

12th International Conference on Wirtschaftsinformatik,

March 4-6 2015, Osnabrück, Germany

Supporting Knowledge Elicitation and Analysis for

Business Process Improvement through a Modeling Tool

Florian Johannsen
1
 and Hans-Georg Fill

2

1 Chair of Business Engineering, University of Regensburg, Germany

florian.johannsen@wiwi.uni-regensburg.de
2 Research Group Knowledge Engineering, University of Vienna, Austria

hans-georg.fill@univie.ac.at

Abstract. Business Process Improvement (BPI) is a high priority topic for

modern enterprises. However, due to the distributed knowledge, conducting

BPI projects has become challenging in times of inter-organizational business

networks. For supporting the elicitation, analysis, and sharing of knowledge by

practitioners, we describe how semi-formally described domain knowledge on

BPI and knowledge on problem-solving techniques is transformed into an im-

plementation-oriented representation in the form of a modeling tool. Thus, we

revert to the FDMM formalism (Formalism for Describing ADOxx Meta Mod-

els and Models) that permits to bridge the gap between semi-formal meta mod-

els and those that are executable on the ADOxx meta modeling platform.

Keywords: Business Process Improvement, Meta Modeling, Formalization.

1 Introduction

In today’s enterprises, the improvement of business processes ranks among the top

priorities CEOs have to deal with [1]. However, conducting BPI projects has become

more and more challenging. Information technology (IT) causes high market trans-

parency, which leads to rapidly changing customer requirements [2]. A company thus

has to continuously analyze the “Voice of the Customer” (VOC) (cf. [3]) to meet

consumers’ current needs, which is a resource-intensive process. Further, companies

increasingly create “value” (cf. [3]) in business networks [4]. To prevent such BPI

projects from falling short of their initial aim, employees from all cooperating part-

ners in the network need to be involved. The proper documentation and communica-

tion of emerging knowledge on business processes is thus recognized as a critical

success factor for BPI initiatives (cf. [5]). To deal with these challenges, methodolo-

gies and techniques of knowledge management can be drawn upon [6]. In that con-

text, employees’ knowledge on potential process improvements can be elicited,

shared across an organization and ideally be internalized into everyday work practices

(cf. [7]). Elicitation thereby refers to obtaining information required for solving prob-

lems [8]. This may either be accomplished through organizational or technology-

oriented approaches that can be particularly adapted for these purposes (cf. [9]). In a

previous work, a BPI roadmap was developed in cooperation with BPI experts to

enable the goal-oriented creation of solutions for optimizing process performance (cf.

[10]). One major goal of this roadmap is to support knowledge elicitation (cf. [11]) of

improvement potentials among employees. The roadmap comprises a manageable set

of BPI techniques (cf. [12]). To codify the emerging knowledge and results when

using the roadmap, a modeling language in the form of a meta model was specified

[10]. Meta models permit to structure a domain and define how model instances can

be created [13]. Model instances allow to document and communicate the parts of

process-related knowledge that can be made explicit and provide a basis for conduct-

ing further analyses such as queries and the creation of reports (cf. [14]).

So far, the meta model defined for the BPI roadmap specified the structure of the

BPI techniques and their relations to each other. Although this was done using UML

class diagrams, the level of detail used is not sufficient for realizing an appropriate

technical implementation as a modeling tool. However, a graphical modeling tool is

favorable to efficiently support employees in eliciting and analyzing knowledge in an

effective and efficient manner, thus avoiding the bottleneck in capturing and validat-

ing knowledge that has been a traditional shortcoming of expert and decision support

systems [15]. Further, a tool is essential for analyzing the information captured in the

models using machine-based processing, or for feeding the information into other

systems such as groupware platforms or business intelligence applications.

A preliminary step for implementing the BPI roadmap as a software prototype is to

formally specify it using an adequate formalism (cf. [16]). Formal specifications help

to better understand customer requirements, to uncover contradictions in the function-

al design and to provide an uncomplicated transfer from specification to implementa-

tion [16]. We therefore pose the following research question: How can the semi-

formal representation of the BPI roadmap as a meta model be adequately transferred

into a formal specification that serves as a sound base for its implementation as a

graphical modeling tool?

In knowledge engineering, it has long been discussed how knowledge representa-

tions that are primarily oriented towards supporting the communication between do-

main experts and technical experts (e.g., meta models) can be further formalized to

enable machine processing [17]. For example, through Model-based and Incremental

Knowledge Engineering (MIKE) smooth transitions can be achieved from semi-

formal representations over formal representations to implementation-oriented repre-

sentations [18]. The implementation-oriented representation can then be executed.

In the following, we will describe how such transitions can be achieved in the con-

text of BPI. For this purpose, we refer to the procedure as depicted in Fig. 1, which is

similar to the MIKE development process (cf. [18]) and follows the design science

approach or the principles of engineering, respectively (cf. [19], [20]).

Therefore, requirements on a BPI roadmap and a supporting modeling tool were

defined in a first step (cf. [10]). Based on these, a concept of the BPI roadmap was

established and evaluated in cooperation with practitioners. In the design activity, a

corresponding semi-formal meta model was specified. This paper focuses on the sub-

sequent step of formalizing the meta model (formalization activity). The formalization

facilitates the derivation of an executable implementation-oriented representation

(development activity). The graphical modeling tool, supporting the use of the BPI

roadmap, represents the final artifact received via the deployment activity.

Fig. 1. Procedure for the Development of Tool Support for Knowledge Elicitation and Analysis

in BPI initiatives

The purpose of this paper is to show how the constructs of the semi-formal meta

model of the BPI roadmap can be formalized (formalization activity) enabling the

transition to implementation-oriented representations that can be directly deployed on

the openly accessible ADOxx meta modeling platform to generate a modeling tool.

The contribution of the paper is threefold: first, it demonstrates how a semi-formal

concept for conducting BPI projects can be transferred to an implementation-oriented

representation or a running prototype, respectively. That way the use of a formal spec-

ification for achieving an exact design without contradictions and thus speeding up

the subsequent implementation is particularly emphasized. Second, the paper high-

lights how the peculiarities of a “roadmap” solution for BPI (cf. [10]) are reflected in

its formal specification. Third, the benefits of formalisms for validating functional

specifications become obvious from the example of the BPI roadmap.

The structure of the paper is as follows: in the next section, foundations of BPI, the

formalism used and the ADOxx meta modeling platform are provided. In section 3,

the formalization of the BPI roadmap is introduced. This serves as a basis for the

prototypical implementation (see section 4). Afterwards, the results of this research

are discussed. The paper is concluded with a summary and an outlook.

2 Foundations

2.1 Business Process Improvement and the BPI Roadmap

In recent years, manifold BPI approaches were developed. The most prominent meth-

odology was introduced by Harrington [21]. Ideas of this initial approach were taken

up and further specified by Adesola and Baines [22], Vakola and Rezgui [23], or Lee

and Chuah [24] in their BPI methods. Details on these approaches can be found in

Zellner [12] for example. However, existing BPI approaches have methodological

flaws hampering their usability [12]. Further, practitioners increasingly shrink back

from using holistic BPI approaches which they perceive as over-dimensioned and

hard to handle (cf. [1]). They prefer a manageable set of easy-to-use and well-

Semi-Formal

Meta Model

Formal Specification

Using FDMM

ALL & AQL

Representation

Concept of the BPI

Roadmap

ADOxx-based

Modeling Tool

Design

Formalization

Development

Deployment

Evaluation

Legend:

activity

evaluation

result

established BPI techniques instead (cf. [1]). To address this need, the so-called BPI

roadmap was introduced (cf. [10]). The BPI roadmap is a logical arrangement of 11

proven and beneficial BPI techniques supporting all stages of a BPI project. It was

evaluated in practice and can be used in the production as well as the service industry.

The roadmap works as follows (see Fig. 2): at the beginning of a BPI project, the

process to be improved is visualized (SIPOC Diagram) and customers’ as well as

employees’ requirements on the process are identified (CTQ/CTB Matrix). After-

wards, performance indicators which measure the process performance are defined

and prioritized (Measurement Matrix). Then, process data is collected (Data Collec-

tion Plan). The collected process data is analyzed (Histogram, Scatterplot) and causes

for lacking process performance are discussed (Ishikawa Diagram). Finally, solutions

for process improvement are worked out (Affinity Diagram), implemented, and

measures for a continuous process control are set up (Reaction Plan, Control Charts).

Fig. 2. The BPI Roadmap [10]

The BPI techniques of the BPI roadmap were transformed into 9 conceptual model

types, and an integrated meta model was derived (see Fig. 1 – design activity). Fig. 3

shows an excerpt of this integrated meta model where the CTQ-/CTB-Model, a cen-

tral model type of the BPI roadmap, is highlighted. In this model type, the verbally

expressed requirements of internal (e.g., employees) as well as external customers on

process performance are documented as the “Voice of the Customer (VOC)” or the

“Voice of the Business (VOB)”, respectively. The requirements are then condensed to

core statements which serve as a basis for deriving quantifiable “Critical-to-Quality

(CTQ)” and “Critical-to-Business (CTB)” factors. These determine the goals of a BPI

project. An example is shown in Fig. 4. Several reports to query and analyze the re-

sults captured in the model types were defined (cf. [10] and Fig. 3).

Fig. 3. Excerpt of the BPI Roadmap Meta Model and an Example for a Report

2.2 Modeling Methods and the FDMM Formalism

Modeling methods in general are composed of a modeling language, mechanisms,

algorithms, and a modeling procedure that defines how the method makes use of the

3. Performance

Indicators

2. CTQ/CTB

Matrix

1. SIPOC

Diagram

4. Measurement

Matrix

5. Data

Collection Plan
6. Histogram

7. Scatterplot

8. Ishikawa

Diagram

9. Affinity

Diagram
10. Reaction Plan

11. Control

Charts

Define Measure Analyse Improve Control

Voice of the
Customer (VOC)

Critical-to-Quality
factor (CTQ)

CTQ-/CTB-Model
Critical-to-Business

factor (CTB)
Voice of the

Business (VOB)

Core statement

0…*

condense

condense

0…*

derive critical factor

0…*

derive critical factor
1…*

1…*

0…*

CTQ-/CTB-Model Type

1…*

1…*

CTQ

Voice of the

Customer (VOC)

"The waiting time

at the check-in is

too long!"

"The security check

takes very long!"

… …

Report: Project goal

definition report

Reduce

complete

duration of

check-in to 10

minutes

Report

language and algorithms to achieve results [25]. The components of a modeling

method may come in various degrees of formalization [26]. Formalizations contribute

in particular to the intersubjective understandability and/or the processing by different

computer systems. For the implementation of the modeling tool, we focus on the for-

malization of a modeling language and according query mechanisms. The FDMM

formalism, which was originally proposed in Fill et al. [27], permits to describe the

syntax of meta models and models and the instantiation of models from meta models

in a mathematical and thus unambiguous format. It provides the means to smoothly

transition from semi-formal representations to implementation-oriented representa-

tions.

In literature, further formalizations for meta modeling approaches such as EMOF

[28], [29] and KM3 [30] were introduced. However, both pursue the specification of

software structures [31], which complicates their use in the BPI context. The same

holds true for the Object Constraint Language (OCL) [32] which focuses on UML in

particular. FDMM represents an easy-to-use formalism which aims at specifying meta

models for different application domains without requiring specialized mathematical

knowledge apart from set theory and first-order-logic. Therefore, it was chosen as a

means for formalizing the meta model of the BPI roadmap. As FDMM is independent

of a specific technical implementation, its constructs need to be mapped to an imple-

mentation-oriented, i.e., executable specification such as the ADOxx Library Lan-

guage (ALL) [31]. In the following, we will briefly describe the very core concepts of

FDMM as they have been used for method descriptions previously (cf. [33]). Howev-

er, we refer the interested reader to the original publications on FDMM for further

details (cf. [27]). Meta models MM are defined in FDMM as:

MM = 〈MT, ≼, domain, range, card〉 (1)

The set MT stands for model types that will be used as groupings or diagram types

of elements in a meta model:

MT = {MT1,MT2, … ,MT𝑚} (2)

In every model type MT𝑖, a tuple of a set of object types 𝑂𝑖
𝑇, a set of data types 𝐷𝑖

𝑇 ,

and a set of attributes 𝐴𝑖 are contained:

MT𝑖 = 〈O𝑖
𝑇 , 𝐷𝑖

𝑇 , 𝐴𝑖〉 (3)

The sets 𝑂𝑇, 𝐷𝑇 and 𝐴 are collections of all object types, data types and attributes

of a model type. However, there may also be object types that exist independently of a

model type:

𝑂𝑇 = ⋃ 𝑂𝑗
𝑇 , 𝐷𝑇 = ⋃𝐷𝑖

𝑇 , 𝐴 = ⋃𝐴𝑖𝑗 (4)

The relation ≼ defines an ordering on the set of object types, 𝑂𝑇, i.e., 𝑜1
𝑡≼𝑜2

𝑡 de-

notes that object type 𝑜1
𝑡 is a subtype of object type 𝑜2

𝑡 . To assign attributes to object

types, a domain function is defined that maps attributes to the power set of object

types:

domain : 𝐴 → 𝒫(⋃ 𝑂𝑗
𝑇

𝑗) (5)

In the next step, the range function maps attributes to the power set of all pairs of

object types and their model types to data and model types. In this way, the values of

attributes are constrained in the model instances that are to be defined later. In addi-

tion to standard attribute types such as integer or string, also references to other object

types in model types or to complete model instances, i.e., via model types, can be

defined:

range: 𝐴 → 𝒫(⋃ (𝑂𝑗
𝑇 × {MT𝑗}) ∪ 𝐷

𝑇 ∪ MT𝑗) (6)

To introduce the concept of cardinalities, the card function constrains the number

of attribute values for a specific object type:

card: 𝑂𝑇 × 𝐴 → 𝒫(ℕ0 × (ℕ0 ∪ {∞})) (7)

The sets 𝑂𝑇 , 𝐷𝑇 , 𝐴 are defined to be pairwise disjoint. It is further required that

there exists a corresponding domain function for any attribute which points to an ob-

ject type of the same model type:

𝑎 ∈ 𝐴𝑖 ⟹ domain(𝑎) ⊆ 𝑂𝑖
𝑇 (8)

When instantiating a meta model MM, the instances are defined by the tuple:

〈𝜇mt, 𝜇O, 𝜇D, 𝜏, 𝛽〉 (9)

Where the function 𝜇𝑚𝑡 defines a mapping from model types MT to the power set

of model instances mt

𝜇mt: MT→𝒫(mt) (10)

and the set mt comprises the union of all mappings of model types to model in-

stances so that every element of the set of model instances mt corresponds to a model

type:

mt = ⋃𝜇𝑚𝑡(MT𝑗) (11)

With the function 𝜇O, we map the object types of a particular model type to the

power set of object instances 𝑂:

𝜇O: ⋃ (𝑂𝑗
𝑇 × {MT𝑗}) → 𝒫(𝑂)𝑗 (12)

Thereby, the set 𝑂 is the union of all object instances in the way that no object in-

stance exists that does not have a mapping to an object type and a model type:

𝑂 = ⋃ 𝜇O(𝑂𝑗
𝑇 × {MT𝑗})𝑗 (13)

FDMM further introduces the concept of abstract object types. Any object type

𝑜𝑡 ∈ 𝑂
𝑇 may be denoted as an abstract type, which means that for all model types MT𝑖

in which the object type 𝑜𝑡 (𝑜𝑡 ∈ 𝑂𝑖
𝑇) is contained, the object type can only be instan-

tiated via the function 𝜇O through one of its subtypes:

𝜇O(𝑜
𝑡 ,MT𝑖) = ⋃ 𝜇O(𝑜1

𝑡 ,MT𝑖)𝑜1
𝑡≠𝑜,

𝑡𝑜1
𝑡≼𝑜

𝑡 (14)

With the function 𝜇𝐷, data types are mapped to the power set of data objects. In

FDMM neither data types nor data objects are further specified. It is rather left to the

user to further define the characterization of the used data types and their validity as

necessary:

𝜇D: 𝐷
𝑇 → 𝒫(𝐷) (15)

Finally, to link the value of attributes to object instances, FDMM defines triple

statements that are part of model instances via a mapping defined by the function 𝛽:

𝜏 ⊆ 𝑂 × 𝐴 × (𝐷 ∪ 𝑂 ∪ mt) (16)

𝛽: mt → 𝒫(𝜏) (17)

FDMM further defines a number of correctness, disjointness and partitioning con-

straints that we do not list here for reasons of brevity (cf. [27], [33]).

2.3 The ADOxx Meta Modeling Platform

Different approaches exist for the implementation of modeling methods in modeling

tools. Depending on the goals and purpose of the tool to be developed, the implemen-

tation can be accomplished from scratch, i.e., by using a common programming lan-

guage such as Java or C++ or it can be reverted to specific libraries, services, or soft-

ware applications. In so doing, the most extensive support is currently provided by

meta modeling platforms such as MetaEdit+ [34], Eclipse GMF/EMF [35], GME [36]

or ADOxx [37]. With meta modeling platforms, modeling tools can be realized with

little or almost no programming effort. They thus permit to drastically shorten the

development life cycle of modeling tools and supply a wide range of additional func-

tionalities based on their underlying meta modeling languages [38]. For our purposes,

we reverted to the ADOxx meta modeling platform which is provided for free at

www.adoxx.org and was used successfully in previous projects by the authors.

ADOxx is an industry-scale C++-based meta modeling platform which allows to de-

fine a modeling language and its graphical representation as well as mechanisms and

algorithms using a set of domain specific languages [37]. These languages are ALL

for the specification of the classes, relationclasses, attributes, and model types, the

GRAPHREP language for the specification of the graphical representation of classes

and relationclasses, the ATTRREP language for the specification of attribute visibili-

ties and the ADOscript language for the specification of mechanisms and algorithms.

Based on these definitions, ADOxx automatically generates modeling tools that pro-

vide graphical modeling editors, amongst further components for analyzing, simulat-

ing, evaluating, and transforming models.

3 An Implementation-Oriented Representation for Knowledge

Elicitation and Analysis in BPI

With the foundations presented in the previous section, we can now apply FDMM to

the BPI roadmap meta model. To exemplify the application of the FDMM formalism,

a central model type is selected, namely the “CTQ-/CTB-Model” MT𝐶𝑇𝑄/𝐶𝑇𝐵. The

meta model as shown in Fig. 3 can be specified as follows:

MT𝐶𝑇𝑄/𝐶𝑇𝐵 = 〈𝑂𝐶𝑇𝑄/𝐶𝑇𝐵
𝑇 , 𝐷𝐶𝑇𝑄/𝐶𝑇𝐵

𝑇 , 𝐴𝐶𝑇𝑄/𝐶𝑇𝐵〉 (18)

A model type is further specified by object types, data types, and attributes. Conse-

quently, we define the following object types for the CTQ-/CTB-Model:

𝑂𝐶𝑇𝑄/𝐶𝑇𝐵
𝑇 = {Abstract-Voice-of-Customer-Business-Class, VOC, VOB,

 Abstract-Critical-to-Customer-Business-Class, CTQ, CTB,

Core-statement, Condense, Derive-critical-factor}

 (19)

Afterwards, inheritance relationships can be determined. For example, the object

types “VOC” and “VOB” represent subtypes of the object type “Abstract-Voice-of-

Customer-Business-Class” that is defined as an abstract object type:

VOC ≼ Abstract-Voice-of-Customer-Business-Class

VOB ≼ Abstract-Voice-of-Customer-Business-Class

CTQ ≼ Abstract-Critical-to-Customer-Business-Class

CTB ≼ Abstract-Critical-to-Customer-Business-Class

 (20)

That way, attributes can be assigned to the subtypes more easily and relationships

between all subtypes of an object type can be defined. Different data types are used in

the CTQ-/CTB-Model. Whereas “String” represents a common data type, the

“Enum” types are used to define data types with pre-defined, fixed values:

𝐷𝐶𝑇𝑄/𝐶𝑇𝐵
𝑇 = { String, Enumquality dimension, Enumpriority, … } (21)

For example, the type “Enum𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛” comprises the values “Quality”,

“Time”, “Cost” and “Flexibility” which represent commonly accepted dimensions of

process quality (cf. [39]). To each project goal (CTQ or CTB), one of these dimen-

sions is assigned via an attribute “Quality-dimension”. By means of the type

“Enumpriority ”, it is possible to prioritize the project goals later on:

Enumquality dimension = {Quality, Time, Cost, Flexibility} (22)

Enumpriority = {High, Medium, Low, Unspecified} (23)

After that step, the attributes of the object types are to be defined. The attributes

derived for the CTQ-/CTB-Model are focused again. Besides attributes for describing

an object in more detail, e.g., “Name” or “Description”, also attributes to prioritize the

project goals (e.g., “Priority”) are formulated. In addition, elements required for spec-

ifying the start- and endpoint of connections, e.g., the attributes “condense-to” and

“condense-from”, are considered:

ACTQ/CTB ={Name, Description, Quality-dimension, Priority,

condense-to, condense-from, derive-critical-factor-from

derive-critical-factor-to,…}

(24)

In a final step, the attributes are to be specified by information on domain, range

and cardinalities. When attributes are assigned to an abstract type, the attribute defini-

tions are inherited by all subtypes. This is exemplified for the “Abstract-Voice-of-

Customer-Business-Class” abstract type and the attribute “Description”. The intention

is that instances of the “VOC” or “VOB” object types can be specified via textual

descriptions using the attribute “Description”. The user is not forced, though, to attach

a corresponding description which becomes obvious by the cardinality 〈0,1〉:

domain(Description) = {Abstract-Voice-of-Customer-Business-Class}

range(Description) = {String}

card(Description) = 〈0,1〉

(25)

Later on, the “CTQ” and “CTB” objects are referenced by the model type “Meas-

urement Matrix Model”. This model type introduces the object type “CTQ-

Reference”, amongst others. We use the “CTQ-Reference” object type to demonstrate

how references from one object type to another object type work across model types:

domain(Referenced-CTQ) = {CTQ-Reference}

range(Referenced-CTQ) = {(CTQ, MT𝐶𝑇𝑄/𝐶𝑇𝐵)}

card(Referenced-CTQ) = 〈1,1〉

 (26)

For connecting objects within a model type, connections were defined previously

(19). For example, the VOCs and VOBs are to be condensed to so-called core state-

ments in the CTQ-/CTB-Model. Therefore, a connection “Condense” can be used to

visually assign VOCs and VOBs to corresponding core statements. The attributes

“condense-from” and “condense-to” are used to express this connection:

domain(condense-from) = {Condense} (27)

range(condense-from) = {(Abstract-Voice-of-Customer-Business-Class, MT𝐶𝑇𝑄/𝐶𝑇𝐵)}

card(condense-from) = 〈1,1〉

 domain(condense-to) = {Condense}

range(condense-to) = {(Core statement, MT𝐶𝑇𝑄/𝐶𝑇𝐵)}

 card(condense-to) = 〈1,1〉

 (28)

To demonstrate the instantiation of meta models of the BPI roadmap via FDMM,

we focus on the CTQ-/CTB-Model again.
1
 The instantiation is defined as follows:

𝜇𝑀𝑇(MT𝐶𝑇𝑄/𝐶𝑇𝐵) = {mt𝐶𝑇𝑄/𝐶𝑇𝐵1} (29)

Afterwards, the object types are instantiated:

𝜇𝑂(VOC, MT𝐶𝑇𝑄/𝐶𝑇𝐵) = {VOC1,VOC2}

 𝜇𝑂(VOB, MT𝐶𝑇𝑄/𝐶𝑇𝐵) = {VOB1,VOB2}
 (30)

𝜇𝑂(CTQ, MT𝐶𝑇𝑄/𝐶𝑇𝐵) = {CTQ1}

𝜇𝑂(CTB, MT𝐶𝑇𝑄/𝐶𝑇𝐵) = {CTB1}

𝜇𝑂(Core-statement, MT𝐶𝑇𝑄/𝐶𝑇𝐵) = {CS1,CS2}

To label the constructs, attribute values of the associated data types need to be in-

stantiated. This is shown for the data type “String”:

μ
D
(String)={'The waiting time is too long!', 'Reduce cycle-times',…} (31)

These attribute values are then assigned to object instances. The following example

allocates instances of the “String” data type (as created above) to instances of the

object types “VOC” and “Core-statement”:

(VOC1 Name 'The waiting time is too long!') ∈ 𝛽(mt𝐶𝑇𝑄/𝐶𝑇𝐵1)

(CS1 Name 'Reduce cycle-times') ∈ 𝛽(mt𝐶𝑇𝑄/𝐶𝑇𝐵1)
 (32)

For the definition of edges in the CTQ-/CTB-Model, instances of the object types

“Condense” and “Derive-critical-factor” have to be created. Whereas the “Condense”

1 An instance of the model type “CTQ-/CTB-Model” – taken from the prototypical implemen-

tation – is shown in Fig. 4.

connection is used for assigning VOCs and VOBs to core statements, the “Derive-

critical-factor” connection is used to relate core statements to CTQs and CTBs:

𝜇𝑂(condense, MT𝐶𝑇𝑄/𝐶𝑇𝐵) = {c1, c2, c3, c4} (33)

(c1 condense-from VOC1) ∈ 𝛽(mt𝐶𝑇𝑄/𝐶𝑇𝐵1)

(c1 condense-to CS1) ∈ 𝛽(mt𝐶𝑇𝑄/𝐶𝑇𝐵1)
 (34)

𝜇𝑂(Derive-critical-factor, MT𝐶𝑇𝑄/𝐶𝑇𝐵) = {dcf1, dcf2} (35)

(dcf1 derive-cf-from CS1) ∈ 𝛽(mt𝐶𝑇𝑄/𝐶𝑇𝐵1)

(dcf1 derive-cf-to CTQ
1
) ∈ 𝛽(mt𝐶𝑇𝑄/𝐶𝑇𝐵1)

 (36)

From the conceptual model types, textual reports can be generated, enabling an

easy analysis and communication of the results of a BPI project. Based on the BPI

roadmap, a set of 12 beneficial reports was specified for that purpose (cf. [10]). In the

following, we exemplarily formalize the queries for the “Project goal definition re-

port” focusing on project goals of a BPI initiative (see Fig. 3). The report is derived

from the CTQ-/CTB-Model and analyzes which customer requirements (VOCs) are

transformed into specific project goals (CTQs). The report is based on two queries

(Q1 and Q2). First, all core statements connected with a specific CTQ via the connec-

tion “Derive-critical-factor” are queried (37). Then, the VOCs for each core statement

are retrieved (38):

𝑄𝑆1 = 𝜇𝑂(Core-statement, MT𝐶𝑇𝑄/𝐶𝑇𝐵)

𝑄1 =

{

q ∈ QS
1

|

|

 ∃

∃ d ∈ μO(Derive-critical-factor, MT𝐶𝑇𝑄/𝐶𝑇𝐵),

∃ ctq ∈ μO(CTQ, MT𝐶𝑇𝑄/𝐶𝑇𝐵),

m ∈ μ
MT
(MTCTQ/CTB),

 (d derive-cf-from q) ∈ 𝑚 ⋀

(d derive-cf-to ctq) ∈ 𝑚 }

 (37)

𝑄𝑆2 = 𝜇𝑂(VOC, MT𝐶𝑇𝑄/𝐶𝑇𝐵)

𝑄2 =

{

q ∈ QS
2
|

|
∃

∃ 𝑐𝑜𝑛𝑑 ∈ 𝜇𝑂(Condense, MT𝐶𝑇𝑄/𝐶𝑇𝐵),

∃ 𝑐𝑠 ∈ 𝑄1,

m ∈ μ
MT
(MTCTQ/CTB),

 (cond condense-from q) ∈ 𝑚 ⋀

(cond condense-to cs) ∈ 𝑚 }

 (38)

4 Implementation via ADOxx

Based on the formal specifications that we outlined above, we could derive imple-

mentation-oriented representations in the form of ALL and ADOxx Query Language

(AQL) code for the ADOxx meta modeling platform. The implementation-oriented

representation contains knowledge already captured in the formal specification but

enriches it by additional information required for implementation purposes, e.g., in-

formation on the modeling procedure or algorithms [18].

However, when transferring the specifications from FDMM to ADOxx, some spec-

ificities have to be taken into account (cf. [33]), for example that FDMM does not

provide a first-order concept for expressing relations but rather uses a generic way of

connecting instances of object types. In ADOxx on the other hand, it has to be decid-

ed whether a connection between object types should be implemented as a graphically

represented relation – including the information what the graphical representation

should look like based on defining statements in the GRAPHREP grammar [37] – or

whether a reference attribute of the type INTERREF is to be used. Attributes of the

type INTERREF permit to connect one object type instance to other object type in-

stances or other model types. However, a graphical representation for these types of

connections is not automatically provided by the platform. From the specifications in

FDMM, we derive according ALL code that can be directly executed by the ADOxx

platform. Likewise, also the UI-based ADOxx development toolkit could be used.

ALL code excerpts:
MODELTYPE \"CTQ-/CTB-Model\" from:none plural:\"CTQ-/CTB-Models\" pos:2

not-simulateable bitmap:\"db:"\\\\CTQ_CTB.bmp\"

INCL \"VOC\"

INCL \"VOB\"

INCL \"CTQ\"

...

CLASS <CTQ> : <Critical to Customer-Business>

...

CLASSATTRIBUTE <GraphRep>

VALUE "GRAPHREP

PEN color:$00007f w:1pt

FILL color:$eaea72

...

ATTRIBUTE <Show quality dimension>

TYPE ENUMERATION

FACET <EnumerationDomain>

VALUE "Yes@No"

...

By this transition, all model types that were previously defined in FDMM are

mapped to corresponding model types in ALL. This is exemplified for the CTQ-

/CTB-Model type in the ALL code excerpts above. Each object type in FDMM is

transferred to a class or a relationclass depending on its graphical representation. In

the example, the object type “CTQ” as defined in FDMM is represented as an equiva-

lent class in ALL (marker 1). The attributes in FDMM either become class attributes

(e.g., “GraphRep”) or attributes (e.g., “Show quality dimension”) (marker 2), depend-

ing on whether they are predefined in ADOxx or represent user-defined attributes.

For the generation of reports based on queries, the formal definition of the queries

needs to be transferred to executable code as well. This is achieved on the ADOxx

platform by using AQL. The purpose of AQL is to issue queries on model instances

similar to the way in which SQL is used in the area of databases [37]. For example, to

query all VOCs assigned to a certain CTQ (see equations (37) and (38)), the following

AQL statements are specified, which can be directly executed by ADOxx as well:

I) ({"Reduce complete duration of check-in to 10 minutes":"CTQ"}<-

"Derive critical factor") AND (<"Core statement">)

II) ({"Reduce cycle-times":"Core statement"}<-"Condense") AND

(<"VOC">)

1

2

Fig. 4 shows an exemplary screenshot for the CTQ-/CTB-Model.

Fig. 4. Example of a CTQ-/CTB-Model Instance in ADOxx taken from the Prototype

5 Discussion

The development process as shown in Fig. 1 combines semi-formal (meta model),

formal (FDMM), and executable (e.g., ALL) representations for realizing a graphical

modeling tool which supports BPI initiatives. The meta model of the BPI roadmap

structures the domain (cf. [13]) and captures knowledge on the problem-solving pro-

cess (cf. [18]), namely the goal-oriented conduction of BPI projects. The formal spec-

ification of the meta model prepares the ground for its implementation. It transfers the

knowledge on the problem domain and the problem-solving process into an imple-

mentation-oriented representation (cf. [18]), capturing mandatory information for

creating the prototype. This includes ALL code as well as AQL expressions. As

shown in section 4, the FDMM constructs can be directly mapped to ALL as well as

AQL. The development of a graphical modeling tool is thus significantly accelerated.

A central benefit of the BPI roadmap is the logical interrelatedness between the

BPI techniques. The results produced by a technique as output (e.g., CTQs and CTBs)

are thus taken up and processed further by a subsequent technique. This peculiarity is

reflected in the meta model by interrelated classes across model types (cf. [10]). In

total, 11 corresponding references exist in the meta model of the BPI roadmap. This

high degree of interrelatedness becomes obvious in the formal specification by the

FDMM representation of references from one object type to another object type

across model types (e.g., equation (26)). In this particular aspect the formalization of

the BPI roadmap is different from those of other modeling methods. In addition, the

precise specification of queries suggested for the BPI roadmap (cf. [10]) is a further

differentiator from comparable formalization efforts in other application domains.

The formulation of queries, expressed as formal expressions (see section 3), is a pre-

requisite for analyses and the machine-based generation of reports (cf. [40]) – a par-

ticular feature required in BPI initiatives to communicate results achieved (cf. [5]).

Main users of the BPI roadmap and the tool are team members engaged in BPI pro-

jects at a company. But the tool can also be applied in an academic setting to demon-

strate the general functioning of BPI projects, making students potential users as well.

Therefore, a variety of requirements were defined for the roadmap and the tool, re-

spectively (cf. [10]). The FDMM formalization allows validating the conformity of

the design specification with these functional requirements. For example, in the re-

search at hand it could be assessed whether the value ranges for data types as defined

meet user expectations or not. E.g., it could be decided whether the values “Quality”,

“Time”, etc. were perceived as suitable for specifying the attribute “Quality-

dimension”. Thus, formalizations help to clarify ambiguous user requirements and to

avoid misconceptions (cf. [16]). Mathematical procedures may be used for checking

the consistency and syntactic correctness of the specification on FDMM level (cf.

[16]). This is also highlighted in Fig. 1 (cycle at activity “formal specification using

FDMM”). Once the prototype is established, additional evaluative conclusions can be

drawn on the results produced throughout the development (see Fig. 1). For example,

it may be judged whether the implementation-oriented representation is executable in

an error-free manner with fast response times or not. An error-free execution was

given for the prototype in this research confirming the correctness and the validity of

the formalization. Further, the feedback of practitioners in a currently running usabil-

ity study is expected to be highly valuable for evaluating the design of the BPI

roadmap as a meta model.

6 Conclusion, Lessons Learned and Outlook

In our paper, we introduced a formalization of the BPI roadmap using FDMM. The

purpose was to derive implementation-oriented representations to prepare the ground

for the creation of a prototype. The BPI roadmap was initially developed to conduct

BPI projects in a goal-oriented manner. To illustrate the functioning of FDMM, we

chose a central model type, namely the CTQ-/CTB-Model.

In the project, we learned that despite the challenges when using FDMM it helps to

bridge the gap between functional requirements derived from the problem domain and

implementation-related aspects. Further, FDMM expects the user to precisely define

attributes and corresponding values, and thus avoids uncertainty and ad-hoc decisions

during implementation. Our research enables practitioners to benefit from a tool facil-

itating the efficient communication, documentation and processing of results and

process knowledge emerging in BPI projects. Further, it became evident, that FDMM

is beneficial for the development of software to come to an implementation-based

representation of domain knowledge and problem-solving procedures for BPI. Scien-

tists and practitioners are provided with means to significantly speed up development

projects, building graphical modeling tools to support BPI initiatives. Based on a

sound formalization, misconceptions may be avoided and the functional design can be

validated (cf. [16]). This is extremely helpful considering the multitude of references

between the model types of the BPI roadmap and the importance of reports in the BPI

context. There are, nonetheless, some limitations to this study. First, due to page re-

strictions and reasons of clarity, the formal specification of the BPI roadmap was only

exemplified for one model type. However, the basic principles of FDMM are identical

for the other model types. Additionally, we built the examples around a central model

type of the BPI roadmap to provide representative insights. Second, a usability test of

the prototype is still running. While the first feedback received is promising, a con-

cluding statement on its usability cannot be made yet. In future work, we intend to

enhance the prototype by an interface to social networks for automatically retrieving

customer statements (VOCs) from corresponding company pages (cf. [41]).

References

1. Davis, D.: 3rd Biennial PEX Network Report: State of the Industry – Trends and Success

Factors in Business Process Excellence, Report (2013)

2. Greenberg, P.: The impact of CRM 2.0 on customer insight. Journal of Business & Indus-

trial Marketing 25, 410-419 (2010)

3. Pande, P., Neumann, R., Cavanagh, R.: The Six Sigma Way – How GE, Motorola and oth-

er top companies are honing their performance. Mc Graw Hill, New York et al. (2000)

4. Mellat-Parast, M.: Supply chain quality management: An inter-organizational learning per-

spective. International Journal of Quality & Reliability Management 30, 511-529 (2013)

5. Seethamraju, R., Marjanovic, O.: Role of process knowledge in business process im-

provement methodology: a case study. BPMJ 15, 920-936 (2009)

6. Dalkir, K.: Knowledge management in theory and practice. Elsevier, Amerstdam (2005)

7. Nonaka, I.: The knowledge-creating company. HBR 85, 162-171 (2007)

8. Erdani, Y., et al.: Ternary grid as a potentially new technique for knowledge elicita-

tion/acquisition. 2nd IEEE International Conference on Intelligent Systems, pp. 312-315.

9. Maier, R.: Knowledge management systems: Information and communication technologies

for knowledge management. Springer, Berlin/Heidelberg (2007)

10. Johannsen, F., Fill, H.-G.: Codification of Knowledge in Business Process Improvement

Projects. In: 22nd European Conference on Information Systems, Tel Aviv.

11. Shadbolt, N.R., Smart, P.R.: Knowledge Elicitation: Methods, Tools and Techniques (pre-

publication). In: Wilson, J.R., Sharples, S. (eds.) Evaluation of Human Work, CRC (2015)

12. Zellner, G.: A Structured Evaluation of Business Process Improvement Approaches. BPMJ

17, 203-237 (2011)

13. Karagiannis, D., Höfferer, P.: Metamodels in Action: An Overview. In: ICSOFT 2006 – 1st

International Conference on Software and Data Technologies, pp. 27-36, Setúbal (2006)

14. Anaby-Tavor, A., et al.: Insights into enterprise conceptual modeling. Data & Knowledge

Engineering 69, 1302-1318 (2010)

15. Gavrilova, T., Andreeva, T.: Knowledge elicitation techniques in a knowledge manage-

ment context. Journal of Knowledge Management 16, 523-537 (2012)

16. Fraser, M.D., Kumar, K., Vaishnavi, V.K.: Strategies for incorporating formal specifica-

tions in software development. Communications of the ACM 37, 74-86 (1994)

17. Studer, R., Benjamins, V.R., Fensel, D.: Knowledge engineering: principles and methods.

Data & Knowledge Engineering 25, 161-197 (1998)

18. Angele, J., Fensel, D., Landes, D., Studer, R.: Developing Knowledge-Based Systems with

MIKE. Automated Software Engineering 5, 389-418 (1998)

19. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design Science in Information Systems Re-

search. MIS Quarterly 28, 75-105 (2004)

20. Lipton, P.: Engineering and Truth. In: Philosophy of Engineering – Volume 1: Proceedings

of a series of seminars held at The Royal Academy of Engineering, pp. 7-13 (2010)

21. Harrington, H.J.: Business Process Improvement – The Breakthrough Strategy for Total

Quality, Productivity and Competiveness. McGraw-Hill, New York et al. (1991)

22. Adesola, S., Baines, T.: Developing and evaluating a methodology for business process

improvement. BPMJ 11, 37-46 (2005)

23. Vakola, M., Rezgui, Y.: Critique of existing business process re-engineering methodolo-

gies: The development and implementation of a new methodology. BPMJ, 238-250 (2000)

24. Lee, K.T., Chuah, K.B.: A SUPER methodology for business process improvement. Inter-

national Journal of Operations & Production Management 21, 687-706 (2001)

25. Karagiannis, D., Kühn, H.: Metamodelling Platforms. In: 3rd International Conference EC-

Web 2002 – Dexa 2002, pp. 182-195, Aix-en-Provence (2002)

26. Bork, D., Fill, H.-G.: Formal Aspects of Enterprise Modeling Methods: A Comparison

Framework. In: 47th HICSS, pp. 3400-3409. IEEE Press (2014)

27. Fill, H.-G., Redmond, T., Karagiannis, D.: FDMM: A Formalism for Describing ADOxx

Meta Models and Models. In: ICEIS 2012, Poland (2012)

28. Poernomo, I.: The meta-object facility typed. In: ACM symposium on Applied computing,

pp. 1845-1849, Dijon (2006)

29. Favre, L.M.: Formalization of MOF-Based Metamodels. In: Favre, L.M. (ed.) Model Driv-

en Architecture for Reverse Engineering Technologies. Information Resources Manage-

ment Association, pp. 49-79 (2010)

30. Jouault, F., Bézivin, J.: KM3: a DSL for Metamodel Specification. International Confer-

ence on Formal Methods for Open Object-Based Distributed Systems, pp. 171-185 (2006)

31. Fill, H.-G., Redmond, T., Karagiannis, D.: Formalizing Meta Models with FDMM: The

ADOxx Case. In: Cordeiro, J., Maciaszek, L.A., Filipe, J. (eds.) Enterprise Information

Systems 141, pp. 429-451. Springer Berlin Heidelberg (2013)

32. OMG: Object Constraint Language (OCL) – Version 2.4 (2014)

33. Fill, H.-G., et al.: A Formal Specification of the Horus Modeling Language Using FDMM.

In: Alt, R., Franczyk, B. (eds.) Proceedings 11th Wirtschaftsinformatik, Volume 2, pp.

1165-1179, Leipzig (2013)

34. Tolvanen, J.-P., Kelly, S.: MetaEdit+: defining and using integrated domain-specific mod-

eling languages. In: 24th ACM SIGPLAN conference companion on Object oriented pro-

gramming systems languages and applications, pp. 819-820, ACM, New York (2009)

35. McNeill, K.: Metamodeling with EMF: Generating concrete, reusable Java snippets,

www.ibm.com/developerworks/library/os-eclipse-emfmetamodel/ (access: 31.07.2014)

36. Ledeczi, A., et al.: The generic modeling environment. In: Workshop on Intelligent Signal

Processing, IEEE Press (2001)

37. Fill, H.-G., Karagiannis, D.: On the Conceptualisation of Modelling Methods Using the

ADOxx Meta Modelling Platform. Enterprise Modelling and Information Systems Archi-

tectures – An International Journal 8, 4-25 (2013)

38. Kern, H., Hummel, A., Kühne, S.: Towards a comparative analysis of meta-metamodels.

In: Proceedings of the compilation of the co-located workshops on DSM'11, TMC'11,

AGERE!'11, AOOPES'11, NEAT'11, & VMIL'11, pp. 7-12. ACM, New York (2011)

39. Österle, H.: Business in the information age. Springer, Berlin et al. (1995)

40. Bräuer, S., et al.: Using a Generic Model Query Approach to Allow for Process Model

Compliance Checking – An Algorithmic Perspective. In: Alt, R., Franczyk, B. (eds.) Pro-

ceedings 11th Wirtschaftsinformatik, Volume 2, pp. 1245-1259, Leipzig (2013)

41. Lehner, F., Fteimi, N.: Organize, socialize, benefit: how social media applications impact

enterprise success and performance. In: 13th i-Know Conference, Graz, Austria (2013)

http://www.ibm.com/developerworks/library/os-eclipse-emfmetamodel/

	Citation: Johannsen, F.; Fill, H. (2015): Supporting Knowledge Elicitation and Analysis for Business Process Improvement through a Modeling Tool, in: Thomas. O.; Teuteberg, F. (Hrsg.): Proceedings der 12. Internationalen Tagung Wirtschaftsinformatik (WI 2015), Osnabrück, S. 752-766
	p:
	0: 752
	1: 753
	2: 754
	3: 755
	4: 756
	5: 757
	6: 758
	7: 759
	8: 760
	9: 761
	10: 762
	11: 763
	12: 764
	13: 765
	14: 766

