
Determining Relative Spatial Alignment based on Shared
Acceleration Time Series

Rene Mayrhofer
JRC u’smile, University of
Applied Sciences Upper

Austria
Softwarepark 11, 4232

Hagenberg, Austria
rene.mayrhofer@fh-

hagenberg.at

Helmut Hlavacs
University of Vienna, Faculty

of Computer Science
Währinger Straße 29, 1090

Wien, Austria
helmut.hlavacs@univie.ac.at

Rainhard Dieter Findling
JRC u’smile, University of
Applied Sciences Upper

Austria
Softwarepark 11, 4232

Hagenberg, Austria
rainhard.findling@fh-

hagenberg.at

ABSTRACT
Detecting if two or multiple devices are moved together is
an interesting problem for different applications. However,
these devices may be aligned arbitrarily with regards to each
other, and the three dimensions sampled by their respective
local accelerometers can therefore not be directly compared.
The typical approach is to ignore all angular components
and only compare overall acceleration magnitudes — with
the obvious disadvantage of discarding potentially useful in-
formation. In this paper, we contribute a method to ana-
lytically determine relative spatial alignment of two devices
based on their acceleration time series. Our method uses
quaternions to compute the optimal rotation with regards to
minimizing the mean squared error. The implication is that
the reference system of one device can be (locally and inde-
pendently) aligned with the other, and thus that all three
dimensions can consequently be compared for more accu-
rate classification. Based on real-world experimental data
from smart phones and smart watches shaken together, we
demonstrate the effectiveness of our method and show an im-
provement in terms of various signal distance metrics when
comparing the three axes before and after derotation.

Categories and Subject Descriptors
H.5.m. [Information Interfaces and Presentation (e.g.
HCI)]: Miscellaneous

Keywords
Accelerometer time series; spatial alignment; quaternion ro-
tation

1. INTRODUCTION
Common movement can be detected from sufficiently sim-

ilar acceleration sensor data and has interesting applica-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MoMM2014, 8-10 December, 2014, Kaohsiung, Taiwan.
Copyright 2014 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

tions in mobile and ubiquitous computing. This includes
determining if devices are carried by the same user [13] or
transported on the same vehicle [15] as well as an interac-
tion method for securely pairing handheld devices[17, 16, 2,
10]. However, such common movement is inherently three-
dimensional. In the general case, the relative alignment of
two (or multiple) accelerometers embedded in different de-
vices is unknown: similar devices may be rotated arbitrarily
with regards to each other and different devices may embed
their accelerometers with arbitrary orientations. Therefore,
the three dimensions sampled independently will typically
not be aligned and are therefore not directly comparable.

A standard approach to deal with this issue is to discard
all angular (i.e. directional) information from the 3D vectors
and only use their magnitude (i.e. the length of each vector
computed in an Euclidean space). This reduces three dimen-
sions to a single one that is invariant concerning orientation.
Even when two co-located accelerometers are oriented differ-
ently, they will experience similar overall acceleration mag-
nitudes. However, this simple approach discards potentially
valuable information that could be helpful in determining if
accelerations are sufficiently similar to each other or not (cf.
Section 3).

In this paper, we contribute a method to explicitly de-
termine the relative alignment of two mobile devices with
regards to each other based on their recorded acceleration
time series. The underlying assumption is that both de-
vices are moved (relatively closely) together and therefore
share sensor readings that are only offset by 3D rotation
but otherwise similar. Specifically, we assume that both de-
vices experienced similar translation and rotation with re-
gards to a common reference system. Our approach uses
quaternions (Section 4) to analytically compute optimal ro-
tation between both device reference systems (Section 5)
and, based on real-world sensor data, works even in the
presence of small distances between the devices and typi-
cal sensor noise (Section 6).

2. RELATED WORK
Known applications of common movement presented in

the context of ubiquitous computing (e.g. [13, 15, 16, 17,
2, 10, 8]) have so far taken the simple approach and dis-
carded angular information. However, we suggest that all
of these could benefit to various degrees from taking this
information into account. Especially when used for securing

device communication [16, 17, 2, 8] would this be valuable
— any information that is shared between the legitimate
devices but not directly available to a potential attacker in-
creases the latter’s entropy of the resultant cryptographic
key and consequently improves the security level. In [12],
position-invariant heuristics for dealing with sensor displace-
ment were suggested to improve movement recognition with
a single sensor (accelerometer and/or gyroscope). Our ap-
proach complements this work when multiple sensors are in
use, e.g. to detect if a mobile phone and a wrist watch de-
scribe the same movement and are therefore on the same
hand.

Quaternions have been used to minimize the root-mean-
squared deviation (RMSD) between solid bodies [5]. We
build upon this work by translating it from body rotation to
determining the relative alignment of 3D acceleration time
series. Another related use of quaternions has been pre-
sented for representing orientations in hand and head move-
ment [3].

3. PROBLEM OVERVIEW
Determining if two (or multiple) devices are moved to-

gether based on their respective local accelerations can be
seen as a classification problem. When they are moved to-
gether, sensor noise and systematic error will still lead to
(slightly) different sensor time series. When they are moved
separately (but for example with similar frequency and am-
plitude components), they might still be “close” for some
similarity measure (cf. [16] for experimental “positive” and
“negative” data). The systematic error is intrinsic: even if
the devices are held perfectly together and do not move with
regards to each other and the sensors are perfect and do not
exhibit any sampling noise at all, there will still be differ-
ences in acceleration time series whenever rotation is part of
the shared movement. This is because of different centers,
i.e., the physical placement of the respective accelerometers.
Think of one accelerometer on the outer curve and the other
on the inner curve of a common rotation; they move together
without relative movement, but take different paths in 3D
that consequently lead to different local accelerations.

This issue is independent of the chosen similarity mea-
sure and also occurs when only using the magnitude. In
fact, discarding angular information makes it even harder
to determine that the devices were moved together because
locally measured rotational components would in this case
be similar, while the magnitudes differ. Recently suggested
heuristics explicitly discard accelerometer time series in pe-
riods of large rotational movement [12]. We expect clas-
sification accuracy to improve noticeably when comparing
three dimensions instead of one.

Our approach to retain this 3D information is for devices
to – locally and independently of each other – align the two
coordinate systems for the subsequent comparison. We ana-
lytically determine the “optimal” rotation between these co-
ordinate systems given only the two 3D time series (which
are for example exchanged securely using an interlock proto-
col and session keys [17, 16]) and the assumption of shared
movement. In the scope of this paper, we define optimal to
minimize the mean squared error between all of the sample
points. One method to analytically determine the relative
orientation is to use quaternions.

4. QUATERNIONS AND ROTATIONS
It has been know for a long time that quaternions can

be used to represent rotations in a three dimensional space.
Furthermore, they possess favorable properties like avoiding
so-called“gimbal locks”or enabling easy interpolation, some-
thing that other approaches like Euler angles and matrix-
based rotation do not exhibit. It is thus straight forward
to use quaternions to find the optimal rotation between two
sets of vectors.

In the following, only the most important aspects of quater-
nions are presented, and we follow the notation of [5]. More
details about quaternions can be found, e.g. in [11]. A
quaternion is a tuple q = (q0,q), with q = (q1, q2, q3)′.
Note that like in Matlab/Octave the operator “ ′ ” denotes
transposition, and all vectors without it are column vectors.
Quaternions are essentially a generalization of complex num-
bers, i.e. a quaternion consists of a real part (q0) and three
imaginary parts (q1, q2, q3). In the area of three dimensional
spaces, this imaginary part may take over the part of a 3D-
vector. Since quaternions form up an algebraic structure
called ring, they allow the algebraic operations addition and
multiplication, which for a = (a0,a) and b = (b0,b) are
defined as follows:

a+ b = (a0 + b0,a + b)

ab = (a0b0 − a · a, a0b + b0a + a× b). (1)

Here · and × denote the standard dot and cross products
known from Euclidean vector spaces. Interestingly, multi-
plication is associative, but not commutative, i.e. in general
ab 6= ba. The Matlab/Octave function shown in Listing 1
accepts two quaternions p and q, both represented by 4D-
vectors, and computes pq.

Listing 1: Computing pq for two quaternions p and
q. Note that the operation is not commutative.

function pq = qmul (p , q)
a0 = p (1) ; a = p (2 : 4) ;
b0 = q (1) ; b = q (2 : 4) ;
acb = a0∗b + b0∗a + cross (a , b) ;
pq = [a0∗b0−dot (a , b) ; a0∗b + b0∗a + cross

(a , b)] ;
end

Like for complex numbers, a quaternion q = (q0,q) does
have a conjugate quaternion qc which is defined by qc =
(q0,−q). The conjugate now enables the computation of
the norm |q| of a quaternion, which is defined by |q|2 = qqc.
Note that quaternions u with length |u|2 = uuc = 1 are
called unit quaternions.

An important subclass of quaternions is given by pure
quaternions q = (0,q), which are defined to have a zero real
part. For pure quaternions, the operations (1) are simplified
accordingly.

By using the rules of (1), quaternions now can be used
for computing rotations in a 3-dimensional Euclidean space.
Each vector r = (r1, r2, r3)′ of the space is represented by a
pure quaternion r = (0, r). Rotations in the space then can
be characterized by a unit quaternion u by computing

r̂ = uruc. (2)

Note that r̂ = (0, r̂) is again a pure quaternion, whose vector
part r̂ equals r rotated by some angle φ and using the rota-

tion axis u, i.e., the vector part of u. The Matlab/Octave
function shown in Listing 2 rotates a vector p = (0,p) by
the quaternion u.

Listing 2: Rotating vector p (p = (0,p)′) by a rota-
tion represented by a unit quaternion u. The result
is again a pure quaternion holding the rotated vector
in its vector part.

function upuc = rotquat (p , u)
uc = [u (1) ; −u (2 : 4)] ;
up = qmul (u , p) ;
upuc = qmul (up , uc) ;

end

Given a desired rotation axis a = (a1, a2, a3)′ and a rota-
tion angle φ, the quaternion u representing this rotation is
constructed by

u = (cos
φ

2
, sin

φ

2

a

|a|). (3)

Thus, given this quaternion, using (2) rotates any desired
vector r by angle φ and axis a. The Matlab/Octave function
shown in Listing 3 constructs a rotation quaternion u from
a rotation angle φ and a 3D-vector describing the rotation
axis.

Listing 3: Computing a rotation quaternion u.

function u = quat (phi , axis)
u = [cos (phi /2) ; sin (phi /2) ∗normc ([axis

(1) ; axis (2) ; axis (3)])] ;
end

5. THE OPTIMAL ROTATION
In linear algebra, rotations are represented by orthonor-

mal square matrices U , rotating a vector x is then achieved
by multiplying it from the right: x̂ = Ux. Given two sets of
vectors {xk} and {yk} in [5] it has been shown how to com-
pute an optimal rotation U (through the use of quaternions)
such that the overall error

E :=
1

N

N∑
k=1

|Uxk − yk|2 (4)

is minimized. The respective Matlab/Octave function is
shown in Listing 4.

Centering both sets by computing the mean vectors x̄ and
ȳ of each set, and then subtracting x̄ from each vector of
{xk} and ȳ from each vector of {yk} will give lower errors
but is not necessary for the method to work. Specifically for
acceleration time series, subtracting the mean (in practice
a moving average computed over sliding time windows) re-
moves the static offset caused by gravity and has previously
also been found advantageous for comparing magnitudes (cf.
[17, 16]). Like in [5] it is furthermore assumed that X and
Y are 3 × N matrices, whose columns hold the vectors xk

and yk.

Listing 4: Computing the optimal rotation u given
vectors xk and yk.

function [E,P] = residuum (X, Y)
%co r r e l a t i o n matrix
R=X∗(Y’) ;
%matrix ho l d ing a l l r o t a t i o n s
F=[R(1 , 1)+R(2 ,2)+R(3 ,3) , R(2 , 3)−R(3 ,2) , R

(3 , 1)−R(1 ,3) , R(1 , 2)−R(2 ,1) ;
R(2 , 3)−R(3 ,2) , R(1 , 1)−R(2 ,2)−R(3 ,3) ,

R(1 , 2)+R(2 , 1) , R(1 , 3)+R(3 ,1) ;
R(3 , 1)−R(1 ,3) , R(1 , 2)+R(2 ,1) , −R

(1 ,1)+R(2 ,2)−R(3 ,3) , R(2 , 3)+R
(3 ,2) ;

R(1 , 2)−R(2 ,1) , R(1 , 3)+R(3 ,1) , R(2 , 3)
+R(3 ,2) , −R(1 ,1)−R(2 ,2)+R(3 , 3)
] ;

%compute e i g env e c t o r evvmax o f l a r g e s t
e i g enva l u e ev

[V,D] = eig (F) ;
ev = D(1 , 1) ; evvmax = V(: , 1) ; %f i r s t ev

and evvmax
for i =2:4

i f D(i , i)>ev
ev = D(i , i) ; evvmax = V(: , i) ;

%remember l a r g e s t ev and
evvmax

end
end
[E,P]= r e s e r (X,Y, evvmax) ; %compute error

and opt imal P=UX
end

Listing 5: Computing the optimal predictor P and
the error E.

function [E,P] = r e s e r (X, Y, u)
[n ,m] = s ize (X) ;
E=0; P= [] ;
for k=1:m

y = rotquat ([0 ; X(k , :)] , u) ; %
ro t a t e the x v e c t o r s

P=[P y (2 : 4) ’] ; %s to r e in P=UX
E = E + norm(Y(: , k)˜−˜P(: , k)) $ˆ\

wedge$2 ; %sum of norms o f
d i f f e r e n c e s

end
E = E/m;

end

The Matlab/Octave function reser shown in Table 5 shows
how to compute the error E given by (4) and the optimal
predictor P = UX. Note that using the largest eigenvalue of
the matrix F directly, as proposed in [5], frequently results
in complex values due to roundoff errors and negative values
inside the root operation (see definition of eq in [5]), which of
course mathematically is impossible. Thus we recommend
to directly compute E by using (4).

6. EVALUATION
To evaluate our approach of determining the spatial align-

ment of 3D acceleration sensor and derotating time series
before doing comparisons we apply it to real world accelera-
tion data. We use acceleration time series recorded pairwise
by shaking two 3D accelerometers together and estimate if
two devices were shaken together based on various similar-
ity measures on their time series. In order to quantify the
gain of derotating time series before comparing them we
separately compare pairwise time series without and with
derotation. Similarity between individual axes of two 3D
accelerometers strongly depends on the spatial alignment of
the accelerometers — therefore, comparing the original (ar-
bitrarily aligned) axes directly with each other cannot be
expected to yield useful results. Consequently, when not
derotating time series, we apply the well known practice
of computing and comparing the magnitude time series in-
stead of utilizing individual axes. Before calculating these
magnitudes we compensate for gravity by normalizing time
series and subtracting their mean (to discard the influence
of gravity) for each axis and device. To demonstrate that
derotating time series is possible even with short recordings,
we limit all time series to a duration of 2 s, which seems a
compromise between distinguishability and usability for the
user-mediated device pairing problem (cf. [17, 16].

To compare two acceleration time series we utilize well
known approaches – indicating either the amount of diver-
gence (error) or similarity. As distance metrics indicating
error we use: root mean squared error (RMSE), mean abso-
lute deviation (MAE) and median absolute deviation (ME-
DIAN). As metrics indicating similarity we use correlation
coefficients by Pearson (Product-Moment Correlation Coef-
ficient [18]), Spearman (Rank Correlation Coefficient [19])
and Kendall (Tau Rank Correlation Coefficient [9]) as well
as magnitude squared coherence, which has been used fre-
quently on comparing acceleration time series in previous re-
search [1, 4, 6, 7, 14, 17]. For coherence we apply parametriza-
tion as stated by Mayrhofer and Gellersen [17]. We expect
coherence – representing the most sophisticated amongst the
selected approaches – to yield better results than correlation
coefficients, which we further expect to yield better results
than the selected error based metrics.

6.1 Evaluation data
As source of acceleration time series we use the u’smile

ShakeUnlock database1 [7]. It contains pairwise 3D acceler-
ation time series of two devices shaken together: a mobile
phone held in the hand and a watch strapped to the wrist
(Figure 1), shaken for about 10 s. In total, the database
contains 29 participants shaking two devices 20 times, which
results in 580 records of each two 3D acceleration time se-
ries. Acceleration has been recorded with 100 Hz across all
devices. As we limit time series to a duration of 2 s we there-
fore only utilize 200 values per time series for comparison.

6.2 Time series derotation example
Figure 2 shows two sample magnitude time series from

the u’smile ShakeUnlock database. The samples were orig-
inated by two devices actually shaken together. Axes have
been gravity adjusted before calculating the magnitudes,

1Evaluation data fetched from http://usmile.at/
downloads

(a) Front side (b) Rear side

Figure 1: Acceleration time series recording setup
with the u’smile ShakeUnlock database [7].

and the time series have been limited to a duration of 2 s.
Although magnitudes are not equal, their similarity is obvi-
ous: phasing is similar, though overall the amplitude seems
to be higher for device 2.

Figure 2: Sample acceleration time series magni-
tudes of device 1 and 2.

Looking at time series of individual axes for the same
samples, similarity is not as obvious anymore (Figure 3).
Although acceleration phasings and amplitudes are similar
for axis 1, for axis 2 only phasings are obviously similar –
for axis 3 there is no obviously visible similarity evident.
After applying derotation (by rotating the 3D acceleration
time series of device 1 according to the spatial alignment of
device 2) similarity is obvious again for all axes.

Table 1 provides previously stated metrics for these two
sample time series – for comparing magnitudes and indi-
vidual axes, without and with applying derotation. As ex-
pected, comparing not-rotated time series of individual axes
causes highest errors/least similarities. Comparing mag-
nitudes causes smaller errors/higher similarities. Overall,
smallest errors/highest similarities were achieved by com-
paring derotated, individual axes.

http://usmile.at/downloads
http://usmile.at/downloads

(a) Axis 1 without derotation (b) Axis 1 with derotation

(c) Axis 2 without derotation (d) Axis 2 with derotation

(e) Axis 3 without derotation (f) Axis 3 with derotation

Figure 3: Sample 3D acceleration time series axes without (a, c, e) and with derotation (b, d, f).

Without derotation With derotation
Metric Mag. A1 A2 A3 A1 A2 A3
RMSE 5.65 4.25 6.71 8.39 3.24 4.16 4.49
MAE 4.44 3.23 5.69 7.34 2.28 3.52 3.67
MEDIAN 3.88 2.71 5.15 7.71 1.38 3.56 3.24
Pearson 0.56 0.87 0.87 -0.57 0.77 0.91 0.74
Kendall 0.44 0.76 0.69 -0.49 0.68 0.77 0.60
Spearman 0.61 0.92 0.88 -0.68 0.86 0.92 0.80
Coherence 0.80 0.61 0.56 0.60 0.63 0.65 0.64

Table 1: Similarity metrics of sample acceleration
time series, for magnitudes (Mag.) and individual
axes (A1-A3), without and with derotating axes be-
fore comparison.

6.3 Experimental setup
As the effect of increasing similarity between two 3D time

series applies for correlated time series (devices shaken to-
gether) as well as for uncorrelated time series (devices not
shaken together) an evaluation must include both correlated
and uncorrelated time series. For this reason we determine
if devices were shaken together by comparing all possible
combinations of acceleration time series from the database.
Each comparison results in a single, scalar metric value s.
Applying a threshold t so that min(s) ≤ t ≤ max(s) to s
we obtain the true match rate (TMR, rate of devices cor-
rectly being identified as shaken together) and the true non
match rate (TNMR, rate of devices correctly being identified
as not shaken together). The false match rate (FMR, rate
of devices incorrectly being identified as shaken together)
is the inverse of the TNMR. For error based metric values
(RMSE, MAE, MEDIAN), if s < t time series are identified
as shaken together – if s ≥ t time series are identified as not
shaken together. Respectively, for similarity based metric
values (correlation coefficient, coherence), if s < t time se-
ries are identified as not shaken together – if s ≥ t time series
are identified as shaken together. Comparison with ground
truth (if the two time series have been recorded from devices
actually shaken together) originates the TMR and TNMR
(resp. FMR) used in the receiver operating characteristic
(ROC) curves. To obtain the TMR we perform a pairwise
comparison of all 580 pairs of acceleration time series from
the database. To obtain the TNMR (resp. FMR) we use
all 1160·1159

2
= 672220 other possible pairwise comparisons

of time series2.

6.4 Results
Evaluation results clearly show that derotating and com-

paring individual axes of acceleration time series (Figure 4(a))
yields better results over computing and comparing their
magnitudes (Figure 4(b)). This supports our hypothesis
of derotating pairwise 3D acceleration time series before
doing comparisons improving comparison results. Table 2
states the equal error rate EER = 1 − TMR ' 1 − TNMR
and the square root of the minimum squared error rate√

MSER =
√

min((1− TMR)2 + (1− TNMR)2) for com-
paring time series based on magnitudes and on derotated,
individual axes for all metrics3.

2Assuming that comparing time series is commutative,
namely comparing time series A with B yields the same
results as B with A – which applies to all our metrics.
3
√

MSER represents the euclidean distance between the
point TMR = TMR = 1 and the resulting TMR/TNMR
closest to this point.

Without derotation With derotation

EER
√
MSER EER

√
MSER

RMSE 0.41 0.55 0.25 0.36
MAE 0.42 0.58 0.26 0.36
MEDIAN 0.46 0.63 0.27 0.38
Pearson 0.32 0.40 0.18 0.25
Kendall 0.32 0.40 0.18 0.26
Spearman 0.32 0.40 0.18 0.26
Coherence 0.18 0.24 0.16 0.22

Table 2: Axes derotation increasing similarity of
axes from two sample 3D acceleration time series.

As expected, overall coherence based comparison yields
best results, followed by correlation coefficients and less so-
phisticated error based metrics. Although results for error
based metrics are close to random when based on magni-
tudes, there is a significant improvement when derotating
and comparing individual axes instead. Interestingly, for
correlation coefficient based metrics derotating and com-
paring single axes significantly decreases the FMR for high
TMR. The close-to-flat area in the magnitude ROC curve in-
dicates, that – for the data used in our evaluation – magnitude-
correlation-coefficient based separation without significantly
increasing FMR is possible for about 70-80% of samples.
Separation of the remaining 20-30% is either erroneous – or
causes a significant rise in FMR. This effect disappears when
derotating and comparing individual axes.

7. CONCLUSIONS
We have contributed a method for determining relative

spatial alignment of devices based on independently recorded
acceleration time series during common movement. Using
quaternions, our approach allows to analytically compute
the optimal rotation between the respective reference sys-
tems with a run-time complexity of O(N2) for N samples.
The significant advantage over heuristic approaches is that
this method is guaranteed to provide the optimal rotation
with deterministic run-time. We suggest that this approach
is beneficial for all applications comparing acceleration (or
other 3D sensors) time series that were recorded indepen-
dently with potentially arbitrary and unknown alignment,
and that it can be used on systems with limited computa-
tional resources such as mobile phones.

Using real world experimental data and coherence as the
currently best performing distance metric for determining if
two devices were shaken together, we see an improvement of
about 11% in equal error rate by derotating the coordinate
system of one of the devices before comparison. We note
that this is the approach taken in previous research, relying
on magnitude only and discarding angular information of all
movement, and it still benefits from applying the method
proposed in this paper.

We suspect that other methods for comparing 3D time
series and using this additional information – which was
previously impossible with arbitrarily rotated devices – can
achieve significantly lower error rates. Our proposed analyt-
ical derotation method therefore opens new research ques-
tions for future work.

All Matlab/Octave scripts and data sets are available un-
der the terms of the GNU Lesser General Public License
(LGPL) at http://ANONYMIZED.

http://ANONYMIZED

(a) Magnitude based comparisons (b) Derotated individual axis based comparisons

Figure 4: Performance of deciding if devices have been shaken together using their acceleration time series,
based on comparing magnitudes and derotated, individual time series.

Acknowledgments
This work has been carried out within the scope of u’smile,
the Josef Ressel Centre for User-Friendly Secure Mobile En-
vironments. We gratefully acknowledge support by the Chris-
tian Doppler Gesellschaft, A1 Telekom Austria AG, Drei-
Banken-EDV GmbH, LG Nexera Business Solutions AG,
and NXP Semiconductors Austria GmbH.

8. REFERENCES
[1] H. Ben-Pazi, H. Bergman, J. A. Goldberg, N. Giladi,

D. Hansel, A. Reches, and E. S. Simon. Synchrony of
rest tremor in multiple limbs in parkinson’s disease:
evidence for multiple oscillators. Journal of Neural
Transmission, 108(3):287–296, 2001.

[2] D. Bichler, G. Stromberg, M. Huemer, and M. Löw.
Key generation based on acceleration data of shaking
processes. In Proc. UbiComp 2007, volume 4717 of
LNCS, pages 304–317. Springer-Verlag, 2007.

[3] S. B. Choe and J. J. Faraway. Modeling head and
hand orientation during motion using quaternions.
Technical Report 2004-01-2179.

[4] C. T. Cornelius and D. F. Kotz. Recognizing whether
sensors are on the same body. Pervasive and Mobile
Computing, 8(6):822–836, 2012. Special Issue on
Pervasive Healthcare.

[5] E. A. Coutsias, C. Seok, and K. A. Dill. Using
quaternions to calculate rmsd. Wiley InterScience,
July 2004.

[6] W. Dargie. Analysis of time and frequency domain
features of accelerometer measurements. In Computer
Communications and Networks, 2009. ICCCN 2009.
Proceedings of 18th Internatonal Conference on, pages
1–6, 2009.

[7] R. D. Findling, M. Muaaz, D. Hintze, and
R. Mayrhofer. Shakeunlock: Securely unlock mobile

devices by shaking them together. 2014. unpublished.

[8] B. Groza and R. Mayrhofer. SAPHE - simple
accelerometer based wireless pairing with heuristic
trees. In Proc. MoMM 2012: 10th International
Conference on Advances in Mobile Computing and
Multimedia, pages 161–168, New York, NY, USA,
December 2012. ACM Press.

[9] M. Kendall. A new measure of rank correlation.
Biometrika, 1938.

[10] D. Kirovski, M. Sinclair, and D. Wilson. The Martini
Synch. Technical Report MSR-TR-2007-123, Microsoft
Research, September 2007.

[11] J. B. Kuipers. Quaternions and Rotation Sequences: A
Primer with Applications to Orbits, Aerospace and
Virtual Reality. Princeton Univers. Press; Auflage:
Reprint, 2002.

[12] K. Kunze and P. Lukowicz. Dealing with sensor
displacement in motion-based onbody activity
recognition systems. In Proc. Ubicomp 2008.

[13] J. Lester, B. Hannaford, and G. Borriello. “Are you
with me?” – Using accelerometers to determine if two
devices are carried by the same person. In Proc.
Pervasive 2004, pages 33–50. Springer-Verlag, 2004.

[14] J. Lester, B. Hannaford, and G. Borriello. ”are you
with me?” - using accelerometers to determine if two
devices are carried by the same person. In Pervasive,
pages 33–50, 2004.

[15] R. Marin-Perianu, M. Marin-Perianu, P. Havinga, and
H. Scholten. Movement-based group awareness with
wireless sensor networks. In Proc. Pervasive 2007,
pages 298–315. Springer-Verlag, 2007.

[16] R. Mayrhofer and H. Gellersen. Shake well before use:
Authentication based on accelerometer data. In Proc.
Pervasive 2007: 5th International Conference on
Pervasive Computing, volume 4480 of LNCS, pages

144–161, Berlin, Heidelberg, Wien, May 2007.
Springer-Verlag.

[17] R. Mayrhofer and H. Gellersen. Shake well before use:
Intuitive and secure pairing of mobile devices. IEEE
Transactions on Mobile Computing, 8(6):792–806,
June 2009. revised and extended version of [16].

[18] K. Pearson. Note on regression and inheritance in the
case of two parents. In Proceedings of the Royal Society
of London, volume 58, pages 240–242, Jan. 1895.

[19] C. Spearman. The proof and measurement of
association between two rings. American Journal of
Psychology, 15:72–101, 1904.

	Introduction
	Related Work
	Problem Overview
	Quaternions and Rotations
	The Optimal Rotation
	Evaluation
	Evaluation data
	Time series derotation example
	Experimental setup
	Results

	Conclusions
	References

