
Software Metrics for Measuring the Understandability of
Architectural Structures – A Systematic Mapping Study

Srdjan Stevanetic and Uwe Zdun
Software Architecture Research Group

University of Vienna, Austria
srdjan.stevanetic|uwe.zdun@univie.ac.at

ABSTRACT
The main idea of software architecture is to concentrate on
the “big picture” of a software system. In the context of
object-oriented software systems higher-level architectural
structures or views above the level of classes are frequently
used to capture the “big picture” of the system. One of the
critical aspects of these higher-level views is understand-
ability, as one of their main purposes is to enable design-
ers to abstract away fine-grained details. In this article we
present a systematic mapping study on software metrics re-
lated to the understandability concepts of such higher-level
software structures with regard to their relations to the sys-
tem implementation. In our systematic mapping study, we
started from 3951 studies obtained using an electronic search
in the four digital libraries from ACM, IEEE, Scopus, and
Springer. After applying our inclusion/exclusion criteria as
well as the snowballing technique we selected 268 studies for
in-depth study. From those, we selected 25 studies that con-
tain relevant metrics. We classify the identified studies and
metrics with regard to the measured artefacts, attributes,
quality characteristics, and representation model used for
the metrics definitions. Additionally, we present the assess-
ment of the maturity level of the identified studies. Over-
all, there is a lack of maturity in the studies. We discuss
possible techniques how to mitigate the identified problems.
From the academic point of view we believe that our study
is a good starting point for future studies aiming at improv-
ing the existing works. From a practitioner’s point of view,
the results of our study can be used as a catalogue and an
indication of the maturity of the existing research results.

1. INTRODUCTION
The main idea of software architecture is to concentrate

on the“big picture”of a software system and to enable archi-
tects to abstract away the fine-grained details of the imple-
mentation and other development artefacts [48]. The soft-
ware architecture of the system is defined as: “the structure
or structures of the system, which comprise software compo-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
EASE ’15, April 27 - 29, 2015, Nanjing, China
Copyright 2015 ACM 978-1-4503-3350-4/15/04 ...$15.00.
http://dx.doi.org/10.1145/2745802.2745822.

nents, the externally visible properties of those components,
and the relationships among them” [12]. It is generally rec-
ognized that the software architecture plays a key role in
managing and maintaining the overall software system.

In the context of object-oriented software systems higher-
level architectural structures or views above the level of
classes (such as package-, module-, component-views) are
frequently used to capture the“big picture”(architectural in-
formation) of the system [39]. Understanding those higher-
level architectural structures and their relations to the lower-
level class view of the system that captures the implemen-
tation details, can help in bridging the gap that exists in
the abstraction level between higher-level and lower-level
views of the system. In that way it can improve so-called
“shared understanding” of the system referred by some au-
thors as“architecture”[23]. Among the given higher-level ar-
chitectural views, component and connector views (or com-
ponent views for short) are frequently used as a central
part of the architectural descriptions of software systems
[19]. Please note that, according to the software architec-
ture community, an architectural description can comprise
multiple views that describe the system concentrating on
one of many system concerns, such as logical, implemen-
tation, deployment, or process views, and from the view-
point of different stakeholders, such as end-users, develop-
ers, project managers, and business analysts [41, 19]. In this
study we concentrate on the architectural information cap-
tured in the higher-level structures with regard to their rela-
tions to the system implementation (i.e., the implementation
view). From the perspective of the system implementation,
component views deal with the coarse-grained components
that represent major system functionalities, units of run-
time computation or data-storage, and the connectors that
are the interaction mechanisms between them [49]. Since a
component in an architectural component view represents a
high-level abstraction of the entities in the source code of
the software system, it can be broken down into (i.e., is re-
fined by) more fine-grained, technical components or classes
that realize the component in the technical design or imple-
mentation of the system.

Understandability is one of the most important charac-
teristics of software quality because the difficulty of under-
standing the software system limits its reuse and mainte-
nance and therefore can influence cost or reliability of soft-
ware evolution. In the context of component views (and
other mentioned higher-level architectural views), under-
standability is a critical aspect, as one of the main purposes
of software architecture is to “ ... enable designers to ab-



stract away fine-grained details that obscure understanding
and focus on the “big picture:” system structure, the in-
teractions between components, ...” [48]. This, however, is
not possible if the given views themselves and/or the links to
other design and code artefacts are hard to understand. Un-
derstandability concepts that we consider in this study come
from the general properties which should be considered for
assessing understandability and other software qualities in
the system [14, 9, 24]. They include size, complexity, cou-
pling, cohesion, and modularization. Since our study aims
at investigating the higher-level architectural structures with
regard to their relations to the system implementation, the
properties related to understandability are considered from
the structural and relational details of a system’s design and
implementation.

To predict the understandability or some other quality
characteristics of the architecture, architectural evaluation
analysis is performed. It aims to identify potential risks and
verify that the quality requirements have been addressed
in the design [43]. Two basic classes of architectural eval-
uation techniques, questioning and measuring, have been
proposed [3, 12]. Questionnaire techniques use qualitative
questions to be asked about the architecture, and they can
be used to assess any given software quality. It includes
scenarios, questionnaires and check lists. Measuring tech-
niques propose quantitative measurements that are used to
answer specific questions related to specific software qual-
ities. In that sense they are not as broadly applicable as
questioning techniques. Measuring techniques encompass
metrics, prototypes, experiences and simulations. Existing
literature reviews on architectural evaluation methods [20,
8, 10, 33] mainly focus on scenario-based methods. A sce-
nario describes interaction of a stakeholder with a system.
Scenario-based methods provide techniques for evaluating
and documenting architecture-related scenarios against the
requirements.

In this article we report on a systematic mapping study
on software metrics that measure the understandability con-
cepts of the higher-level architectural structures (i.e., met-
rics that operate at the level above classes) with regard to
their relations to the system implementation. Those met-
rics can add valuable information to a sustainability and
maintainability evaluation of those architectural structures
[40]. In that context we present the definition of software
metrics. According to the IEEE standard glossary of Soft-
ware Engineering Terms (adapted from [51]), software met-
rics are “a quantitative measure of the degree to which a
system, component, or process possesses a given attribute”.
Our metrics do not consider the lower-level metrics such as
object-oriented class level metrics or metrics based on lower-
level artefacts like methods, attributes, variables, etc., be-
cause those are not architecture-level metrics. The lowest
level artefact that we consider is a class. Please also note
that we focus at the lowest level on object oriented software
structures.

This study is organized as follows: Section 2 discusses re-
lated reviews, Section 3 describes the methodology, Section
4 provides the results of our research questions and the dis-
cussions related to them, Section 5 discusses the limitations
of the study, and Section 6 concludes the study and discusses
possible future trends.

2. RELATED REVIEWS

Regarding related literature reviews, so far, to the best
of our knowledge, only one systematic review exists that
considers architecture-level metrics as a part of the study
(the work provided by Koziolek [40]). Namely, the author
provided a systematic review on scenario-based methods for
supporting the sustainability of a software architecture both
during early design and during evolution. Additionally, he
surveyed around 40 architecture-level metrics and empha-
sized the importance of integration of these two fields. How-
ever, comparing to our study the author considered software
architecture in a broader sense (i.e., assuming that in a gen-
eral sense it encompasses multiple views functional, develop-
ment, concurrent, and can be related not only to the system
implementation but also to the system design decisions, ar-
chitecture requirements, concerns, etc.) and thus provided a
more holistic or coarse-grained approach that included just
more recent studies. Our study is more fine-grained because
we concretely study the architecture-level metrics from the
system implementation perspective with regard to the un-
derstandability concepts that are important in that context.
In our study we identified 25 approaches comparing to 11
approaches identified in the work by Koziolek. Beside the
metrics that overlap with the metrics that we identified the
author mentioned some metrics related to the design deci-
sions, architectural requirements and architectural concerns
or aspects [59, 56] and some metrics that consider the de-
pendencies between lower level artefacts (source code, class
methods, functions) [15, 55] that are out of scope of this
study. Furthermore, in the work by Koziolek the studies
that consider metrics are just shortly explained (within a
small paragraph), while our study provides much more in-
formation, i.e., the maturity assessment of the studies, the
mapping of the studies to the measured artefacts, attributes,
quality characteristics, approach type, and the limitations of
the studies.

Regarding other related reviews, different reviews exist in
the literature related to lower level class-level metrics [18,
53]. For example, Riaz et al. [53] provided a systematic re-
view of class-level OO metrics and discussed their usefulness
for maintenance prediction. As already mentioned above lit-
erature reviews on architectural evaluation methods mainly
focus on scenario-based methods [20, 8, 10, 33].

Software architecture reconstruction is another research
direction closely related to our work. It helps in dealing
with two problems, the first is that architecture is not ex-
plicitly represented in the source code and the second is that
successful software applications evolve over time, so their ar-
chitecture inevitably drifts. Reconstructing the architecture
and checking whether it is still valid is therefore an impor-
tant issue. Ducasse et al. provided a survey on methods and
tools for software architecture reconstruction [21].

3. RESEARCH METHOD
Our study is based on the guidelines for performing a sys-

tematic review proposed by Kitchenham et al. [34, 36, 37].
A systematic review is a key instrument to pursue a sys-
tematic, exhaustive search in the relevant field of study in
order to address one or more concrete research questions.
It uses a well-defined methodology that reduces bias and
introduces a wider context that allows for a more general
conclusion [50]. As the first step in our study we defined the
research questions. Then we pursued the search through
the existing literature to collect as much relevant studies



and information as possible. After that we focussed on de-
veloping a procedure of how to extract and summarize the
relevant information that is needed to address our research
questions. It included several iterations, consultations and
improvements until the final results are obtained.

3.1 Research Questions
Our main research questions are defined as follows:

RQ1: Which software metrics that measure the understand-
ability concepts of higher-level architectural software struc-
tures (i.e. metrics that operate at the level above classes)
exist?

Within this research question we consider (beside the list
of suitable metrics): what is the granularity level of the met-
rics (i.e., do they measure the whole structure or a single
artefact), which representation model for the metrics defini-
tions is used, and how are the metrics distributed in terms
of the measured artefacts and software attributes (i.e. size,
coupling, cohesion, etc.).
RQ2: What is the maturity level of the identified metrics?

Within this research question we consider different param-
eters that characterise the metrics’ maturity level and their
practical applicability: metrics definitions, level of valida-
tion, mapping to the measured quality characteristics, com-
parative analysis, usability, applicability, and tool support
(see Section 3.4 for more details).
RQ3: Which limitations in current studies should be ad-
dressed in future research?

The purpose of this research question is to identify any
shortcomings in the existing studies and to propose possible
techniques and future work how to mitigate them.

3.2 Search Process
The search process was started by searching through four

digital libraries (DLs): the ACM (Association for Comput-
ing Machinery) digital library1, the IEEE digital library2,
the Scopus digital library3, and the Springer digital library4.
We pursued an advanced search within these libraries which
include bibliographic references, abstracts, and links to elec-
tronic editions of the studies from all major publishers in
computer science (i.e., not only the four publishers ACM,
IEEE, Elsevier (the owner of Scopus) and Springer them-
selves). According to the defined research questions we de-
fined the set of words (search string) we have used with the
search engines of these four digital libraries to find an ex-
haustive list of relevant studies. The search string we have
used is the following:

1. ((‘metric(s)’)
2. and (((‘software’ or ‘object-oriented’ or ‘architectural’

or ‘component-based’) and (‘system(s)’ or ‘design(s)’ or
‘model(s)’ or ‘architecture(s)’)) or ‘class(es)’ or ‘compo-
nent(s)’ or ‘package(s)’ or ‘module(s)’)

3. and (‘understandability’ or ‘comprehensibility’ or
‘comprehension’ or ‘understanding’ or ‘understand’ or ‘com-
prehending’ or ‘comprehend’ or ‘complexity’ or ‘coupling’
or ‘cohesion’ or ‘modularization’ or ‘size’)

4. not (‘hardware’ or ‘memory’ or ‘machine’ or ‘chip(s)’
or ‘microprocessor(s)’))

1see: http://dl.acm.org/
2see: http://ieeexplore.ieee.org/Xplore/home.jsp
3see: www.scopus.com
4see: http://link.springer.com

The whole search string is composed of four parts linked
by the coordinating conjunctions “and” or “not”. The first
part contains “metric(s)”, meaning that we only include
studies which contain the word metric or its plural form in
the abstract. The second part delimits the context of the
metrics: It should be related to higher-level software struc-
tures (architecture, design, model, system) and artefacts
(packages, modules, components) or at least object-oriented
structures (classes). The third part is related to the
mentioned understandability concepts. The set of used
words in this part considers the general properties which
should be considered for assessing understandability (see
Section 1) together with the word “understandability”
and its synonyms. Finally the fourth part of the search
string excludes studies related to hardware architecture and
similar concepts.

When applying this proposed search string we obtained
3951 possibly relevant studies from all libraries (including
possible duplicate studies). In the next step (Step 2 in Fig-
ure 1) one author selected the set of studies which could be
relevant by reading the titles and abstracts of the studies
as well as having cursory looking into the studies in case it
was hard to predict from the abstract if the study must be
included or not. The selection of the studies which could
be relevant, at this stage, is based on the inclusion and ex-
clusion criteria explained in Section 3.3. The second author
checked once more all the studies which are included and
excluded. After this stage we selected 262 studies which
needed to be further analysed.

As our search string might have not included some rele-
vant studies that contain other keywords than the selected
ones or because we might have excluded a relevant study ac-
cidentally, in the next step (Step 3 in Figure 1) we applied
the so-called “snowballing” technique. Snowballing is the
process of looking into the references of previously obtained
studies in order to find more relevant studies [17]. There-
fore, we selected new studies from the references based on
the same inclusion/exclusion criteria that we used for the
first set of studies. After this stage we have added 6 new
studies. The process has been repeated on the newly found
studies and then no more additional studies have been found.
The “snowballing” process was also useful for creating the fi-
nal search string. Namely, the initial search string was a bit
less complex than the final one. It resulted in many more
“snowballing” studies as well as studies that are out of inter-
est showing that the search string can be improved. After
adding some keywords to make it more general (keywords
connected with“or”conjunction) as well as adding some key-
word to make it more specific at the same time (keywords
connected with “not” conjunction), the final search string
presented above was created.

The last step (Step 4 in Figure 1) in our search process
is the detailed analysis of the selected set of studies and
collecting the relevant metrics. Each study is again checked
to satisfy all the inclusion and exclusion criteria. The whole
process is shown in Figure 1 with the number of studies
obtained in each stage of the study. After detailed reading
of 268 collected studies we have selected 25 studies for which
the relevant metrics are discussed in the following sections.

3.3 Inclusion and Exclusion Criteria
The inclusion and exclusion criteria are used to make a

decision whether to include or exclude a study. We adopted



 

Databases 

ACM, IEEE, 

Scopus, and 

Springer DLs 

Electronic 

Search 

3951 

papers 

Initial 

Analysis 

(incl/excl 

criteria) 

262 

papers 

Snowballing 

Analysis 

268 

papers 

Detailed 

Analysis 

(incl/excl 

criteria) 

25 

papers 

Step 1 Step 2 Step 3 Step 4 

Figure 1: The process for collecting the relevant studies

the following inclusion/exclusion criteria for selecting the
relevant studies:
• Include studies about metrics that measure the under-

standability concepts (explained above) of the higher-level
architectural structures (i.e. metrics that operate at the level
above classes) with regard to their relations to the system
implementation.
• Exclude studies with topics outside the field of software

metrics.
• Exclude studies that consider low-level metrics (metrics

at the granularity level of methods, attributes, variables and
code level metrics), metrics targeting attributes and charac-
teristics other than the understandability concepts, run-time
metrics as well as process level or other development metrics
because the focus is on software architecture.
• Exclude all inheritance aspects because inheritance is

not really relevant from the architectural point of view (for
example in UML component diagrams as a kind of compo-
nent views inheritance is very seldom used).
• Include articles which are published after the year 1990

(till June 2013, the time this study was conducted). Exclude
earlier published articles.
• Include the studies published in peer-reviewed journals,

conferences, and workshops.
• Exclude books, web sites, technical reports, master the-

sis and doctoral dissertations (possible low quality studies
from grey literature [35]).

The first four criteria aim to make sure that only relevant
topics are included. The criterion on the time when the ar-
ticle was published is used to delimit the time frame to the
relevant era, as software architecture started to become a re-
search topic in the 90s. For instance, the first IEEE Software
special issue on the topic was published in November 1995.
The last two criteria were chosen to guarantee a minimum
quality level through peer review.

3.4 Maturity Assessment
Assessing the maturity level (i.e. quality assessment) of

primary studies in systematic mapping reviews is not essen-
tial as discussed by Kitchenham et al. [38]. However, we
used it in our study to assess the quality of the proposed
metrics in terms of their efficiency and practical applica-
bility. From the practitioners point of view the maturity
assessment can serve as an indication of the maturity of the
existing research results. From the researchers perspective
it can serve as a good starting point for future studies that
aim to improve the current state and the identified gaps.

In order to asses the given maturity level we assign the
scales to each primary study that concern different aspects
of the metrics quality evaluation. The scales are solely as-
signed based on the information provided in the primary
studies. Practical applicability and efficiency are two main
aspects that we consider, similar to the study of Kumar et

al. [42], but with small differences. In terms of efficiency we
consider metric definition, mapping quality [25] (instead of
mapping quality, implementation technique is considered in
the work of Kumar et al.), level of validation and compara-
tive analysis as main parameters of successful and efficient
metrics. In addition to that we consider how difficult is to
use or apply the metrics in real situations through three
additional parameters usability, applicability and tool sup-
port (instead of tool support, extendibility is considered in
the work by Kumar et al.). The maturity parameters with
corresponding levels are shown in Table 1. Metric Defini-
tion (MD) describes the degree of formalism used to define
the metrics. Mapping Quality (MQ) represents the level
of integration between the metrics and the external quality
characteristics (i.e. understandability, maintainability, etc.)
they aim to measure. Level of Validation (LV) describes the
extent to which the metrics have been empirically validated.
Comparative Analysis (CA) provides evidence whether the
results obtained from the proposed methodology have been
compared with the existing methodologies. Usability (USB)
considers how easy it is to use the metrics in projects. In
this context we consider how simply the metrics are defined
and how much effort is required to understand and calcu-
late them. Applicability (AP) considers how much usage or
future prospects of the metrics is specified by the authors.
Finally, Tool Support (TS) provides evidence about the tool
support for the metrics calculations.

3.5 Information Extraction and Analysis
The extraction and analysis of the relevant information

is the last stage of the study. The information extraction
is performed by deeply analysing the set of primary studies
obtained through the previous stages. This information al-
lowed us to record all relevant details of the primary studies
that are necessary to address our research questions. The
extracted information from the primary studies and the cor-
responding mapping to the research questions of our study
is shown in Figure 2.

4. RESULTS AND DISCUSSIONS
In this section we discuss the results of our survey with

respect to the given research questions.

4.1 Approach Type (RQ1)
First of all we classified all the studies with respect to

the representation model they use in order to describe the
methodology and context of the metrics, and to define the
metrics they propose. During the data analysis we iden-
tified 3 different models that correspond to three different
approach types:
• Internal structure based metrics – The studies clas-

sified in this category propose metrics based on the inter-



Level 1 Level 2 Level 3 Level 4
Metric
Definition
(MD)

Informal: The au-
thors provide a natu-
ral language descrip-
tion of the metrics.

Semi-formal: Some degree of formalism is
provided. The metrics themselves are de-
fined through mathematical expressions, but
the underlying concepts being measured (i.e.
coupling, cohesion, etc.) are only informally
specified.

Formal: A formal
definition of the met-
rics and underlying
concepts being mea-
sured is provided.

–

Mapping
Quality
(MQ)

Rationale: A dis-
cussion on the ratio-
nale of the mapping
is provided.

Goal Driven: The metrics are defined to an-
swer some specific evaluation needs following
an approach such as Goal-Question-Metric
[11] or some similar approach.

Validated: Building
on the previous level,
the metrics are shown
to efficiently fulfil the
specific evaluation
needs.

–

Level of
Validation
(LV)

Anecdotal: Some
usually self con-
structed examples
are provided to mo-
tivate the usefulness
of the metric.

Small experiment: The metrics are
empirically validated using a small data
set/experiments (i.e. one/few small to
medium size systems).

Large experiment:
The metrics are em-
pirically validated
using large data
sets/experiments (i.e.
a lot of small to
medium size systems
or one/few large
systems).

Independently val-
idated: The met-
rics proposed by some
authors are success-
fully validated by an-
other research teams
and their applicabil-
ity is confirmed in the
given context.

Comparative
Analysis
(CA)

No: Not used. Yes: Compared with some existing tech-
niques.

– –

Usability
(USB)

Difficult: Very dif-
ficult to use because
of the abstractness
and complexity of
terms and concepts
used to define the
metrics.

Medium: It requires some effort to under-
stand and calculate the metrics.

Easy: Simple to use
(counting-based met-
rics).

–

Applicability
(AP)

Informational:
Just some informa-
tion about future
prospects of met-
rics applicability is
provided.

Further improvement required: The au-
thors provide an analysis that can be used for
future research but it needs further improve-
ments or more evaluations for reasonable eval-
uation criteria. For example, some weighted
factors that are part of the metrics’ formu-
las need to be estimated, some threshold val-
ues or alarms that distinguish between good
and bad design need to be found, or further
experiments for replication and corroboration
purpose need to be conducted.

Real world applica-
tions: Successful ap-
plicability of the met-
rics in real world ap-
plications is provided.

–

Tool Sup-
port (TS)

No: No tool support
is provided.

Yes: Tool support is provided. – –

Table 1: Maturity Parameters With the Corresponding Levels

nal structure of the measured higher-level artefacts (com-
ponents, modules, packages, etc.) and their relations. For
instance, they consider relations between classes, interfaces
or subsystems that constitute higher-level artefacts as well
as the hierarchical structure of those artefacts. They do not
require any specific model or representation of the system
structure in order to define and apply the proposed metrics.
• Graph based metrics – The studies classified in this

category propose metrics based on a graph model of the
given system. Graphs represent system artefacts and their
interactions as a set of nodes and edges. The graph based ap-
proach is widely used in software engineering because of its
inherent simplicity. In the identified studies different types
of graphs are considered that model different system arte-
facts and different kinds of relations between them.
• Specific model based metrics – The studies classified

in this category propose metrics based on some specific rep-
resentation or model of the system structure that is required
in order to define the metrics they propose. For instance,
models that are used are layered architecture models, com-

posite architecture models, etc. The calculation of these
metrics requires additional effort in order to construct the
given representations of the system.

The distribution of the studies related to the approach
type is shown in Figure 3.

4.2 Measured Software Artefacts and At-
tributes (RQ1)

Different authors claim the importance of both, metrics
that measure individual artefacts (components) in the sys-
tem and metrics that measure the whole architectural repre-
sentation [2]. In our study we have identified different met-
rics that measure higher-level structures as well as metrics
related to different single artefacts.

The following measured artefacts are identified during
the data analysis: architecture, component, component–
to–component, package, module, and graph node. Metrics
related to the architecture artefact operate at the level of
the whole system, i.e. they take into account all system
constituent parts (e.g. components, packages, graph nodes,



 

RQ2 : MD 

RQ1 

RQ2 : MQ 

RQ2 : LV 

RQ2 : CA 

RQ2 : USB 

RQ2 : AP 

RQ2 : TS 

System representation model used to define the 

proposed set of metrics 

Metrics definition context 

Metrics assumptions and interpretation guidelines 

Interpretation of the results obtained by metrics 

empirical evaluations and tool support 

Metrics granularity level and measured artefacts 

RQ3 

Figure 2: Mapping between the information extraction and the research questions

40% 

48% 

12% 

0

10

20

30

40

50

60

Internal structure
based metrics

Graph based metrics Specific model based
metrics

P
e
rc

e
n

ta
g

e
 

Figure 3: The distribution of the studies related to the ap-
proach type

etc.). For example, the metrics like the total number
of components or links in the system’s component view
represent the metrics related to the architecture artefact.

The metrics related to the component artefact are de-
fined from different authors using the term component as
a high level artefact in different contexts. Kanjilal et al.
[32] considers component as a system element that can be
composed with other components, offers a predefined ser-
vice and is able to communicate with other components.
Misic [47] considers component as a set of objects at dif-
ferent abstraction levels (libraries, project objects). Sartipi
[58] considers component as a group of system entities in
form of a file (to evaluate a design), or module and sub-
system (to evaluate the architecture). Shereshevsky et al.
[60] consider primitive components (at the lowest level) that
exchange the information between each other and do not
contain any other components and upper-level components
that contain those at the level below them without overlap-
ping. Wei et al. [61] consider components as autonomous
pieces of software code with well-defined functionality and
interfaces, similarly to the work by Kanjilal et al. At the
end Yu et al. [62] consider primitive components, that rep-
resent the smallest units, and can be composed into com-
pound components that are further composed into higher
level compound components so that the layered component
structure is formed (similarly to the work by Shereshevsky et
al.). In that context different artefacts can be considered as
components such as packages, classes, programs, etc. Taking
into account the previous considerations we can say that the

term component is used as a higher-level artefact that can
be composed of other components or lower-level artefacts
and that has well-defined functionality. Component level
metrics consider incoming/outgoing interactions of a com-
ponent, relations between the entities within a component,
etc.

Component-to-component metrics take into account pairs
of components. Some examples of those metrics are the total
number of interfaces between any pair of components or the
number of connectors on the shortest path between a pair
of components.

Package artefacts are considered also from different au-
thors but they all consider packages as artefacts that contain
basic units of organizing code (e.g., the .py files in Python,
.class files in Java, .cpp files in C++) as well as other pack-
ages leading to a hierarchical structure. Package level met-
rics are for example the number of classes in a package, the
number of other packages that depend upon classes within
a package, etc.

Similarly to software components software modules are
also considered in different contexts. Anan et al. [7] con-
sider module as a group of components (component repre-
sents any abstract high level artefact). Based on depen-
dency analysis components are grouped into modules (ar-
chitectural slicings). In the work by Hwa et al. [31] modules
contain classes as well as other modules which leads to a hi-
erarchical structure very similar to the package hierarchical
structure explained above. Lindvall et al. [44] and Sarkar
et al. [57] consider modules as sets of classes similar to the
work by Hwa et al. Some examples of module level metrics
are the number of classes outside a module that are com-
monly shared by the classes inside a module, the number
of classes inside a module that are used by other classes in
other modules, etc.

Finally, graph node metrics consider nodes in the graph
that is used to represent a software system in a very abstract
way. Graph node metrics are for example the degree of a
node in a graph, the importance of a node in a graph, etc.

The distribution of the metrics related to the measured
artefacts is shown in Figure 4.

Regarding the software attributes that are measured the
following categories emerged during the data analysis:
•Size Metrics are related to the number of constituent

elements of the corresponding design units (artefacts) in the
system or to an information theory based size. For example,
the number of components and modules are related to the



45,35% 

12,79% 

3,49% 

15,12% 13,95% 

9,3% 

0

5

10

15

20

25

30

35

40

45

50

P
e
rc

e
n
ta

g
e
 

Figure 4: The distribution of the metrics related to the mea-
sured software artefacts

overall structure of the system. The number of classes is
related to single entities, but also it can be related to the
overall structure of the system. Information theory based
size metrics calculate the amount of information in the sys-
tem graph using Shannon entropy.
•Coupling Metrics are concerned with the relations be-

tween the design units. Those relations are reflected through
the number of interfaces, the links or paths between the de-
sign units, the extent to which some design units use other
design units, the Shannon entropy of the information trans-
mission between design units (information theory based cou-
pling metrics, see for example [5]), etc. Coupling mech-
anisms are also distinguished in terms of the direction of
coupling (import or export coupling), and through direct
and/or indirect connections between the design units.
•Cohesion Metrics are very similar to the coupling met-

rics except that they are bound to the relations between the
constituting parts of the same design unit (artefact). Func-
tional cohesion introduces external and internal cohesion,
where external cohesion considers the relations between the
elements inside a given design unit and the elements outside
that design unit, while internal cohesion considers relations
between the elements inside a given design unit. Cohesion
is also measured as the extent to which the elements within
one design unit are commonly used from other design units
or as information based cohesion that measures the infor-
mation flow within design units using the aforementioned
Shannon entropy.
•Complexity Metrics measure the degree of connectiv-

ity between elements by taking into account the relation-
ships within design units and between them together. They
are concerned with the metrics related to network parame-
ters (graph-based metrics), information theory based com-
plexity, etc. They also measure the hierarchical structure
(degree of composition) in the system.
•Stability Metrics measure how easy it is to make

changes to the elements in a design unit without affecting
elements in other design units in the system.
•Quality Metric is based on the Multi-Attribute Util-

ity Technique (MUAT) which argues that the quality of a
component is decided by its N attributes such as complex-
ity and maintainability [30]. This metric takes into account
composite based software architecture which provides a way
to separately describe control flow and computation.

Figure 5 shows the distribution of the metrics related to
the measured software attributes.

8,54% 

45,12% 

17,07% 

25,61% 

2,44% 1,22% 
0

10

20

30

40

50

Size Coupling Cohesion Complexity Stability Quality

P
e
rc

e
n
ta

g
e
 

Figure 5: The distribution of the metrics related to the mea-
sured software attributes

4.3 Maturity level assessment of the studies
(RQ2)

The maturity level of each primary study is assessed by the
maturity parameters defined in Section 3.4. Figure 6 shows
an overview of the maturity level of each maturity charac-
teristic previously defined. The percentage of the studies
that have a given maturity characteristic at the given level
is also presented.

Overall, looking at Figure 6, some levels suggest that the
metrics defined in the studies have different shortcomings
that can be improved. Clearly critical cases are the high
percentages of low levels for the MQ (mapping quality) and
LV (level of validation) parameters: MQ parameter shows
that 68 % of the studies have Maturity Level 1 which means
that they just discussed the rationale between the metrics
and the external quality characteristics of the system with-
out providing the relationship before using the metrics in
order to ensure that the metrics provide a correct evaluation
of those attributes that are visible to the user. For example,
Allen et al. [5] discussed software attributes that their met-
rics measure (size, coupling, complexity) without reporting
on specific external software quality they can predict. Simi-
larly, Gupta et al. [27] defined package coupling metric with-
out targeting any specific external quality characteristic that
the metric can measure. They just informally mentioned
that coupling is an important factor that can affect external
quality characteristics. However, to prove the real useful-
ness of the metrics with respect to some external quality
characteristic, the rational about the relationship between
the metrics and some specific quality characteristic as well
as the formal empirical evaluations of that relationship are
necessary. 32 % of the studies use a “Goal-Driven” approach
where 16 % of the studies correspond to the category “Goal-
Driven”, and 16 % of the studies have the highest level, “Vali-
dated”. For example, Abdeen et al. [1] defined their metrics
according to some principles that support modularization,
and facilitate changeability, maintainability and reusability
of software systems. Their approach did not provide for-
mal empirical evaluations of those principles and therefore
it corresponds to the category “Goal-Driven”. Comparing to
them Gupta et al. [28] defined package level cohesion metric
using the Goal-Question-Metric (GQM) approach where the
quality focus is related to the package reusability, and empir-
ically evaluated the usefulness of the metric in predicting the
given quality characteristic (package reusability). Therefore
their approach corresponds to the category “Validated”.

Regarding the LV (level of validation) parameter, 56 %
of the studies have Maturity Level 1 or 2. This means that



Level 1

Level 2

Level 3

Level 4

0

10

20

30

40

50

60

70

80

MD (Metric
Definition)
top level=3

MQ (Mapping
Quality)

top level=3

LV (Level of
Validation)
top level=4

USB
(Usability)
top level=3

CA
(Comparative

Analysis)
top level=2

AP
(Applicability)
top level=3

TS (Tool
Support)

top level=2

M
a
tu

ri
ty

 l
e
v
e
l 

p
e
rc

e
n

ta
g

e
 

Maturity characteristics 

Level 1

Level 2

Level 3

Level 4

Figure 6: Maturity level assessment of the studies

the metrics validation in those studies is anecdotal (some
intuitive/self-constructed examples), or they use small em-
pirical validation (small data sets, i.e. one/few small to
medium size systems). For example, Allen et al. [5] pro-
vided small experiment validation of their metrics. They
used two small systems with 14 and 95 classes. Sartipi [58]
also provided small experiment validation using the 5 sys-
tems written in C that have 38, 42, 44, 47, and 98 files. Only
16 % of the studies use large empirical validations (large data
sets, i.e. a lot of small to medium size systems or one/few
large systems), and only 12 % of the studies are indepen-
dently validated. For example, regarding the large empirical
validations Sarkar et al. [57] used a mix of 8 open source sys-
tems and business proprietary applications with the number
of classes ranging from 308 to 5063 while Salman [54] used
25 systems from graduate students’ projects for the valida-
tion purposes. 16 % of the collected studies do not have any
kind of validation.

An interesting part in the figure is the TS (tool support)
parameter. 56 % of the studies have maturity level 2, which
means that they provide tool support for metrics calcula-
tions. But all of them use proprietary tools or the combi-
nation of proprietary and some existing open source tools
which limits the metrics portability and comparison as well
as knowledge sharing in the research and practitioners’ com-
munities.

The rest of the maturity parameters have the following
rating scale distributions. Regarding the MD parameter
(metrics definitions) 9.1 % of the studies use informal met-
ric definitions, 50 % of them use semi-formal definitions,
while the rest of them, 40.9 %, use formal definitions. Semi-
formal and informal definitions can hamper metrics calcu-
lations and cause misleading interpretations of the results.
For example, Lindvall et al. [44] provided informal natural
language description of the metrics that capture coupling
between modules or modules’ classes. From the metrics def-
initions it is not clear which relationships between classes

need to be taken into account (it can just be guessed that
all possible relationships should be considered because there
were no specified clues of excluding some of them from the
consideration). Furthermore, the underlying concept that
the metrics measure, i.e. coupling, is not formally specified,
i.e. it is not proved whether the metrics satisfy the formal
properties of the coupling concept (for the properties of some
important measurement concepts see [16]). Hwa et al. [31]
provided formal definitions for the metrics but they also did
not formally prove that the metrics measure the underlying
measurement concepts (e.g. complexity, coupling, cohesion,
size). In contrast to the previous two approaches Gupta et
al. [27] provided formal definition of the package coupling
metric as well as the proof that the metric satisfies the re-
quired properties of coupling measure (i.e. non-negativity,
monotonicity, null-value, etc.) defined by Briand et al. [16].

The usability parameter (USB) has the following rating
scale distribution: 4 % of the studies define metrics that are
very difficult to use in projects because of their abstractness
and complexity, 80 % of the studies define metrics that have
a medium usability level, i.e. they require some effort in or-
der to understand and compute the metrics, and 16 % of the
studies contain metrics that can be easily used in projects
(counting based metrics). For example, Shereshevsky et al.
[60] defined metrics that are very difficult to use. They de-
fined coupling and cohesion metrics based on Shannon en-
tropy, for information exchange between the components in
the architecture. The metrics are proposed at a very high ab-
straction level assuming that the components communicate
by requesting the so-called features that have to capture var-
ious aspects of information exchange. Salman [54] proposed
metrics that are easy to use in a sense that they are based
on counting of the corresponding artefacts (e.g. components,
links between components, interfaces). Finally, metrics that
have “medium” usability require some effort from the user to
understand, define and compute them. For example, pack-
age coupling metric defined by Gupta et al. [27] requires



some effort in terms of understanding which kinds of rela-
tions between the classes have to be examined as well as the
effort to specify and compute the metric formula.

The CA (comparative analysis) parameter shows that 72
% of the studies did not compare the results of the proposed
methodology with the existing techniques, while only 28 %
of them did such a comparison. Comparative analysis is one
of the main parts of efficient and successful metrics that help
users to choose the most appropriate and efficient metric in
a given context.

Finally, the applicability (AP) parameter of the metrics
shows that 16 % of the studies just discuss the metrics’ fu-
ture prospects and usage, and 72 % of the studies provide
good analysis that can be used for future research but still
require further improvements or more reasonable evaluation
criteria in order to be applied in real projects. Only 12 % of
the studies successfully applied the metrics in real projects.

Regarding the metrics validation procedure, the authors
tried to show the usefulness of the proposed metrics by vali-
dating them with respect to the different quality characteris-
tics. During data analysis we identified the following quality
characteristics used for the validity evaluation: maintain-
ability, integrability, complexity, external coherence (how
much the artefacts inside one component, package or module
are used together from the outside artefacts), understand-
ability, modularization, fault rate or number of modifica-
tions, bug severity and reusability. In Figure 7 the per-
centage of the studies that use the corresponding quality
characteristic for the validation of the proposed metrics is
presented. Please note that, in contrast to the previously
presented distributions of the metrics or studies with regard
to the approach type and measured attributes and artefacts,
in this case some studies validated metrics with regard to
more than one quality characteristic and therefore belong to
more than one category (see Table 3 for more details).

In this paragraph we discuss the way how the metrics are
validated. One example for each validated quality charac-
teristic is provided. Lindvall et al. [44] validated their met-
rics with respect to the system maintainability. Based on
their coupling metrics they observed that the architectural
design of the old version of the system is very tightly cou-
pled while the architectural design of the new improved ver-
sion that additionally contains 22 new requirements is very
loosely coupled. The second observation is that while the
structure of the old version indicates that communication
between classes in different modules is relatively scattered,
the new structure indicates that communication now is lo-
calized to a few classes. Sarkar et al. [57] validated their
set of metrics with regard to the quality of modularization
in large-scale object-oriented systems. The modularization
quality is observed with respect to the APIs of the modules,
on the one hand, and with respect to different inter-module
dependencies, on the other hand. The proposed metrics are
validated using a two-pronged approach. In the first ap-
proach the values of the metrics conformed to the various
attributes gleaned from manual examination of the systems.
In the second approach code detuning operators are applied
to create different degrees of decay in the analysed systems
(they simulate how novice programmers can be expected to
extend a code). Metrics values confirmed the degradation
of the modularization quality. Reddy et al. [52] used the
dependency oriented complexity metrics to evaluate the im-
provement in quality (reduced complexity) after refactoring.

Gupta et al. [27] validated the package coupling metric with
regard to the understandability of packages measured by as-
sessing the effort required to fully understand the packages’
functionalities and ranking the effort from 1 to 10. They
concluded that there is a strong correlation between pack-
age coupling and the effort required to understand a package.
Misic [47] used some self-constructed examples to show the
usefulness of the metrics he proposed for predicting external
coherence of a component. The idea of external coherence
is to capture the situations where the components are not
internally coherent but show functional coherence in terms
of common usage from the outside clients. Regarding the
fault rate prediction Yu et al. [62] showed that there is a
linear relationship between the component coupling metric
they proposed and the number of modifications of a compo-
nent (taken from the change history of the studied system)
which is an important indicator of the component fault rate.
Bhattacharya et al. [13] tested the metrics in predicting the
bug-severity. When a bug for the system is reported, the ad-
ministrators first review it and then assign it a severity rank
based on how severely it affects the program. They showed
that modules of high Node Rank (NR) metric are prone to
bugs of higher severity. Gupta et al. [28] evaluated the pack-
age cohesion metric with regard to the package reusability
obtained by developers ratings. The team of developers was
required to use each package to complete an unfinished ap-
plication. The task was to choose the required classes from
a given package and integrate them to the application. The
authors showed that there is a significant positive correlation
between the package cohesion metric and package reusabil-
ity. Finally, Salman [54] provided evidence about the linear
relationship between the total number of links between the
architectural components and the integrability of the system
defined as the total effort spent on defining inter-component
link and component interfaces. Data were collected from the
design documents.

20% 

4% 

12% 

8% 

12% 

16% 

8% 

4% 4% 

12% 

0

5

10

15

20

25

P
e
rc

e
n
ta

g
e
 

Figure 7: The distribution of the studies related to the val-
idated quality characteristics

Tables 2 and 3 summarize all relevant information related
to the results discussed in this section.

4.4 Limitations in the studies and how to mit-
igate the identified problems (RQ3)

Based on the discussions provided in Section 4.3, we iden-
tify the following limitations in the collected set of studies:
• As far as we know, most of the studies did not provide



Reference Metrics Names Granularity Level Measured Attributes
Abdeen et al.
[1]

Inter-Package Usage (IPU), Package Changing Impact (PCI),
Package Communication Diversion (PCD), Package Goal Fo-
cus (PGF), Package Service Cohesion (PSC)

Package, Architec-
ture

Coupling (IPU, PCI,
PCD), Cohesion (PGF,
PSC)

Alhazbi [4] Architecture Complexity (ACs) Architecture Coupling
Allen et al.
[6]

Inter-module Coupling (IeMC), Intra-module Coupling
(IaMC), Modular Cohesion (MC)

Architecture Coupling (IeMC), Cohe-
sion (IaMC, MC)

Allen et al.
[5]

Information Size (IS), Information Complexity (ICmp), Infor-
mation Coupling (ICpl)

Architecture Size, Complexity, Coupling

Anan et al.
[7]

Architectural Module Coupling (AMCpl), Architectural Mod-
ule Cohesion (AMCoh), Architectural Maintainability Effort
(AME)

Module (AMCpl,
AMCoh), Architec-
ture (AME)

Coupling (AMCpl, AME),
Cohesion (AMCoh)

Bhattach. et
al. [13]

Average Degree (k), Clustering Coefficient (C), Node Rank
(NR), Graph Diameter (GD), Assortativity (Ass), Modularity
Ratio (MR)

Module (C, NR,
MR), Architecture
(Ass, GD, k)

Complexity

Elish [22] Number of Classes (NC), Afferent Coupling (Ca), Efferent
Coupling (Ce), Instability (I), Distance (D)

Package Size (NC), Coupling (Ca,
Ce), Stability (I, D)

Gupta et al.
[27]

Total Coupling of the Package at Given Hierarchical Level
(PCM)

Package Coupling

Gupta et al.
[28]

Cohesion of a Package (PCoh) Package Cohesion

Haohua et al.
[29]

Coupling of Unit (MCC), Importance of Unit (MCI), Effi-
ciency of Message Transmitting (MSE), Modularity and Co-
hesion (MSM), Metric of Hierarchy (MSH)

Graph node (MCC,
MCI), Architecture
(MSE, MSM, MSH)

Complexity

Hu et al. [30] Software Architecture Composite Quality Metric Architecture Quality
Hwa et al.
[31]

Design Size in Modules (DSM), Module Size in Classes (MSC),
Number of API Classes (NAC), Direct Module Coupling
(DMC), Number of Disjoint Clusters (NDC), Cohesion by
Rest of World (CRW), Depth in Module Hierarchy (DMH)

Architecture (DSM),
Module (MSC, NAC,
DMC, NDC, CRW,
DMH)

Size (DSM, MSC), Cou-
pling (NAC, DMC), Cohe-
sion (NDC, CRW), Com-
plexity (DMH)

Kanjilal et
al. [32]

Component Usability Factor (CUF), Component Functional-
ity Factor (CFF), Component Level Coupling (CLC), Node
Interaction Factor (NIF), Node-to-Node Coupling (N2NC)

Component (CUF,
CFF, NIF), Ar-
chitecture (CLC),
Comp-to-Comp
(N2NC)

Coupling

Lindvall et
al. [44]

Coupling Between Modules (CBM), Coupling Between Mod-
ule Classes (CBMC)

Module Coupling

Ma et al.
[45, 46]

Average Shortest Path Length, Degree Distribution, Cluster-
ing Coefficient, Betweenness, Degree Correlation

Graph Node (Be-
tweenness), Architec-
ture (others)

Complexity

Misic [47] Coherence of the Objects Set Component Cohesion
Reddy et al.
[52]

Dependency Oriented Complexity Metric for the Structure
(DOCMS(R)), Dependency Oriented Complexity Metric for
an Artefact Causing Ripples (an Artefact Affected by Rip-
ples) (DOCMA(CR), DOCMA(AR))

Architecture
(DOCMS(R)),
Graph-Node
(DOCMA(CR),
DOCMA(AR))

Coupling

Salman [54] Total Number of Interfaces (TNI), Total Number of Compo-
nents (TNC), Total Number of Links (TNL), Average Number
of Links Between Components (ANLC), Average Number of
Links per Interface (ANLI), Average Number of Interfaces per
Component (ANIC), Depth of the Composition Tree (DCT),
Width of the Composition Tree (WCT)

Architecture Size (TNC), Complexity
(WTC, TNC), Coupling
(others)

Sarkar et al.
[57]

Association Induced Coupling Metric (AC(S)), Size Uni-
formity Metric (MU), Common Use of Module Classes
(CReuM(S))

Architecture (AC(S),
MU), Module
(AC(S), CReuM(S))

Size (MU), Cohesion
(CReuM(S)), Coupling
(AC(S))

Sartipi [58] Self-association Degree (SAD), Association-On Degree (AoD),
Association-By Degree (AbD), Modularity Degree (MD)

Architecture (MD),
Component (others)

Cohesion (SAD), Coupling
(AoD, AbD), Complexity
(MD)

Sheresh. et
al. [60]

Information Coupling Between two Components (ICC), Infor-
mation Cohesion of Primitive Components (ICPC), Informa-
tion Cohesion of Composite Components (ICCC)

Comp-to-Comp
(ICC), Component
(others)

Coupling (ICC), Cohesion
(others)

Wei et al.
[61]

Number of Components (NC), Degree of a Vertex (DV), Dis-
tance Between Two Components (DTC), Diameter of the Sys-
tem (DS)

Comp-to-Comp
(DTC), Component
(DV), Architecture
(others)

Size (NC), Coupling (oth-
ers)

Yu et al. [62] Component Coupling (C (t, d)) Component Coupling
Zhou et al.
[63]

Total Complexity of the Architecture (MT), The Complexity
of the Most Easily Affected Component (MS)

Package Cohesion

Table 2: Summary of the Extracted Data - Metrics Names, Granularity Level, and Measured Attributes



Reference Approach
Type

Validated Quality Maturity Assessment

Abdeen et al. [1] Internal structure – MD=3, MQ=2, LV=No, USB=2, CA=No, AP=1, TS=1
Alhazbi [4] Graph-based – MD=2, MQ=1, LV=No, USB=2, CA=No, AP=1, TS=1
Allen et al. [6] Graph-based Modularization MD=3, MQ=1, LV=2, USB=2, CA=2, AP=2, TS=2
Allen et al. [5] Graph-based Modularization MD=3, MQ=1, LV=1, USB=2, CA=2, AP=2, TS=1
Anan et al. [7] Graph-based Maintainability MD=3, MQ=2, LV=1, USB=2, CA=1, AP=2, TS=1
Bhattach. et al. [13] Graph-based Maintainability, Bug severity MD=2, MQ=1, LV=3, USB=2, CA=1, AP=3, TS=2
Elish [22] Internal structure Understandability MD=–, MQ=1, LV=4, USB=3, CA=1, AP=2, TS=2
Gupta et al. [27] Internal structure Understandability MD=3, MQ=1, LV=2, USB=2, CA=1, AP=2, TS=2
Gupta et al. [28] Internal structure Reusability MD=3, MQ=3, LV=1, USB=2, CA=2, AP=2, TS=2
Haohua et al. [29] Graph-based Complexity MD=2, MQ=1, LV=3, USB=2, CA=1, AP=2, TS=2
Hu et al. [30] Specific model Maintainability MD=2, MQ=2, LV=2, USB=2, CA=1, AP=2, TS=1
Hwa et al. [31] Internal structure Understandability MD=2, MQ=3, LV=2, USB=2, CA=1, AP=2, TS=2
Kanjilal et al. [32] Graph-based Complexity MD=2, MQ=1, LV=2, USB=3, CA=1, AP=2, TS=1
Lindvall et al. [44] Internal structure Maintainability MD=1, MQ=3, LV=2, USB=2, CA=1, AP=3, TS=2
Ma et al. [45, 46] Graph-based Complexity, Fault rate MD=–, MQ=1, LV=4, USB=2, CA=2, AP=2, TS=2
Misic [47] Internal structure External coherence MD=3, MQ=1, LV=1, USB=3, CA=1, AP=2, TS=1
Reddy et al. [52] Graph-based Complexity MD=2, MQ=3, LV=1, USB=2, CA=2, AP=2, TS=1
Salman [54] Internal structure Maintainability, Integrability MD=3, MQ=1, LV=3, USB=3, CA=1, AP=2, TS=1
Sarkar et al. [57] Internal structure Modularization MD=2, MQ=1, LV=3, USB=2, CA=1, AP=2, TS=2
Sartipi [58] Graph-based Modularization MD=2, MQ=1, LV=2, USB=2, CA=1, AP=3, TS=2
Sheresh. et al. [60] Specific model – MD=2, MQ=2, LV=–, USB=1, CA=1, AP=1, TS=1
Wei et al. [61] Graph-based – MD=2, MQ=1, LV=–, USB=2, CA=1, AP=1, TS=1
Yu et al. [62] Specific model Fault rate MD=1, MQ=1, LV=2, USB=2, CA=1, AP=2, TS=2
Zhou et al. [63] Graph-based External coherence MD=3, MQ=1, LV=2, USB=2, CA=2, AP=2, TS=2

Table 3: Summary of the Extracted Data – Approach Type, Validated Qualities, and Maturity Assessment

an adequate mapping between the proposed metrics and ex-
ternal quality characteristics they aim to measure in order
to provide correct evaluation of those attributes. That can
obscure the metrics’ usefulness for practitioners.
• Insufficient experimental validation leads to a lack of

widely accepted metrics that can be used in real world ap-
plications. This can reduce trustworthiness of the proposed
metrics. It is worth noticing that only three of the proposed
studies are validated independently ([22, 46, 45]). Indepen-
dent validation (not performed by the metrics’ main propo-
nents) is very important for the proof of metrics usefulness
before common acceptance is sought.
• Insufficient experimental validation leads also to a lack

of established metrics threshold values which can obscure
interpretations of metrics values by practitioners.
• Ambiguities in metrics definitions occurs when metrics

are defined using informal or semi-formal definitions. This
leads to misleading and therefore different implementations
of metrics collection tools which produces different results
for the metrics values calculated by different tools for the
same software artefacts.
• Most of the studies use proprietary tools or the com-

bination of proprietary and open-source tools for metrics
calculations. This limits metrics portability, their compar-
isons and knowledge sharing in the research and practitioner
communities. This also limits the independent validation of
the metrics.
• Insufficient comparative analysis between the given

methodology and the existing techniques can hamper the
choice of the most efficient and useful metrics that can be
applied in a given context.

Mitigating some of the identified problems is proposed by
Goulao and Abreu [26]. The proposed approach relies on
the usage of a meta-model to formally define the concepts
we want to measure and OCL expressions to define the met-
rics over that meta-model. Applicability of this approach is

confirmed through different case studies that are published
in that context. The approach can be summarized as fol-
lows:
• Defining formal and executable metrics specifications

using OCL 2.0.
• Defining formal metrics specifications using a meta-

model, such as UML 2.0, thus ensuring that there are no
definition and computing ambiguities.
• Packaging metrics specifications in a format that can be

used by other practitioners and researchers.
This approach can help in mitigating the problems related

to the ambiguities in metrics definitions, metrics portability,
accurate calculations and comparisons. The concepts that
the metrics measure can also be defined formally together
with the guidelines about the mappings between the met-
rics and/or the measured concepts on one side and exter-
nal quality characteristics on the other side. Regarding the
problems related to the insufficient empirical validations the
previously mentioned approach can facilitate the indepen-
dent metrics validation since it can help in providing the
reliable and accurate algorithms for the metrics calculations
and therefore enable using the metrics by other practition-
ers and researchers apart form the metrics main proponents.
Accurately computed metrics values can be successfully used
as an input for the empirical evaluations of the external soft-
ware qualities.

5. LIMITATIONS OF OUR STUDY
Even though our study was conducted using the prede-

fined set of rules that lead to systematic investigation of
the literature related to the specific research questions, we
can identify some limitations in the study. The limitations
of our study are: primary study selection bias and inac-
curacy in data extraction and therefore quality assessment
bias. Primary study selection bias is related to the problem



of missing some relevant studies during the search process,
while the quality assessment bias is related to the problem
of inaccurate extraction and reporting of the study results.

In order to decrease the study selection bias we pursued a
systematic search through four digital libraries ACM, IEEE,
Scopus, and Springer which include bibliographic references,
abstracts, and links to electronic editions of the articles for
all major publishers in computer science. In addition, we
carried out the snowballing process (see Section 3.2) in order
to include potentially excluded studies. Actually the search-
query that we used in the search process can lead to false
negatives (the studies that are not included in consideration
but that are relevant) since some other words or synonyms
can be used that are not listed in the query. Looking in the
references of the initially found set of papers (snowballing
the initial set of papers) gives us an opportunity to find
potentially excluded papers and in that way to minimize the
given bias. Furthermore, the snowballing process helped us
to create the final search-query progressively (see Section 3.2
for more details). The inclusion/exclusion criteria helped us
to filter out software metrics outside of the explained scope
(see Section 3.3 for more details). The first author performed
the search process defined in Section 3.2 and the process of
inclusion/exclusion of the studies as defined in Section 3.3
for the initial set of studies and for the snowballing process.
The second author independently repeated the process of
inclusion/exclusion of the studies for the initial set of studies
as well as for the snowballing process.

To reduce the chance of inaccurate data extraction and
quality assessment bias, the collected information for each
study was checked by the other author. Very few disagree-
ments were resolved by discussions between the authors.
The assessment of the metrics’ maturity level is solely based
on the information provided in the identified studies so that
a potential bias related to subjective judgement is mini-
mized.

6. CONCLUSION AND FUTURE WORK
In this article we present a systematic mapping study on

software metrics related to the understandability concepts of
the higher-level architectural structures with regard to their
relations to the system implementation (i.e., metrics that
operate at the level above classes). We pursued advanced
search through four digital libraries (ACM DL, IEEE DL,
Scopus DL, and Springer DL) which include bibliographic
references, abstracts, and links to electronic editions of the
articles for all major publishers in computer science. Using
inclusion/exclusion criteria as well as the snowballing tech-
nique (see the Section 3.2) we identified 268 possible studies
for detailed analysis. After detailed analysis we identified 25
studies to be reported in our study.

We classify the identified studies and metrics with regard
to the measured artefacts, attributes, quality characteristics
used for the metrics empirical validation, and representation
model used for the metrics definitions. We also provide the
maturity level assessment of the identified metrics. Common
problems in the current studies are also identified. Overall,
there is a lack of maturity in the studies. It is mostly re-
flected through ambiguities in metrics definitions, lack of
empirical validation and lack of information, such as map-
ping to the quality characteristics they aim to measure and
missing comparative analysis, that obscure the metrics’ use-
fulness for practitioners. Tools that exist for metrics calcu-

lations are mostly proprietary or the combination of propri-
etary and open source tools. This limits metrics portability,
their comparisons and their knowledge sharing in the re-
search and practitioners’ communities. Regarding the iden-
tified problems we summarize some existing work that can
help in mitigating them.

From the academic point of view we believe that our study
can serve as a good starting point for future studies. Iden-
tified gaps can help in creating systematic approaches, de-
veloping new metrics or tools for metrics calculations or de-
vising empirical experiments for metrics validation, all with
the aim to improve the currently existing works. From a
practitioner’s point of view, the results of our study can be
used as a catalogue and an indication of the maturity of the
existing research results.

As our future research we aim to focus on empirical eval-
uation of the identified metrics in terms of their relations to
the understandability. This includes carrying out different
experiments and user studies to test the utility and the ap-
plicability of the metrics, possible metrics adaptations, and
creation of new metrics based on the given set of metrics.
Such foundational research is essential to provide guidelines
and tools to software architects, based on sound evidence, to
help them understand how to design the higher-level views
that are appropriate for the architectural understanding of
a software system and how to best map them to software
design models (such as class diagrams) and code.

Acknowledgement
This work was supported by the Austrian Science Fund
(FWF), Project: P24345-N23.

7. REFERENCES
[1] H. Abdeen, S. Ducasse, and H. Sahraoui.

Modularization metrics: Assessing package
organization in legacy large object-oriented software.
In Proceedings of the 2011 18th Working Conference
on Reverse Engineering, WCRE ’11, pages 394–398,
Washington, DC, USA, 2011. IEEE Computer Society.

[2] M. Abdellatief, A. B. M. Sultan, A. A. A. Ghani, and
M. A. Jabar. A mapping study to investigate
component-based software system metrics. Journal of
Systems and Software, 86(3):587 – 603, 2013.

[3] G. Abowd, L. Bass, P. Clements, R. Kazman,
L. Northrop, and A. Zaremski. Recommended Best
Industrial Practice for Software Architecture
Evaluation. Technical report, Software Engineering
Institute (SEI) Carnegie Mellon University, 1997.

[4] S. Alhazbi. Measuring the complexity of
component-based system architecture. Information
and Communication Technologies From Theory to
Applications 2004 Proceedings 2004 International
Conference on, In Press,(593):593–594, 2004.

[5] E. B. Allen, S. Gottipati, and R. Govindarajan.
Measuring size, complexity, and coupling of
hypergraph abstractions of software: An
information-theory approach. Software Quality
Control, 15(2):179–212, June 2007.

[6] E. B. Allen and T. M. Khoshgoftaar. Measuring
coupling and cohesion: An information-theory
approach. In Proceedings of the 6th International
Symposium on Software Metrics, METRICS ’99, pages



119–, Washington, DC, USA, 1999. IEEE Computer
Society.

[7] M. Anan, H. Saiedian, and J. Ryoo. An
architecture-centric software maintainability
assessment using information theory. J. Softw. Maint.
Evol., 21(1):1–18, Jan. 2009.

[8] M. A. Babar and I. Gorton. Comparison of
scenario-based software architecture evaluation
methods. In 11TH ASIA-PACIFIC SOFTWARE
ENGINEERING CONFERENCE, (2004) 600, page
607, 2004.

[9] J. Bansiya and C. G. Davis. A hierarchical model for
object-oriented design quality assessment. IEEE
Trans. Softw. Eng., 28(1):4–17, Jan. 2002.

[10] R. Barcelos and G. Travassos. Evaluation approaches
for Software Architectural Documents: A systematic
Review. In Ibero-American Workshop on Requirements
Engineering and Software Environments (IDEAS),
2006.

[11] V. R. Basili, G. Caldiera, and D. H. Rombach. The
Goal Question Metric Approach, volume I. John Wiley
& Sons, 1994.

[12] L. Bass, P. Clements, and R. Kazman. Software
architecture in practice. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1998.

[13] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and
M. Faloutsos. Graph-based analysis and prediction for
software evolution. In ICSE’12, pages 419–429, 2012.

[14] G. Booch. Object-oriented Analysis and Design with
Applications (2Nd Ed.). Benjamin-Cummings
Publishing Co., Inc., Redwood City, CA, USA, 1994.

[15] L. Briand, S. Morasca, and V. Basili. Measuring and
assessing maintainability at the end of high level
design. In Software Maintenance ,1993. CSM-93,
Proceedings., CONFERENCE on, pages 88–87, Sep
1993.

[16] L. Briand, S. Morasca, and V. Basili. Property-based
software engineering measurement. Software
Engineering, IEEE Transactions on, 22(1):68–86, Jan
1996.

[17] D. Budgen, A. J. Burn, O. P. Brereton, B. A.
Kitchenham, and R. Pretorius. Empirical evidence
about the UML: a systematic literature review. Softw.
Pract. Exper., 41(4):363–392, Apr. 2011.

[18] S. R. Chidamber and C. F. Kemerer. A metrics suite
for object oriented design. IEEE Trans. Softw. Eng.,
20(6):476–493, June 1994.

[19] P. Clements, F. Bachmann, L. Bass, D. Garlan,
J. Ivers, R. Little, R. Nord, and J. Stafford.
Documenting Software Architectures: Views and
Beyond. Addison-Wesley, Boston, MA, 2003.

[20] L. Dobrica and E. Niemela. A survey on software
architecture analysis methods. IEEE Trans. Softw.
Eng., 28(7):638–653, July 2002.

[21] S. Ducasse and D. Pollet. Software architecture
reconstruction: A process-oriented taxonomy. Software
Engineering, IEEE Transactions on, 35(4):573–591,
July 2009.

[22] M. O. Elish. Exploring the relationships between
design metrics and package understandability: A case
study. In Proceedings of the 2010 IEEE 18th

International Conference on Program Comprehension,
ICPC ’10, pages 144–147, Washington, DC, USA,
2010. IEEE Computer Society.

[23] M. Fowler. Who needs an architect? IEEE Softw.,
20(5):11–13, Sept. 2003.

[24] C. Ghezzi, M. Jazayeri, and D. Mandrioli.
Fundamentals of software engineering. 2002.

[25] M. Goulao and F. B. E. Abreu. Software components
evaluation: an overview. In In Proceedings of the 5th
Conferência da APSI, 2004.

[26] M. Goulao and F. B. e Abreu. Independent validation
of a component metrics suite, 2004.

[27] V. Gupta and J. K. Chhabra. Package coupling
measurement in object-oriented software. J. Comput.
Sci. Technol., 24(2):273–283, Mar. 2009.

[28] V. Gupta and J. K. Chhabra. Package level cohesion
measurement in object-oriented software. J. Braz.
Comp. Soc., 18(3):251–266, 2012.

[29] Z. Haohua, Z. Hai, C. Wei, and A. Jun. The method
for measuring large-scale object-oriented software
system. In Proceedings of the 6th international
conference on Fuzzy systems and knowledge discovery
- Volume 3, FSKD’09, pages 603–606, Piscataway, NJ,
USA, 2009. IEEE Press.

[30] C. Hu, F. Jiao, and C. Zhao. An architectural quality
assessment for domain-specific software. In
Proceedings of the 2008 International Conference on
Computer Science and Software Engineering - Volume
02, CSSE ’08, pages 143–146, Washington, DC, USA,
2008. IEEE Computer Society.

[31] J. Hwa, S. Lee, and Y. R. Kwon. Hierarchical
understandability assessment model for large-scale OO
system. In Proceedings of the 2009 16th Asia-Pacific
Software Engineering Conference, APSEC ’09, pages
11–18, Washington, DC, USA, 2009. IEEE Computer
Society.

[32] A. Kanjilal, S. Sengupta, and S. Bhattacharya. CAG:
A Component Architecture Graph. In TENCON,
IEEE Region 10 International Conference, 2008.

[33] R. Kazman, L. Bass, M. Klein, T. Lattanze, and L. M.
Northrop. A basis for analyzing software architecture
analysis methods. Software Quality Journal,
13(4):329–355, 2005.

[34] B. Kitchenham. Procedures for performing systematic
reviews. Technical report, Departament of Computer
Science, Keele University, 2004.

[35] B. Kitchenham, P. Brereton, M. Turner, M. Niazi,
S. Linkman, R. Pretorius, and D. Budgen. The impact
of limited search procedures for systematic literature
reviews a participant-observer case study. In
Proceedings of the 2009 3rd International Symposium
on Empirical Software Engineering and Measurement,
ESEM ’09, pages 336–345, Washington, DC, USA,
2009. IEEE Computer Society.

[36] B. Kitchenham and S. Charters. Guidelines for
performing Systematic Literature Reviews in Software
Engineering. Technical Report EBSE 2007-001, Keele
University and Durham University Joint Report, 2007.

[37] B. Kitchenham, O. Pearl Brereton, D. Budgen,
M. Turner, J. Bailey, and S. Linkman. Systematic
literature reviews in software engineering - a
systematic literature review. Inf. Softw. Technol.,



51(1):7–15, Jan. 2009.

[38] B. A. Kitchenham, D. Budgen, and O. P. Brereton.
The value of mapping studies: A participantobserver
case study. In Proceedings of the 14th International
Conference on Evaluation and Assessment in Software
Engineering, EASE’10, pages 25–33, Swinton, UK,
UK, 2010. British Computer Society.

[39] K. Knoernschild. Java Application Architecture:
Modularity Patterns with Examples Using OSGi. Agile
Software Development Series. Prentice Hall, 2012.

[40] H. Koziolek. Sustainability evaluation of software
architectures: A systematic review. In Proceedings of
the Joint ACM SIGSOFT Conference – QoSA and
ACM SIGSOFT Symposium – ISARCS on Quality of
Software Architectures – QoSA and Architecting
Critical Systems – ISARCS, QoSA-ISARCS ’11, pages
3–12, New York, NY, USA, 2011. ACM.

[41] P. Kruchten. The 4+1 view model of architecture.
IEEE Softw., 12(6):42–50, Nov. 1995.

[42] V. Kumar, A. Sharma, R. Kumar, and P. Grover.
Quality aspects for component-based systems: A
metrics based approach. Softw. Pract. Exper.,
42(12):1531–1548, Dec. 2012.

[43] W. Li and S. Henry. Object-oriented metrics that
predict maintainability. 23(2):111–122, February 1993.

[44] M. Lindvall, R. Tesoriero, and P. Costa. Avoiding
architectural degeneration: An evaluation process for
software architecture. In Proceedings of the 8th
International Symposium on Software Metrics,
METRICS ’02, pages 77–, Washington, DC, USA,
2002. IEEE Computer Society.

[45] Y. Ma, K. He, D. Du, J. Liu, and Y. Yan. A
complexity metrics set for large-scale object-oriented
software systems. In Proceedings of the Sixth IEEE
International Conference on Computer and
Information Technology, CIT ’06, pages 189–,
Washington, DC, USA, 2006. IEEE Computer Society.

[46] Y. Ma, K. He, B. Li, J. Liu, and X.-Y. Zhou. A hybrid
set of complexity metrics for large-scale
object-oriented software systems. J. Comput. Sci.
Technol., 25(6):1184–1201, 2010.

[47] V. B. Misic. Cohesion is structural, coherence is
functional: Different views, different measures.
Software Metrics, IEEE International Symposium on,
0:135, 2001.

[48] P. Oreizy, M. M. Gorlick, R. N. Taylor,
D. Heimbigner, G. Johnson, N. Medvidovic,
A. Quilici, D. S. Rosenblum, and A. L. Wolf. An
architecture-based approach to self-adaptive software.
IEEE Intelligent Systems, 14(3):54–62, May 1999.

[49] D. E. Perry and A. L. Wolf. Foundations for the study
of software architecture. SIGSOFT Softw. Eng. Notes,
17(4):40–52, Oct. 1992.

[50] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson.
Systematic mapping studies in software engineering.
In in Proceeding of the 12th International Conference
on Evaluation and Assessment in Software
Engineering (EASE), page 1, 2008.

[51] R. S. Pressman. Software Engineering: A
Practitioner’s Approach. McGraw-Hill, european
edition, 1994. Adapted by Darrel Ince.

[52] K. N. Reddy and A. A. Rao. A quantitative evaluation

of software quality enhancement by refactoring using
dependency oriented complexity metrics. In
Proceedings of the 2009 Second International
Conference on Emerging Trends in Engineering &
Technology, ICETET ’09, pages 1011–1018,
Washington, DC, USA, 2009. IEEE Computer Society.

[53] M. Riaz, E. Mendes, and E. Tempero. A systematic
review of software maintainability prediction and
metrics. In Empirical Software Engineering and
Measurement, 2009. ESEM 2009. 3rd International
Symposium on, pages 367–377, Oct 2009.

[54] N. Salman. Complexity metrics as predictors of
maintainability and integrability of software
components. pages 39–50. Journal of Arts and
Sciences, 2006.

[55] R. Sangwan, P. Vercellone-Smith, and P. Laplante.
Structural epochs in the complexity of software over
time. Software, IEEE, 25(4):66–73, July 2008.

[56] C. Sant’Anna, E. Figueiredo, A. Garcia, and C. J. P.
Lucena. On the modularity of software architectures:
A concern-driven measurement framework. In
Proceedings of the First European Conference on
Software Architecture, ECSA’07, pages 207–224,
Berlin, Heidelberg, 2007. Springer-Verlag.

[57] S. Sarkar, A. C. Kak, and G. M. Rama. Metrics for
measuring the quality of modularization of large-scale
object-oriented software. IEEE Trans. Softw. Eng.,
34(5):700–720, Sept. 2008.

[58] K. Sartipi. A software evaluation model using
component association views. In Program
Comprehension, 2001. IWPC 2001. Proceedings. 9th
International Workshop on, pages 259–268, 2001.

[59] K. Sethi, Y. Cai, S. Wong, A. Garcia, and
C. Sant’Anna. From retrospect to prospect: Assessing
modularity and stability from software architecture. In
SOFTWARE ARCHITECTURE, 2009 European
Conference on Software Architecture. WICSA/ECSA
2009. Joint Working IEEE/IFIP Conference on, pages
269–272, Sept 2009.

[60] M. Shereshevsky, H. Ammari, N. Gradetsky, A. Mili,
and H. H. Ammar. Information theoretic metrics for
software architectures. In Proceedings of the 25th
International Computer Software and Applications
Conference on Invigorating Software Development,
COMPSAC ’01, pages 151–, Washington, DC, USA,
2001. IEEE Computer Society.

[61] G. Wei, X. Zhong-Wei, and X. Ren-Zuo. Metrics of
graph abstraction for component-based software
architecture. In Proceedings of the 2009 WRI World
Congress on Computer Science and Information
Engineering - Volume 07, CSIE ’09, pages 518–522,
Washington, DC, USA, 2009. IEEE Computer Society.

[62] L. Yu, K. Chen, and S. Ramaswamy.
Multiple-parameter coupling metrics for layered
component-based software. Software Quality Journal,
17(1):5–24, 2009.

[63] T. Zhou, B. Xu, L. Shi, Y. Zhou, and L. Chen.
Measuring package cohesion based on context. In
Proceedings of the IEEE International Workshop on
Semantic Computing and Systems, WSCS ’08, pages
127–132, Washington, DC, USA, 2008. IEEE
Computer Society.


