
Automatic Enforcement of Constraints in Real-time
Collaborative Architectural Decision Making

Patrick Gaubatz∗, Ioanna Lytra, Uwe Zdun
Faculty of Computer Science, University of Vienna, Austria

Abstract

Making and documenting architectural design decisions becomes increasingly
important in the process of software architecting. However, the remoteness of
different decision stakeholders, ranging from local distribution in an office en-
vironment to globally distributed teams, as well as the different domain knowl-
edge, expertise and responsibilities of the stakeholders hinder effective and effi-
cient collaboration. Existing tools and methods for collaborative architectural
decision making focus mainly on sharing and reusing of knowledge, making
trade-offs, and achieving consensus, but do not consider the various stakehold-
ers’ decision making constraints due to their roles in the development process.
To address this problem, we propose a meta-model for a set of decision making
constraints, with precisely defined semantics, as well as a collaborative archi-
tectural decision making approach based on this meta-model. We also present
tool support, called CoCoADvISE, which automatically enforces the constraints
at runtime. The evaluation of this tool in a controlled experiment with 48
participants shows that our approach, besides preventing constraint violations,
significantly increases both the time and effort related efficiency, as well as the
effectiveness of users in collaborative decision making.

Keywords: Decision Making Constraint, Constraint Enforcement,
Collaborative Decision Making, Architectural Decision Making, Reusable
Architectural Decision Model, Controlled Experiment

1. Introduction

The trend of globally distributed projects in software and IT industries
makes collaboration and coordination within dispersed teams challenging [11].
Unlike co-located project teams, geographically distributed partners need to
overcome collaboration problems caused by the distance, different concerns of

∗Corresponding author: Patrick Gaubatz, Faculty of Computer Science, University of Vi-
enna, Währingerstraße 29, 1090 Vienna, Austria; Phone, +43-1-4277-785 20

Email addresses: patrick.gaubatz@univie.ac.at (Patrick Gaubatz),
ioanna.lytra@univie.ac.at (Ioanna Lytra), uwe.zdun@univie.ac.at (Uwe Zdun)

Preprint submitted to Journal of Systems and Software January 30, 2015

stakeholders, and different development processes. While these challenges are
particularly problematic in distributed project settings, even in a locally dis-
tributed environment, like offices on multiple different floors, efficient and effec-
tive collaboration is an issue. Software architecture can be seen as a tool for
coordination in distributed software development, as a common understanding
and agreement on issues at the architectural abstraction level can prevent coor-
dination problems in later phases [34]. As architectural decisions have become
a primary means for describing software architecture in recent years, the collab-
oration in architectural decision making and documenting should be supported.
Farenhorst et al. point out the need of explicitly supporting collaboration be-
tween architects with appropriate tools and consider this aspect to be one of
the five most important characteristics of software architecting [7].

Only a few of the existing tools for architectural decision management ad-
dress collaboration in architectural decision making and documentation. Ap-
proaches that target collaborative architectural decision support (see, e.g., [31,
39, 53, 41, 20, 2, 4]) mainly focus on team building, achieving consensus, making
of trade-offs, and sharing of architectural knowledge. However, none of these ap-
proaches considers the various stakeholders’ decision making constraints due to
their roles in the development process. This is despite the fact that such roles
(see, e.g., [30, 45, 6]), their potentially diverging rights and duties and their
potentially conflicting objectives (see, e.g., [36, 29, 34]) within a possibly con-
strained (see, e.g., [3, 18, 14]) decision making process actually do exist. As an
exemplary decision making constraint, consider that a stakeholder with the role
Integration Architect must be in agreement with a stakeholder with the role
Application Architect before an architectural decision that concerns technical
development aspects can be finalized.

In this paper, we therefore present a novel approach for augmenting reusable
architectural decision models with such decision making constraints. Reusable
decision models provide (similar to design patterns [10]) proven solutions – both
application-generic and technology-specific – to various design issues along with
their forces, consequences, and alternative solutions (see, e.g., [66, 67, 68, 65,
21]). We show how CoCoADvISE (Constrainable Collaborative Architectural
Design Decision Support Framework), our prototype implementation, automat-
ically enforces these decision making constraints at runtime. As an example, we
describe how our approach can be applied in an industrial context, i.e., in the
context of service-based platform integration.

So far there are only a few empirical studies on architectural decision mak-
ing (see, e.g., [42, 59, 58]) in general or on the specific aspect of group decision
making (see, e.g., [31, 37, 38]). As our work mainly deals with propositions
about the efficiency and effectiveness of supporting automatic enforcement of
constraints for humans, we decided to evaluate it using a controlled experiment
with 48 participants. Our experiment provides evidence that automatic enforce-
ment of decision making constraints significantly increases both the time and
effort related efficiency and effectiveness of users of decision making tools.

The contributions of this paper are as follows:

2

• We propose automatic enforcement of decision making constraints, a new
aspect to be considered in collaborative architectural decision making.

• We present CoCoADvISE, a constrainable collaborative decision making
tool supporting automatic enforcement of constraints.

• We precisely specify a set of decision making constraints using first-order
logic based on a formal meta-model (described in the appendix).

• We provide empirical evidence of the time and effort related efficiency and
effectiveness of supporting automatic enforcement of constraints.

The remainder of the paper is structured as follows. We give an overview
of the existing architectural decision management tools and discuss collabora-
tive aspects and their challenges in Section 2. Section 3 motivates our work
and provides a motivating example. In Section 4 we present our collaborative
architectural decision making tool CoCoADvISE. Section 5 exemplifies the ap-
plication of our approach in the context of service-based platform integration,
which was investigated in the context of the EU research project INDENICA.
The following Section 6 and 7 describe our experimental setting and the analysis
of the results of the controlled experiment respectively. Section 8 discusses our
findings, implications, as well as threats to validity, and Section 9 concludes.

2. Related Work

2.1. Architectural Design Decisions
Software architecture is seen more and more as a set of architectural deci-

sions [13]. Capturing architectural design decisions is important for analyzing,
understanding, and sharing the rationale and implications of these decisions and
reducing the problem of architectural knowledge vaporization [10].

Approaches for capturing architectural decisions, using either templates [56],
ontologies [19], or meta-models [66], concentrate on the reasoning on software ar-
chitectures, capturing and reusing of architectural knowledge, as well as sharing
and communicating of design decisions between stakeholders. In addition, pat-
terns are regarded as proven knowledge for capturing architectural decisions and
their rationale [10] and are considered often in the aforementioned approaches.

A substantial amount of work has been done in the direction of document-
ing architectural knowledge using architectural decision modeling (refer to [40]
for a comparison of existing architectural decision models and tools). For
instance, Jansen and Bosch propose a meta-model to capture decisions that
consist of problems, solutions and their attributes [13]. Zimmermann et al.’s
meta-model for capturing architectural decisions [69] consists of Architectural
Decisions (AD) related to one or more ADTopics organized in ADLevels, en-
tailing ADAlternatives, the selection of which leads to an ADOutcome. The
advantage of such decision models is that they are reusable and can be used
as guidance for architectural decision making activities, whenever recurring de-
sign issues emerge. Various reusable architectural decision models have been

3

documented in the literature, covering Service-oriented Architecture related so-
lutions [67, 68], service-based platform integration [21], the design of domain
specific languages [64], and model and metadata repositories [26]. To moti-
vate and demonstrate our proposal we use such reusable architectural decision
models as basis for decision making that involves different stakeholders.

2.2. Collaboration in Architectural Decision Making
Whereas several tools have been developed to ease capturing, managing and

sharing of architectural decisions [40], only a few target explicitly the collab-
oration needs of distributed teams, i.e., when making architectural decisions
in a group. The sharing of architectural knowledge is one of the main con-
cerns of the architectural decision management tools ADkwik [39], Knowledge
Architect [20], and PAKME [2]. The collaboration in all cases is achieved by
providing central repositories containing design pattern catalogs, documented
architectural decisions, use case scenarios, and so on, accessible to all co-located
or distributed software team members, without any automated support regard-
ing the required collaborative work. In addition, Compendium [41] supports a
visual environment for documenting and visualizing design rationale behind ar-
chitectural design decisions for multiple users. In some cases, also, Wiki-based
tools are proposed [4] to assist architectural knowledge management performed
at geographically separate locations. However, collaborative work is not the
main focus of these tools, and thus, the challenges of making and documenting
architectural decisions collaboratively are not studied in aforementioned works.

Other recent proposals, such as Software Architecture Warehouse [31] and
GADGeT [53], target the consensus making, the communication, and the progress
tracking for group architectural decisions. Proposing, ranking, and voting for
alternatives are main concepts that are integrated in the aforementioned tools.
However, decision making constraints caused by different stakeholder roles, com-
pany policies or processes which may cause inconsistencies and additional effort
are not considered. In our proposal, we extend the concepts of collaborative ar-
chitectural decision making by introducing the automatic enforcement of such
constraints during group decision making. Automatic support is thus an advan-
tage of CoCoADvISE in comparison to the aforementioned tools, which do not
target any automation in collaborative decision making.

Recent literature surveys and reviews that compare approaches and tools
for architectural decision making and documentation (e.g., [40, 55, 38]) consider
collaboration support as an important feature of these tools. In addition, ac-
cording to a survey with 43 architects from industry conducted by Tofan et al.,
most of the architectural decisions are group decisions (86%) [54]. This finding
is also validated in a different study by Miesbauer and Weinreich [27]. How-
ever, little empirical evidence – especially quantitative results – exists with focus
on collaborative decision making by practitioners. Nowak and Pautasso have
collected feedback from more than 50 focus groups of students regarding the
usability and situational awareness support of their tool Software Architecture
Warehouse [31]. Rekha et al. performed an exploratory study to investigate how

4

architectural design decisions are made in a group, what information is docu-
mented, and which tools are used by practitioners in the industry [37]. In our
work, we target collaborative architectural decision making involving different
stakeholder roles and various constraints.

2.3. Constraint Enforcement in the Context of Security and Access Control
Although constraint enforcement has not been considered in the context of

architectural decision making yet, it is actually a quite well-studied topic in
other contexts, such as security and access control. Especially access control
in the context of business processes and workflows (see, e.g., [62, 15, 49]) in-
troduces the notion of assigning (stakeholder) roles to each task in a process,
which is similar to our notion of assigning a certain role to be responsible for
a specific architectural decision. At runtime, each task/decision can only be
performed/made by a user that owns the required role.

Task-based entailment constraints (see, e.g., [48, 50, 63]), which also orig-
inate from the context of workflows can, for instance, be used to enforce the
four-eyes principle or other separation of duties constraints. In principle, such
separation of duties constraints are similar in definition, checking, and enforce-
ment to decision making constraints that require several stakeholders or roles
to unanimously agree on a concrete solution for a specific architectural decision
(which are, for instance defined in our approach). Unfortunately, to the best of
our knowledge, there are no works that provide empirical evidence about the
positive effects of constraint enforcement in these contexts.

2.4. Constraint Enforcement in the Context of Collaboration
In recent years, there has been a movement to embrace and facilitate col-

laboration in various software engineering tools. For example, numerous real-
time collaborative Web-based Integrated Development Environments, such as
Cloud91, Koding2, Adinda [57] or Collabode [9] have been proposed. In addition,
real-time collaborative Web-based modeling tools, such as Creatly3 or Lucid-
chart4, have also been proposed. Finally, more specialized software engineering
tools, such as the collaborative Web-based software architecture evaluation tool
presented by Maheshwari et al. [24], have emerged.

Similarly to these tools, our CoCoADvISE tool does not require its users
to install or configure any software locally on their computers, which is one
of the main benefits of Web applications. However, the aforementioned tools
– unlike CoCoADvISE – consider different stakeholder roles, permissions and
constraints. As the adoption of such tools in industrial contexts is likely to rise,
this situation will probably change in the future [60]. Also, to the best of our
knowledge, no comparable empirical studies on these tools and their underlying
concepts have been performed.

1http://c9.io
2http://koding.com
3http://creately.com
4http://lucidchart.com

5

3. Motivation

3.1. Constrained Architectural Decision Making
Our approach provides tool support for architectural decision making con-

straints. Such constraints and the relationships and responsibilities of stake-
holders that are formally expressed in those constraints are frequently discussed
both in academic and industrial contexts. To motivate our approach, we sum-
marize in this section some evidence from the literature.

Nord et al. present a structured approach for reviewing architecture docu-
mentation [30]. They provide an illustrative list of common stakeholder roles
and their concerns in the decision making process. In particular, they also
document the existence of potentially diverging rights and duties withing the
decision making process, such as: “For example, in safety-critical systems, the
safety analyst is one of the most important stakeholders, as this person can of-
ten halt development on the spot if he or she believes the design has let a fault
slip through.”. A study by Smolander et al. reveals and analyzes more than 20
stakeholder roles participating in architecture design in three different software
companies, and concludes that further research on practices and tools for ef-
fective communication and collaboration among the varying stakeholders of the
architecture design process are needed [45]. Eckstein documents experiences of a
lead software architect on global agile projects [6]. This lead software architect
propagates orchestration of the architect roles, i.e., having one lead architect
and several subordinate architects, partitioned according to boundaries of sub-
systems, problem domains and sites. In the context of Enterprise Architecture
(EA), an orthogonal study by van der Raadt et al. concludes that stakeholders
pursue different, potentially conflicting, objectives, related to their specific role
within the organization [36]. They also note that efficient collaboration between
stakeholders is one of the main critical success factors for EA. Nakakawa et al.
conducted a survey on effective execution of collaborative tasks during EA cre-
ation and highlighted – among others – the following challenges, reported by
70 enterprise architects [29]: (1) it is hard to reach consensus due to conflicting
stakeholders’ interests, (2) organization politics result in fuzzy decision making,
(3) stakeholders are not accountable for their decisions, (4) lack of a clear deci-
sion making unit, (5) lack of a governance process that can ensure architecture
compliance, (6) lack of supporting tools and techniques for executing collabora-
tive tasks. Similar results have been reported by Päivi Ovaska et al. In [34] they
conducted a case study in an international ICT company, analyzing coordination
challenges in multi-site environment with geographically dispersed development
teams. Most notably, they observed problems in coordination, such as lack of
overall responsibility (i.e., unclear decision making) in architecture design.

In recent years, software development governance has been recognized as a
key component for steering software development projects. In general, gover-
nance is about deciding the “who, what, when, why, and how ” of (collaborative)
decision making (see, e.g, [3, 5, 16]). Kofman et al. frame the ideal software de-
velopment governance environment [18]: “Every member of a team would know
at any given point of time, what needs to be done, who is responsible for which

6

task, and how to perform the tasks for which he or she is responsible”. In the
course of developing the IBM Software Development Governor prototype they
also observed and documented the need for decision making constraints. That
is, they mention decision making policies, such as framing the boundaries of
the decision (i.e., who should participate, and when), or specifying how the
decision is to be made (i.e., consensus or voting). Jensen et al. noted that
“there are many issues critical to governing software development, including de-
cision rights, responsibilities, roles, accountability, policies and guidelines, and
processes” [14]. Interestingly, by studying NetBeans, an open source software
project, they could actually identify similarities to these aforementioned gover-
nance issues. In summary, architectural decisions are key decisions, that can –
in certain contexts – be subject to software development governance including
the entailing decision making policies.

3.2. Motivating Example
To illustrate the concept of collaborative architectural decision making and

to motivate the need for automatic enforcement of decision making constraints,
let us consider a fictive online retailer company that wants to provide third-
party online stores with a Web service for purchasing books and electronic gad-
gets. Based on functional requirements, as well as non-functional requirements,
including requirements concerning secure and encrypted transactions, the com-
pany has to decide on what kind of Web service they are eventually going
to deploy. For decisions that have such far-reaching implications throughout
the system, company policies require that the involved software development
teams, which are spread across several, geographically distributed offices, col-
laboratively participate in the decision making process.

In particular, the following decision making constraints can be derived from
the company policies: First, all decision stakeholders with the role Integration
Architect shall unanimously decide on the type of Web service to be exposed.
Application Architects shall decide on technical details like a concrete transport
protocol, and Integration Architects have to confirm and approve these deci-
sions eventually. Security Experts shall propose a solution for the security and
encryption related decisions. Finally, representatives from selected third-party
companies shall be allowed to participate in the decision making process. How-
ever, their votes can be overruled at any time by internal stakeholders of the
retailer company.

The company might now rely on guidelines that tell each stakeholder to ex-
actly know their roles and duties within this decision making process and to
stay compliant to these constraints in any decision process they participate in.
However, with a growing number of stakeholders, stakeholder roles, responsibil-
ities, duties and other forms of constraints, it becomes nearly impossible for a
single participant to not (unintentionally) violate some of these policies (as will
be shown in our controlled experiment in Section 6). Hence, we propose (in Sec-
tion 4) a collaborative architectural decision making tool which automatically
enforces such constraints.

7

Questionnaire

Decision
Model

Constraint
Model

subject to

Documented
DecisionSoftware Development

Team Member

Software
Architect

uses enforces

generates

transformed
into

Design Time

Execution Time

answers

models

CoCoADvISE
Tool

edits / completes

Figure 1: Overview of CoCoADvISE

4. CoCoADvISE Approach

CoCoADvISE5 is a Web-based, collaborative tool that provides automated
support for architectural decision making and documentation based on reusable
decision models, as well as automatic enforcement of decision making con-
straints. It is based on previously presented work. More precisely, the tool
is built upon the foundations of ADvISE (Architectural Design Decision Sup-
port Framework) [22] and CoCoForm (Constrainable Collaborative Form) [8], a
real-time collaborative Web application framework. The main concepts of our
approach are shown in Figure 1.

CoCoADvISE follows the reusable decision model approach (discussed al-
ready in Section 2.1) in which the documented reusable decisions can be instan-
tiated as concrete decisions and thus used as guidance for architectural decision
making activities, whenever recurring design issues emerge. The advantage
of this approach is that the decisions must be created only once for a recur-
ring design situation. In similar application contexts, a single decision model
is reused multiple times for making multiple concrete decisions. A decision
model can be (re-)used by transforming it into interactive questionnaires using
model-driven techniques (see Section 4.1). Based on the outcomes of the ques-
tionnaires answered by Software Development Team Members, CoCoADvISE can
automatically resolve potential constraints and dependencies (e.g., reveal follow-

5A demo of CoCoADvISE is available at: https://piri.swa.univie.ac.at/cocoadvise.
Use the following user names to log in: experiment1 or experiment2 (no password required).

8

Decision Question

Option

Documented
Decision*

*

2..*

*

*

*

triggers

provides

provides

incompatible

triggers

enforces
*

*

1

1

*

1

decision

Decision
Model

*

leadsTogeneratedFrom

Solution

leadsTo

*
*

Figure 2: Conceptual Overview of CoCoADvISE’s Decision Meta-model

on questions and decisions, deactivate options), recommend best-fitting design
solutions, and eventually generate semi-complete architectural design decision
(ADD) documentations (see Section 4.1).

The real-time collaboration features of CoCoADvISE enable multiple, possi-
bly geographically dispersed software architects and stakeholders (i.e., Software
Development Team Members) to participate in the group decision making and
documentation process. In order to be applicable in industrial contexts, such
as intra- and cross-organizational businesses, CoCoADvISE provides means for
making this decision making process subject to constraints. It employs a model-
driven approach in which reusable decision models are made subject to con-
straints, as can be seen in Figure 1 (see Section 4.2 and 4.3 for details).

The CoCoADvISE approach requires Software Architects to define abstract
and reusable decision models at design time. If the decision making process
has to be made subject to constraints, the Software Architects are supposed to
formalize these requirements by defining constraint models and relating them
to the corresponding decision models. Note that reusable decision models and
constraints can only be defined and created using the ADvISE tool [22] while
CoCoADvISE provides means for actually using these models.

4.1. Supporting Decision Making and Documentation
CoCoADvISE relies on reusable architectural decision models based on Ques-

tions, Options, and Criteria [23] that can be reused many times by the software
architects in form of questionnaires, in order to guide architectural decision
making. Such reusable architectural decision models are defined for recurring
design situations, both domain and technology dependent and independent.

In particular, software architects define architectural decision models by cre-
ating instances of CoCoADvISE’s decision meta-model at design time. While
a detailed and formal representation of this meta-model can be found in Ap-
pendix A, Figure 2 provides a conceptual and graphical overview that may be
more suitable for quickly grasping the core concepts and abstractions. Note
that Figure 2, as well as the following Figure 3, 6, 7 and 8 represent UML2.2

9

Q1: Question

text = ''What kind of
 data format [...]''

O1: Option

text = ''only XML''

O2: Option

text = ''XML, JSON or other
 valid MIME type''

ADD1: Decision

name = ''RESTful HTTP or
 SOAP/WS-*''

S1: Solution

text = ''use SOAP/WS-*''

S2: Solution

text = ''use RESTful HTTP''

Q2: Question

text = ''Which protocol
 will be used [...]''

... ...

Figure 3: Exemplary Decision Model

Class and Object Diagrams with a minor syntactical deviation from the corre-
sponding standard [33]. More precisely, we symbolize a relation’s navigability
with a filled arrowhead (i.e.,) instead of an open arrowhead.

As we can see, an architectural Decision Model consists of Decisions, Ques-
tions, Options, Solutions and relationships among them. Note that the usage of
sans serif font indicates a reference to a class, e.g., Decision Model in Figure 2.
These relationships allow for expressing consistency constraints and prescribing
control flows like:

• If users choose Option x they must also choose Option y (enforces).

• If users choose Option x they must not choose Option y (incompatible).

• If users choose Option x they must also answer Question y (triggers).

• If users choose Option x they must also decide on Decision y (triggers).

The object diagram in Figure 3 depicts an excerpt of a very simplistic deci-
sion model that might be helpful in a situation where software architects have
to decide on the kind of Web service to be deployed (as has been suggested in
the motivating example from Section 3.2). This exemplary model consists of
a single decision (i.e., ADD1) which has exactly one question (i.e., Q1). The
question deals with the Web service’s payload data format and can be answered
by one of two options (i.e., O1 and O2). Finally, we can see, that each option
leads to different solutions (i.e., S1 for O1 and S2 for O2). In general, Decisions

10

RESTful HTTP or SOAP

only XML

XML, JSON or other valid MIME type

ADD1:

Q1: What kind of data format [...]

Figure 4: Exemplary Decision Questionnaire

ADD Template

Which type of Web service?

Decide for RESTful HTTP or SOAP/WS-*

Group

Name

Issue

Decision

Web Services

Use RESTful HTTP

Figure 5: Exemplary Decision Template

capture the essence of reusable architectural design decisions. Questions always
belong to a particular superordinate Decision and are supposed to guide the
software architect towards finding Solutions for the respective Decision. Finding
Solutions involves choosing Options, thereby answering Questions.

In similar application contexts, software architects can reuse suitable ar-
chitectural decision models. More precisely, reusing a decision model means
instantiating the decision model and generating questionnaires which are used
at execution time of the collaborative Web application by software development
team members. As indicated in Figure 4 a questionnaire consists of questions
and each question has to be answered by choosing exactly one option from a set
of possible options. Thus, by answering these questionnaires, the best-fitting
design solutions are recommended to the software development team members.
CoCoADvISE takes the responsibility of verifying and guaranteeing the consis-
tency of the decision model instances by automatically revealing follow-on ques-
tions and decisions, hiding, showing, enabling and/or disabling specific parts of
the questionnaires in a way that users simply can not leave the questionnaire
in an inconsistent state. For instance, whenever a user selects a specific option,
the system automatically disables all other incompatible options.

Eventually, the selected options and gathered solutions can automatically
be transformed into semi-completed architectural decision documentation tem-
plates similar to the one proposed by Tyree and Akerman [56]. For instance, if
we consider the exemplary questionnaire depicted in Figure 4 and assume that
a user has selected Option 2 (i.e., “XML, JSON or other valid MIME type”), we
can transform this particular questionnaire into a decision documentation tem-
plate (i.e., Documented Decision in Figure 1) like the one depicted in Figure 5.
As we can see, many fields of these templates, such as “Name”, “Group”, “Issue”

11

staticConstraint constraint

*

Unanimity ...
Role

Unanimity
Responsible

Subject

1..*

1..*
* *

owner

«enumeration»
Permission

selectOption
generateDecision

...

RequiredPermission

permission: Permission[1..*]

Role

permission: Permission[*]
Subject

Constraint Decision
(from Decisionmodel)

Decision
Model

(from Decisionmodel) *

1..*

1..*role

* *

(a) Constraint Model Extension

Option
Selection

selectingSubject

selectingRole

11*

*

*

selection

Subject
(from Constraintmodel)

Role
(from Constraintmodel)

Option
(from Decisionmodel)

1 Documented
Decision

(from Decisionmodel)

generatingSubject

generatingRole
11 *

*

(b) Runtime Model Extension

Figure 6: Conceptual Overview of CoCoADvISE’s Constrainable Decision Meta-model

and “Decision” can be completed (semi-)automatically by combining information
that is encoded in the decision model (see, e.g., Figure 3) with user-provided
input gathered via questionnaires (see, e.g., Figure 4).

4.2. Definition and Enforcement of Decision Making Constraints
In CoCoADvISE, reusable decision models are augmented with additional

constraint elements. This section gives an overview of the generic meta-model
for the specification of decision making constraints for reusable architectural
decision models and details how these constraints are enforced at runtime.

The class diagrams depicted in Figure 6 provide a conceptual overview of
the essential concepts of a Constrainable Decision Meta-model including Sub-
jects, Roles, Permissions, and various types of Constraints. Technically, the Con-
strainable Decision Meta-model extends the previously presented Decision Meta-
model (see Figure 2 and Section 4.1) with additional elements, relevant at design
time (i.e., Figure 6(a)) and execution time (i.e., Figure 6(b)).

12

C2: ResponsibleRole
IArch: Role

name = ''Integration Architect''
C1: Unanimity

ADD1: Decision

name = ''RESTful HTTP or SOAP/WS-*''

Figure 7: Exemplary Constraint Model

In our approach, Roles are used to model different job positions and scopes
of duty within an organization. These Roles are equipped with the Permissions
to perform certain tasks. Human users (i.e., Subjects) are assigned to Roles
according to their work profile (see, e.g., [47]). This relation is a many-to-many
relation, which means that a Subject can be assigned to numerous Roles and
each Role can be owned by numerous Subjects.

CoCoADvISE provides two separate mechanisms for defining decision mak-
ing constraints. First of all, we can make particular reusable architectural de-
cisions subject to decision making constraints by assigning Constraints to Deci-
sions. In addition, all reusable architectural decisions of a decision model can
be made subject to decision making constraints at once by assigning the corre-
sponding Constraints to the Decision Model, instead of a single decision. These
two mechanisms are inherited by all subclasses of the abstract Constraint class
(e.g., Unanimity or Responsible Subject).

As an example, let us revisit the motivating example from Section 3.2. Fig-
ure 7 depicts how the first set of decision making constraints can be imple-
mented in CoCoADvISE. More precisely, we augment the previously defined
exemplary decision model (see Figure 3) by attaching decision making con-
straints. By defining both a Responsible Role and a Unanimity constraint we can
formalize the requirement that stakeholders with the role Integration Architect
have to unanimously decide on the type of Web service. Note that we have to
parametrize the Responsible Role constraint by assigning the Role object, which
represents the Integration Architect role, to it. On the contrary, a Unanimity
constraint can and does not need any further parametrization. According to
Figure 6(a) the three additional classes that are used for parametrization of
some constraints are: Subject, Role, and Permission. A Subject represents a per-
son, i.e., a user/stakeholder of the system (see, e.g., [49]). Roles are assigned
to subjects, and through their roles the subjects are granted Permissions. A
Permission models a right to perform a certain action within the system. In
CoCoADvISE we mainly focus on constraining two fundamental actions, i.e.,
selecting options and generating decisions. Figure 6 reflects this circumstance
by explicitly listing the corresponding permissions selectOption and generateDe-
cision. Other permissions could be added to the tool as extensions.

Figure 6(b) shows how we extend our original decision meta-model of Fig-
ure 2 with additional runtime-specific elements and relations. For the purpose of

13

O1: Option

text = ''only XML''

s1: Option Selection

R2: Role

Bob: Subject

IArch: Role

d1: Documented Decision

selectingRole

selectingSubjectgeneratingSubject

generatingRole

selection

role

role

owner

owner

Figure 8: Exemplary Constraint Runtime Model

enforcing certain decision making constraints we have to introduce – among oth-
ers – the concept of an Option Selection. At execution time, the existence of an
Option Selection object means that the corresponding Option has been selected
by a user (i.e., executing a selectOption action). More precisely, the relations
selectingSubject and selectingRole of this Option Selection object are supposed to
point to the user’s corresponding Subject respective Role objects. Analogously,
the generatingSubject and generatingRole relations of a Documented Decision ob-
ject are supposed to refer to the Subject and Role objects of the user who has
generated a decision (i.e., executing a generateDecision action). Figure 8 exem-
plifies these runtime-specific elements and relations. In this particular example,
there is one Subject (i.e., Bob), that owns two different Roles (i.e., IArch and R2).
Assuming, that Bob selects Option O1 at runtime, Option Selection s1 is newly
instantiated. In addition, the selectingSubject and selectingRole relations of s1
are set to Bob and IArch (hereby assuming that IArch is the Role that Bob is cur-
rently using). In summary, s1 captures the fact that Bob has selected O1 using
the Role IArch. Later, Bob generates a Documented Decision d1 using another
Role, i.e., R2. As a result, the generatingSubject and generatingRole relations of
d1 are set to Bob and R2 to capture the Subject and Role responsible for this
event.

4.3. Logical Specification of Decision Making Constraints
In this section, we present the precise definition of the decision making con-

straints using first-order logic as a formalism that is abstract and technology-
independent but can still easily be mapped to different existing constraint lan-
guages used in modeling and software development, such as OCL6, the Check

6http://www.omg.org/spec/OCL/

14

language of the Eclipse M2T project7, or Frag’s FCL constraints8. In order to
enable this precise definition, we needed to map the meta-models from Figures 2
and 6 to first-order logic as well. For the sake of completeness we provide this
formalization in Appendix A. The reader can refer to Appendix A for a com-
plete reference of the semantics of the constraint meta-model but we note that
this is not necessary for understanding the constraint types and their applica-
tion. In particular, Definition A.1 provides a list of elements and their relations,
Definition A.2 presents crucial model invariants to be considered at design time,
and Definition A.3 lists model invariants relevant at execution time.

The following list of Constraint Type (CT) Definitions constitutes our pro-
posed set of decision making constraints. Each Constraint Type Definition con-
sists of a narrative description, a formal definition of model invariants, expressed
using first-order logic (see, e.g., [46]), as well as an exemplary application of the
respective constraint type. A constrainable decision model that fulfills the in-
variants of a Constraint Type Definition CTn is said to be compliant with CTn.
Note that this list is not an exhaustive list of all possible constraint types. In-
stead, we selected a set of constraint types that we believe to be representative
and common in real-life scenarios.

The following three Constraint Types (CT1−3) belong to the family of Una-
nimity constraints. Such constraints can be used to enforce consensus finding
among a particular set of stakeholders. As has been mentioned in Section 4.2,
CoCoADvISE focuses on constraining the process of selecting options and gen-
erating decisions. In connection with this, Unanimity constraints concern the
option selection process.

CT1 (General) Unanimity: Each question of a decision that is subject to
a (general) unanimity constraint has to be answered unanimously. More
precisely, a question is said to be answered unanimously if all subjects
have agreed on the concrete set of options to select. This is the case when
all subjects (i.e., “users”) have selected the same set of options.

In order to be able to express this model invariant, we need to define the
following required mappings first:
cd(c) = {d1, ..., dn} Set of decisions {d1, ..., dn} that is constrained

by constraint c (see Definition A.1.19)
qda(d) = {q1, ..., qn} Set of questions {q1, ..., qn} that belong to de-

cision d (see Definition A.1.2)
oqa(q) = {o1, ..., on} Set of options {o1, ..., on} that belong to ques-

tion q (see Definition A.1.3)
soa(o) = {os1, ..., osn} Set of (option) selections {os1, ..., osn} that

belong to option o (see Definition A.1.9)

In addition, the following set needs to be defined (see Definition A.1):

7https://www.eclipse.org/modeling/m2t/
8http://frag.sourceforge.net/

15

CU An element of CU is called Unanimity Con-
straint

D An element of D is called Decision
Q An element of Q is called Question
O An element of O is called Option
OS An element of OS is called Option Selection

Therefore:
For each unanimity constrained question (q), if one option (ox) has been
selected (soa(ox) 6= ∅), all other options (oy 6= ox) must not be selected
(soa(oy) = ∅).

∀c ∈ CU (∀d ∈ cd(c)(∀q ∈ qda(d)(∀ox ∈ oqa(q)(∀oy ∈ oqa(q)(
ox 6= oy ∧ soa(ox) 6= ∅ ⇒ soa(oy) = ∅)))))

Example: Suppose there is a decision (d1 ∈ D), a question (q1 ∈ Q),
two options ({o1, o2} ⊆ O), a unanimity constraint (c1 ∈ CU) and two
option selections ({os1, os2} ⊆ OS). The question belongs to the deci-
sion (qda(d1) = {q1}) and the options belong to the question (oqa(q1) =
{o1, o2}). Finally, the decision is made subject to the unanimity con-
straint (cda(d1) = {c1}). If we assume that option o1 has been selected
twice by different “users” (soa(o1) = {os1, os2}), then o2 could not have
been selected (soa(o2) = ∅) and decision d1 is said to be compliant re-
garding the unanimity constraint c1. Hereby, an option selection such as
os1 (and os2 respectively) maps to exactly one subject and one role (see
Definition A.1.10, Definition A.1.11 and Figure 6(b)). In other words,
an option selection links a particular option with a subject/role combi-
nation (i.e., a “user”). Conversely, if both o1 and o2 have been selected
once (soa(o1) = {os1} and soa(o2) = {os2}), the invariant would not be
fulfilled and the unanimity constraint c1 is said to be violated.

CT2 Role Unanimity: Contrary to an ordinary unanimity constraint, the
role unanimity constraint allows for precisely specifying the set of subjects
that are supposed to unanimously agree on a decision. More specifically,
it allows for providing a specific set of roles. All subjects that own at least
one of these roles have to unanimously agree on the same set of options
for the questions of a decision.
A role unanimity constraint may be used to enforce the exemplary require-
ment “stakeholders with the role Integration Architect shall unanimously
decide on the type of Web service” from the motivating example in Sec-
tion 3.2.
Required mappings:
sr(os) = r Role r that has been used to perform selec-

tion os (see Definition A.1.11)
rruca(c) = {r1, ..., rn} Set of roles {r1, ..., rn} that must unanimously

agree on decisions that are constrained by con-
straint c (see Definition A.1.14)

16

Required sets:
CUR

An element of CUR
is called Role Unanimity

Constraint
R An element of R is called Role

Therefore:
For each role unanimity constrained question (q), if one option (ox) has
been selected (soa(ox) 6= ∅) by one of the specified roles (sr(ox) ∈ rruca(c)),
all other options must not be selected (soa(oy) = ∅).

∀c ∈ CUR
(∀d ∈ cd(c)(∀q ∈ qda(d)(∀ox ∈ oqa(q)(∀oy ∈ oqa(q)(

ox 6= oy ∧ soa(ox) 6= ∅ ⇒ soa(oy) = ∅ ∧ ∀osx ∈ soa(ox)(
sr(osx) ∈ rruca(c)))))

Example: Based on the example for CT1 (i.e., d1, q1, o1, o2, os1 and
os2), we assume that the decision (d1) is made subject to a role unanim-
ity constraint (c1 ∈ CUR

and cda(d1) = {c1}). The constraint requires
that subjects with a particular role (r1 ∈ R and r1 ∈ rruca(c1)) have to
unanimously agree on a particular option. If we assume that option o1
has been selected twice by different “users” (soa(o1) = {os1, os2}) with
that particular role (sr(os1) = sr(os2) = r1), then o2 could not have been
selected (soa(o2) = ∅) and decision d1 is said to be compliant regarding
the role unanimity constraint c1. Conversely, if both o1 and o2 have been
selected once (soa(o1) = {os1} and soa(o2) = {os2}), the invariant would
not be fulfilled and the role unanimity constraint c1 is said to be violated.
The constraint is also violated if either option has been selected by a role
other than the required one (sr(os1) /∈ {r1} or sr(os2) /∈ {r1}).

CT3 Subject Unanimity: The subject unanimity constraint is similar to the
role unanimity constraint, but instead of specifying a set of roles (supposed
to unanimously agree on a decision), it allows for directly specifying a set
of subjects.
Required mappings:
ss(os) = s Subject s that has performed selection os (see

Definition A.1.10)
ssuca(c) = {s1, ..., sn} Set of subjects {s1, ..., sn} that must unani-

mously agree on decisions that are constrained
by constraint c (see Definition A.1.15)

Required sets:
CUS

An element of CUS
is called Subject Unanimity

Constraint
S An element of S is called Subject

Therefore:
For each subject unanimity constrained question (q), if one option (ox)
has been selected (soa(ox) 6= ∅) by one of the specified subjects (ss(ox) ∈

17

ssuca(c)), all other options must not be selected (soa(oy) = ∅).

∀c ∈ CUS
(∀d ∈ cd(c)(∀q ∈ qda(d)(∀ox ∈ oqa(q)(∀oy ∈ oqa(q)(

ox 6= oy ∧ soa(ox) 6= ∅ ⇒ soa(oy) = ∅ ∧ ∀osx ∈ soa(ox)(
ss(osx) ∈ ssuca(c)))))

Example: Based on the example for CT1 (i.e., d1, q1, o1, o2, os1 and os2),
we assume that the decision (d1) is made subject to a subject unanim-
ity constraint (c1 ∈ CUS

and cda(d1) = {c1}). The constraint requires
that particular subjects ({s1, s2} ⊆ S and {s1, s2} ⊆ ssuca(c1)) have to
unanimously agree on a particular option. If we assume that option o1
has been selected twice (soa(o1) = {os1, os2}) by that particular subjects
(ss(os1) ∈ {s1, s2} and ss(os2) ∈ {s1, s2}), then o2 could not have been
selected (soa(o2) = ∅) and decision d1 is said to be compliant regarding
the subject unanimity constraint c1. Conversely, if both o1 and o2 have
been selected once (soa(o1) = {os1} and soa(o2) = {os2}), the invariant
would not be fulfilled and the subject unanimity constraint c1 is said to
be violated. The constraint is also violated if either option has been se-
lected by a subject other than the required ones (ss(os1) /∈ {s1, s2} or
ss(os2) /∈ {s1, s2}).

The following two Constraint Types (CT4−5) belong to the family of Re-
sponsibility constraints. Such Responsibility constraints concern the decision
generation process and can be used to precisely specify which particular set of
stakeholders shall be entitled to eventually make (i.e., generate) a decision.

CT4 Responsible Role: Each decision that is subject to a responsible role
constraint shall be transformable into documented decisions only by sub-
jects that own at least one of given set of roles. In other words, this
constraint allows for preventing subjects that do not own specific roles
from making (i.e., generating) certain decisions.

A responsible role constraint may be used to enforce the exemplary re-
quirement “Security Experts shall propose a solution for the security and
encryption related decisions” from the motivating example in Section 3.2.

Required mappings:
dda(d) = {dd1, ..., ddn} Set of documented decisions {dd1, ..., ddn}

that have been generated from decision d (see
Definition A.1.6)

gr(dd) = r Role r that has been used to generate docu-
mented decision dd (see Definition A.1.8)

rrrca(c) = {r1, ..., rn} Set of roles {r1, ..., rn} that are responsible for
generating decisions that are constrained by
constraint c (see Definition A.1.16)

Required sets:

18

CRR
An element of CRR

is called Responsible Role
Constraint

Therefore:

If documented decisions (dd) have been generated from a responsible role
constrained decision (d), these decisions have to be generated by a subject
using one of the specified (responsible) roles (gr(dd) ∈ rrrca(c)).

∀c ∈ CRR
(∀d ∈ cd(c)(∀dd ∈ dda(d)(gr(dd) ∈ rrrca(c))))

Example: Based on the example for CT1 (i.e., d1, q1, o1, o2, os1 and
os2), we assume that the decision (d1) is made subject to a responsible
role constraint (c1 ∈ CRR

and cda(d1) = {c1}). The constraint requires
that subjects with a particular role (r1 ∈ R and r1 ∈ rrrca(c1)) have to
generate decisions that are based on d1. If we assume that decision dd1 has
been generated from d1 (dd1 ∈ dda(d1)) by a subject with that particular
role (gr(dd1) = r1), then decision d1 is said to be compliant regarding the
responsible role constraint c1. Conversely, if dd1 had been generated by a
role other than the required one (gr(dd1) /∈ {r1}), the invariant would not
be fulfilled and the responsible role constraint c1 is said to be violated.

CT5 Responsible Subject: Similarly to the responsible role constraint, the
responsible subject constraint allows for precisely specifying a set of sub-
jects that are supposed to make (i.e., generate) certain decisions. Con-
versely, all other subjects shall not be allowed to do so.

Required mappings:
gs(dd) = s Subject s that has generated documented de-

cision dd (see Definition A.1.7)
srsca(c) = {s1, ..., sn} Set of subjects {s1, ..., sn} that are responsible

for generating decisions that are constrained
by constraint c (see Definition A.1.17)

Required sets:
CRS

An element of CRS
is called Responsible Sub-

ject Constraint
Therefore:

If documented decisions (dd) have been generated from a responsible subject
constrained decision (d), these decisions have to be generated by one of the
specified (responsible) subjects (gs(dd) ∈ srsca(c)).

∀c ∈ CRS
(∀d ∈ cd(c)(∀dd ∈ dda(d)(gs(dd) ∈ srsca(c))))

Example: Based on the example for CT1 (i.e., d1, q1, o1, o2, os1 and
os2), we assume that the decision (d1) is made subject to a responsible
subject constraint (c1 ∈ CRS

and cda(d1) = {c1}). The constraint requires
that a particular subject (s1 ∈ S and s1 ∈ srsca(c1)) has to generate
decisions that are based on d1. If we assume that decision dd1 has been

19

generated from d1 (dd1 ∈ dda(d1)) by that particular subject (gs(dd1) =
s1), then decision d1 is said to be compliant regarding the responsible
subject constraint c1. Conversely, if dd1 had been generated by a subject
other than the required one (gs(dd1) /∈ {s1}), the invariant would not be
fulfilled and the responsible subject constraint c1 is said to be violated.

The following Constraint Type (CT6) can be considered a generic Access
Control constraint. In the context of CoCoADvISE it concerns constraining
the set of stakeholders that shall be authorized to select options or generate
decisions. Whereas CT6 concerns authorization (i.e., who shall potentially be
entitled to do what), CT2−5 concerns obligation (i.e., who must do what).

CT6 Required Permission: A required permission constrained decision re-
spective decision model enforces that subjects that do not own certain
permissions (i.e., via their roles) within the system must not perform the
corresponding actions.

Required mappings:
prpca(c) = {p1, ..., pn} Set of permissions {p1, ..., pn} that are re-

quired for performing actions concerning deci-
sions that are constrained by constraint c (see
Definition A.1.18)

pra−1(r) = {p1, ..., pn} Set of permissions {p1, ..., pn} that are owned
by role r (see Definition A.1.5)

Required sets:
CP An element of CP is called Required Permis-

sion Constraint
Therefore:

If documented decisions (dd) have been generated from a decision (d)
that is subject to a required permission constraint (c), the generating role
(gr(dd)) must own the corresponding permission (generateDecision ∈
pra−1(gr(dd))) to generate decisions.

∀c ∈ CP (generateDecision ∈ prpca(c)⇒ ∀d ∈ cd(c)(
∀dd ∈ dda(d)(generateDecision ∈ pra−1(gr(dd)))))

If options of a decision (d) that is subject to a required permission con-
straint (c) have been selected (os), the selecting role (sr(os)) must own the
permission to select options (selectOption ∈ pra−1(sr(os))).

∀c ∈ CP (selectOption ∈ prpca(c)⇒ ∀d ∈ cd(c)(
∀q ∈ qda(d)(∀o ∈ oqa(q)(∀os ∈ soa(o)(selectOption ∈ pra−1(sr(os)))))))

Note that similar invariants for other actions, such as deleting question-
naires or decisions, have been omitted for brevity.
Example: Based on the example for CT1 (i.e., d1, q1, o1, o2, os1 and os2),

20

XML, [...]

[...]ADD1:

Q1: What kind [...]

only XML

XML, [...]

[...]ADD1:

Q1: What kind [...]

User 1

Integration
Architect

User 2

Application
Architectgenerate generate

selects
selects

clicks
only XML

Figure 9: Enforcing Exemplary Constraints at Execution Time

we assume that the decision model is made subject to a required permis-
sion constraint (c1 ∈ CP). The constraint mandates – among other things
– that all option selections have to be performed by subjects owning the
required selectOption role. If we assume that option selection os1 has been
performed by a subject using a role (r1 ∈ R) that owns that particular
permission (selectOption ∈ pra−1(r1)), then the decision model is said to
be compliant regarding the required permission constraint c1. Conversely,
if r1 did not own that particular permission (selectOption /∈ pra−1(r1)),
the invariant would not be fulfilled and the required permission constraint
c1 is said to be violated.

At execution time, CoCoADvISE interprets constrainable decision models
and constantly checks the system’s compliance to the defined constraints while
the software development team members are making and documenting deci-
sions. The actual constraint enforcement logic is mainly embedded in the user
interface of the collaborative Web application. The constraints are automati-
cally enforced in the same way, the system also guarantees the consistency of
the decision model instances, i.e., by automatically hiding, showing, disabling,
etc. specific parts of the questionnaires and the user interfaces in a way that
users simply can not violate any defined constraints at all. Figure 9 visualizes a
possible runtime situation of the previously defined decision (see Figure 3) and
constraint model (see Figure 7). We can see that the specified responsible role
constraint is enforced by showing the “generate” button only to those users that
own the required role (i.e., User 1, which owns the role Integration Architect),
while hiding it for all other users (i.e., User 2). Given that User 1 chooses op-
tion 2 and User 2 chooses another option 1, the system correctly enforces the
unanimity constraint by disabling the “generate” button. As soon as all users
have unanimously agreed on the same set of options, the system will eventually
enable the button again, allowing User 1 to generate a documented decision.

4.4. Implementation Details
CoCoADvISE is a real-time collaborative Single-page Web application that

is founded on Google’s Web application framework AngularJS9. Thus, it is exe-

9http://angularjs.org

21

cuted mostly client-side (i.e., in the user’s Web browser). The model invariants
for each constraint type (i.e., CT1−6) have been transformed manually into
client-side executable code. A key component of real-time collaborative Web
applications is a real-time model synchronization engine that allows for syn-
chronizing the shared application state with all clients. CoCoADvISE leverages
Racer10 for synchronizing the decision making process with all clients. Racer
consists of both client-side and server-side executed code. All server-side code
is executed in Node.js11, an asynchronous event driven framework and run-
time environment based on Google’s V812 JavaScript engine. The back-end of
this Thin Server Architecture persists the application state using MongoDB13,
a document-oriented (i.e., NoSQL) database. According to the tool CLOC14

(Count Lines of Code), the application consists of nearly 2100 lines of client-
side executed JavaScript code, roughly 1000 lines of HTML code and 150 lines
of server-side executed Javascript code.

In addition to collaborative editing of questionnaires and architectural design
decisions, CoCoADvISE also provides a simple chat, which allows all stakehold-
ers to participate in discussions concerning the decision making process.

4.5. Motivating Example Resolved
In the course of revisiting the motivating example from Section 3.2, Fig-

ure 10 shows screenshots of CoCoADvISE, currently displaying the mentioned
decision model excerpt from an Integration Architect’s point of view. 1 indi-
cates that another Software Architect with the name “experiment1” has currently
selected a different option than “we”. Due to the Unanimity constraint, the sys-
tem automatically disables the corresponding “Generate decision” button 2 .
By selecting the same option as “experiment1” 3 “we” can successfully resolve
this constraint violation and eventually the system allows for generating the
corresponding documented decision 4 . Finally, 5 displays an excerpt of this
generated decision.

5. Application of Constrainable Collaboration in Service-based Plat-
form Integration

In practice, more than two roles with various intertwining responsibilities,
rights, and permissions are involved in decision making on architectural-related
issues. In this section, we present the application of constrainable collaborative
architectural decision making in the domain of service-based platform integra-
tion. In particular, we discuss the implementation of our approach to support
architecture governance in tailoring of heterogeneous domain-specific platforms,

10http://github.com/codeparty/racer
11http://nodejs.org
12http://code.google.com/p/v8
13http://mongodb.org
14http://cloc.sourceforge.net

22

1

2

5

4

3

Figure 10: Screenshots of CoCoADvISE

23

which was investigated in the context of the EU research project INDENICA15,
which included project partners from the industry. INDENICA and in particu-
lar one of its technical reports [44] on role-based governance originally inspired
us to devising the approach presented in this paper.

Building domain-specific service platforms is necessary for fulfilling specific
requirements of various domains – sometimes incompatible to each other – in
order to ease the development of services and applications within the domain.
Such domain-specific service platforms may form a family of platforms, in which
member platforms share assets. In this way, the INDENICA approach tailors the
platforms towards the application domains and provides methods and tools for
designing and implementing a Virtual Domain-Specific Service Platform (VSP).
As described in the technical report [44], this approach requires the implemen-
tation and application environment to be considered from an organizational and
human behavior point of view. This can be addressed by introducing different
types of governance, such as Corporate Governance, Business Process Man-
agement Governance (BPM Governance), Information Technology Governance
(IT Governance), Enterprise Architecture Governance (EA Governance), SOA
Governance, and Architecture Governance in the different software processes.
We will focus on Architecture Governance which concentrates on system and
platform architecture related aspects.

Architecture Governance is defined as “the practice and orientation by which
enterprise architectures and other architectures are managed and controlled at an
enterprise-wide level” [52]. To develop a consistent architecture and ensure the
evolution, adaptation, and modification of integrating domain-specific service
platforms in INDENICA, architecture governance is of key importance. That
is, without such governance the risk of e.g., wrong usage of services, project
failure, over-complex applications, and design erosion increases. During design
time, the following key participating roles have been defined:

Platform Provider is a technology expert and describes the current variabil-
ity and the variability binding process of the existing platform he owns.

Platform Variant Creator is responsible for binding unresolved variability
in base platform(s) and for creating an executable platform variant.

Platform Architect is responsible for VSP requirements, variability within
VSP, baseline architecture and adaptation behavior of VSP.

Platform Integrator generates the VSP instance.

In Table 1, we list 16 decision categories related to service-based platform
integration design that have been described in [44]. These decision categories
include decision points that need to be considered, discussed, and eventually,
resolved by the various stakeholders in collaboration. For instance, for Decision

15http://www.indenica.eu

24

Decision Category Constraints

CRR
CUR

01. Decide variability modeling (describing the current
variability and the variability binding process of the
base platform).

PP PP

02. Implement base platform relevant requests. PP
03. Bind unresolved variability in base platform. PVC
04. Create an executable platform variant optional. PVC
05. Decide additional functionality not covered by the

base platform.
PVC PP, PVC

06. Decide variability modeling of additional functional-
ity.

PVC PP, PVC

07. Implement domain platform relevant change re-
quests.

PVC PP, PVC

08. Design the VSP Capabilities (requirements manage-
ment).

PA

09. Decide the variability within VSP. PA
10. Decide the VSP constraints. PA
11. Decide the VSP orchestration. PA
12. Create the baseline architecture. PA PA, PI
13. Create the baseline adaptation behavior of VSP. PA PA, PI
14. Decide/Implement monitoring/adaptation rules. PI PA, PI
15. Decide integration of appropriate platforms. PI PA, PI
16. Generate the integration of the domain platforms to

the VSP.
PI

PP: Platform Provider PVC: Platform Variant Creator PA: Platform Architect
PI: Platform Integrator

Table 1: Role Constraints for Service-based Platform Integration

Category 15 (i.e., “Decide integration of appropriate platforms”) we list exem-
plary architectural decisions regarding the integration of heterogeneous domain
platforms to the VSP:

• Decide on the type of component for integrating the platform service into
the VSP.

• Decide on the connection of heterogeneous systems (in terms of synchro-
nization and queuing behavior).

• Decide on the protocol(s) for accessing the VSP from the integrating plat-
forms.

• Decide on how to accommodate diverse protocol requirements of integrat-
ing platforms.

25

For each Decision Category, the report [44] also provides governance rules,
i.e., a detailed description of the rights and duties of each involved stakeholder
role. As these stakeholders and stakeholder roles belong to different organiza-
tions and domains, collaboratively deciding and making ADDs while complying
to all governance rules is very complicated and error-prone. Using our previ-
ously described approach for supporting decision making and documentation
(see Section 4), we can precisely formalize the described governance rules in
the form of decision making constraints (see Section 4.2) and rely on CoCoAD-
vISE’s automatic constraint enforcement capabilities in order to stay compliant
to these governance rules. For instance, the governance rules for Decision Cat-
egory 1 from Table 1 can be formalized and enforced by defining a Responsible
Role constraint (i.e., CRR

), with a (responsible) stakeholder role of “Platform
Provider” (i.e., PP) and a corresponding Role Unanimity constraint (i.e., CUR

).
At runtime, these two constraints will enforce, that only a stakeholder with the
role PP will be responsible for deciding on variability modeling (i.e., Responsi-
ble Role) and that the other participating stakeholders with the role PP have to
decide unanimously (i.e., Role Unanimity) on this matter. In a similar way, our
approach can be used to enforce the governance rules of the remaining Decision
Categories 2–16 too (as can be seen in Table 1).

6. Empirical Evaluation

In order to collect empirical evidence about the effectiveness and efficiency
of our proposed concepts, we conducted a controlled experiment with computer
science students. We designed and executed our controlled experiment follow-
ing the guidelines of Kitchenham [17] and analyzed and evaluated the results
according to Wohlin et al.’s advice [61]. The following subsections discuss the
goals and hypotheses of the controlled experiment, as well as its design and
execution in detail.

6.1. Goals and Hypotheses
The goal of the experiment is twofold. On the one hand, we want to study

and quantify the benefits of automatically enforcing constraints in a collabora-
tive architectural decision making tool. On the other hand, we want to analyze
and quantify the adverse effects of constraint violations in detail. Consequently,
we postulate the following hypotheses:

Automatic enforcement of constraints in CoCoADvISE. . .

H01 has no effect or decreases the effectiveness of its users.

H1 increases the effectiveness of its users.

H02 has no effect or decreases the time related efficiency of its users.

H2 increases the time related efficiency of its users.

26

H03 has no effect or decreases the effort related efficiency of its users.

H3 increases the effort related efficiency of its users.

We expect that the corresponding null hypotheses can be rejected. That is,
we expect that automatic enforcement of constraints in CoCoADvISE increases
both the effectiveness and the time and effort related efficiency of its users. In
particular, we expect that users will manage to achieve more of the imposed work
tasks than users that can not rely on automatic enforcement of constraints. We
also expect that the former will have to invest both less effort (i.e., by performing
less work steps/actions) and less time in order to achieve the same results.

6.2. Parameters and Values
During the experiment several dependent and independent variables have

been observed. Table 2 provides a detailed description, including the type, scale
type, unit and range of those variables.

Dependent Variables. All dependent variables have been extracted automati-
cally from CoCoADvISE’s database. In particular, we instrumented its source
code in such a way that we could precisely record all user activities within the
system. The variable time indicates a single user’s total time spent logged in
(i.e., the sum of all session durations). Similarly, the variable actions counts
a user’s total number of essential actions or work steps within the system. In
particular, we consider the following actions in CoCoADvISE to be essential:
create/remove a questionnaire, generate/remove/copy a decision, and select an
option to a question. The variable violations indicates how many violations
of decision making constraints a single user has caused. Finally, the variable
work represents how much of the required work tasks in percent could actually
be achieved. For instance, users that completed 3 out of 6 work tasks got a
value of 50 for their work variable. The concrete number of work tasks depends
on the role that is randomly assigned to each user. That is, the role Software
Architect had to perform 7 tasks and the Application Developer 6, respectively.

Derived Variables. To allow for a meaningful comparison of time and actions,
we decided to introduce two additional derived variables: timeNorm and act-
ionsNorm. In particular, we normalize the time and actions variables by di-
viding them by work. As a result, timeNorm can be interpreted as the total
time a user would have needed to finish all work tasks. Comparing, for instance,
timeNorm instead of time, rules out the possibility that the participants of one
treatment group needed less time only because they “worked less” (i.e., in terms
of work) than the participants of the other group.

Independent Variables. The independent variables group, exp and commExp
can potentially influence the dependent variables. In particular, group contains
a participant’s treatment group, and exp and commExp concern their program-
ming experience and commercial programming experience, respectively.

27

T
yp

e
N
am

e
D
es
cr
ip
ti
on

S
ca
le

T
yp

e
U
n
it

R
an

ge

D
ep

en
de
nt

ti
m
e

O
ve
ra
ll
ti
m
e
ne
ed
ed

to
m
ak
e
an

d
do

c-
um

en
t
de
ci
si
on

s
R
at
io

M
in
ut
es

P
os
it
iv
e

na
tu
ra
l

nu
m
be

rs
in
-

cl
ud

in
g
0

a
ct
io
n
s

N
um

be
r
of

ac
ti
on

s
pe

rf
or
m
ed

R
at
io

–
P
os
it
iv
e

na
tu
ra
l

nu
m
be

rs
in
-

cl
ud

in
g
0

v
io
la
ti
on
s

N
um

be
r

of
co
ns
tr
ai
nt

vi
ol
at
io
ns

ca
us
ed

R
at
io

–
P
os
it
iv
e

na
tu
ra
l

nu
m
be

rs
in
-

cl
ud

in
g
0

w
or
k

P
er
ce
nt
ag
e
of

w
or
k
th
at

a
si
ng

le
us
er

is
su
pp

os
ed

to
pe

rf
or
m

R
at
io

–
0
(l
ow

es
t)

to
1
0
0
(h
ig
he
st
)

D
er
iv
ed

ti
m
eN

or
m

(=
ti
m

e
w
o
r
k
)

T
im

e
th
at

w
ou

ld
be

ne
ed
ed

to
pe

rf
or
m

10
0%

of
w
or
k

R
at
io

M
in
ut
es

P
os
it
iv
e

na
tu
ra
l

nu
m
be

rs
in
-

cl
ud

in
g
0

a
ct
io
n
sN

or
m

(=
a
c
ti
o
n
s

w
o
r
k
)

N
um

be
r
of

ac
ti
on

s
th
at

w
ou

ld
ne
ed

to
be

pe
rf
or
m
ed

to
ac
co
m
pl
is
h
1
0
0
%

of
w
or
k

R
at
io

–
P
os
it
iv
e

na
tu
ra
l

nu
m
be

rs
in
-

cl
ud

in
g
0

In
de
pe

nd
en
t

g
ro
u
p

T
re
at
m
en
t
gr
ou

p
N
om

in
al

–
E
it
he
r
“e
xp

er
im

en
t”

or
“c
on

tr
ol
”

ex
p

P
ro
gr
am

m
in
g
ex
pe

ri
en
ce

O
rd
in
al

Y
ea
rs

4
cl
as
se
s:

0-
1,

1-
3,

3-
6,
>
6

co
m
m
E
x
p

C
om

m
er
ci
al

pr
og
ra
m
m
in
g
ex
pe

ri
en
ce

in
in
du

st
ry

O
rd
in
al

Y
ea
rs

4
cl
as
se
s:

0-
1,

1-
3,

3-
6,
>
6

T
ab

le
2:

O
bs

er
ve

d
an

d
D

er
iv

ed
V
ar

ia
bl

es

28

6.3. Experiment Design
The controlled experiment was conducted in the context of Information Sys-

tem Technologies lecture at the Faculty of Computer Science, University of
Vienna, Austria, in January 2014.

Participants. From the 48 students of the lecture, 26 participated in the control
group and 22 in the experiment group, in teams of two students. The experi-
ment was part of a practical exercise on architectural decisions for service-based
software systems. The practical exercises took place in four separate groups (in
different rooms) to which the students were randomly assigned. All students
had background in Java programming, Web services, and design patterns.

Objects. As the basis for making and documenting pattern-based architectural
decisions collaboratively and remotely, a list of documented architectural design
patterns, as well as a set of reusable architectural decision models, were provided
in the CoCoADvISE tool. The design patterns and architectural decision models
were selected based on the lecture materials known to the students and the
students’ experiences from the previous practical exercises.

Instrumentation. In the preparation phase, all participants were given an intro-
duction to CoCoADvISE and were asked to study the catalog of architectural
design patterns and related technologies. Before starting with the experiment
tasks, all participants had to fill in a short questionnaire regarding their pro-
gramming experiences. Afterwards, all participants were provided with a de-
scription and requirements of the system to be designed (“An Online Retailer
for Selling Books and Gadgets”), a description of the different stakeholder roles,
their responsibilities, as well as a description of additional constraints regarding
the collaborative decision making process. In Table 3 we give an example of the
software system’s requirements, and in Table 4 we summarize the two stake-
holder roles along with an excerpt of their privileges and responsibilities. Note
that in reality a larger number of roles would be needed, but in order to reach a
controlled environment we had to simplify the roles used in the experiment. In
total, the students had to consider three groups of requirements (Expose Web
Services to a Web Shop, Customer Login, and Manage Different Formats for
Inventories), given in descriptive form. Additionally, some hints were provided
with information about the concrete decisions that were expected. Each require-
ment had to be covered by one or more documented architectural decisions.

Eventually, all participants were given access to the CoCoADvISE tool. For
the needs of the controlled experiment a detailed list of related architectural
design patterns and three reusable architectural decision models with use in-
structions were provided in the tool. The functionality of CoCoADvISE is de-
scribed in Section 4 and the setting provided to the students can be viewed at
https://piri.swa.univie.ac.at/cocoadvise16. The participants needed to

16Use the following user names (no password required): experiment1, experiment2, control1
or control2.

29

Name Description

Customer
Login

A customer needs to login in order to purchase books and gadgets
online and is responsible for saving his/her session in order to keep
the state of his/her orders (stateful remote objects). If the session
is inactive for a predefined time period the session should expire
and the customer gets automatically logged out. Decide how to
implement the creation and lifecycle management of the sessions.
Hint: Create a questionnaire based on the Resource and Lifecycle
Management decision model.

Table 3: Online Retailer Requirement Example

Software
Architect

The Software Architect is responsible for high-level decisions
rather than for implementation details.

Application
Developer

The Application Developer is responsible for decisions that refer
to low-level design and implementation details.

Privileges Only the Software Architect should be able to create the ques-
tionnaires giving a name already agreed/edited by both the Soft-
ware Architect and the Application Developer. Also, only the
creator of questionnaires and decisions is able to remove them,
i.e., you are not allowed to delete questionnaires or decisions of
your partner. [...] The Software Architect will make the final
decision (generate decision) about the type of Web Service that
will be exposed by the Online Retailer (as well as the transport
protocol) but has to agree with the Application Developer on
this before he/she makes the final decision. The same applies
for the architectural decision regarding the service discovery.
Once the decision about the type of web service has been made,
the Application Developer can proceed with deciding the secu-
rity and encryption of the web service. Only the Application
Developer is responsible for deciding on security issues and the
Software Architect should not interfere in this issue. [...]

Table 4: Decision Making Roles with their Privileges

30

reuse three architectural decision models (Resource and Lifecycle Management,
Message Transformations, and Web Services) in teams, in order to make and
document the architectural decisions related to the given requirements.

The crucial difference between the experiment and the control group was
that we completely disabled the automatic constraint enforcement functionality
for users belonging to the control group. In other words, the control group’s
members were completely responsible on their own for working in a way that
no constraints are violated. In particular, they had to detect violations on their
own and they also had to resolve them “manually”. In contrast, these tasks have
been automated for the experiment group.

Note that for the purpose of this experiment only the following constraint
types have been considered: Unanimity, ResponsibleRole and RequiredPermission.

6.4. Execution
As described in the previous section, the experiment was executed in the con-

text of the Information System Technologies lecture at the Faculty of Computer
Science, University of Vienna in the Winter Semester 2013/2014.

The participants were randomly divided into groups of two persons and also
randomly assigned to experiment and control group. As two of the four course
groups with different numbers of students took place simultaneously at a time
and the collaborating students were not allowed to work in the same room, we
had to divide the participants in unequal groups of 22 (experiment group) and
26 (control group) participants. Three participants of the experiment group
were excluded, as they did not hand in any results (that is, they did not edit
any questionnaires or decisions).

As we can see in Figure 11 the programming experience, as well as the
industry programming experience of the participants are comparable in both
treatment groups with the control group having slightly longer programming
experience and most of the students having more than 2.5 years of programming
experience but very few having experience in industrial projects (0-1 years).

The same materials were handed out to all participants in the beginning
of the exercise. The experiment group used the different version of CoCoAD-
vISE where the constraints (such as the ones in Table 4) were integrated and
automatically enforced (i.e., they could not be violated in any way).

The experiment was executed in two sessions of 90 minutes. In this time
period, the students had to read, understand and execute the exercise. They
were allowed to finish with the tasks earlier. Access to the tool was given only
during these sessions to avoid offline work or discussion among students.

The collection of the participants’ data has been performed automatically
during the experiment. In particular, all relevant information, such as created
questionnaires, selected options, and exchanged messages, as well as all relevant
events, such as deletions or modifications of architectural decisions and changes
of selected options were saved in a database.

No deviations from the initial study design occurred and no situations in
which participants behaved unexpectedly.

31

0

5

10

15

control experiment

0−1 years 1−3 years 3−6 years >6 years

Programming Experience

0

5

10

15

control experiment

0−1 years 1−3 years 3−6 years >6 years

Programming Experience in Industry

Figure 11: Participants’ Programming Experience

7. Analysis of Results

The following statistical analysis has been carried out using R language and
environment for statistical computing [51]. Note that the raw data as well as
the corresponding R script for calculating these results are available online at
https://piri.swa.univie.ac.at/cocoadvise-experiment.

7.1. Descriptive Statistics
As a first step in our analysis, we use descriptive statistics to compare ob-

served variables related to the efficiency and the effectiveness of making and
documenting architectural decisions. That is, Table 5 and Figure 12 display the
mean and median values for the number of actions the participants of each treat-
ment group needed to perform in order to complete the exercise (actions), the
total time they needed (time), the percentage of tasks they completed (work),
and the number of constraint violations they caused (violations).

It is clearly noticeable that the experiment group spent less time working
on the exercise and had to perform less actions than the control group. A user
of the control group caused 5.23 constraint violations on average, which are
automatically prevented for the experiment group by our tool. The experiment
group could finish more work tasks than the control group (i.e., 85.03% vs.
71.79% on average). Given these results, it makes sense to take a closer look at
our derived variables (i.e., timeNorm and actionsNorm). We can see that the
gap between both treatment groups gets wider when we look at these derived
variables. That is, the experiment group would need roughly 41% less time and
nearly 44% less actions in order to completely finish all required work tasks.

32

Variable Means Medians

control experiment control experiment

time (min) 163.72 120.53 148.33 120.21
timeNorm (min) 244.25 146.72 221.41 142.57
actions 95.15 67.05 88.50 57.00
actionsNorm 140.81 80.08 127.20 60.00
violations 5.23 – 3.50 –
work (%) 71.79 85.03 71.43 85.71

Table 5: Means and Medians of Observed Variables

Constraint Type Means Medians

Unanimity 0.27 0.00
ResponsibleRole 3.38 2.00
RequiredPermission 1.85 0.00

Table 6: Observed Constraint Violations per User in the Control Group

Finally, Table 6 provides the mean and median values of the observed con-
straint violations per type and per user in the control group. We notice that, on
average, ResponsibleRole constraints were violated 3.38 times per user, followed
by RequiredPermission constraints, which were violated 1.85 times per user.

7.2. Data Set Reduction
Studying the deviations from the means for each of the four variables that

we observed we noticed a few outliers, i.e., points that are either much higher or
much lower than the mean values. As these potential candidate data points for
exclusion correspond to different participants (for instance, a student delivered
more required work in less time) these single outlier points do not necessarily
make the participant an outlier. Thus, we decided to exclude only participants
who did not perform any action and delivered 0% of the required work tasks,
and who therefore would make the study results vulnerable. This was done,
however, before the data analysis (see explanation in Section 6.4); at this stage,
we did not perform any further data set reduction.

7.3. Hypotheses Testing
Testing for Normal Distribution. In order to see whether we can apply para-
metric tests like the t-test that assume the normal distribution of the analyzed
data, we tested the normality of the data by applying the Shapiro-Wilk test [43].
The null hypothesis of the Shapiro-Wilk test states that the input data is nor-
mally distributed. It is tested at the significance level of α = 0.05 (i.e., the level
of confidence is 95%). That is, if the calculated p-value is lower than 0.05 the
null hypothesis is rejected and the input data is not normally distributed. If the

33

0

25

50

75

control experiment

actions

0

50

100

control experiment

actionsNorm

0

50

100

150

control experiment

time (min)

0

50

100

150

200

250

control experiment

timeNorm (min)

0

25

50

75

control experiment

work (%)

mean

median

Figure 12: Means and Medians of Observed Variables

34

Variable p-Value

control experiment

time 0.0571 0.8451
actions 0.0092 0.0017
violations 0.0045 –
work 0.0850 0.0047

Table 7: Shapiro-Wilk Normality Test

p-value is higher than 0.05, we can not reject the null hypothesis that the data
is normally distributed.

Table 7 lists the p-values of the Shapiro-Wilk normality test for each observed
variable and treatment group. We can see that only time exhibits a very weak
tendency of being normally distributed, while for all other variables it can not
be concluded that they are normally distributed. As a result, we decided to
pursue non-parametric statistical tests with our data.

Comparing the Means of Variables. To compare the means of variables, we
applied the Wilcoxon rank-sum test [25]. The one-tailed Wilcoxon rank-sum
test is a non-parametric test for assessing whether one of two data samples
of independent observations is stochastically greater than the other. Its null
hypothesis, which is appropriate for the hypotheses in our experiment, is that
the means of the first variable’s distribution is less than or equal to the means
of the second variable’s distribution, so that we can write H0 : A ≤ B. The
Wilcoxon rank-sum test tries to find a location shift in the distributions, i.e.,
the difference in means of two distributions. The corresponding alternative
hypothesis HA could be written as HA : A > B. If a p-value for the test is
smaller than 0.05 (i.e., the level of confidence is 95%), the null hypothesis is
rejected and the distributions are shifted. If a p-value is larger than 0.05, the
null hypothesis can not be rejected, and we can not claim that there is a shift
between the two distributions.

Table 8 contains the p-values of five Wilcoxon rank-sum tests that were
performed to test our hypotheses (see Section 6.1). It also contains the cor-
responding null hypotheses (e.g., H01 is the null hypothesis of H1) and their
assumptions regarding the means of a specific variable. Based on the obtained
p-values, we can assess that all distributions show a statistically significant shift
between each other and that all null hypotheses can be rejected.

Testing Hypothesis H1. In our experiment, we observed that the experiment
group was able to perform more work tasks than the control group, i.e., their
participants weremore effective than the participants of the other group. With a
p-value of 0.0093 we can reject the null hypothesis H01 (i.e., automatic enforce-
ment of constraints in CoCoADvISE has no effect or decreases the effectiveness
of its users). Hence, we can accept H1.

35

Hypothesis Assumption Variable (µ) p-Value

H01 µexp ≤ µcontrol work 0.0093
H02 µexp ≥ µcontrol time 0.0040

timeNorm 0.0003
H03 µexp ≥ µcontrol actions 0.0018

actionsNorm 0.0001

Table 8: Hypothesis Testing Results

That is, there is evidence that the automatic enforcement of constraints
increases the effectiveness of its users.

Testing Hypothesis H2. We also found that the experiment group needed less
time than the control group, i.e., its members were more efficient in terms of
time invested than the members of the other group. This observation holds for
both the observed variable time and the derived variable timeNorm. Hence,
we tested the null hypothesis H02 (i.e., automatic enforcement of constraints in
CoCoADvISE has no effect or decreases the time related efficiency of its users)
for both variables. As both p-values were below 0.05 (i.e., 0.0040 in the case of
time and 0.0003 in the case of timeNorm) we can reject H02 and accept H2.

That is, there is evidence that automatic enforcement of constraints increases
the time related efficiency of its users.

Testing Hypothesis H3. Finally, we discovered that the experiment group per-
formed less actions than the control group, i.e., its participants were more ef-
ficient in terms of effort invested than the participants of the other group. As
this observation holds for both actions and actionsNorm we tested the null hy-
pothesis H02 (i.e., automatic enforcement of constraints in CoCoADvISE has
no effect or decreases the effort related efficiency of its users) for both variables.
The p-values of 0.0018 and 0.0001 led us to reject H03 and accept H3.

Hence, we conclude that there is evidence that automatic enforcement of
constraints also increases the effort related efficiency of its users.

7.4. Regression Analysis
In order to better understand the adverse effects of constraint violations,

this section presents a linear regression analysis. Table 9 depicts three different
linear regression models that can be used to quantify the effect of constraint
violations (violations) on a user’s effectiveness (work) and efficiency (actions
and time). In particular, it shows the explained variable, the value of the
coefficient (i.e., violations) and the p-value of the corresponding (two-tailed)
t-test, the regression’s R2 and the p-value of the corresponding F -test as well
as the number of outliers that had to be excluded from the regression.

The null hypothesis of the t-test assumes that the corresponding coefficient
has a value of 0. At the significance level of α = 0.05, a p-value lower than 0.05
provides evidence that the coefficient is significantly different from 0. R2, the

36

Variable Coefficient (violations) R2 p-Value # Outliers

Value p-Value

time 5.6230 0.0039 0.1671 0.0039 0
actions 4.1728 0.0000006 0.4596 0.0000006 5
work −1.2032 0.0468 0.0868 0.0468 2

Table 9: Linear Regression Models

coefficient of determination, is used as an indicator of how well a linear regres-
sion fits a set of data. The statistical test of significance for R2 is the F -test.
Linear regressions require the following four crucial assumptions to hold: Lin-
earity, Homoscedasticity, Uncorrelatedness and Normality. Pena et al. proposed
a procedure for testing these assumptions [35]. We used the corresponding gvlma
R package for assuring (at a significance level of α = 0.05) that the four assump-
tions hold for our linear regressions. Note that we had to iteratively increase the
number of outliers to be excluded from the regressions until the gvlma package
confirmed that all assumptions are justified. Eventually we had to exclude 5
participants from the regression that explains actions and 2 for the regression
explaining work.

As we can see, the p-values of all t-tests and F -tests are below 0.05. Hence,
we consider all coefficient values and the R2 for each regression to be statisti-
cally significant at the significance level of α = 0.05. Each regression model can
be used to quantify the effect of a single constraint violation on each of the ex-
plained variables. For instance, regarding time our model predicts that a single
constraint violation increases the overall time needed to make and document
decisions by nearly 6 minutes. Similarly, a violation increases actions, i.e., the
number of actions that a user performs, by roughly 4. With an R2 of 0.4596
it can also be noted, that the coefficient violations “can explain” nearly 46%
of actions variability. Finally, there is a negative relation between violations
and work. According to our model, a single constraint violation reduces the
percentage of work tasks that a user manages to accomplish by roughly 1.2%.

In summary, these regression models fortify and complement our main find-
ings. While our hypotheses dealt with finding evidence that automatic enforce-
ment of constraints is beneficiary in terms of effectivity and efficiency in general,
the regression models provide further insights into (1) what exactly are the ad-
verse effects of constraint violations and (2) to which extent they influence the
effectivity and efficiency of users.

8. Discussion

The following subsections discuss our main findings and their implications
as well as their threats to validity.

37

8.1. Evaluation of Results and Implications
Increased Effectiveness. Hypothesis H1 and the corresponding null hypothesis
H01 concern the effectiveness of users of collaborative and constrained archi-
tectural decision making tools. In Section 7.3 we could provide evidence that
the null hypothesis H01 can be rejected. Thus, automatic enforcement of con-
straints increases the effectiveness of its users.

We interpret this finding as follows. The concrete set of work tasks a specific
user has to complete stems from the role that has been assigned to the user. In
our experiment, the duties of each role have been described textually, as can be
seen in Table 4. For instance, a concrete work task of users with the role Software
Architect is that they are supposed to generate the decision about the type of
Web service to be deployed. If the other user generates the decision instead,
we do not increment the number of successfully accomplished work tasks of the
Software Architect. In Table 6 we can see that ResponsibleRole constraints were
violated 3.38 times per user (on average). Thus, it seems that many users were
unsure or confused about who is supposed to do what in the decision making
process. In fact, similar issues have been documented in [28] and [1].

As many users performed tasks that were supposed to be performed by
another user and the fact that our approach for calculating the percentage of
accomplished work penalizes these “deviations from the prescribed regulations”,
we conclude that our experiment provides evidence that automatic enforcement
of constraints increases the effectiveness of its users.

Increased Efficiency. In Section 7.3 we could provide evidence that both null
hypotheses H02 and H03 can be rejected. The corresponding alternative hy-
potheses H2 and H3 concern the efficiency of users of collaborative and con-
strained architectural decision making tools. Thus, automatic enforcement of
constraints increases the efficiency of its users. To be exact, it increases both
the time and effort related efficiency.

We have the following explanation for these findings. In order to be able
to “manually” detect and prevent constraint violations, users have to read and
understand the description and meaning of each defined constraint type first.
Then, during working on their work tasks and performing actions, they have to
be careful not to (unintentionally) cause constraint violations. In case a viola-
tion happens anyway, there are two possibilities. If the violation gets detected,
the users have to resolve the violation, e.g., by revoking and redoing already
performed tasks. In general, detecting and resolving constraints requires an ad-
ditional investment of both time and effort. Violations which are not detected
decrease – among other things – the effectiveness of users. To this end, espe-
cially our linear regression model (see Section 7.4) can be interpreted as a good
estimator for predicting the effort reduction to be expected when introducing
automatic enforcement of constraints. For instance, if we would expect an av-
erage of 5.23 constraint violations per user (which is the actual observed mean
for violations in our experiment), our model predicts that we can anticipate
our users to require 21.82 additional work steps needed to resolve these viola-

38

tions again. Analogously, these additional work steps are predicted to cost 34.64
additional minutes.

In summary, we can conclude that our experiment provides evidence that
automatic enforcement of constraints increases the efficiency of users, because
it takes away the burden of detecting, preventing and resolving constraint vio-
lations “manually” from the user.

Initial Development and Modeling Effort. A possible limitation of our approach
is that automatic enforcement of decision making constraints, as proposed in
this paper, is only possible if the required amount of time and effort gets in-
vested into modeling decision and constraint specifications before the tool is
used. In addition, in the rare case that a new constraint type is introduced,
developers have to augment the tool with additional constraint checking and
enforcement logic. As our approach is based on reusable architectural decision
models that are supposed to be instantiated more than once, the modeling effort
is only required once per reusable decision model and constraint type. Nowak
et al. envision the idea of collaboration and knowledge exchange between dif-
ferent architectural knowledge repositories (i.e., repositories containing reusable
architectural decision models) [32]. When applied to our context, this means a
further reduction of initial modeling effort. Thus, models are shared, reused and
adapted instead of built from scratch. Hence, except for rarely used decisions
or constraint types this limitation should be negligible.

8.2. Threats to Validity
To ensure the validity of our results, we consider the categorization of validity

threats of Wohlin [61] and discuss each of them separately in the context of our
controlled experiment.

Conclusion Validity. The conclusion validity focuses on the relationship be-
tween the treatment we used in the experiment and the actual outcome, i.e., on
the existence of a significant statistical relationship.

The way we measured the working time of the students automatically from
the database entries may pose a threat to conclusion validity, as users might
have spent some observed working time idle or with other tasks, or they might
have worked offline without the system noticing the working time. In addition,
to measure the actual time spent on working with the CoCoADvISE tool is very
difficult, if not impossible, as the participants may have spent some time reading
the tasks or familiarizing with the tool. However, we think that idle working
times, times spent on other tasks, or offline work can largely be excluded due
to the limited experiment time of 180 minutes in which the participants needed
to work in a concentrated manner in order to get the work done.

The number of participants (48 students) may also affect the statistical va-
lidity of the results.

39

Internal Validity. The internal validity refers to the extent to which treatment
or independent variables caused the effects seen on the dependent variables.

In order to reduce this kind of validity threats, we made sure that the par-
ticipants of both groups had at least medium experience in programming and
design – with slight differences – and that they were aware of the architectural
design patterns they had to use for making and documenting architectural de-
cisions (they had also implemented some of them during the practical course
before the experiment).

Also, the experiment was carried out in a controlled environment and the
group members were in different rooms and did not know the identity of their
partner. An observer in the room ensured that no interactions between the par-
ticipants of the same room occurred. The students did not know the goals of the
experiment or the group they belong to, nor could they realize that the control
and experiment groups were working with different versions of CoCoADvISE.

Our inability, to effectively prevent the participants from using external Web
sites (i.e., search engines, social networks, chats, wikis, etc.) during the experi-
ment, might also pose a potential – but arguably negligible – threat to validity.
We believe, that it is very unlikely, that any of these external Web sites might
have been advantageous in actually preventing constraint violations.

A threat to validity was introduced by the execution of the experiment in
two different sessions. To limit this threat, we did not allow any access to
CoCoADvISE and the accompanying materials outside these two sessions.

Construct Validity. The construct validity focuses on the suitability of the ex-
periment design for the theory behind the experiment and the observations.

The students worked in their task assignment only on a single software sys-
tem with an excerpt of the full list of requirements. However, it is likely that
this did not (heavily) affect the validity of the results because the constraints in
the collaboration were our focus. We regard the amount and type of the con-
straints introduced in the experiment to be grounded in real-life collaborative
architectural decision making scenarios.

The variables that have been observed in the experiment are regarded as
accurate and objective as they are related to the actual use of tools and were
automatically extracted from the database.

Also, for calculating the completed work per participant, we first extracted
a list of required tasks from the exercise description which was afterwards used
to calculate the completion of work automatically from the database entries.

External Validity. The external validity is concerned with whether the results
are generalizable outside the scope of our study.

The subjects of the experiment have medium programming experience and
were familiar with the architectural design decisions they were asked to make.
However, only few students have experience in the industry. We hence consider
the group under study to be representative for novice software developers or
architects and plan to test the same hypotheses with other target groups as well.

40

Kitchenham et al. regard students close to practitioners, as they are considered
to be the next generation of software professionals [17].

As mentioned before, the measurements were extracted from the tool data-
base, avoiding any bias by the experimenters.

The system under study and the corresponding architectural decision models
and patterns are representative for Web and enterprise information systems, and
hence it is likely that the findings can be generalized to similar system domains
and decision models. It would require additional experiments to determine if
they can be generalized to vastly different system domains, such as software
systems operating close to the hardware.

Finally, in our experiment we observed group decision making with groups
of only two members. In our point of view, it is highly likely that the results
are similar for slightly larger groups (e.g., of 3 or 4 members). However, it is
unclear, if the results can be generalized to larger groups of decision makers.

8.3. Inferences
In principle, our observations are coherent with the findings of similar studies

in slightly different contexts. For instance, Herbsleb et al. present a theory that
models collaborative software engineering as a distributed constraint satisfac-
tion problem [12]. They also found that backtracking, as a result of constraint
violations, increases both the time and effort to be invested. This is a further in-
dication that our findings should be generalizable. In particular, we believe that
virtually any kind of collaborative process that concerns different stakeholder
roles and demands to be restricted by various domain and context specific con-
straints will benefit from automatic constraint enforcement in a similar way to
CoCoADvISE.

9. Conclusions and Future Work

The approach presented in this paper is the first one to consider the precise
definition and automatic enforcement of constraints in real-time collaborative
architectural decision making. CoCoADvISE ensures that stakeholders with
different roles make and document collaborative architectural design decisions
consistently. We demonstrate the applicability of our approach in an industrial
context and with the help of a controlled experiment we are also able to report
strong evidence that the automatic enforcement of constraints leads to increased
time and effort related efficiency and effectiveness of the users while making and
documenting architectural decisions.

We consider our approach and accompanying tool to be relevant and useful
for other collaborative software engineering tools as well, which involve various
stakeholder roles and distributed teams. Therefore, we plan to extend CoCoAD-
vISE to cover other constrainable collaborative activities with focus on software
architecture processes.

In our future work, we will also collect more empirical evidence about the
supportive effect of automatic enforcement of constraints in collaborative ar-
chitectural decision making tools on the efficiency and effectiveness of users, by

41

conducting similar controlled experiments. Our main goal is to test our assump-
tions with practitioners, receive feedback regarding the usability of our tool, and
test our approach with different group sizes, in different system domains, and
with different decision models.

Acknowledgments

We would like to thank all students of the Information System Technologies
lecture in the Winter Semester 2013/2014 for participating in the experiment.

Appendix A. Generic Meta-model for Decision Making Constraints

This appendix provides the complete formal definition of the Constrainable
Decision Meta-model introduced in Section 4.3. In particular, Definition A.1
provides a list of elements and their relations, Definition A.2 presents crucial
model invariants to be considered at design time, and Definition A.3 lists model
invariants relevant at execution time.

To provide a self-contained view in this paper, the following formal meta-
model repeats the core definitions regarding the concepts of subjects, roles and
permissions from [49], which form the basis for our approach.

Definition A.1 (Constrainable Decision Meta-model)
A Constrainable Decision Model CDM = (E,M) where E = DM ∪ D ∪ Q ∪
O ∪S ∪R∪P ∪DD ∪OS ∪C refers to pairwise disjoint sets of the meta-model
and M = dma ∪ qda ∪ oqa ∪ rsa ∪ pra ∪ dda ∪ gs ∪ gr ∪ soa ∪ ss ∪ sr ∪ cda ∪
cma ∪ rruca ∪ ssuca ∪ rrrca ∪ srsca ∪ prpca ∪ cd to mappings that establish
relationships, such that:

• For the sets of the meta-model:

– An element of DM is called Decision Model. DM 6= ∅.
– An element of D is called Decision. D 6= ∅.
– An element of Q is called Question. Q 6= ∅.
– An element of O is called Option. O 6= ∅.
– An element of S is called Subject. S 6= ∅.
– An element of R is called Role. R 6= ∅.
– An element of P is called Permission. P ⊇ {selectOption, generate-
Decision}.

– An element of DD is called Documented Decision. DD 6= ∅.
– An element of OS is called Option Selection.

– An element of C is called Constraint. C = CU ∪CUR
∪CUS

∪CRR
∪

CRS
∪ CP

– An element of CU is called Unanimity Constraint.

42

– An element of CUR
is called Role Unanimity Constraint.

– An element of CUS
is called Subject Unanimity Constraint.

– An element of CRR
is called Responsible Role Constraint.

– An element of CRS
is called Responsible Subject Constraint.

– An element of CP is called Required Permission Constraint.

In the list below, we iteratively define the partial mappings of the Decision
Making Constraint Model and provide corresponding formalizations (P refers
to the power set):

1. A decision model consists of many decisions and each decision belongs to
exactly one decision model.
Formally: The injective mapping dma : DM 7→ P(D) is called decision-
to-decision-model assignment. For dma(dm) = Ddm we call dm ∈
DM decision model and Ddm ⊆ D is called the set of decisions assigned
to dm. The mapping dma−1 : D 7→ DM returns the decision model a
decision is assigned to.

2. A decision consists of many questions and each question belongs to exactly
one decision.
Formally: The injective mapping qda : D 7→ P(Q) is called questions-
to-decision assignment. For qda(d) = Qd we call d ∈ D decision and
Qd ⊆ Q is called the set of questions assigned to d. The mapping qda−1 :
Q 7→ D returns the decision a question is assigned to.

3. A question provides many options and each option belongs to exactly one
question.
Formally: The injective mapping oqa : Q 7→ P(O) is called option-to-
question assignment. For oqa(q) = Oq we call q ∈ Q question and Oq ⊆
O is called the set of options assigned to q. The mapping oqa−1 : O 7→ Q
returns the question an option is assigned to.

4. Roles are assigned to subjects (i.e., human users), and through their roles
the subjects acquire the rights to perform certain tasks (see [49]). The
role-to-subject assignment relation is a many-to-many relation, so that
each subject may own several roles and each role can be assigned to differ-
ent subjects. For example, in case the “Software Architect” role is assigned
to two subjects called Alice and Bob, both can perform all tasks assigned
to the “Software Architect” role.
Formally: The injective mapping rsa : S 7→ P(R) is called role-to-
subject assignment. For rsa(s) = Rs we call s ∈ S subject and Rs ⊆ R
the set of roles assigned to this subject (the set of roles owned by s). The
mapping rsa−1 : R 7→ P(S) returns all subjects assigned to a role (the set
of subjects owning a role).

5. Permissions are assigned to roles. The permission-to-role assignment re-
lation is a many-to-many relation, so that each role may own several per-
missions and each permission can be assigned to different roles.

43

Formally: The injective mapping pra : R 7→ P(P) is called permission-
to-role assignment. For pra(r) = Pr we call r ∈ R role and Pr ⊆ P
the set of permissions assigned to this role (the set of permissions owned
by r). The mapping pra−1 : P 7→ P(R) returns all roles assigned to a
permission (the set of roles owning a permission).

6. At runtime, users can generate documented decisions which are based on
a reusable decision. Thus, when a user generates a documented decision,
a new documented decision is assigned to the corresponding (reusable)
decision (see Figure 2).
Formally: The mapping dda : D 7→ P(DD) is called documented-
decision-to-decision assignment. For dda(d) = DDd we call d ∈ D
decision andDDd ⊆ DD is called the set of documented decisions assigned
to d.

7. As defined in Definition A.1.6, documented decisions are assigned to de-
cisions whenever users generate documented decisions. The generating-
subject mapping is used to hold the exact subject that generated a docu-
mented decision.
Formally: The mapping gs : DD 7→ S is called generating-subject
mapping. For gs(dd) = s we call s ∈ S the generating subject and
dd ⊆ DDS is called the documented decision.

8. Similarly to Definition A.1.7, we define the role that is used to generate a
documented decision to be called the generating-role of the corresponding
documented decision.
Formally: The mapping gr : DD 7→ R is called generating-role map-
ping. For gr(dd) = r we call r ∈ R the generating role and dd ⊆ DDS is
called the documented decision.

9. At runtime, users of a decision model can select options. Thus, when a user
selects an option, a new option selection is assigned to the corresponding
option (see Figure 6(b)).
Formally: The mapping soa : O 7→ P(OS) is called selection-to-option
assignment. For soa(o) = OSo

we call o ∈ O option and OSo
⊆ OS is

called the set of option selections assigned to o.
10. As defined in Definition A.1.9, option selections are assigned to options

whenever users select options. The purpose of an option selection is to
hold the subject and role that is used to select a certain option. For ex-
ample, if subject Alice selects the option “only JSON”, the corresponding
option selection holds a reference to the subject “Alice”.
Formally: The mapping ss : OS 7→ S is called selecting-subject map-
ping. For ss(os) = s we call s ∈ S the selecting subject and os ⊆ OS is
called the option selection.

11. Similarly to Definition A.1.10, we define the role that is used to select a
certain option to be called the selecting-role of the corresponding option
selection.
Formally: The mapping sr : OS 7→ R is called selecting-role mapping.
For sr(os) = r we call r ∈ R the selecting role and os ⊆ OS is called the
option selection.

44

12. Particular reusable architectural decisions can be made subject to deci-
sion making constraints. For example, the decision “RESTful HTTP vs.
SOAP/WS-*” (see Figure 3), which is required to be decided unanimously
by all stakeholders, may be made subject to a unanimity constraint. More
precisely, decisions are made subject to constraints by assigning them to
constraints.
Formally: The injective mapping cda : D 7→ P(C) is called constraint-
to-decision assignment. For cda(d) = Cd we call d ∈ D decision and
Cd ⊆ C is called the set of constraints assigned to d. The mapping
cda−1 : C 7→ P(D) returns the set of decisions a constraint is assigned
to.

13. All reusable architectural decisions of a decision model can be made sub-
ject to decision making constraints at once. For instance, all decisions of
a decision model can statically be made subject to a Required Permission
constraint by assigning the corresponding constraint to the decision model.
Formally: The injective mapping cma : DM 7→ P(C) is called constraint-
to-decision-model assignment. For cma(dm) = Cdm we call dm ∈
DM decision model and Cdm ⊆ C is called the set of constraints assigned
to dm. The mapping cma−1 : C 7→ P(DM) returns the set of decision
models a constraint is assigned to.

14. A Role Unanimity Constraint enforces that all subjects that own at least
one of a specific set of roles have to unanimously agree on the same set
of options, at runtime. Thus, these roles are assigned to role unanimity
constraints. The role-to-role-unanimity-constraint assignment relation is
a many-to-many relation, so that each role may be assigned to several role
unanimity constraints and each role unanimity constraint can be assigned
to different roles.
Formally: The injective mapping rruca : CUR

7→ P(R) is called role-to-
role-unanimity-constraint assignment. For rruca(ruc) = Rruc we
call ruc ∈ CUR

role unanimity constraint and Rruc ⊆ R the set of roles
assigned to this role unanimity constraint. The mapping rruca−1 : R 7→
P(CUR

) returns all role unanimity constraints assigned to a role.
15. A Subject Unanimity Constraint enforces that a specific set of subjects

have to unanimously agree on the same set of options, at runtime. Thus,
these subjects are assigned to subject unanimity constraints. The subject-
to-subject-unanimity-constraint assignment relation is a many-to-many
relation, so that each subject may be assigned to several subject una-
nimity constraints and each subject unanimity constraint can be assigned
to different subjects.
Formally: The injective mapping ssuca : CUS

7→ P(S) is called subject-
to-subject-unanimity-constraint assignment. For ssuca(suc) = Ssuc

we call suc ∈ CUS
subject unanimity constraint and Ssuc ⊆ S the set

of subjects assigned to this subject unanimity constraint. The mapping
ssuca−1 : S 7→ P(CUS

) returns all subject unanimity constraints assigned
to a subject.

16. A Responsible Role Constraint enforces that only subjects that own at

45

least one of a specific set of roles shall be allowed to make and gener-
ate a specific decision. Thus, these roles are assigned to responsible role
constraints. The role-to-responsible-role-constraint assignment relation is
a many-to-many relation, so that each role may be assigned to several
responsible role constraints and each responsible role constraint can be
assigned to different roles.
Formally: The injective mapping rrrca : CRR

7→ P(R) is called role-to-
responsible-role-constraint assignment. For rrrca(rrc) = Rrrc we
call rrc ∈ CRR

responsible role constraint and Rrrc ⊆ R the set of roles
assigned to this responsible role constraint. The mapping rrrca−1 : R 7→
P(CRR

) returns all responsible role constraints assigned to a role.
17. A Responsible Subject Constraint enforces that only a specific set of sub-

jects shall be allowed to make and generate a specific decision. Thus, these
subjects are assigned to responsible subject constraints. The subject-to-
responsible-subject-constraint assignment relation is a many-to-many re-
lation, so that each subject may be assigned to several responsible subject
constraints and each responsible subject constraint can be assigned to dif-
ferent subjects.
Formally: The injective mapping srsca : CRS

7→ P(S) is called subject-
to-responsible-subject-constraint assignment. For srsca(rsc) = Srsc

we call rsc ∈ CRS
responsible subject constraint and Srsc ⊆ S the set

of subjects assigned to this responsible subject constraint. The mapping
srsca−1 : S 7→ P(CRS

) returns all responsible subject constraints assigned
to a subject.

18. A Required Permission Constraint enforces that only subjects that own
certain permissions (i.e., via their roles) within the system are allowed to
perform the corresponding activities. For example, consider permission
“Generate Decision” is only assigned to role “Software Architect”, then
only subjects that own the role “Software Architect” shall be allowed to
generate decisions. The permissions to be enforced have to be assigned to
required permission constraints. The permission-to-required-permission-
constraint assignment relation is a many-to-many relation, so that each
permission may be assigned to several required permission constraints and
each required permission constraint can be assigned to different permis-
sions.
Formally: The injective mapping prpca : CP 7→ P(P) is called permiss-
ion-to-required-permission-constraint assignment.
For prpca(rpc) = Prpc we call rpc ∈ CP required permission constraint
and Prpc ⊆ P the set of permissions assigned to this required permission
constraint. The mapping prpca−1 : P 7→ P(CP) returns all required per-
mission constraints assigned to a permission.

19. A decision can effectively be constrained either by a constraint that is di-
rectly assigned to the decision (i.e., using a constraint-to-decision assign-
ment, see, Definition A.1.12), or by a constraint that is assigned to the
corresponding decision model (i.e., using a constraint-to-decision-model
assignment, see, Definition A.1.13). The constrained-decision mapping

46

aggregates the set of decisions that are constrained by a constraint.
Formally: The mapping cd : C 7→ P(D) is called constrained-decision
mapping, such that for each constraint c ∈ C the set of decisions that are
effectively constrained by c are returned, i.e., cd(c) = dma(cma−1(c)) ∪
cda−1(c).

Definition A.2 (Design Time CDM Meta-model Invariants)
Let CDM = (E,M) be a Constrainable Decision Model. CDM is said to be
statically correct if the following requirements hold:

1. A constraint either constrains a single decision or a complete decision
model. It is either assigned to a decision or a decision model. Therefore:

∀c ∈ C(cda−1(c) = ∅ ⊕ cma−1(c) = ∅)

Note that the ⊕ symbol represents the XOR (i.e., exclusive or) operation.

2. All roles that are assigned to a responsible role constraint must own the
permission “generate decision”. Therefore:

∀r ∈ R(rrrca−1(r) 6= ∅ ⇒ generateDecision ∈ pra(r))

3. All subjects that are assigned to a responsible subject constraint must
own a role that owns the permission “generate decision”. Therefore:

∀s ∈ S(srsca−1(s) 6= ∅ ⇒ ∃r ∈ rsa(s)(generateDecision ∈ pra(r)))

4. Each permission that is assigned to a required permission constraint must
be owned by at least one role. Therefore:

∀c ∈ CP , p ∈ prpca(c)(pra−1(p) 6= ∅)

5. When an unanimity constraint is used there must be at least one subject
that has the permission “select option”. Therefore:

∀c ∈ CU ⇒ ∃r ∈ R(selectOption ∈ pra(r))

6. All roles that are assigned to role unanimity constraints must have the
permission “select option”. Therefore:

∀r ∈ R(rruca−1(r) 6= ∅ ⇒ selectOption ∈ pra(r))

7. All subjects that are assigned to subject unanimity constraints must have
the permission “select option”. Therefore:

∀s ∈ S(ssuca−1(s) 6= ∅ ⇒ ∃r ∈ rsa(s)(selectOption ∈ pra(r)))

47

8. Subject unanimity constraints and role unanimity constraints may poten-
tially conflict. More precisely, if both constraint types are used simulta-
neously, it is required that each subject assigned to the subject unanim-
ity constraint owns each role assigned to the role unanimity constraint.
Therefore:

∀dm ∈ DM(∀d ∈ dma(dm)(∀cr ∈ cda(d) ∪ cma(dm)(

∀cs ∈ cda(d) ∪ cma(dm)(cr ∈ CUR
∧ cs ∈ CUS

⇒ ∀s ∈ ssuca(cs)(rsa(s) ⊇ rruca(cr))))))

Definition A.3 (Execution Time CDM Meta-model Invariants)
Let CDM = (E,M) be a Constrainable Decision Model. CDM is said to be
dynamically correct if the following requirements hold:

1. For each option selection, the selecting subject must own the correspond-
ing selecting role. Therefore:

∀os ∈ OS(sr(os) ∈ rsa(ss(os)))

2. A subject may only select a single option for each question. Therefore:

∀q ∈ Q(∀o ∈ oqa(q)(∀osx ∈ soa(o)(∀osy ∈ soa(o)(
osx 6= osy ∧ ∃ss(osx)⇒ ss(osx) 6= ss(osy)))))

3. All subjects must choose an option for each question. Therefore:

∀q ∈ Q(∀s ∈ S(∃o ∈ oqa(q)(∃os ∈ soa(o)(ss(os) = s))))

4. All decision making constraint type definitions (i.e., CT1 through CT6, see
Section 4.3) must be met. Therefore:

∀dm ∈ DM(CT1 ∧ CT2 ∧ CT3 ∧ CT4 ∧ CT5 ∧ CT6)

References

[1] N. D. Anh and D. S. Cruzes. Coordination of software development teams
across organizational boundary – an exploratory study. In 8th IEEE Inter-
national Conference on Global Software Engineering (ICGSE), pages 216–
225, Aug 2013.

[2] M. A. Babar and I. Gorton. A Tool for Managing Software Architec-
ture Knowledge. In Proceedings of the Second Workshop on SHAring and
Reusing architectural Knowledge Architecture, Rationale, and Design In-
tent, SHARK-ADI’07, Washington, DC, USA, 2007. IEEE Computer Soci-
ety.

[3] M. Cantor and J. D. Sanders. Operational IT governance. Technical report,
IBM developerWorks, 2007.

48

[4] V. Clerc, E. de Vries, and P. Lago. Using wikis to support architectural
knowledge management in global software development. In Proceedings of
the 2010 ICSE Workshop on Sharing and Reusing Architectural Knowledge,
pages 37–43. ACM, 2010.

[5] Y. Dubinsky, A. Yaeli, and A. Kofman. Effective Management of Roles and
Responsibilities: Driving Accountability in Software Development Teams.
IBM J. Res. Dev., 54(2):173–183, Mar. 2010.

[6] J. Eckstein. Agile Software Development with Distributed Teams: Staying
Agile in a Global World. Dorset House, 2010.

[7] R. Farenhorst, P. Lago, and H. Van Vliet. Effective Tool Support for Ar-
chitectural Knowledge Sharing. In Proceedings of the First European Con-
ference on Software Architecture, ECSA’07, pages 123–138, Berlin, Heidel-
berg, 2007. Springer-Verlag.

[8] P. Gaubatz and U. Zdun. Supporting Entailment Constraints in the Con-
text of Collaborative Web Applications. In 28th Symposium On Applied
Computing, pages 736–741, USA, March 2013. ACM.

[9] M. Goldman, G. Little, and R. C. Miller. Real-time collaborative coding
in a web ide. In Proceedings of the 24th Annual ACM Symposium on User
Interface Software and Technology, UIST’11, pages 155–164, New York,
NY, USA, 2011. ACM.

[10] N. B. Harrison, P. Avgeriou, and U. Zdun. Using Patterns to Capture
Architectural Decisions. IEEE Software, 24(4):38–45, 2007.

[11] J. D. Herbsleb and R. E. Grinter. Architectures, Coordination, and Dis-
tance: Conway’s Law and Beyond. IEEE Software, 16(5):63–70, Sept. 1999.

[12] J. D. Herbsleb, A. Mockus, and J. A. Roberts. Collaboration in software
engineering projects: A theory of coordination. In Proceedings of the In-
ternational Conference on Information Systems (ICIS), page 38, 2006.

[13] A. Jansen and J. Bosch. Software Architecture as a Set of Architectural
Design Decisions. In 5th Working IEEE/IFIP Conference on Software Ar-
chitecture (WICSA), pages 109–120. IEEE Computer Society, 2005.

[14] C. Jensen and W. Scacchi. Governance in Open Source Software Devel-
opment Projects: A Comparative Multi-level Analysis. In Open Source
Software: New Horizons, volume 319 of IFIP Advances in Information
and Communication Technology, pages 130–142. Springer Berlin Heidel-
berg, 2010.

[15] M. Jensen and S. Feja. A security modeling approach for web-service-based
business processes. In 16th Annual IEEE International Conference on the
Engineering of Computer Based Systems (ECBS’09), pages 340–347, 2009.

49

[16] M. Kalumbilo. Effective Specification of Decision Rights and Accountabil-
ities for Better Performing Software Engineering Projects. In Proceedings
of the 34th International Conference on Software Engineering, ICSE’12,
pages 1503–1506, Piscataway, NJ, USA, 2012. IEEE Press.

[17] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C.
Hoaglin, K. E. Emam, and J. Rosenberg. Preliminary Guidelines for Em-
pirical Research in Software Engineering. IEEE Transactions on Software
Engineering, 28(8):721–734, Aug. 2002.

[18] A. Kofman, A. Yaeli, T. Klinger, and P. Tarr. Roles, Rights, and Respon-
sibilities: Better Governance Through Decision Rights Automation. In
Proceedings of the 2009 ICSE Workshop on Software Development Gover-
nance, SDG’09, pages 9–14, Washington, DC, USA, 2009. IEEE Computer
Society.

[19] P. Kruchten. An Ontology of Architectural Design Decisions. In Proceedings
of 2nd Workshop on Software Variability Management, pages 54–61, 2004.

[20] P. Liang, A. Jansen, and P. Avgeriou. Knowledge Architect: A Tool Suite
for Managing Software Architecture Knowledge. Technical report, Univer-
sity of Groningen, 2009.

[21] I. Lytra, S. Sobernig, and U. Zdun. Architectural Decision Making for
Service-Based Platform Integration: A Qualitative Multi-Method Study. In
Joint 10th Working IEEE/IFIP Conference on Software Architecture & 6th
European Conference on Software Architecture (WICSA/ECSA), Helsinki,
Finland, pages 111–120. IEEE Computer Society, 2012.

[22] I. Lytra, H. Tran, and U. Zdun. Supporting Consistency Between Architec-
tural Design Decisions and Component Models Through Reusable Archi-
tectural Knowledge Transformations. In Proceedings of the 7th European
Conference on Software Architecture (ECSA), ECSA’13, pages 224–239,
Berlin, Heidelberg, 2013. Springer-Verlag.

[23] A. MacLean, R. Young, V. Bellotti, and T. Moran. Questions, Options,
and Criteria: Elements of Design Space Analysis. Human-Computer Inter-
action, 6:201–250, 1991.

[24] P. Maheshwari and A. Teoh. Supporting ATAM with a collaborative Web-
based software architecture evaluation tool. Science of Computer Program-
ming, 57(1):109–128, 2005.

[25] H. B. Mann and W. D. R. On a Test of Whether One of Two Random
Variables is Stochastically Larger than the Other. Annals of Mathematical
Statistics, 18(1):50–60, 1947.

[26] C. Mayr, U. Zdun, and S. Dustdar. Reusable Architectural Decision Model
for Model and Metadata Repositories. In F. de Boer, M. Bonsangue, and

50

E. Madelaine, editors, Formal Methods for Components and Objects, vol-
ume 5751 of Lecture Notes in Computer Science, pages 1–20. Springer
Berlin Heidelberg, 2009.

[27] C. Miesbauer and R. Weinreich. Classification of Design Decisions: An Ex-
pert Survey in Practice. In Proceedings of the 7th European Conference on
Software Architecture, ECSA’13, pages 130–145, Berlin, Heidelberg, 2013.
Springer-Verlag.

[28] A. Nakakawa, P. v. Bommel, and H. A. Proper. Challenges of involving
stakeholders when creating enterprise architecture. In B. v. Dongen and
H. Reijers, editors, Proceedings of the 5th SIKS/BENAIS Conference on
Enterprise Information Systems (EIS-2010), Eindhoven, The Netherlands,
pages 43–55, November 2010.

[29] A. Nakakawa, P. van Bommel, and H. A. Proper. Supplementing Enterprise
Architecture Approaches with Support for Executing Collaborative Tasks -
a Case of TOGAF ADM. International Journal of Cooperative Information
Systems, 22(2), 2013.

[30] R. Nord, P. C. Clements, D. Emery, and R. Hilliard. A Structured Ap-
proach for Reviewing Architecture Documentation (CMU/SEI-2009-TN-
030). Technical report, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pennsylvania, 2009.

[31] M. Nowak and C. Pautasso. Team Situational Awareness and Architec-
tural Decision Making with the Software Architecture Warehouse. In 7th
European Conference on Software Architecture, ECSA’13, pages 146–161,
Berlin, Heidelberg, 2013. Springer-Verlag.

[32] M. Nowak, C. Pautasso, and O. Zimmermann. Architectural Decision Mod-
eling with Reuse: Challenges and Opportunities. In Proceedings of the
2010 ICSE Workshop on Sharing and Reusing Architectural Knowledge,
SHARK’10, pages 13–20, New York, NY, USA, 2010. ACM.

[33] Object Management Group. OMG Unified Modeling Language (OMG
UML): Superstructure (Version 2.2). URL: http://www.omg.org/spec/
UML/2.2/, February 2009.

[34] P. Ovaska, M. Rossi, and P. Marttiin. Architecture as a Coordination Tool
in Multi-site Software Development. Software Process: Improvement and
Practice, 8(4):233–247, Oct./Dec. 2003. Special Issue: Global Software
Development: Growing Opportunities, Ongoing Challenges.

[35] E. A. Peña and E. H. Slate. Global Validation of Linear Model Assump-
tions. Journal of the American Statistical Association, 101(473):341–354,
2006.

51

[36] B. Raadt, S. Schouten, and H. Vliet. Stakeholder Perception of Enterprise
Architecture. In Proceedings of the 2nd European Conference on Software
Architecture, ECSA’08, pages 19–34, Berlin, Heidelberg, 2008. Springer.

[37] V. S. Rekha and H. Muccini. A Study on Group Decision-Making in Soft-
ware Architecture. In IEEE/IFIP Conference on Software Architecture
(WICSA), pages 185–194, 2014.

[38] S. Rekha V. and H. Muccini. Suitability of Software Architecture Decision
Making Methods for Group Decisions. In Software Architecture, volume
8627 of Lecture Notes in Computer Science, pages 17–32. Springer Interna-
tional Publishing, 2014.

[39] N. Schuster, O. Zimmermann, and C. Pautasso. ADkwik: Web 2.0 Col-
laboration System for Architectural Decision Engineering. In SEKE, pages
255–260. Knowledge Systems Institute Graduate School, 2007.

[40] M. Shahin, P. Liang, and M. Khayyambashi. Architectural design deci-
sion: Existing models and tools. In Software Architecture, 2009 European
Conference on Software Architecture. WICSA/ECSA 2009. Joint Working
IEEE/IFIP Conference on, pages 293–296, Sept 2009.

[41] M. Shahin, P. Liang, and M. R. Khayyambashi. Improving Understand-
ability of Architecture Design Through Visualization of Architectural De-
sign Decision. In Proceedings of the 2010 ICSE Workshop on Sharing and
Reusing Architectural Knowledge, SHARK’10, pages 88–95, New York, NY,
USA, 2010. ACM.

[42] M. Shahin, P. Liang, and Z. Li. Architectural Design Decision Visualization
for Architecture Design: Preliminary Results of A Controlled Experiment.
In Proceedings of the 1st Workshop on Traceability, Dependencies and Soft-
ware Architecture (TDSA), pages 5–12. ACM, 2011.

[43] S. S. Shapiro and M. B. Wilk. An analysis of variance test for normality
(complete samples). Biometrika, 3(52), 1965.

[44] Siemens AG, Politecnico di Milano, Telcordia, and TU Vienna. D3.2 Archi-
tecture for Role-Based Governance of Virtual Service Platforms. Technical
report, INDENICA Project, February 2012.

[45] K. Smolander and T. Päivärinta. Describing and Communicating Software
Architecture in Practice: Observations on Stakeholders and Rationale. In
Proceedings of the 14th International Conference on Advanced Informa-
tion Systems Engineering, CAiSE’02, pages 117–133, London, UK, 2002.
Springer.

[46] R. M. Smullyan. First-order logic, volume 21968. Springer, 1968.

[47] M. Strembeck. Scenario-driven Role Engineering. IEEE Security & Privacy,
8(1), January/February 2010.

52

[48] M. Strembeck and J. Mendling. Generic algorithms for consistency checking
of mutual-exclusion and binding constraints in a business process context.
In Proceedings of the 18th International Conference on Cooperative Infor-
mation Systems (CoopIS), pages 204–221, 2010.

[49] M. Strembeck and J. Mendling. Modeling Process-related RBAC Models
with Extended UML Activity Models. Information and Software Technol-
ogy, 53(5):456–483, May 2011.

[50] K. Tan, J. Crampton, and C. A. Gunter. The consistency of task-based
authorization constraints in workflow systems. In 17th IEEE workshop on
Computer Security Foundations (WCSF), pages 155–169, 2004.

[51] R. C. Team et al. R: A language and environment for statistical computing,
2005.

[52] The Open Group. TOGAF 9 - The Open Group Architecture Framework
Version 9, 2009.

[53] D. Tofan and M. Galster. Capturing and making architectural decisions: An
open source online tool. In Proceedings of the 2014 European Conference on
Software Architecture Workshops, ECSAW’14, pages 33:1–33:4, New York,
NY, USA, 2014. ACM.

[54] D. Tofan, M. Galster, and P. Avgeriou. Difficulty of Architectural Decisions
– A Survey with Professional Architects. In 7th European Conference on
Software Architecture, ECSA’13, pages 192–199, 2013.

[55] D. Tofan, M. Galster, P. Avgeriou, and W. Schuitema. Past and future of
software architectural decisions – A systematic mapping study. Information
and Software Technology, 56(8):850–872, 2014.

[56] J. Tyree and A. Akerman. Architecture Decisions: Demystifying Architec-
ture. IEEE Software, 22(2):19–27, 2005.

[57] A. van Deursen, A. Mesbah, B. Cornelissen, A. Zaidman, M. Pinzger, and
A. Guzzi. Adinda: A knowledgeable, browser-based ide. In Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineering -
Volume 2, ICSE’10, pages 203–206, New York, NY, USA, 2010. ACM.

[58] U. van Heesch, P. Avgeriou, and A. Tang. Does decision documentation
help junior designers rationalize their decisions? A comparative multiple-
case study. Journal of Systems and Software, 86(6):1545–1565, 2013.

[59] U. van Heesch, P. Avgeriou, U. Zdun, and N. Harrison. The supportive ef-
fect of patterns in architecture decision recovery – A controlled experiment.
Science of Computer Programming, 77(5):551–576, 2012.

[60] J. Whitehead. Collaboration in software engineering: A roadmap. In 2007
Future of Software Engineering, FOSE’07, pages 214–225, Washington, DC,
USA, 2007. IEEE Computer Society.

53

[61] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wess-
lén. Experimentation in Software Engineering: An Introduction. Kluwer
Academic Publishers, Norwell, MA, USA, 2000.

[62] C. Wolter, M. Menzel, A. Schaad, P. Miseldine, and C. Meinel. Model-
driven business process security requirement specification. Journal of Sys-
tems Architecture, 55:211–223, 2009.

[63] C. Wolter, A. Schaad, and C. Meinel. Task-based entailment constraints
for basic workflow patterns. In 13th ACM Symposium on Access Control
Models and Technologies (SACMAT), pages 51–60. ACM, June 2008.

[64] U. Zdun and M. Strembeck. Reusable Architectural Decisions for DSL
Design: Foundational Decisions in DSL Development. In Proceedings of
14th European Conference on Pattern Languages of Programs (EuroPLoP),
pages 1–37, Irsee, Germany, July 2009.

[65] O. Zimmermann. Architectural Decisions as Reusable Design Assets. IEEE
Software, 28(1):64–69, 2011.

[66] O. Zimmermann, T. Gschwind, J. Küster, F. Leymann, and N. Schuster.
Reusable Architectural Decision Models for Enterprise Application Devel-
opment. In 3rd International Conference on Quality of Software Architec-
tures (QoSA), pages 15–32. Springer, 2007.

[67] O. Zimmermann, J. Koehler, and L. Frank. Architectural Decision Mod-
els as Micro-Methodology for Service-Oriented Analysis and Design. In
D. Lübke, editor, Proceedings of the Workshop on Software Engineering
Methods for Service-oriented Architecture 2007 (SEMSOA 2007), Han-
nover, Germany, online CEUR-WS.org/Vol-244/, pages 46–60, May 2007.

[68] O. Zimmermann, J. Koehler, F. Leymann, R. Polley, and N. Schuster.
Managing architectural decision models with dependency relations, in-
tegrity constraints, and production rules. Journal of Systems and Software,
82(8):1249–1267, Aug. 2009.

[69] O. Zimmermann, U. Zdun, T. Gschwind, and F. Leymann. Combining Pat-
tern Languages and Reusable Architectural Decision Models into a Compre-
hensive and Comprehensible Design Method. In 7th Working IEEE/IFIP
Conference on Software Architecture (WICSA), Vancouver, BC, Canada,
pages 157–166. IEEE Computer Society, 2008.

54

