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Abstract

We consider auctions of indivisible items to unit-demand bidders with budgets. This setting was suggested
as an expressive model for single sponsored search auctions. Prior work presented mechanisms that compute
bidder-optimal outcomes and are truthful for a restricted set of inputs, i.e., inputs in so-called general
position. This condition is easily violated. We provide the first mechanism that is truthful in expectation for
all inputs and achieves for each bidder no worse utility than the bidder-optimal outcome. Additionally we
give a complete characterization for which inputs mechanisms that compute bidder-optimal outcomes are
truthful.

Keywords: matching market, ascending auction, budget constraint, incentive compatibility, envy-freeness,
randomized algorithm

1. Introduction

When a user searches for a specific term in a web search engine, related advertisements are displayed on
the search results page. The advertisements are assigned by an auction such that each advertiser receives at
most one slot. The advertisers may have different preferences among the slots and budgets that limit the
amount of money they can spend. The auctioneer may have a reserve price under which she is not interested
in selling a slot. This is modeled as follows: The advertisers are called bidders, the slots correspond to items,
and the budgets are modeled as maximum prices per bidder and item. Each bidder i can specify a valuation
vi,j for each item j. A mechanism computes the prices p of the items as well as the assignment µ of the
bidders to the items. The preferences of a bidder i are modeled by utility functions ui,j(pj) such that his
utility if he is assigned item j at a price pj is ui,j(pj) = vi,j − pj if the price is lower than his maximum price
and −∞ if the price is equal to or higher than his maximum price. A bidder has a utility of zero if he is not
assigned any item; thus bidder i only accepts an item j if ui,j(pj) ≥ 0. For more details on the expressiveness
of quasi-linear utility functions with budgets in sponsored search see [1].

Search engine providers want to satisfy their customers as well as avoid fluctuations in the prices. This
corresponds to a bidder-optimal and stable assignment of bidders to items. An outcome (µ, p) is stable if a
competitive equilibrium is reached. In a competitive equilibrium no bidder would prefer a different item or
being unmatched to the one he is matched to under the current prices, i.e., every bidder is envy-free, and
additionally the prices of all unmatched items are equal to their reserve prices. In a bidder-optimal outcome
each bidder obtains his best utility among all envy-free outcomes. To simplify the bidding for the advertisers

INOTICE: this is the authors version of a work that was accepted for publication in Theoretical Computer Science.
Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other
quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was
submitted for publication. A definitive version was subsequently published in Theoretical Computer Science, 573:(1–15), 2015,
DOI 10.1016/j.tcs.2015.01.033
∗Corresponding author.
Email address: veronika.loitzenbauer@univie.ac.at (Veronika Loitzenbauer)

Preprint submitted to Theoretical Computer Science April 10, 2015



u1=0
1

10
p1=5

u2=0
1

10
p2=1

u1=1
1

1
p1=0

u2=10
1

10
p2=0

matched unmatched

Figure 1: An input for which no bo-mechanism is truthful. The edges are labeled with the valuations the bidders report for the
items. The maximum prices of both bidders are 5. The displayed prices are the minimum envy-free prices for the given inputs,
respectively. In the left graph the bidders report their true values. In the right graph the first bidder reports a wrong valuation
of 1 for the first item. Thus an envy-free outcome with respect to the reported valuations exists already at the initial prices of
zero and both bidders obtain a higher utility. Note that the utility gain could be arbitrarily high.

as well as to be able to compute an envy-free outcome with respect to the true values of the bidders, bidders
should obtain their best possible utility if they reveal their true preferences to the mechanism. This property
is called truthfulness or incentive-compatibility.

A large body of prior work on this and related problems exists. We summarize below only the most
closely related work, see [2] for a more complete overview.

A bidder-optimal outcome exists for all strictly monotonically falling and locally right-continuous utility
functions [3] and, thus, for the model used in this work. We say that a mechanism that computes a
bidder-optimal outcome for every given input is a bo-mechanism. By definition, the utilities of the bidders in
a bidder-optimal outcome are unique. Thus one bo-mechanism is incentive-compatible for a given input if
and only if all bo-mechanisms are incentive-compatible for that input. Note that we distinguish between
incentive-compatibility for a specific input and incentive-compatibility for all inputs.

Without budgets every bo-mechanism is incentive-compatible and its outcome is stable [4, 5]. The inclusion
of budgets into the model implies discontinuities in the utility functions, which destroys these desirable
properties in general [1, 6, 7]. Aggarwal et al. [1] were among the first who added budget constraints to
quasi-linear utility functions. For inputs in general position, i.e., certain non-degenerate inputs, Aggarwal et al.
provided an incentive-compatible mechanism that computes a bidder-optimal stable outcome in polynomial
time.1 Aggarwal et al. state in [1], with (v,m, r) being the input to the auction:

In essence, any auction (v,m, r) can be brought into general position by arbitrarily small (symbolic)
perturbations. In practice this assumption is easily removed by using a consistent tie-breaking
rule.

We provide an example that shows that neither a deterministic nor a randomized tie-breaking rule, as
suggested above, leads to an incentive-compatible mechanism for all inputs. As for the undisturbed input,
the gain from lying can be arbitrarily high. Instead, we use further randomization, this time of the prices, and
give a mechanism based on randomized tie-breaking and on randomized price extraction that is truthful in
expectation. However, as shown in [1, 7], there are degenerate inputs for which no bo-mechanism is incentive-
compatible, even if the outcome is stable [3]. Hence, our randomized mechanism cannot be a bo-mechanism.
Our mechanism builds upon the results of Dütting et al. in [8], who showed that a modification of the
Hungarian Method [9] computes (in polynomial time) a bidder-optimal envy-free outcome for every given
input, i.e., is a bo-mechanism. If the input is in general position, this mechanism is incentive-compatible and
the outcome is a competitive equilibrium [7].

General position is a quite restrictive condition on the input. Intuitively, it forbids that any two maximum
prices can be reached simultaneously during an ascending price mechanism. For example, “symmetric inputs”,

1Chen et al. [6] defined weak and strong stability, where only for the latter a stable outcome is equal to a competitive
equilibrium. The definition of a stable matching in [1] corresponds to weak stability. In their model, the utility of a bidder is set
to a negative value if the price of the item strictly exceeds the maximum price of this bidder for the item. On the contrary, in
[8] as well as in the definition used in this work, a utility becomes negative as soon as the maximum price is reached. For the
utility functions used in [8] and in this work weak and strong stability coincide.
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i.e., inputs where two bidders input exactly the same valuations and budgets, violate the general position
condition. However, in practice such inputs can easily arise. Consider the example with symmetric bidders in
Figure 1. Both bidders have the same budget and prefer the first item over the second. If a bidder-optimal
outcome is computed for the true values, the most desirable item is not sold and both bidders have a utility
of zero. Furthermore, through lying one of the bidders can ensure that all desirable items are sold. Thus no
bo-mechanism can be incentive-compatible. A good outcome in this situation would be to assign the most
desirable item with equal probability to each bidder and to charge prices so that the expected utility of each
bidder is at least the utility that the bidder could achieve through lying. This is exactly what our algorithm
does.

More formally, we improve upon the known results in three ways. The requirement that the input is
in general position is a sufficient but not necessary condition for the existence of a truthful bo-mechanism.
Specifically, there exist inputs that are not in general position but for which the Modified Hungarian Method
(and thus every bo-mechanism) is incentive-compatible. Furthermore, there exists no polynomial-time
algorithm that determines whether an input is in general position. Our first contributions are a generalization
of the general position condition called rematch condition that excludes fewer inputs and a polynomial time
algorithm to determine whether an input fulfills the rematch condition. Thus our condition provides new
insights on when a bo-mechanism cannot guarantee incentive-compatibility for a given input. We use these
insights then in our second and third contributions.

Our second contribution provides the first necessary and sufficient condition for incentive-compatibility of
a bo-mechanism for a given input as well as the first general description of the way in which a bidder can lie.
Additionally, we give a polynomial-time algorithm for computing the regret, i.e., the maximal utility a bidder
can gain from lying.

Our third result is the already mentioned randomized mechanism that is incentive-compatible in ex-
pectation and extends the previous mechanism of [8]. Contrary to Aggarwal et. al.’s claim, tie-breaking is
not sufficient for an incentive-compatible mechanism. However, a combination of randomized tie-breaking
with randomized price extraction yields a mechanism that is truthful in expectation. However, when using
tie-breaking, envy-freeness is lost. Note that this is unavoidable even for mechanisms that are truthful in
expectation: To show truthfulness in expectation we have to compare the outcome of our mechanism for the
truthful input with the outcome for the input where one bidder lies. We show that in the latter case the
liar will have envy (with regard to his true values). See, for example, the right graph in Figure 1. The first
bidder lies such that he is matched to the second item and obtains a higher utility. However, he has envy as
he would prefer the first to the second item at the current prices. Thus the truthfulness (in expectation)
condition requires that our mechanism computes an outcome that gives the liar at least the (expected) utility
of the outcome with envy achievable by a lie, i.e., a utility that is higher than his bidder-optimal utility. In
these cases the outcome cannot be envy-free.

As shown by the example in Figure 1, it is not possible to bound the amount of envy that arises after
a lie as the valuation that the first bidder has for the first item can be arbitrarily high. Our randomized
mechanism would give the first item with probability 0.5 to the first bidder and with probability 0.5 to the
second bidder. In both cases the price charged in expectation for the first item would be slightly below the
bidders’ budgets, while the price of the second item would be zero. Note that the price of the first item cannot
be increased up to the minimum envy-free price of 5 as this price equals the budget. Thus the expected
utility is at least as high as the utility that a bidder could achieve through lying when a bo-mechanism was
used. We can show that this holds in general for our mechanism.

Additionally our randomized mechanism fulfills the following properties: (a) If the maximum prices are
public knowledge, our mechanism is ex-post incentive-compatible. (b) Its output is “close” to the output of
[8] in the following way: If the input is in general position, an envy-free outcome with minimum prices, i.e., a
bidder-optimal outcome, can be obtained by slightly increasing the prices of the outcome of our mechanism.
Thus our mechanism matches the known results for these inputs and can additionally guarantee truthfulness
in expectation for every input.

In the remaining part of this section we define the relevant terminology and describe the Modified
Hungarian Method of [8]. Section 2 is devoted to the rematch condition, Section 3 to the characterization of
inputs for which bo-mechanisms are truthful, and Section 4 to our randomized mechanism.
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1.1. Definitions

A set I of n bidders and a set J of k items participate in the auction. Each bidder i ∈ I reports a
valuation vi,j ≥ 0 and a maximum price mi,j ≥ 0 for each item j ∈ J to the mechanism. Each item j ∈ J
has a reserve price rj ≥ 0 under which the item will not be sold. Let v and m be n× k matrices with entries
vi,j resp. mi,j for 1 ≤ i ≤ n and 1 ≤ j ≤ k, and let r be a vector of length k with entries rj for 1 ≤ j ≤ k.
Then the input of the mechanism is given by (v,m, r).

The utility ui of a bidder i is zero if he is not matched to any item and ui,j(pj) if he is matched to an
item j and this item has a price pj . The function ui,j(pj) is locally right-continuous and monotonically
falling and is defined as

ui,j(pj) =

{
vi,j − pj if pj < mi,j ,

−∞ otherwise .
(1)

We will also use the continuous and monotonically falling function u−1i,j (ui) for ui ≥ 0. It returns a lower
bound on pj such that ui,j(pj) ≤ ui. For our model it is given by

u−1i,j (ui) =

{
vi,j − ui if vi,j − ui < mi,j ,

mi,j otherwise .
(2)

A bidder is matched whenever he is assigned to an item and vice versa. To simplify the description of the
algorithm, a dummy item j0 ∈ J with a reserve price of zero is used to model unmatched bidders. All bidders
have a valuation of zero and a maximum price of ∞ for the dummy item. Each bidder can be matched to at
most one item and each item except the dummy item can be matched to at most one bidder.

The mechanism outputs a matching µ ⊆ I×J between bidders and items as well as prices p = (p1, . . . , pk)
for all items, together denoted as outcome (µ, p). We denote by µ(i) the item a bidder i is matched to, by
µ−1(j) the bidder an item j is matched to, by µ(I) the set of items a set of bidders I is matched to, and by
µ−1(J) the set of bidders a set of items J is matched to.

For a feasible outcome (µ, p) we require ui,µ(i)(pµ(i)) ≥ 0 for all bidders i, pj0 = 0 for the dummy item j0,
and pj ≥ rj for all items j. An envy-free outcome (µ, p) is a feasible outcome for which ui,µ(i)(pµ(i)) ≥ ui,j(pj)
holds for all (i, j) ∈ I × J . A bidder-optimal outcome (µ, p) is an envy-free outcome with ui,µ(i)(pµ(i)) ≥
ui,µ′(i)(p

′
µ′(i)) for all bidders i and all envy-free outcomes (µ′, p′). A mechanism is a bo-mechanism if it

computes a bidder-optimal outcome on every input.
Consider for a fixed bidder i the two inputs (v′,m′, r) and (v′′,m′′, r) with v′i,j = vi,j ,m

′
i,j = mi,j for

bidder i and v′i′,j = v′′i′,j ,m
′
i′,j = m′′i′,j for all i′ 6= i and j ∈ J . Let (µ′, p′) be the outcome for (v′,m′, r) and

(µ′′, p′′) the outcome for (v′′,m′′, r). Let ui,µ′(i)(p
′
µ′(i)) be denoted by u′i and ui,µ′′(i)(p

′′
µ′′(i)) by u′′i . Then a

mechanism is incentive-compatible if u′i ≥ u′′i for every fixed bidder i and every two inputs (v′,m′, r) and
(v′′,m′′, r). If (v′′,m′′, r) is such that the utility u′′i of bidder i is maximized among all possible inputs
(v′′,m′′, r), then u′′i − u′i ≥ 0 is the regret of bidder i. That is, a mechanism is incentive-compatible if and
only if the regret of each bidder is zero. The mechanism is incentive-compatible in expectation if bidder
i’s expected utility for the input (v′,m′, r) is at least as large as for (v′′,m′′, r), i.e., E[u′i] ≥ E[u′′i ] for all
possible inputs (v′′,m′′, r).

The first choice graph Gp = (I ∪ J,Ep) at feasible prices p has a node for each bidder and each item
and an edge between a bidder i and an item j if bidder i achieves his highest possible utility at prices p
when he is matched to j, i.e., ui,j(pj) ≥ ui,j′(pj′) for all j′ ∈ J . We define the first choice function for a
bidder i as Fp(i) = {j : ∃(i, j) ∈ Ep} and for a set of bidders T ⊆ I as Fp(T ) = ∪i∈TFp(i). We define the
inverse first choice function for an item j as F−1p (j) = {i : ∃(i, j) ∈ Ep}, and for a set of items S ⊆ J as
F−1p (S) = ∪j∈SF−1p (j). Note that due to the dummy item, maxj∈J ui,j(pj) ≥ 0 holds for all bidders i and
all feasible prices. The outcome (µ, p) is envy-free if and only if the matching µ only consists of edges in Ep.

We will compare outcomes and price increases for different inputs several times. To this end, we use
matching superscripts to denote the utility functions, the outcome, the first choice graph, and the (inverse)
first choice function corresponding to a specific input.
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An alternating path is a sequence of edges in Gp in which matched and unmatched edges alternate and in
which only the last item is allowed to be the dummy item. An alternating tree in Gp is a tree rooted at an
unmatched bidder i0 in which all paths from the root to the leaves are alternating paths and every leaf is
either an unmatched item, the dummy item, or a bidder whose first choice items are all contained in the tree.
We will consider maximal alternating trees, i.e., alternating trees that cannot be extended. If a bidder is
contained in a maximal alternating tree, then so are all his first choice items.

1.2. Modified Hungarian Method

The Modified Hungarian Method (MHM) was introduced in [8]. The mechanism, restated in Algorithm 1,
is initialized with an empty matching and all prices set to their reserve prices (line 1). When a yet unmatched
bidder i0 is considered for matching, first a maximal alternating tree in Gp rooted at bidder i0 is found
(line 3). If this tree contains an alternating path that ends with an unmatched item or with the dummy
item, the matching is augmented along this path, i.e., the matched edges along the path become unmatched
and vice versa (line 16). Otherwise, the prices of the items in the tree are increased by the smallest possible
amount such that either (a) another item becomes a first choice for a bidder in the tree (i.e. δ = δout,
line 7) or (b) an item stops being a first choice for a bidder in the tree because it reaches its maximum price
(δ = δmax, line 8). After a price increase (line 10) the matching µ and the first choice graph are updated. A
new maximal alternating tree in Gp rooted at bidder i0 is found and ui, the best possible utility for a bidder
i under the current prices, is calculated for all bidders in the tree. The prices continue to be increased in
the same manner until there is an alternating path in Gp ending with an unmatched item or the dummy
item. By augmenting the matching along this path, bidder i0 is matched and the next unmatched bidder is
considered. Note that the mechanism never increases the price of the dummy item.

Algorithm 1: Modified Hungarian Method (MHM)

input : valuations v, maximum prices m, reserve prices r
output : matching µ, prices p

1 pj ← rj for all j ∈ J , µ← ∅
2 while some bidder i0 is unmatched do
3 construct a maximal alternating tree T rooted at bidder i0 in Gp
4 let S and T be the sets of items and bidders in T
5 compute utilities ui ← maxj ui,j(pj) for all i ∈ T
6 while j0 /∈ S and all items j ∈ S matched do
7 δout ← mini∈T,j∈J\S(ui − vi,j + pj)
8 δmax ← mini∈T,j∈Fp(i)(mi,j − pj)
9 δ ← min(δout, δmax)

10 update prices pj ← pj + δ for all j ∈ S
11 update first choice graph Gp
12 update matching µ ← µ ∩ Ep
13 construct T rooted at bidder i0 in Gp
14 let S and T be the sets of items and bidders in T
15 update utilities ui ← maxj ui,j(pj) for all i ∈ T
16 augment µ along alternating path from i0 to an unmatched item or j0, preferably to items j with pj > rj
17 return (µ, p)

The following theorem by [8] shows that the MHM is a polynomial time bo-mechanism. We will
additionally use some intermediate results from [8], which are restated below.

Theorem 1 (Dütting et al. [8]). The outcome of the MHM is feasible, envy-free, and bidder-optimal for the
given input. It can be computed in time O(n · k3).2

2In sponsored search the number of items k is usually constant, while the number of bidders n is large.
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A set of items S ⊆ J is strictly overdemanded in a first choice graph Gp with respect to a set of bidders
T ⊆ I if the dummy item j0 is not in S, all first choice items of bidders in T are contained in S, i.e.,
Fp(T ) ⊆ S, and for all non-empty subsets R of S it holds that |F−1p (R) ∩ T | > |R|. We say that an item is
overdemand in Gp if it is contained in a strictly overdemanded set of items S for some set of bidders T .

Lemma 1 (Dütting et al. [8]). Let S ⊆ J be a set of items that is strictly overdemanded in Gp regarding a set
of bidders T ⊆ I. Let the price increase δ be equal to min(δout, δmax) with δout := mini∈T,j∈J\S(ui− vi,j + pj)
and δmax := mini∈T,j∈Fp(i)(mi,j − pj). Then for all envy-free outcomes (µ′, p′) with p′j ≥ pj for all j it holds
that p′j ≥ pj + δ for all items j ∈ S.

Lemma 2 (Dütting et al. [8]). Let (µ, p) be the outcome of the MHM, and let (µ′, p′) be any envy-free
outcome for the same input. Then pj ≤ p′j for all items j.

Lemma 3 (Dütting et al. [8]). Let (µ, p) be an envy-free outcome with pj ≤ p′j for all items j and all
envy-free outcomes (µ′, p′). Then (µ, p) is a bidder-optimal outcome.

1.3. Refined Definition of General Position

The following definition of general position allows more inputs than the definition in [1, 7] and is sufficient
for the rematch condition (Lemma 4). We define general position on a bipartite directed multigraph called
input graph as follows. The input graph for a given input has a node for each bidder and each item and for
each bidder-item pair (i, j) a forward edge from i to j with weight −vi,j , a backward edge from j to i with
weight vi,j , and a discontinuity edge from i to j with weight mi,j − vi,j . The weight ω(P ) of a walk P in the
input graph is the sum of the weights of its edges. Consider all simple paths between two bidders in the input
graph that alternate between forward and backward edges and all possibilities to add a discontinuity edge
from the last bidder to the last item or to an item not yet in the path. Let P = (i1, j1, i2, . . . , js−1, is, js) and
Q = (i′1, j

′
1, i
′
2, . . . , j

′
t−1, i

′
t, j
′
t) be two such paths. We call an input in general position if for no path P with

js−1 = js there exits a path Q with the same weight and the same starting node as P , i.e., w(Q) = w(P ) and
i′1 = i1, and either (a) the discontinuity edge of Q leads back to the previous item, i.e., j′t−1 = j′t, and the two
paths separate at some bidder l ∈ [1,min(s, t)− 1], i.e., j′k−1 = jk−1 and i′k = ik for 2 ≤ k ≤ l and i′k 6∈ P ,
j′k−1 6∈ P , ik 6∈ Q, and jk−1 6∈ Q for k > l, or (b) the discontinuity edge of Q leads to an item not in the
path before, i.e., j′u 6= j′t for 1 ≤ u < t and Q is a subpath of P , i.e., i′k = ik and j′k = jk for 1 ≤ k ≤ t < s.

The following example shows that the new definition of general position is less restrictive than the
definition in [7].

Example 1. The input consists of three bidders and two items and valuations and maximum prices as
follows: vi1,j1 = 10, vi2,j2 = 10, vi3,j1 = 10, vi3,j2 = 10; mi1,j1 = 1, mi2,j2 = 2, mi3,j1 = 2, mi3,j2 = 1.
The remaining input values are zero. Let i1 and i2 be considered first by the MHM. Then i1 becomes
matched to j1 and i2 to j2. Consider the situation when the MHM tries to match i3, as shown in the left
graph of Figure 2. The items j1 and j2 are overdemanded and matched, thus their prices are increased by
δmax = mi1,j1 − pj1 = mi3,j2 − pj2 . Item j1 becomes unmatched but is matched in the next iteration of the
algorithm to i3. The MHM is truthful for this input although it is not in general position as defined in [7]
because the two walks P = (i3, j1, i1, j1) and Q = (i3, j2) in the input graph that start with the same bidder,
alternate between forward and backward edges, and end with different discontinuity edges have the same
weight, ω(P ) = ω(Q) = mi1,j1 − vi1,j1 = mi3,j2 − vi3,j2 . Since Q is not a subpath of P , the input is in general
position following our new definition.

2. Incentive-Compatibility for Non-Degenerate Inputs

The MHM is incentive-compatible if for an input all maximum prices are infinity, i.e., for continuous
quasi-linear utility functions. A crucial property in this case is that once an item is matched during the
mechanism, it never becomes unmatched. This does not hold for budgets as during the same price increase
the maximum prices of many items might be reached, and many might become unmatched. If only one
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Figure 2: An input not in general position according to former definitions. The MHM is incentive-compatible for this input. In
each graph the points on the left side represent the bidders, the ones on the right side the items. The utility bidder i obtains in
the current matching is denoted by ui. The left graph is the first choice graph after the first two bidders were matched and
before the third bidder is matched. The edges are labeled with the valuation and the maximum price a bidder reports for the
item. The right graph shows the outcome computed by the MHM.

item becomes unmatched during a price increase, then the requirement to preferably match an item j with
pj > rj (i.e. a previously matched item) guarantees that the unmatched item will be matched in the next
iteration as the item is an unmatched leaf at the current maximal alternating tree. The notion of general
position of [1, 7] (a refined definition is given in Section 1.3) requires that during no price increase two
edges of the first choice graph Gp disappear because their maximum prices are reached. Of course, if this
condition is fulfilled, then it will also never happen that two edges become unmatched during the same price
increase. Restricting to inputs in general position thus basically avoids the main difficulty introduced by
maximum prices. However, even for this purpose, the restriction on the input is stronger than necessary. For
example, it could be that two unmatched edges of Gp disappear during the same price increase. This would
not unmatch any items and thus not affect the truthfulness of the mechanism. Even if two matched edges of
Gp disappear during the same price increase, both could be rematched without another price increase in
subsequent iterations if they both lie on the same path to the root of the maximal alternating tree. Our
rematch condition captures exactly this intuition.

Formally, we say that two nodes x and y are on the same path in a maximal alternating tree if x lies on
the path from y to the root or vice versa. Otherwise, the two nodes are on different paths. A price update is
called problematic, if (a) two or more items on different paths become unmatched or if (b) one item becomes
unmatched and a maximum price for an unmatched edge on the path from this item to the root is reached.
Otherwise, a price update is called unproblematic. We say that an input fulfills the rematch condition if no
problematic price update occurs during the execution of the MHM.

The following proof refers to the definition of general position in Section 1.3. It can easily be adapted to
the definition in [7].

Lemma 4. Inputs in general position satisfy the rematch condition.

Proof. Assume for contradiction that for an input in general position a problematic price update occurs.
Let the two maximum prices that are reached during the price increase δ and that cause the problematic
price update be mis,js and mi′t,j

′
t
. Consider the maximal alternating tree T with root i0 from which δ was

determined. Since the edges (is, js) and (i′t, j
′
t) are contained in T , there exists a simple path P̃ from i0 to is

and a simple path Q̃ from i0 to i′t in T . Let P = (i0, j1, i2, . . . , js−1, is, js) and Q = (i0, j
′
1, i
′
2, . . . , j

′
t−1, i

′
t, j
′
t)

be the two corresponding paths in the input graph that are constructed by using alternately forward and
backward edges along P̃ resp. Q̃ and adding the discontinuity edge for mis,js resp. mi′t,j

′
t
.

Let p be the prices before the price increase. Since mis,js and mi′t,j
′
t

are reached during the same price
increase δ, we know that δ = mis,js − pjs = mi′t,j

′
t
− pj′t , i.e.,

mis,js −mi′t,j
′
t

= pjs − pj′t . (3)

Since T is contained in the first choice graph Gp at prices p and P and Q are constructed from edges in T ,
viu,ju−1 − pju−1 = viu,ju − pju holds for every bidder iu, u ≥ 2, on P and Q. Reformulated, this gives

pju = viu,ju − viu,ju−1
+ pju−1

. (4)
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Combining (3) and (4) yields

mis,js −mi′t,j
′
t

=

s∑
u=2

(
viu,ju − viu,ju−1

)
+ pj1

+

t∑
w=2

(
vi′w,j′w−1

− vi′w,j′w
)
− pj′1 . (5)

Additionally, we know for the root i0 that vi0,j1 − pj1 = vi0,j′1 − pj′1 . Thus, pj1 = vi0,j1 − vi0,j′1 + pj′1 and we
can eliminate the prices from (5). Reformulation leads to (6) where the left hand side is equal to ω(P ) and
the right hand side to ω(Q), i.e.,

− vi0,j1 +

s∑
u=2

(
viu,ju−1 − viu,ju

)
+mis,js

= −vi0,j′1 +

t∑
w=2

(
vi′w,j′w−1

− vi′w,j′w
)

+mi′t,j
′
t
. (6)

Since a problematic price update occurred, either (a) both (is, js) and (i′t, j
′
t) were matched and on

different paths or (b), w.l.o.g, (is, js) was matched and (i′t, j
′
t) was unmatched and on the path from js to i0.

In case (a), js−1 = js and j′t−1 = j′t by the construction of P and Q. “On different paths” is equivalent to
j′k−1 = jk−1 and i′k = ik for some integer l ∈ [1,min(s, t)− 1] and 2 ≤ k ≤ l and i′k 6∈ P , j′k−1 6∈ P , ik 6∈ Q,
and jk−1 6∈ Q for k > l, i.e., the two paths could start with the same nodes but deviate at some bidder. In
case (b), again js−1 = js but j′t−1 6= j′t. Since (i′t, j

′
t) is unmatched and on the path from js to i0, i′k = ik

and j′k = jk for 1 ≤ k ≤ t < s. In both cases the equality between ω(P ) and ω(Q) gives a contradiction to
the assumption that the input is in general position.

We say that an unmatched item j with pj > rj is rematched if there exists a maximal alternating tree
rooted at some unmatched bidder i that contains item j and no other unmatched item j′ with pj′ > rj′ . That
is, when bidder i is considered by the MHM, item j will be matched without an additional price increase.
Thus, j will not remain unmatched.

Lemmata 5 and 6 are analogous to the results for inputs in general position in [7]. Note that Lemma 6
implies that the outcome is a competitive equilibrium.

Lemma 5. If an item becomes unmatched during an unproblematic price update, it will be rematched.

Proof. An item j that is matched to a bidder i at some point in the MHM can only become unmatched if
mi,j is reached due to a price increase δ = δmax. Since the maximal alternating tree T roots at an unmatched
bidder i0 and each path from the root to a leaf alternates between matched and unmatched edges, every
item is nearer to i0 than the bidder it is matched to. Since the price update is unproblematic, we know that
no item on a different path became unmatched and for no unmatched edge on the path from j to i0 in T a
maximum price is reached. If additionally no matched item on the path from j to i0 became unmatched,
then there exists a path from i0 to the newly unmatched item j in the maximal alternating tree in the next
iteration of the mechanism. Otherwise, some matched item j′ on the path from j to i0 became unmatched.
Let i′ be the bidder it was matched to. Then there exists a maximal alternating tree rooted at bidder i′ that
contains the unmatched item j. In both cases j will be rematched.

Lemma 6. Let p be the price vector at some step in the MHM. If there are only unproblematic price updates
in the mechanism, then every item j with pj > rj is matched or rematched during the whole algorithm.

Proof. At the beginning of the MHM pj = rj for all items j ∈ J . Let T and S be the sets of bidders and
items in the maximal alternating tree in Gp before some price increase δ. The mechanism only raises prices
for items in S. All items in S are already matched because otherwise the mechanism would not increase the
prices. Thus, every item in S with a price above its reserve price is matched before the price increase. Since

8



we assume only unproblematic price updates, we know from Lemma 5 that if an item that was matched
becomes unmatched, it will be rematched. Thus, every item with a price above its reserve price will be
matched or rematched during the whole algorithm.

Dütting et al. showed in [3] for more general utility functions that a bo-mechanism is incentive-compatible
under certain conditions. We restate their result using our terminology and restricted to our setting in
Theorem 2. Note that in every envy-free outcome (µ, p) for each matched bidder-item pair (i, j) ∈ µ
the price of the item j has to be at least maxi′ 6=i u

−1
i′,j(ui′,µ(i′)(pµ(i′)))). Theorem 2 basically states that,

for incentive-compatibility of bo-mechanisms for a given input, the bidder-optimal outcome has to be a
competitive equilibrium and that in each set Ĵ of matched items at least one item must be sold at the
minimum envy-free price induced by the bidders outside µ−1(Ĵ). We can show that for any input that fulfills
the rematch condition this condition is satisfied.

Theorem 2 (Dütting et al. [3]). Let (µ, p) be an outcome for the input (v,m, r) of a bo-mechanism.
Assume that in (µ, p) all items j with pj > rj are matched and that for every subset of matched bidders

Î ⊆ I at least one item j ∈ µ(Î) has pj = max(rj ,maxi 6∈Î u
−1
i,j (ui,µ(i)(pµ(i)))). Then every bo-mechanism is

incentive-compatible for the input (v,m, r).

Lemma 7. Let (v,m, r) be some input for which every item with a price strictly above its reserve price
remains matched or is rematched during the execution of the MHM, and let (µ, p) be the outcome of the
MHM for this input. Then for every subset of matched bidders Î ⊆ I at least one item j ∈ µ(Î) has
pj = max(rj ,maxi6∈Î u

−1
i,j (ui,µ(i)(pµ(i)))).

Proof. Let max(rj ,maxi 6∈Î u
−1
i,j (ui,µ(i)(pµ(i)))) be denoted by r̂j . Assume for contradiction that for some

subset of matched bidders Î ⊆ I it holds that pj > r̂j for all j ∈ Ĵ = µ(Î). Consider the iteration in which

the last bidder i ∈ Î becomes matched to an item j ∈ Ĵ . Let p(s) be the prices immediately before the

matching is augmented to match i to j. We will show that p
(s)
j′ ≤ r̂j′ for at least one item j′ ∈ Ĵ . We will

consider two cases.
Case 1: If there is an unmatched item j′ ∈ Ĵ before i is matched, then by Lemma 6 either p

(s)
j′ = rj′ or

j′ is rematched in this iteration. In the latter case, j′ cannot have been matched to a bidder in Î because
otherwise this bidder would be unmatched and this would not be the last iteration in which a bidder in Î
becomes matched to an item in Ĵ . Thus, j′ was matched to some bidder i′ ∈ I \ Î. By the definition of r̂j′ ,
at most a price of pj′ ≤ r̂j′ is necessary to avoid envy from i′ for j′. Since by Lemma 2 the MHM computes

minimum envy-free prices, r̂j′ ≥ mi′,j′ = p
(s)
j′ .

Case 2: If there is no unmatched item in Ĵ , then some item in j′ ∈ Ĵ is matched to a bidder i′ ∈ I \ Î.
To be able to match j′ to a bidder in Î in this iteration of the mechanism, bidder i′ may not have envy for j′

at p
(s)
j′ . By the definition of r̂j′ , we again have r̂j′ ≥ p(s)j′ .

In both cases, p
(s)
j′ ≤ r̂j′ for some item j′ ∈ Ĵ after bidder i is matched to j. Since after the iteration all

bidders in Î remain matched, no price increase for item j′ can be caused by them.
Assume for contradiction that some yet unmatched bidder i′ ∈ I \ Î causes a price increase δ that

increases the price of j′ strictly above r̂j′ and that afterwards all items j ∈ Ĵ have a price strictly above
r̂j . We denote the prices before the price increase with p(t−1) and the prices after the price increase with
p(t). Let T be the maximal alternating tree from which δ was determined and T the set of bidders in
T . Since j′ is in T and all items in Ĵ are matched to bidders in Î, there is a first choice edge between
some bidder i′′ ∈ I \ Î and some item j′′ ∈ Ĵ before the price increase, but by the definition of ˆrj′′ and

p
(t)
j′′ > ˆrj′′ there is no such edge after the price increase. Thus, the maximum price mi′′,j′′ was reached

during the price increase δ = δmax and p
(t)
j′′ = mi′′,j′′ > ˆrj′′ . Since ˆrj′′ ≥ u−1i′′,j′′(ui′′,µ(i′′)(pµ(i′′))), it holds

that mi′′,j′′ > u−1i′′,j′′(ui′′,µ(i′′)(pµ(i′′))) ≥ u
−1
i′′,j′′(ui′′,µ(i′′)(p

(t)
µ(i′′))). This implies by the definition of u−1i′′,j′′ that

vi′′,µ(i′′)−p
(t)
µ(i′′) > vi′′,j′′−mi′′,j′′ . If µ(i′′) ∈ Fp(t−1)(T ), then vi′′,µ(i′′)−p

(t−1)
µ(i′′)−δ > vi′′,j′′−p(t−1)j′′ −δ, which
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gives a contradiction to j′′ ∈ Fp(t−1)(i). If µ(i′′) 6∈ Fp(t−1)(T ), then vi′′,µ(i′′) − p
(t−1)
µ(i′′) > vi′′,j′′ − p(t−1)j′′ − δ,

which gives a contradiction to δmax ≤ δout. Hence, no such price increase can exist.

Corollary 8. The MHM is incentive-compatible for inputs that fulfill the rematch condition.

3. Calculating the Regret

The rematch condition still does not take into account whether a bidder can actually profit from lying.
With Theorem 3 we provide the first necessary and sufficient condition for a bo-mechanism to be incentive-
compatible for a given input. Additionally, we give an algorithm, Algorithm Regret, that calculates the
regret of each bidder.

Theorem 3, below, turns the intuition of how a bidder can lie into an easy-to-follow recipe. The intuition
can be described as follows. As we have seen in Section 2, a bidder can only profit from lying if a problematic
price update occurs in case he reports truthfully. Lying is helpful if it avoids the problematic price update
such that another bidder involved in the problematic price update is matched at lower than envy-free prices.
This enables the lying bidder to profit from the reduced demand on the remaining items. A bidder can avoid
a problematic price update by reporting lower values than his true ones for the affected item. In Theorem 3
we show that a bidder can simply report maximum prices of zero for all items except the one he wants to be
matched to. Intuitively, this does not decrease his utility since these items are either less desirable to him
than the item he wants to be matched to or he cannot obtain them anyway due to high prices caused by the
demand of the other bidders. As a result, he avoids all problematic price updates he can influence.

Let i be some fixed bidder and let (v,m, r) and (v′,m′, r) be two inputs with vi′,j = v′i′,j and mi′,j = m′i′,j
for all bidders i′ 6= i and all j ∈ J . Let (µ, p) and (µ′, p′) be the corresponding outcomes of the MHM and let
ui = ui,µ(i)(pµ(i)) and u′i = ui,µ′(i)(p

′
µ′(i)).

Theorem 3. If for some fixed bidder i the utility u′i bidder i obtains in (µ′, p′) is strictly higher than ui,
i.e., bidder i has a positive regret and thus no bo-mechanism is incentive-compatible for the input (v,m, r),
then bidder i obtains at least the utility u′i if he reports maximum prices of zero for all items j′ 6= µ′(i) and
otherwise reports the same values as in (v,m, r).

If some fixed bidder i obtains a strictly higher utility than ui if he reports maximum prices of zero for
all items j′ 6= j for some item j and all other input values are the same as in the input (v,m, r), then no
bo-mechanism is incentive-compatible for the input (v,m, r).

Proof. The second part of the theorem follows from the definition of incentive-compatibility. For the first part
assume that some fixed bidder i obtains a strictly higher utility u′i > ui in (µ′, p′). Let (v′,m′, r) be such that
u′i is maximized among all possible inputs (v′,m′, r). Let (v,m′′, r) be the input where bidder i reports for all
j 6= µ′(i) a maximum price of m′′i,j = 0 but m′′i,µ′(i) = mi,µ′(i) for µ′(i). We have u′′i,µ′(i)(pµ′(i)) = ui,µ′(i)(pµ′(i))

for all pµ′(i) and u′′i,j(pj) ≤ 0 for all j 6= µ′(i) and pj ≥ 0. For all other bidders i′ 6= i and all items j we have
m′′i′,j = mi′,j and thus u′′i′,j(pj) = ui′,j(pj) for all pj .

Let (µ′′, p′′) be the outcome of the MHM for (v,m′′, r). We start by showing p′′j ≤ p′j for all items j. To
this end, it is sufficient to show that (µ′, p′) is envy-free for the input (v,m′′, r). Since u′′i′,j(p

′
j) = ui′,j(p

′
j) for

all bidders i′ 6= i, it remains to show that (µ′, p′) is envy-free for i and (v,m′′, r). As i profits from reporting
his values as in the input (v′,m′, r), we have ui,µ′(i)(p

′
µ′(i)) > ui,µ(i)(pµ(i)) ≥ 0. Hence, with u′′i,j(p

′
j) ≤ 0

we have that ui,µ′(i)(p
′
µ′(i)) = u′′i,µ′(i)(p

′
µ′(i)) > u′′i,j(p

′
j) holds for all j 6= µ′(i), i.e., (µ′, p′) is envy-free for i

regarding the input (v,m′′, r).
By p′′µ′(i) ≤ p

′
µ′(i) we have u′′i,µ′(i)(p

′′
µ′(i)) ≥ u

′′
i,µ′(i)(p

′
µ′(i)) > 0 ≥ u′′i,j(p′′j ) for all j 6= µ′(i). Thus, the envy-

freeness of (µ′′, p′′) for (v,m′′, r) implies that bidder i is matched to µ′(i) in µ′′, i.e., we have µ′′(i) = µ′(i).
Hence, the utility ui,µ′′(i)(p

′′
µ′′(i)) bidder i obtains with input (v,m′′, r) is at least as high as the utility

u′i = ui,µ′(i)(p
′
µ′(i)) bidder i obtains by reporting according to (v′,m′, r).

It follows that the regret of a bidder is u′i − ui, where u′i is the utility bidder i receives if he lies as
described in Theorem 3. This implies the correctness of the following algorithm. Theorem 4 follows from
Algorithm 2 and the equivalence of incentive-compatibility with a regret of zero for all bidders.
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Algorithm 2: Regret

(µ, p)← MHM(v,m, r), ui ← ui,µ(i)(pµ(i)), regreti ← 0 for all i ∈ I
foreach (i, j) ∈ I × J do

m′ ← m
m′i,j′ ← 0 for all j′ 6= j

compute (µ′, p′)← MHM(v,m′, r) and set u′i ← ui,µ′(i)(p
′
µ′(i))

regreti ← max(regreti, u
′
i − ui)

Theorem 4. It can be decided in polynomial time whether a bo-mechanism is incentive-compatible for a
given input.

Proof. Algorithm Regret executes the MHM for n · k + 1 inputs, each with n bidders and k items. By
Theorem 1 this can be done in time O(n2 · k4). By definition the MHM is incentive-compatible for a given
input if and only if the regret of all bidders is zero. Algorithm Regret calculates the regret of all bidders.
The correctness of the algorithm follows from Theorem 3.

Theorem 5 shows that in order for bidder i to profit from lying there must exist an item j such that
bidder i would prefer j at the current prices. Thus bidder i has envy and must have underreported either
vi,j or mi,j .

Theorem 5. If the fixed bidder i obtains a higher utility u′i > ui in (µ′, p′), then bidder i has envy with
respect to (v,m, r) in the outcome (µ′, p′).

Proof. By the definition of (v′,m′, r) we have for the fixed bidder i that ui,µ′(i)(p
′
µ′(i)) > ui,µ(i)(pµ(i)). By

the envy-freeness of (µ, p) this implies p′µ′(i) < pµ′(i). As by Lemma 2 the prices p are the minimum envy-free

prices for input (v,m, r), some bidder has envy at prices p′. However, (µ′, p′) is envy-free with respect to
(v′,m′, r). The two inputs differ only in the values bidder i reported. Thus it has to be bidder i who has
envy in the outcome (µ′, p′).

4. Randomization

In this section we describe a mechanism that is truthful in expectation for all inputs and achieves for
each bidder at least his utility in a bidder-optimal outcome. We first randomize the input such that it is in
general position. This requires the assumption that all input values are multiples of some constant α > 0,
e.g., are integers. Second, we show that the input randomization implies incentive-compatibility of the MHM
only with regard to the randomized input. We give an example how a bidder can profit from lying despite
the input randomization. Specifically, he has to overreport a maximum price. We show that this is the only
way to profit from lying in this case. Using randomized extraction [10] can prevent this type of lying, which
yields truthfulness in expectation.

We further prove that the expected utility each bidder obtains is at least the utility in a bidder-optimal
outcome as well as at least the utility a bidder could achieve by lying in a bo-mechanism. Finally, we show
how a simple rounding of the computed prices can, and in the case of an input in general position will,
lead to a bidder-optimal outcome. That is, for inputs in general position our randomized mechanism (in
expectation) approximates a bidder-optimal outcome up to an additive factor of α in the prices, and can
thus be seen as an extension of the previously known results for the MHM.

As argued in the introduction, envy cannot be avoided in any mechanism that is incentive-compatible (in
expectation). As shown in Section 3, a bidder has envy in an outcome in which he profited from lying when
a bo-mechanism is used. Any truthful (in expectation) mechanism has to achieve for each bidder at least the
same utility as for these outcomes and thus cannot always compute an envy-free outcome. In other words, a
truthful (in expectation) mechanism has to somehow break the ties that lead to problematic price updates as
defined in Section 2, which will introduce envy in some cases.
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4.1. Randomized Input.

We assume that all valuations, maximum prices, and reserve prices in the input (v,m, r) are multiples of
some α > 0. We apply the following randomization to all maximum prices.

1. Generate n · k random numbers ∆i,j , 1 ≤ i ≤ n, 1 ≤ j ≤ k, uniformly distributed in the interval (0, α).

2. Set mR
i,j := mi,j −∆i,j for all (i, j) ∈ I × J .

We call an input that fulfills our assumption and was randomized in the above way a randomized input and
denote it with (v,mR, r). Throughout the section, we denote with (µR, pR) the outcome of the MHM for
the randomized input, with (µ, p) the outcome of the MHM for the unmodified input, and with (µ′, p′) any
envy-free outcome for the unmodified input.

By reducing the maximum prices, we clearly give up the property of envy-freeness. If the price of an item
is increased up to the reduced maximum price of a bidder, this bidder still demands this item regarding his
true maximum price. However, the algorithm treats the bidder as if his utility for the item is −∞ and thus
will match this item to a different bidder.

Since {∆i,j}i∈I,j∈J is a negligible set in the interval (0, α), almost surely ∆i,j 6= ∆i′,j′ for any two different
bidder-item pairs (i, j) and (i′, j′). For a definition of a negligible set and almost surely see, e.g., [11, pp. 8,
p. 54].

Lemma 9. A randomized input is (almost surely) in general position.

Proof. Assume that in the input graph for the randomized input two walks P = (ia, jb, ic, . . . , id, je) and
Q = (ia, jt, iu, . . . , iv, jw) that start with the same bidder, alternate between forward and backward edges,
and end with different discontinuity edges have the same weight,

−va,b + vb,c − · · ·+mR
d,e − vd,e = −va,t + vt,u − · · ·+mR

v,w − vv,w . (7)

By assumption, all valuations as well as the original unmodified maximum prices are multiples of some α > 0
whereas the randomized maximum prices are not multiples of α. Thus, Equation (7) implies

∆d,e = ∆v,w , (8)

which is almost surely not the case. Hence, the input is almost surely in general position.

Corollary 10. The MHM is (almost surely) incentive-compatible with respect to every randomized input
(v,mR, r).

4.2. Counter Example.

The following example, however, shows that the MHM with input randomization is not incentive-
compatible with respect to the original input. For some inputs a bidder can improve his utility by reporting
a higher maximum price than his true one if he knows that input randomization will be applied. Note that
we cannot a-priori bound the regret of this bidder. Lemma 11 shows that this is the only way a bidder can
profit from lying.

Example 2. There are three bidders and two items. Each of the bidders likes both items equally and
prefers them to being unmatched. All maximum prices are the same and larger than zero. When the input is
randomized and the MHM is executed for the randomized input, the prices of the two items are increased up
to the lowest of the randomized maximum prices and the two bidders with higher randomized maximum
prices are matched to the two items. If one bidder claims he has a higher maximum price, he will always be
matched to one of the items. Nevertheless, the prices of the items will be lower than his maximum prices.
An instance with concrete values is given in Figure 3.

The example can be adapted to the definitions and the algorithm in [1] to show how a bidder can profit
from lying if the lexicographical tie breaking rule proposed in [1] is used instead of a randomization of the
input.
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Figure 3: Lying when the input is randomized. All bidders have the same true values for all items, say a valuation of 10 and a
maximum price of 5. α is set to one; the chosen randomization is ∆1 = 0.1, ∆2 = 0.3, and ∆3 = 0.2. In each graph the points
on the left side represent the bidders, the ones on the right side the items. The left graph displays the final first choice graph for
the randomized input if all bidders report truthfully. In the right graph bidder 2 ensures he is matched to one of the items by
reporting a higher maximum price. He does not risk a negative utility as long as the other bidders report the same as before.

4.3. Incentive-Compatibility in Expectation.

The following lemma shows that when the MHM is applied to a randomized input, each fixed bidder
i can only obtain a higher utility by reporting different values than in the input (v,m, r) if he reports a
maximum price strictly higher than mi,j for the item j he is then matched to.

Note that uRi,j(pj) = ui,j(pj) if pj < mR
i,j and uRi,j(pj) ≤ ui,j(pj) for all pj .

Lemma 11. Assume that only multiples of some constant α > 0 are allowed as input values. Let i be a
bidder with utility functions defined by vi,j and mi,j for all items j. Let (v′,m′, r) and (v′′,m′′, r) be two
inputs with v′i,j = vi,j and m′i,j = mi,j for all items j and v′i′,j = v′′i′,j and m′i′,j = m′′i′,j for all bidders

i′ 6= i and all items j. Let (v′,m′R, r) and (v′′,m′′R, r) be the corresponding randomized inputs for the
same ∆i,j for all bidder-item pairs (i, j) and (µ′R, p′R) and (µ′′R, p′′R) the corresponding outcomes for the
randomized inputs, respectively. If m′′i,µ′′R(i) ≤ mi,µ′′R(i), p

′′R
µ′′R(i) < mR

i,µ′′R(i), or p′′Rµ′′R(i) ≥ mi,µ′′R(i), then

ui,µ′′R(i)(p
′′R
µ′′R(i)) ≤ ui,µ′R(i)(p

′R
µ′R(i)).

Proof. By Corollary 10, uRi,µ′R(i)(p
′R
µ′R(i)) ≥ u

R
i,µ′′R(i)(p

′′R
µ′′R(i)). Assume for contradiction that ui,µ′′R(i)(p

′′R
µ′′R(i)) >

ui,µ′R(i)(p
′R
µ′R(i)). Then we have ui,µ′′R(i)(p

′′R
µ′′R(i)) > ui,µ′R(i)(p

′R
µ′R(i)) ≥ uRi,µ′R(i)(p

′R
µ′R(i)) ≥ uRi,µ′′R(i)(p

′′R
µ′′R(i)).

If p′′Rµ′′R(i) < mR
i,µ′′R(i) or p′′Rµ′′R(i) ≥ mi,µ′′R(i), then ui,µ′′R(i)(p

′′R
µ′′(i)) is equal to uRi,µ′′R(i)(p

′′R
µ′′R(i)). Thus, we

must have mi,µ′′R(i) > p′′Rµ′′R(i) ≥ mR
i,µ′′R(i). If bidder i has reported a maximum price m′′i,µ′′R(i) at most

mi,µ′′R(i), then m′′Ri,µ′′R(i) ≤ m
R
i,µ′′R(i) and u′′Ri,µ′′R(i)(p

′′R
µ′′R(i)) = −∞. This gives a contradiction to the feasibility

of the outcome (µ′′R, p′′R) for the input (v′′,m′′R, r).

To remove the incentive for a bidder to report a higher maximum price, we use the Randomized Extraction
Scheme presented in [10]. For an input (v,m, r) in which all values are multiples of some constant α > 0, we
execute the MHM with input randomization to obtain an outcome (µR, pR). Instead of charging a bidder i
the computed price pRµR(i) for the item he is matched to, the bidder has to pay mR

i,µR(i) with a probability

pRµR(i)/m
R
i,µR(i) and receives the item for free with probability 1− pRµR(i)/m

R
i,µR(i). Thus, the expected price

E[pµR(i)] bidder i has to pay is

E[pµR(i)] = mR
i,µR(i) ·

pRµR(i)

mR
i,µR(i)

+ 0 ·

(
1−

pRµR(i)

mR
i,µR(i)

)
= pRµR(i) .

Hence, in expectation all bidders have to pay the same prices and obtain the same utilities as without
randomized extraction. Since mR

i,µR(i) < mi,µR(i), the randomized prices are feasible for all bidders i.

Theorem 6. Assume that only multiples of some constant α > 0 are allowed as input values and that all
true input values are multiples of α. Then the MHM combined with input randomization and randomized
extraction is incentive-compatible in expectation.
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Proof. If for some item j a bidder i reports a maximum price m′i,j higher than mi,j , then m′i,j ≥ mi,j + α

since only multiples of α are allowed as input. Thus, m′Ri,j > mi,j . Hence, if i is matched to j, bidder i either

has a positive probability for a utility of −∞ due to the randomized extraction or pRj = 0. Hence, no bidder
has an incentive to report a maximum price higher than mi,j for an item j he could possibly be matched to
at a strictly positive price. If a bidder has not reported a higher maximum price than mi,j for the item µR(i)
he is matched to in the outcome of the MHM with input randomization or obtains the item at a price of zero,
then the algorithm is incentive-compatible by Lemma 11. As the charged prices are only in expectation equal
to the prices calculated by the mechanism, the MHM with input randomization and randomized extraction
is incentive-compatible in expectation.

4.4. Utility.

To simplify the notation, we analyze the utility each bidder obtains without randomized extraction; this
utility is equal to the expected utility with randomized extraction. Note that the following results hold for
every randomization on the input.

In Lemma 13 we capture the following observations. First, the outcome (µ, p) is an envy-free outcome for
the input (v,mR, r). Thus, as the MHM computes an envy-free outcome with minimum prices, we have that
the computed prices for the randomized input are at most as high as the prices p.

The next observation relates to the envy in the outcome of the MHM for the randomized input. If bidder
i has envy for an item j in (µR, pR) then it must be that mR

i,j ≤ pRj < mi,j . Furthermore, in this case, and

more generally when mi,j − α < pRj < mi,j , for every envy-free outcome (µ′, p′) for the input (v,m, r) the
price p′j will be at least mi,j , i.e., bidders can only have envy for items they would not be able to obtain
in any envy-free outcome. These results are a formalization of the intuition that the randomization avoids
problematic price updates such that some bidders can be matched at lower than envy-free prices to items
that would not be rematched otherwise, while other bidders can profit from the reduced demand for the
remaining items but have envy. Theorem 7 shows that in terms of utility bidders can only profit from this
tie breaking.

Additionally, we can use the characterization in Section 3 of how a bidder can lie to show that the utility
of each bidder in the outcome for the randomized input is at least the utility the bidder could obtain from
lying if a bo-mechanism was used. This shows (1) that tie breaking is sufficient to achieve the same effect a
bidder could generate by lying and (2) that by randomizing the input tie breaking can be done simultaneously
for all bidders.

To prove Lemma 13 we first need the following observation.

Lemma 12. If the MHM is started with an input in which all values are multiples of some constant α > 0,
then the prices of all items are multiples of α in each step of the mechanism.

Proof. We denote by p(t) the prices after the t-th price update of the MHM and prove the claim by induction
over t.

For t = 0 the claim is fulfilled trivially since all prices are initialized with their reserve prices.
Given that the claim holds after the (t− 1)-st price update, and thus before the t-th price update, we

show that the claim holds after the t-th price update. We denote the sets of items and bidders considered by
the mechanism for the t-th price update with S and T , respectively. Let δ be δ = min(δout, δmax) with δout
and δmax as defined in Lemma 1. The MHM does not change the prices for items j 6∈ S and increases the
prices of all items j ∈ S by adding δ. Thus, if the prices p(t−1) are multiples of α and the price increase δ
is a multiple of α, then also the prices p(t) are multiples of α. Given the prices p(t−1) as well as all input
values are multiples of α, δmax is obviously a multiple of α. The value of δout is computed using ui for i ∈ T
additionally to the input value vi,j and the price p

(t−1)
j for some j ∈ J \ S. For every bidder i the best

possible utility ui is equal to ui,j′(p
(t−1)
j′ ) = vi,j′ − p(t−1)j′ for some item j′ ∈ Fp(t−1)(i). Thus, ui is a multiple

of α for all bidders i. Hence, δout, and thus δ, is a multiple of α.

Lemma 13. (a) For all items j it holds that pRj ≤ p′j.
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(b) For all bidder-item pairs (i, j) ∈ µR and every item j′ with pRj′ < mR
i,j′ or pRj′ ≥ mi,j′ , it holds that

ui,j(p
R
j ) ≥ ui,j′(pRj′).

(c) If for some bidder-item pair (i, j) we have pRj > mi,j − α, then p′j ≥ mi,j and (i, j) /∈ µ′.

Proof. (a) By Lemma 2 we have pj ≤ p′j for all items j. Thus it suffices to show pRj ≤ pj for all j.
By Lemma 12 the prices p are multiples of α. For multiples of α the utilities for the randomized input

(v,mR, r) are equal to the utilities for the input (v,m, r). Thus the outcome (µ, p) is an envy-free outcome
for the input (v,mR, r). By Lemma 2 the MHM computes the envy-free outcome with minimum prices,
hence we have pRj ≤ pj for all j.

(b) Since µR is a matching in the first choice graph for the modified maximum prices mR and prices pR,
we know uRi,j(p

R
j ) ≥ uRi,j′(pRj′). Since bidder i is matched to item j, pRj < mR

j . Thus, uRi,j(p
R
j ) = ui,j(p

R
j ), and

we have ui,j(p
R
j ) ≥ uRi,j′(pRj′).

Case 1: pRj′ < mR
i,j′ : Since only the maximum prices were modified through the randomization, uRi,j′(p

R
j′) =

ui,j′(p
R
j′) for pRj′ < mR

i,j′ . Hence, ui,j(p
R
j ) ≥ ui,j′(pRj′) for this case.

Case 2: pRj′ ≥ mi,j′ : In this case, ui,j′(p
R
j′) = −∞. Since (i, j) ∈ µR, we have ui,j(p

R
j ) = uRi,j(p

R
j ) ≥ 0.

Consequently, ui,j(p
R
j ) ≥ ui,j′(pRj′) holds.

(c) By assumption, mi,j is a multiple of α. By (a), pj ≥ pRj ; by Lemma 12, the prices p are multiples of

α; thus, pRj > mi,j − α implies pj ≥ mi,j . By Lemma 2, p′j ≥ pj ≥ mi,j . Hence, ui,j(p
′
j) = −∞, and bidder i

is not matched to item j in µ′.

Theorem 7. For all bidders i we define uRi = ui,µR(i)(p
R
µR(i)), u

′
i = ui,µ′(i)(p

′
µ′(i)), and let ûi be the best

utility a fixed bidder i can obtain if the MHM is run on the reported input and all other bidders report the
same values as in (v,m, r). Then we have (a) uRi ≥ u′i and (b) uRi ≥ ûi for all bidders i.

Proof. (a) For contradiction assume that u′i > uRi for some bidder i. From Lemma 13 (a) we know that
pRµ′(i) ≤ p

′
µ′(i). Thus, we have ui,µ′(i)(p

R
µ′(i)) ≥ ui,µ′(i)(p

′
µ′(i)) > ui,µR(i)(p

R
µR(i)) ≥ 0.

Case 1: If pRµ′(i) < mR
i,µ′(i), this contradicts Lemma 13 (b).

Case 2: If pRµ′(i) ≥ m
R
i,µ′(i), by Lemma 13 (c) p′µ′(i) ≥ mi,µ′(i), which contradicts ui,µ′(i)(p

′
µ′(i)) ≥ 0.

(b) Let (µ̂, p̂) be the outcome when some fixed bidder i reports such that his utility is maximized while the
other bidders report the same values as in input (v,m, r). By Theorem 3 we can assume that in the reported
input (v̂, m̂, r) the maximum prices of bidder i are equal to zero for all items except the one he is matched to
in µ̂. Otherwise the input is equal to the input (v,m, r). We compare the outcome (µR, pR) to the outcome
if the same randomization as used in (v,mR, r) is applied to (v̂, m̂, r). Let (µ̂R, p̂R) be this outcome. Then
by (a) we have ûi,µ̂R(i)(p̂

R
µ̂R(i)) ≥ ûi,µ̂(i)(p̂µ̂(i)). For µ̂(i) and bidder i we have ûi,µ̂(i)(pµ̂(i)) = ui,µ̂(i)(pµ̂(i)) for

all pµ̂(i). Additionally, the item µ̂R(i) has to be equal to µ̂(i) because for the reported input bidder i only
obtains a positive utility if he is matched to µ̂(i). Thus we have ui,µ̂(i)(p̂

R
µ̂(i)) ≥ ui,µ̂(i)(p̂µ̂(i)).

For bidder i and all j the reported maximum prices m̂i,j are at most mi,j . Thus by Lemma 11
ui,µR(i)(p

R
µR(i)) ≥ ui,µ̂R(i)(p̂

R
µ̂R(i)) = ui,µ̂(i)(p̂

R
µ̂(i)). Hence, ui,µR(i)(p

R
µR(i)) ≥ ui,µ̂(i)(p̂µ̂(i)), i.e., the utility

bidder i obtains with input randomization applied to (v,m, r) is at least the utility he can obtain when the
MHM is applied to the reported input and the other bidders report according to (v,m, r).

4.5. Rounded Prices.

The following theorem shows that for inputs in general position a bidder-optimal outcome can easily
be obtained from the outcome for the randomized input by rounding up the prices to the next highest
multiples of α. Thus our randomized mechanism extends upon the previously known results for the MHM,
as it approximates the outcome of the MHM for inputs in general position and additionally provides
incentive-compatibility in expectation for all inputs.

We define the rounded prices p̄R to be the prices we obtain when we round the price pRj of each item j up
the next highest multiple of α.
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Theorem 8. If the input (v,m, r) is in general position, then the outcome (µR, p̄R) is bidder-optimal.

We first show that if the prices in the outcome for the randomized input can be rounded up without
reaching a maximum price for any matched bidder-item pair, then the outcome with the rounded prices is an
envy-free outcome with minimum prices. In such a case we also know that the MHM without randomization
is incentive-compatible for the given input.

Lemma 14. If the outcome (µR, p̄R) is feasible, then (a) (µR, p̄R) is bidder-optimal and (b) the MHM is
incentive-compatible for the input (v,m, r).

Proof. (a) Let (µ, p) be the bidder-optimal outcome of the MHM for the input (v,m, r). By Lemma 12,
the prices p are multiples of α. By Lemma 13 (a), pRj ≤ pj for all j. Thus the rounded prices p̄R fulfill

p̄Rj ≤ pj for all items j. Since the prices pR were rounded up to multiples of α to reach p̄R, we further know

pRj ≤ p̄Rj < pRj + α for all items j.

In the next step, we show that if we can round the prices pR up to multiples of α without any bidder
obtaining a negative utility when charged the new prices p̄R, then the outcome (µR, p̄R) is envy-free. Assume
by contradiction that some bidder i has envy for item j in the outcome (µR, p̄R), i.e., ui,j(p̄

R
j ) = vi,j − p̄Rj >

ui,µR(i)(p̄
R
µR(i)) = vi,µR(i) − p̄RµR(i) ≥ 0. As all valuations v and prices p̄R are multiples of α, it actually

holds that ui,j(p̄
R
j ) = vi,j − p̄Rj ≥ vi,µR(i) − p̄RµR(i) + α. Since ui,j(p̄

R
j ) > 0, it must be that p̄Rj < mi,j ; thus,

pRj ≤ mi,j − α. Hence, by Lemma 13 (b), ui,µR(i)(p
R
µR(i)) ≥ ui,j(p

R
j ). We have

ui,µR(i)(p
R
µR(i)) ≥ ui,j(p

R
j ) ≥ ui,j(p̄Rj ) ≥ ui,µR(i)(p̄

R
µR(i)) + α . (9)

Reformulated, this yields
p̄RµR(i) ≥ p

R
µR(i) + α , (10)

which is a contradiction to p̄RµR(i) < pRµR(i) + α. Thus, no bidder can have envy in (µR, p̄R), and (µR, p̄R) is

bidder-optimal for (v,m, r) by Lemmata 2 and 3.
(b) Based on (a) we show that if (µR, p̄R) is feasible, the MHM is incentive-compatible for the original

input (v,m, r). Let uR
−1

i,j (·) be defined as in (2) but with the randomized maximum prices instead of

the original ones. The randomized input is in general position; thus, (i) by Lemma 6 in (µR, pR) all
items j with pRj > rj are matched, and (ii) by Lemma 7 for every subset of matched bidders Î ⊆ I

and r̂j
R = max(rj ,maxi 6∈Î u

R−1

i,j (uRi,µR(i)(p
R
µR(i)))) at least one item j ∈ µR(Î) has pRj = r̂j

R. Let r̂j be

equal to max(rj ,maxi 6∈Î u
−1
i,j (ui,µR(i)(p̄

R
µR(i)))). By rounding the prices pR up to the next highest multiples

of α, the prices of the items j ∈ µR(Î) that were equal to r̂j
R become equal to r̂j because, for all

bidders i, u−1i,j (ui,µR(i)(p̄
R
µR(i))) is a multiple of α and the difference between u−1i,j (ui,µR(i)(p̄

R
µR(i))) and

uR
−1

i,j (uRi,µR(i)(p
R
µR(i))) is less than α. The latter follows from the continuity of the functions u−1i,j (·) and

uR
−1

i,j (·). Hence, the properties (i) and (ii) hold for (µR, p̄R).
Consider the following algorithm: 1) Randomize the input. 2) Apply the MHM to the randomized

input. 3) Round the computed prices up to the next highest multiples of α to obtain an outcome. 4) If the
outcome is feasible, output it. Otherwise, apply the MHM to the original input and output the result. This
algorithm always computes a bidder-optimal outcome and outputs (µ, p̄R) for the input (v,m, r) and the
chosen randomization. Since properties (i) and (ii) hold for (µ, p̄R), by Theorem 2 every bo-mechanism is
incentive-compatible for the input (v,m, r). Hence, the MHM is incentive-compatible for (v,m, r).

For Theorem 8 we further need the following two lemmata.

Lemma 15. Let T be the set of bidders in a maximal alternating tree in GR
p . Then p̄j − pj is equal for all

j ∈ FR
p (T ).
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Proof. Each bidder i obtains the same utility ui = ui,j(pj) = vi,j−pj from all his first choice items j ∈ FR
p (i).

Since all valuations are multiples of α, the prices of all the first choice items of bidder i need to have the same
difference to their next highest multiple of α. As all bidders i ∈ T are connected in the maximal alternating
tree via their first choice items, for all first choice items j of the bidders in T the value of p̄j − pj is the
same.

Lemma 16. If for some item j with (i, j) ∈ µR we have p̄Rj − pRj > 0, then the last price update for j was

due to δRmax = mR
i′,j′ − pj′ for some bidder i′ 6= i and some item j′, where p are the prices before the last price

update of j. Furthermore, p̄Rj − pRj = ∆i′,j′ = p̄Rj′ − pRj′ and p̄Rj′ = mi′,j′ . If the outcome (µR, p̄R) gives bidder

i a negative utility and the prices were increased by δmax = mi′,j′ − pj′ instead of δRmax, a problematic price
update would have occurred.

Proof. Consider the last price increase δ before the price of item j reached pRj . Denote with p(t−1) resp. p(t)

the prices before resp. after this price increase. Let T be the maximal alternating tree in GR
p(t−1) from which

δ is determined and S and T the sets of items resp. bidders in T . Since the price of j is increased by the
price increase δ, we have j ∈ S.

As j is not overdemanded at prices pR (regarding the randomized maximum prices), the price increase δ
has to resolve the overdemand for item j. One possibility to resolve the overdemand is to add an unmatched
item to the maximal alternating tree by δ = δout. Since the randomized input (v,mR, r) is in general position
by Lemma 9, every item with a price strictly higher than its reserve price is already matched by Lemma 6.
Thus, after the price increase, the price of the added unmatched item has to be equal to its reserve price,
i.e., equal to a multiple of α. The newly added item is a first choice for some bidder in the (new) maximal
alternating tree. Thus, if an unmatched item was added to T by δ = δout, then by Lemma 15 all prices of

items in S would be multiples of α at prices p(t), which contradicts p̄Rj − α < pRj = p
(t)
j < p̄Rj .

Hence, the overdemand for item j can only be resolved by δ = δRmax = mR
i′,j′ − p

(t−1)
j′ for some i′ ∈ T ,

i′ 6= i, and j′ ∈ FR
p(t−1)(i

′). If i and j were already matched before the price increase, the overdemand for j

can be resolved if the edge (i′, j′) is either unmatched and on the path from j to the root of T or matched
and on a different path. If i and j were not matched, then the overdemand can be resolved if (i, j) is on the
path from j′ to the root and i′ and j′ were matched. In all other cases, i.e., (i′, j′) is unmatched and not on
the path from j to the root or (i′, j′) is matched and on the path from j to the root, the overdemand for j
would not be resolved by the price update δRmax.

In each of the possibilities that resolve the overdemand for j, the items j and j′ remain connected in the
first choice graph. Thus, the last price increase for j also has to be the last price increase for j′.

If rounding up pRj to the next highest multiple of α leads to a negative utility for i, we have mi,j − α <
pRj < mi,j . Since mi′,j′ −mR

i′,j′ < α, we have mi′,j′ − α < p
(t)
j′ < mi′,j′ . Thus, if the prices of all items in

FR
p(t−1)(T ) were increased by δmax = mini∈T,j∈FR

p(t−1)
(i)(mi,j − p(t−1)j ), both mi′,j′ and mi,j would be reached.

Each of the possibilities that resolve the overdemand for j would cause a problematic price update if the
prices p(t−1) would be increased by δmax.

Proof of Theorem 8. By Lemma 4 no problematic price update can occur for inputs in general position,
independently of the current prices. Hence, by Lemma 16, the outcome (µR, p̄R) is feasible for inputs in
general position. Lemma 14 (a) concludes the proof.

We conjecture that by a tight coupling of the MHM for an input that fulfills the rematch condition with
the MHM for the corresponding randomized input Theorem 8 can be extended to inputs that fulfill the
rematch condition.
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