
Reusable Architectural Decision Models for
Quality-driven Decision Support: A Case Study

from a Smart Cities Software Ecosystem
Ioanna Lytra∗, Gerhard Engelbrecht†, Daniel Schall† and Uwe Zdun∗

∗Research Group Software Architecture
University of Vienna

Vienna, Austria
{firstname.lastname}@univie.ac.at

†Siemens AG
Vienna, Austria

{firstname.lastname}@siemens.com

Abstract—Architectural design decisions and architectural
knowledge are becoming relevant in the current practice of soft-
ware architecture. In addition, reusable architectural knowledge
has gained much importance in the industrial practice. In the
process of architectural decision making, quality attributes con-
stitute key drivers for designing software systems, therefore, it is
important to document quality attributes along with the decisions
captured. However, most of the current tools for management of
architectural decisions focus mainly on capturing or sharing of
design decisions. We propose to enrich a reusable architectural
decision meta-model with quality attributes and introduce a
corresponding tool. Our goal is to support software architects
during decision making based on reusable decisions driven by
quality attributes. Our approach was motivated by and applied
in an industrial case study on a large-scale software ecosystem for
smart cities, that constitute a complex and challenging system-
of-systems domain. We applied our proposal in a few scenarios
in the smart cities domain, in which the consideration of quality
attributes is required to model reusable architectural knowledge
adequately.

I. INTRODUCTION

Architectural design decisions (ADDs) are regarded as
first-class citizens in the documentation of software archi-
tectures [1]. Systematic decision-making approaches demand
capturing and documenting multiple alternatives that have to
be evaluated during the evolution of the system. However, as
making decisions implies that competing requirements must be
satisfied for different stakeholders’ concerns, the evaluation
of quality attributes (QAs) in the architecture may trigger
additional decisions that must be also evaluated regarding
their impacts and risks [2]. QAs, such as performance or
interoperability, are commonly used in software architecture
to describe the non-functional aspects of the architecture [3].
That is, many different design solutions for a functionality can
be chosen, leading to different levels of the QAs and also to
different trade-offs between them. For example, choosing a so-
lution with better adaptability often leads to trade-offs in terms
of performance, as the indirections necessary for enabling
adaptations slow down the system. As a consequence, although

many ADDs concern functionalities of the system, the QAs are
often among the most important decision drivers [3]–[6].

While many approaches in the literature, such as the Archi-
tecture Tradeoff Analysis Method (ATAM) [3], the Cost Ben-
efit Analysis Method (CBAM) [7], and the Attribute Driven
Design (ADD) [8], assist architectural design and evaluation
mainly driven by quality goals and scenarios, the majority
of architectural decision support methods and tools focus on
other aspects, such as reducing architectural knowledge (AK)
vaporization [9], reusability of ADDs [4], knowledge sharing
decisions [10], and group decision making (such as [11]).
The subjectivity of quality concerns that can be interpreted
differently for different stakeholders and in different contexts,
the importance of some qualities that are evaluated above
others, and the impact of QAs on the decisions made increase
the complexity of AK methods and tools. For these reasons,
supporting QAs entangled with ADDs is challenging and
more research is needed to provide methods for capturing and
documenting the quality properties along with the ADDs and
the relationships among them.

For the approach presented in this paper, we derived the
requirements from the needs of an industrial case study on
a large-scale software ecosystem in the smart cities domain.
Specifically, we propose to integrate reusable ADDs with QAs
in order to provide quality-driven decision making support.
This is especially important in a software ecosystem context,
as ecosystems focus on a set of businesses functioning as a
unit and interacting with a shared market for software and
services, together with relationships among them [12]. Thus,
for ecosystem decisions not only a single main development
organization but many interacting players in the ecosystem
must be taken into account. In addition, in a system-of-
systems as a smart city, many possible applications must be
considered when making ecosystem decisions. In this context,
various recurring design situations need to be addressed.
To tackle these problems and raise the quality of recurring
decisions in the smart cities domain, we propose to use a
reusable architectural decision making approach. The goal is

to base the ecosystem decisions on established AK, such as
existing software patterns [13] or other well-documented AK,
in order to address the broad nature of ecosystem decisions
and support reuse of knowledge. We further propose, as our
main contribution, to integrate reusable ADDs with QAs to
enable quality-driven decision support for recurring design
problems at hand. In particular, we model ADDs similar to the
Questions, Options, and Criteria approach [14] along with their
impact – e.g., positive or negative – on QAs. In addition to the
approach itself, we present its application in the smart cities
ecosystem case study [15] and discuss the lessons learned from
that case.

The remainder of the paper is structured as follows. In
Section II, we present our case study on smart city software
ecosystems. We get into the details of our approach and
accompanying tool in Section III and then present how we
applied our approach in the case study in Section IV. We dis-
cuss lessons learned, limitations, and challenges in Section V.
In Section VI, we discuss the related work and, finally, we
draw conclusions and outline future work in Section VII.

II. SMART CITIES ECOSYSTEM CASE STUDY

We motivate our approach by introducing our case study on
software ecosystems in a complex system-of-system, namely
the smart cities domain. Software ecosystems are defined
as a set of businesses functioning as a unit and interacting
with a shared market for software and services, together with
relationships among them [12]. The relationships are mainly
realized through the exchange of information, resources, and
artifacts. Software ecosystems entail multiple product devel-
opments relying on a common architecture platform and allow
companies to make a platform available to other parties outside
its organizational boundary. This motivates also the decision
of our industrial partner to develop a software ecosystem for
the smart cities domain.

Our case study concerns a system that is being developed
at Siemens with the purpose to provide a platform for a large-
scale software ecosystem for various smart cities projects with
partner organizations inside and outside of Siemens. From
an industry point of view, one motivation for the smart city
movement is the need to run urban infrastructures such as the
electrical grid or water distribution systems more efficiently,
effectively, cleaner and more secure. Siemens has various ini-
tiatives in the context of smart cities. To name two initiatives,
the sustainable cities program developing the city intelligence
platform and the smart city living lab in Vienna, Seestadt
Aspern, have both their headquarters in Vienna, Austria. At the
heart of each of those two initiatives, smart city ICT platforms
enable the realization of various novel applications. The idea
of these platforms is to provide a software ecosystem for smart
city applications (so-called apps). Apps can be implemented
by Siemens internal developers or by external partners using
Web APIs. From an architecture point of view, the platform
layers (see Figure 1) include:
• Data Integration. Extract Transform Load (ETL) is per-

formed to obtain data from external systems and to load

data into an integrated data schema. External systems
include meter data management, water asset management,
and building energy monitoring and controlling, deliver
data in various formats, and require flexible and robust
integration techniques.

• Messaging. The messaging layer enables the integration
of real time data. Whereas ETL performs batch import of
data in mostly fixed time intervals, the messaging layer
follows an event driven approach following a pub/sub
mechanism. The data integration choice (ETL vs. mes-
sage driven) depends on the capabilities and interfaces of
the external system and the application requirements.

• Data Storage. Within the database/data-warehouse layer,
data is stored in a persistent manner for querying and
analysis. Both, SQL-based and NoSQL database tech-
nologies are supported.

• Business Logic. On top of the data storage layer, a busi-
ness logic layer provides APIs to access data structures.
In addition, an analytics runtime and modules provide
capabilities to implement data mining algorithms.

• Services. Web APIs provide access to data and function-
ality in a standardized manner (RESTful services with
JSON/XML data support).

• GUI. Web dashboards provide the means for visualization
and presentation of results to a variety of users. A dash-
board is configurable to provide visualizations depending
on the information need of a user.

Meter Data
Management

Water Asset
Management

Building Energy
Monitoring & Controlling

Extract Transform Load (ETL) Jobs

SQL Store

...
External
Systems

Data Integration

Batch Data Import

Message
Brokers

Messaging

Real-time Events

Data Storage

Integrated Data Integrated Event Data

No-SQL Store

Business
Logic

Data Access

Business Logic
Components

Analytics
Runtime

Services
REST Web Services

API Access

GUI
Web Dashboards

Web API

Other Service Consumers

Simulations Monitoring &
Scheduling

Pub/Sub
Systems

Figure 1. Smart City Case Study

The platform offers various points for extensibility in each
layer so that new applications and new smart city deployments
can be realized. The different design strategies and tactics are

guided by both functional requirements and QAs. The QAs
depend on the specific applications to be realized and on
the various smart city stakeholders. Some possible extension
scenarios and their potential impact on QAs are:

• ETL jobs can be implemented and automated to load data
into the platform. Data quality, data completeness, and
reliability must be considered when designing new jobs.

• Subscriptions to event driven data sources can be added
within the messaging layer. Here, performance and scal-
ability play an important role.

• The data model can be extended by new entities to
accommodate new data sources. Maintainability of the
overall data model needs to be ensured.

• New APIs in the business layer and new data mining
algorithms can be added. Maintainability of the APIs is
important, as well as performance of the data mining
algorithms.

• New Web APIs and services can be implemented. Here,
security, performance, and reliability are important.

• Configuration of new dashboards can be performed by
users. Here, usability and privacy issues play a role.

The question about which QAs are important and their
priorities depend on the needs of the stakeholders. Various
stakeholders are involved in different parts and activities of
a smart city ecosystem. For instance, Data Providers provide
data stores of information that is being monitored (i.e., or-
ganization, structuring, and delivery of information), Facility
Operators are the main users of the smart city system that
processes inputs from heterogeneous sources (e.g., smart grid
networks, mobile devices, etc.), and Application Developers
are responsible for the visualization, analysis and generation
of reports summarizing information from different resources
for which Smart City Stakeholders and Smart Citizens are the
main users.

According to their needs, the various stakeholders will
access data at different times, from different data sources, and
using different interfaces or protocols. In addition, policies,
security issues, and business rules must be considered during
data access and processing. For instance, Facility Operators
may have JDBC access directly to the database(s), while
internal Application Developers are allowed to use Object-
Relational Mapping (ORM) APIs, and external Application
Developers have access through a REST API to the corre-
sponding applications. These three technology options, how-
ever, impose quite different performance characteristics on the
applications that use them and the analyses they are able
to perform. The Facility Operators may also have access
to building control systems (e.g., heating, air-conditioning)
using BACnet, a data communication protocol for building
automation. Sensitive data should not be provided to any
of the stakeholders unless it is anonymized. For the Smart
City Stakeholders and Smart Citizens only aggregated data is
provided based on privacy regulations. While some data is
publicly available (such as traffic information or aggregated

information offered by the city), encryption is required for
personal data such as a citizen’s energy consumption.

As a result, a software architect working on the design
of such complex systems-of-systems as the smart cities is
typically confronted with a set of complex design decisions on
how to realize application requirements for the corresponding
software ecosystems without violating QAs. This is a nontriv-
ial task given the multitude of extension points, the number of
different participating applications and stakeholders, and the
range of QAs to be considered in that context. Our main contri-
bution here is to propose quality-driven reusable architectural
decision making support, in order to base the ecosystem
decisions on established AK, such as existing software patterns
or other well-documented knowledge, integrated with QAs.

III. COCOADVISE APPROACH AND TOOL SUPPORT

CoCoADvISE is an approach and a corresponding tool for
supporting architectural decision making and documentation
based on reusable ADDs. Although the introduced decision
meta-model is inspired by the Questions, Options, and Criteria
(QOC) approach [14] the CoCoADvISE meta-model is rather
an extension than an application of QOC. The CoCoADvISE
meta-model includes among others dependencies between op-
tions, options and decisions, and options and questions, as well
as a categorization of reusable solutions (options in QOC). To
support, additionally, QAs during decision making, we have
extended the underlying meta-model to include relationships
between design solutions and QAs, as well as interrelation-
ships among QAs.

A. CoCoADvISE Meta-model Extension

The CoCoADvISE decision meta-model (see Figure 2)
consists mainly of Decisions, Questions, Options, Solutions,
Decision Drivers, and various relationships among them. For
each design issue, a set of Questions providing multiple
Options have to be modeled. Examples of relationships are that
a selection of an Option triggers a next Decision or an Option
is incompatible with or enforces another Option. A selection
of an Option may lead to a suggestion of a Solution for
the software architect. This Solution will be applied using an
Architecture Guidance, that is, for instance, a Design Pattern
or Architectural Pattern. In addition, the CoCoADvISE ADD
meta-model contains explicit links from Solutions to Decision
Drivers, an abstraction for Quality Attributes. Thus, a Solution
can have or erase an Impact (e.g., positive or negative) on a
Decision Driver. The same relationship applies alternatively
for an Architecture Guidance. A Decision Driver can finally
affect positively (be in synergy with) or negatively (be in
contradiction with) other Decision Drivers.

B. Quality-driven Decision Support

The advantage of the CoCoADvISE reusable decision mod-
els is that they need to be created only once for a recurring
design situation. In similar application contexts, corresponding
questionnaires can be automatically instantiated and used for
making concrete decisions. Based on the outcomes of the

1..*1

2..*

1

Decision

0..1

1

*

*

*

*

*

1

Architecture
Guidance

Solution

triggers

applies on

triggers

Question

*
*

incompatible with

has

has

*
*

*
*

Quality
Attribute

synergy with

contradiction to

degree: Degree

Impact

POSITIVE
NEGATIVE

<<enum>>
Degree

*1

*

1

leads to

has

has
applies on

enforces
*
*

Design
Pattern

Architectural
Pattern

Decision
Driver

1 1..*

*1

has first

Option

*1
erases

...

Figure 2. Reusable Architectural Decision Meta-model

questionnaires answered by software architects through the
decision making process, CoCoADvISE can automatically
resolve potential constraints and dependencies (e.g., reveal
follow-on questions and decisions, deactivate options, etc.),
recommend best-fitting design solutions, and visualize the
impact of recommended solutions on QAs of interest.

Q1: Question

text=''How often will you
 extract data [...]''

O1: Option

text=''once''

O2: Option

text=''based on events''

ADD1: Decision

name=''Data
 Extraction''

S1: Solution

text=''use ETL Job''

S2: Solution

text=''subscribe for events''

text=''based on schedule''

O3: Option

S3: Solution

text=''use ETL job (polling)''

I2: Impact

degree=NEGATIVE

I1: Impact

degree=POSITIVE

QA1: Q.Attribute

text=''Scalability''

QA2: Q.Attribute

text=''Maintainability''

Figure 3. Exemplary Architectural Decision Model

In Figure 3, we give an excerpt of a reusable decision model
for data management, consisting of one Decision (i.e., “Data
Extraction”), related to one Question (i.e., “How often will
you extract data from device?”), providing three Options: (a)
once, (b) based on events, and (c) based on schedule. The
selection of each option leads to a different solution, that is, if
we need to extract data only once or periodically we may use
an ETL job, and consider the polling mechanism if we extract
data based on a schedule; if data is extracted from device once

it is available, we will implement publish-subscriber and need
to subscribe for new events at the corresponding device. ETL
jobs are rather complex to program and introduce maintenance
costs, especially when business rules change over time and
data quality varies. An advantage of publish-subscriber is
that it offers high scalability when the number of subscribers
increases. Thus, modeling these relationships means connect-
ing the solutions “subscribe for events” and “use ETL job
(polling)” to the QAs “Maintainability” and “Scalability” with
NEGATIVE and POSITIVE impact respectively.

From such a reusable decision model, software architects
can instantiate questionnaires many times in similar design
situations. By selecting options the recommended solutions are
indicated for a concrete decision as soon as they are applicable.
For instance, the selection of the third option of the question
of Figure 4(a) will reveal the recommended solution “use
ETL job (polling)”. At the same time, the QAs of interest
are evaluated according to the recommended solutions and
based on predefined relationships between e.g., the solutions
and the QAs (see Figure 4(b)). Plus (+) indicates positive
effect, while minus (-) indicates negative effect of a specific
decision on the QA. Thus, software architects receive guidance
with respect to two concerns: (a) how are the QAs affected
by their (recommended) design solutions and (b) what is the
rationale behind positively or negatively evaluated QAs. The
first is supported in the tool by the visualization of the impact
of the design options on the QAs with plus (+) and minus
(-) “votes” while the second is achieved by providing related
tooltip information (e.g., Decision “use ETL job” for ADD1:
Data extraction affects Maintainability negatively).

A live demo of the CoCoADvISE tool with the setting
presented in the smart cities case study (see Section IV) is
available at https://andromeda.swa.univie.ac.at/cocoadvise/1.

1Username: “test” (no password is required).

Data Extraction

once

based on events

ADD1:

Q1: How often will you extract
data from device?

based on schedule

Solution: •use ETL job (polling)

Quality Attributes

Scalability

Maintainability

Security

Privacy

-

+

Decision 'use
ETL job' for
ADD1: Data
extraction
affects
Maintainability
negatively

(a) Exemplary Questionnaire (b) QAs Evaluated

Figure 4. Exemplary CoCoADvISE Questionnaire and Affected QAs

IV. CASE STUDY

In this section, we elaborate on using our approach in a
case study from the smart cities domain. In particular, we
demonstrate how to model data management related ADDs
in software ecosystems for smart cities in a reusable decision
model. Afterwards, we model the relationships between the
various design solutions and QAs, that is, for a set of QAs
of interest we investigate and capture the positive or negative
effect of the corresponding ADDs on them.

Two researchers and two domain experts in smart cities
design were involved in the case study, in three phases and
multiple refinements for each phase. First of all, a set of
use cases with respect to data management in systems for
smart cities were collected and analyzed. Based on these
use cases, we defined related decision points, options, and
design alternatives, as well as related reusable AK (e.g., design
patterns, technology-related solutions, etc.) – based mainly on
the existing related literature and discussions with the domain
experts – and organized them in categories of ADDs that need
to be made in the context of data management. Afterwards,
this information was organized in a reusable decision Co-
CoADvISE model. Table I provides exemplary decisions of
the reusable decision model consolidated in the first step of
the case study design, consisting of data management related
decisions, divided in six categories (Data Extraction, Data
Processing, Data Routing, Data Storage, Data Presentation,
and Data Privacy).

In the second step of the case study, we collected QAs that
are considered, according to the domain experts, key QAs for
the design of the smart city ecosystem. For instance, Scala-
bility is important in this context as distributed systems need
to be accessed and big amounts of data need to be managed
at real-time. In addition, Privacy and Security are key con-
cerns whenever sensitive personalized data is being requested.
Other QAs like Performance, Reliability, and Maintainability
influence strongly the architects’ ADDs for the smart cities
software ecosystem as well. The final list of considered QAs
consists of 11 QAs: Availability, Data Completeness, Data
Quality, Extensibility, Maintainability, Performance, Privacy,
Reliability, Security, Scalability, and Usability.

Often, in architectural decision making, we need to deal
with competing requirements and therefore, these QA interde-
pendencies also need to be considered when making trade-

offs [16]; for instance, security comes usually at costs of
usability. Using the CoCoADvISE meta-model we expressed
such relationships between QAs that occurred in the decisions,
i.e., a QA is in synergy with or in contradiction with another
QA. Once a constraint is in place, the tool automatically
checks it during decision making.

After eliciting a list of related QAs, we investigated whether
and to what extent the design solutions of the reusable decision
model affect these QAs. Of course, not all QAs are relevant for
every design solution and not all design solutions are related to
one of the aforementioned QAs. The outcome of this step was
a list of design solutions along with their positive or negative
impact on the QAs. A number of prominent examples of such
impacts in our reusable decision model for data management
are shown in Table II.

Table II
EXAMPLES OF IMPACTS OF DESIGN SOLUTIONS ON QAS

Design Solution Impact on QA
positive negative

Configurable dashboard Usability -
Batch requests Usability, Performance -
Vertical/horizontal scaling Scalability -
Offline algorithms Performance -
Anonymization Security, Privacy Performance
Cache data Performance -
Publish-subscriber - Security

The last step of our case study was to document ADDs for
the use case scenarios collected in the first step, as instances of
the reusable architectural decision model for data management.
That is, we tested our model by designing a number of app-
level architectures.

V. DISCUSSION

A central learned lesson of our work is that a systematic
approach to deal with the software architecture and archi-
tectural qualities is specifically important in the context of a
software ecosystem for a large-scale system-of-system, such as
the smart city. As many decisions are taken over and over again
for multiple design situations in different applications, we
decided to use reusable decisions as a basis for our systematic
approach. As this approach had not yet been integrated with
QAs, we proposed – to the best of our knowledge – the
first systematic approach for integrating reusable architectural
decision models and QAs.

Basing decision for multiple applications – whose require-
ments are often unknown at design time of the ecosystem
platform – only on past experiences is not enough, but knowl-
edge reuse from both internal experiences and external sources
is needed. External sources are mainly the literature and the
Web, including design and architecture patterns with their
quality impacts documented as pattern consequences or other
discussions of established design or architecture solutions with
clear statements on the impacts on QAs.

From an architecture point of view, one of the biggest
challenges in a smart city software ecosystem is the realization
of new applications and extensions of the platform given the

Table I
EXEMPLARY QUESTIONS OF REUSABLE ARCHITECTURAL DECISION MODEL FOR DATA MANAGEMENT IN SOFTWARE ECOSYSTEMS

Category Question Options Design Solutions

Data How often will you extract data from device? • Once → Use ETL Job
Extraction • Based on events → Subscribe to device for events (publish-subscriber)

• Based on schedule → Use ETL Job (with polling)

Data Do you need to translate extracted data (from
different sources) in a common format?

• No -
Processing • Yes → Use a normalizer/canonical model for defining a common

format

Data Will the data be sent to one or multiple
receivers?

• One → Use point-to-point connection
Routing • Multiple → Use publish-subscriber

Data How would you characterize the size of data that
needs to be stored?

• Small/medium → Scaling not required
Storage • Big → Use vertical (add resources to a node) or horizontal (add nodes

to a system) scaling

Where will the data be persisted? • File → Store in file system
Data How will the data be visualized for the end user? • Standard UI → Non-customizable UI
Presentation • Configurable → Use a configurable dashboard

Data Will you need to anonymize data? • No → -
Privacy • Yes → Use data filter + aggregator

wide variety of design choices and available design patterns.
Each choice may have different implications with respect to
QAs. QAs also need to be analyzed and specified for the
concrete domain they apply to. Without a systematic decision
process as presented in this work, software architects need
strong guidance by senior software architects to make the right
decisions. Here, the reusable decision process helps to solve
this problem.

Another challenge for software architects is the deep domain
knowledge needed to realize smart city applications. Each
domain may have its own specific protocols, standards, data
formats, etc. that need to be considered when designing an
application. The advantage of the presented approach is that
guidance tailored to a specific domain can be given. Individual
steps in the overall decision model can be customized for
specific domains (e.g., using a particular data format in the
context of a smart grid or smart building domain). Thus,
software architectures are guided through domain specific
design decisions and do not need to seek help and advice
from domain experts.

Finally, the reusable decision model can evolve as the body
of AK evolves. Within a smart city software ecosystem, many
different actors from different domains contribute new data,
new algorithms, and new applications. Lessons learned on how
to solve a given architectural problem or the most efficient way
to solve an algorithmic problem can be added to the model.
Thus, the model and the knowledge are driven by a community
instead of a single architecture specification that is updated
from time to time.

In the elaboration of our case study, we presented, a reusable
decision model focusing on data management issues, however,
we have been working on gathering other reusable AK, e.g.,
related to service-based integration [6] that can also be adapted
to the smart cities domain. In addition, our approach has
only been tested in the context of the smart cities domain.
However, we believe it can be generalized to many different
contexts. In general, using our approach requires a certain

system complexity. For very simplistic domains or small-scale
systems too much upfront investment might be required. The
extra effort required for our approach is probably only justified
from a certain system size on and with a certain level of reuse.
The break-even point for this would need to be determined in
future research. Apart from these effort aspects, we consider
our approach to be applicable also in other domains and for
other system sizes. The extra effort for our approach is mainly
the upfront investment of (a) building a design space with
quality annotations for the target domain and (b) tailoring it
to the domain of the ecosystem. Both efforts are considerable,
especially if detailed data on the effect on QAs is missing in
the literature. But as the design space needs to be built only
once and can then be reused, it was acceptable in our case
study’s context.

The various trade-offs of QAs that need to be made during
the decision making process still remains a complex and
challenging task. The subjectivity of quality concerns that
can be interpreted differently for different stakeholders and
in different contexts, the importance of some qualities that are
evaluated above others, the different levels of impact on QAs,
and so on, increase the complexity of architectural decision
making driven by QAs. More research on automation regard-
ing QA-based decisions is needed, but this would require
detailed data on how specific QAs are influenced by different
reusable decision options. So far the documented knowledge
in the literature is mainly anecdotal and informal and more
efforts from the community and practitioners are required to
completely integrate reusable ADDs with QAs.

VI. RELATED WORK

In the context of software ecosystems, the design choices
the software architects make have been studied with respect
to their QAs [17]. Some important quality properties of
software ecosystems, like portability, openness, and scalability
(see [17]) as well as design decisions [18] have been investi-
gated for the ecosystem architecture as a whole. That means,

that these existing works have documented design decisions
and QAs in a form of best practices, but have not introduced
guidance for concrete (reusable or not) design decisions. Also,
the concept of reusable decision models, although it has been
used in other domains (e.g., SOA solutions [19]), it has never
been considered in the context of software ecosystems.

For the software architecture community, capturing ADDs
is important for analyzing and understanding the rationale
and implications of these decisions and for gathering AK. A
substantial amount of work has been done in the direction of
documenting the AK using architectural decision modeling.
The CoCoADvISE meta-model we introduced in this paper has
many similarities to other decision meta-models (such as [4]),
however, it can be used additionally to model the impact of
ADDs on QAs.

Although many approaches in the literature, such as the
Architecture Tradeoff Analysis Method (ATAM) [3], the Cost
Benefit Analysis Method (CBAM) [7], and the Attribute
Driven Design (ADD) [8], assist architectural design and
evaluation mainly driven by quality goals and scenarios, the
majority of architectural decision support methods and tools
have in most cases different focus [20]. They aim, for instance,
at reducing AK vaporization [9], reusability of architectural
design decisions [4], knowledge sharing decisions [10], and
group decision making [11]. Architecture patterns have been
systematically integrated with QAs to enhance the usability
of patterns [21]. However, to the best of our knowledge,
our proposal is the first one to relate ADDs in reusable
architectural decision models with QAs, in order to provide
quality-based decision support.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we proposed to integrate QAs with reusable
ADDs to support architectural decision making. For this,
we introduced a reusable decision meta-model for modeling
among others the impact of design solutions on QAs, as
well as a tool prototype for supporting architectural decision
making driven by QAs. We applied afterwards our proposal in
a large-scale software ecosystem in the smart cities domain.
Our experiences show that reusable architectural decisions can
help to systematize the decision making process in ecosystem
contexts and that enriching them with QA support enables
us to model many relevant QAs that must be considered
during the decisions already at the time when the reusable
decision model is created. Still many challenges regarding
quality-driven decision support based on reusable AK need
to be addressed, as discussed in Section V. Essentially, part
of our upcoming work is to model and use further reusable
decision models for other aspects than data management in
the context of the smart cities software ecosystems. The goal
of such reusable architectural decision models is to be used,
updated, and configured among various projects, in similar
domains, and even across development group, department, and
company boundaries. As the next step, the decision model(s)
and the Web-based tool will be tested by an entire community
of Siemens software architects.

REFERENCES

[1] A. Jansen and J. Bosch, “Software Architecture as a Set of Architec-
tural Design Decisions,” in 5th Working IEEE/IFIP Conf. on Software
Architecture (WICSA), Pittsburgh, PA, USA. IEEE Computer Society,
2005, pp. 109–120.

[2] F. Bachmann, L. Bass, M. Klein, and C. Shelton, “Designing Software
Architectures to Achieve Quality Attribute Requirements,” Software,
IEEE Proc., vol. 152, no. 4, pp. 153–165, Aug. 2005.

[3] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice.
Addison-Wesley Professional, 2003.

[4] O. Zimmermann, T. Gschwind, J. Küster, F. Leymann, and N. Schuster,
“Reusable Architectural Decision Models for Enterprise Application
Development,” in 3rd Int’l Conf. on Quality of Software Architectures
(QoSA), Medford, MA, USA. Springer, 2007, pp. 15–32.

[5] O. Zimmermann, U. Zdun, T. Gschwind, and F. Leymann, “Combining
Pattern Languages and Reusable Architectural Decision Models into a
Comprehensive and Comprehensible Design Method,” in 7th IEEE/IFIP
Conf. on Software Architecture (WICSA). IEEE, 2008, pp. 157–166.

[6] I. Lytra, S. Sobernig, and U. Zdun, “Architectural Decision Making for
Service-Based Platform Integration: A Qualitative Multi-Method Study,”
in Joint 10th Working IEEE/IFIP Conf. on Software Architecture &
6th European Conf. on Software Architecture (WICSA/ECSA), Helsinki,
Finland. IEEE Computer Society, 2012.

[7] R. Kazman, J. Asundi, and M. Klein, “Quantifying the Costs and
Benefits of Architectural Decisions,” in 23rd Int’l Conf. on Software
Engineering (ICSE), 2001, pp. 297–306.

[8] L. J. Bass, M. Klein, and F. Bachmann, “Quality Attribute Design
Primitives and the Attribute Driven Design Method,” in Revised Papers
from the 4th Int’l Workshop on Software Product-Family Engineering,
ser. PFE’01. London, UK: Springer-Verlag, 2002, pp. 169–186.

[9] N. B. Harrison, P. Avgeriou, and U. Zdun, “Using Patterns to Capture
Architectural Decisions,” IEEE Software, vol. 24, no. 4, pp. 38–45, 2007.

[10] R. Farenhorst, R. Izaks, P. Lago, and H. Van Vliet, “A Just-In-Time
Architectural Knowledge Sharing Portal,” in Seventh Working IEEE/IFIP
Conf. on Software Architecture (WICSA), Feb 2008, pp. 125–134.

[11] M. Nowak and C. Pautasso, “Team Situational Awareness and Architec-
tural Decision Making with the Software Architecture Warehouse,” in
Proc. of the 7th European Conf. on Software Architecture, ser. ECSA’13.
Berlin, Heidelberg: Springer-Verlag, 2013, pp. 146–161.

[12] D. G. Messerschmitt and C. Szyperski, Software Ecosystem: Under-
standing an Indispensable Technology and Industry. Cambridge, MA,
USA: MIT Press, 2003.

[13] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture Volume 1: A System of Patterns.
John Wiley & Sons, 1996, vol. 1.

[14] A. MacLean, R. Young, V. Bellotti, and T. Moran, “Questions, Options,
and Criteria: Elements of Design Space Analysis,” Human-Computer
Interaction, vol. 6, pp. 201–250, 1991.

[15] C. B. Seaman, “Qualitative methods in empirical studies of software
engineering,” IEEE Trans. Softw. Eng., vol. 25, no. 4, pp. 557–572, Jul.
1999.

[16] A. Egyed and P. Grünbacher, “Identifying Requirements Conflicts and
Cooperation: How Quality Attributes and Automated Traceability Can
Help,” IEEE Software, vol. 21, no. 6, pp. 50–58, 2004.

[17] S. Jansen, “How Quality Attributes of Software Platform Architectures
Influence Software Ecosystems,” in Proc. of the 2013 Int’l Workshop on
Ecosystem Architectures, ser. WEA 2013. New York, NY, USA: ACM,
2013, pp. 6–10.

[18] M. Che and D. E. Perry, “Architectural Design Decisions in Open
Software Development: A Transition to Software Ecosystems,” in 23rd
Australian Software Engineering Conf. (ASWEC), 2014, pp. 58–61.

[19] O. Zimmermann, J. Koehler, and L. Frank, “Architectural Decision
Models as Micro-Methodology for Service-Oriented Analysis and De-
sign,” in Proceedings of the Workshop on Software Engineering Meth-
ods for Service-oriented Architecture (SEMSOA), Hannover, Germany,
D. Lübke, Ed., May 2007, pp. 46–60.

[20] M. Shahin, P. Liang, and M. R. Khayyambashi, “Architectural design
decision: Existing models and tools,” in IEEE/IFIP Conf. on Software
Architecture/European Conf. on Software Architecture (WICSA/ECSA).
IEEE, 2009, pp. 293–296.

[21] N. B. Harrison and P. Avgeriou, “Leveraging Architecture Patterns
to Satisfy Quality Attributes,” in First European Conf. on Software
Architecture (ECSA). Springer, 2007, pp. 263–270.

