number of
items. The answer to this question is no as we can show that the problem is still APX-hard
if we just consider two items, however for a smaller constant. So Part 2 of Theorem 23 is by
the following theorem.

I Theorem 38. Maximizing social welfare with s-step function externalities in a
p-neighborhood is APX-hard even for the case with 2 items, i.e., it is NP-hard to approximate
better than a factor of 23

24 .

For showing APX-hardness we make use of a variant of the Max-Sat problem, where each
clause contains either only positive literals or only negative literals. We first have to show
that this variant is still APX-hard, using a reduction from Max3-Sat which is well-known
to be APX-hard.

I Proposition 39. Monotone Max-Sat is APX-hard, i.e., it is NP-hard to approximate it
better than a factor of 23

24 .

Proof. We show the assertion by a reduction from Max3-Sat for which it is well-known
that approximations better than 7/8 are NP-hard [19]. To this end we consider the following
reduction from [13] which shows the decision version of monotone SAT to be NP-hard.

Assume we are given an instance of Max3-Sat; i.e., a CNF formula ϕ =
∧
γ∈Γ

∨
l∈γ l

with Γ being a collection of clauses, where a clause γ is a set of literals of X.
For each γ ∈ Γ let γp be the set of positive literals in γ and let γn be the set of negative

literals in γ. We now construct an instance ψ =
∧
γ∈Γ̂ γ of Monotone Max-Sat as follows.

For each γ ∈ Γ we have γp ∪ {zγ} ∈ Γ̂ and γn ∪ {¬zγ} ∈ Γ̂, where zγ is a new variable.
Clearly each of these clauses contains either only positive literals or only negative literals.
Further let m be the number of clauses in ϕ and M the maximal number of simultaneously
satisfied clauses of ϕ.
Claim: The maximal number of simultaneously satisfied clauses in ψ is M +m.

To show the claim let us first assume we have a truth assignment τ satisfying M clauses
of ϕ. We can extend τ to a truth assignment τ ′ for the Monotone Max-Sat as follows. If
τ satisfies a positive literal of clause γ then set τ ′(zγ) = false otherwise to τ ′(zγ) = true.
Now we have that if τ satisfies clause γ then both corresponding clauses in ψ are satisfied by
τ ′ and if γ is not satisfied by τ then only the positive clause γp ∪ {zγ} in ψ is satisfied by τ ′.
Thus we have that τ ′ satisfies M +m clauses of ψ.

Now let us assume we have an assignment τ ′ for ψ satisfying M ′ clauses. Now consider
the assignment τ for variables X which is given by τ(x) = τ ′(x) for all x ∈ X, i.e., τ is the
projection of τ ′ on X. Consider a clause γ ∈ Γ where both corresponding clauses in ψ are
true. At most one of these clauses can be satisfied by the variable zγ and thus γ must be
satisfied by τ . Finally, observe that for at leastM ′−m many clauses of ϕ both corresponding
clauses in ψ are satisfied and thus τ satisfies at least M ′ −m clauses of ϕ, which concludes
the proof of the claim.

We next show that if we could ( 23
24 + ε)-approximate Monotone Max-Sat then we could

also (7/8 + ε)-approximate Max3-Sat. Given a Max3-Sat instance ϕ and ψ constructed
from ϕ as above, letM be the maximal number of simultaneously satisfied clauses of ϕ, and let
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M ′ be the maximal number of simultaneously satisfied clauses of ψ. Towards a contradiction
assume a ( 23

24 + ε)-approximation algorithm for Monotone Max-Sat and consider a ( 23
24 + ε)

approximation A′ that satisfies a′ many clauses of ψ. Then, by the above observation, we
can construct in polynomial time an assignment for ϕ that satisfies a′ −m many clauses.

a′ −m ≥ (23
24 + ε)M ′ −m = (23

24 + ε)(M +m)−m

≥ (23
24 + ε)M − ( 1

24 − ε)m

≥ (23
24 + ε)M − ( 1

24 − ε)2M = (7
8 + 3ε) ·M

For the last inequality we used the fact that in each CNF-formula at least a half of the
clauses can be satisfied, i.e., m ≤ 2M . By the above, any ( 23

24 + ε)-approximation algorithm
for Monotone Max-Sat results in a ( 7

8 + 3ε)-approximation of the Max3-Sat instance, a
contradiction. J

Proof of Theorem 38. We show hardness by the following reduction from monotone Max3-
Sat. Assume we are given an instance of monotone Max3-Sat; i.e., a CNF formula
ϕ =

∧
γ∈Γ∪Γ̄ γ with Γ being a set of clauses over variables X containing only positive literals

and Γ̄ being a set of clauses over variables X containing only negative literals. We construct
the following network. The agents are given by V = X ∪ Γ ∪ Γ̄ ∪

⋃s−1
i=1 Γi ∪

⋃s−1
i=1 Γ̄i, where

Γi and Γ̄i are copies of Γ and Γ̄, and there are only two items T and F . The (undirected)
edges of G are given by (i) (γ, γi) for each γ ∈ Γ ∪ Γ̄ and copies γi ∈ Γi ∪ Γ̄i, and (ii) (x, γ)
for each γ and variable x with x ∈ γ or ¬x ∈ γ. Next consider the intrinsic values λi,j in the
valuation functions. For each γ ∈ Γ set λT,γ = 1, for each γ ∈ Γ̄ set λF,γ = 1, and λi,j = 0
for all other combinations of i ∈ {T, F} and j ∈ V . The valuations of the agents for a given
assignment are then given by uj(A) = λA(j),j · extA(j),j(|SpA(j),j(A)|), where exti,j(A) are
s-step function externalities.

Next we show that the maximal number of simultaneously satisfied clauses of ϕ is exactly
the maximal social welfare one can obtain in the network.
1. Consider a truth assignment τ for ϕ and construct the following item assignment. (i) Agent

x ∈ X gets item T if τ(x) = true and x ∈ X gets item F if τ(x) = false. (ii) For γ ∈ Γ
agent γ and γ’s copies γi get item T , and for γ ∈ Γ̄ agents γ and γ’s copies γi get item
F . Consider a clause γ ∈ Γ satisfied by τ via literal x. Then the valuation of agent γ
is one as he has s neighbors, γ1, . . . , γs−1 and x, that also get item T . Now consider a
clause γ ∈ Γ̄ satisfied by τ via literal ¬x. Then the valuation of agent γ is one as he has
s neighbors, γ1, . . . , γs−1 and x, that also get item F . Thus for each satisfied clause we
achieve a valuation of one.

2. Consider an item assignment and the truth assignment τ defined by τ(x) = true iff agent
x gets item T . Notice that we can only achieve positive valuation from agents γ ∈ Γ ∪ Γ̄.
First consider a agent γ ∈ Γ that contributes to the social welfare. Then, as γ has only
s − 1 neighbors not in X and those neighbors have no neighbors except γ, there has
to exist an x ∈ γ such that agent x gets item T . By definition of τ we then have that
τ satisfies the clause γ. Second consider an agent γ ∈ Γ̄ that contributes to the social
welfare. Then there has to exist an x with ¬x ∈ γ such that agent x gets item F . Again
by the definition of τ we then have that τ satisfies the clause γ. Thus, we have that for
each agent that contributes to the social welfare we satisfy one clause and as each of
these agent contributes exactly 1 the claim follows.
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x1 x2 x3 x4

γ1 = (x1 ∨ x2 ∨ x3) γ1
1 γ2 = (¬x2 ∨ ¬x3 ∨ ¬x4) γ1

2

Figure 4 An illustration of the reduction for (x1 ∨ x2 ∨ x3) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4) and s = 2.

Now as we have a one-to-one correspondence between the number of satisfied clauses and
the social welfare, not only NP-hardness but also hardness of approximation follows from the
corresponding result for monotone Max3-Sat. J
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