
On the Effects of Traceability Links in Differently Sized
Software Systems

Muhammad Atif Javed and Uwe Zdun
Software Architecture Research Group

University of Vienna, Austria
muhammad.atif.javed|uwe.zdun@univie.ac.at

ABSTRACT
Context: None of the published empirical studies on soft-
ware traceability have comparatively examined the support
for differently sized systems. Objective: This paper re-
ports on two controlled experiments performed with two
Enterprise Service Bus (ESB) systems that are compara-
ble in terms of support features and system structure, but
are different in their size, in particular, UltraESB Version
2.3.0 and PetalsESB Version 4.2.0, to investigate the effects
of system size on the use of traceability links. Method: We
conducted two controlled experiments in which the same im-
pact evaluation activities were performed and measured how
the control groups (provided with no traceability informa-
tion) and the experiment groups (provided with traceability
information) performed these activities in terms of the quan-
tity and quality of retrieved elements. Results: Our find-
ings show that the 133.71% larger size of one of ESBs does
not have a significant influence on the quantity and qual-
ity of retrieved elements in the experiment groups. In the
control groups, in contrast, this increase in system size sig-
nificantly increases the quantity of incorrect elements and
reduces the overall quality of elements retrieved, while no
conclusive evidence concerning the quantity of missing ele-
ments was found. Conclusion: It is concluded that trace-
ability is more important in larger software systems.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Maintenance, and En-
hancement; D.2.9 [Software Engineering]: Management;
D.2.11 [Software Engineering]: Software Architectures

General Terms
Design, Management, Documentation

Keywords
Traceability, Differently Sized Systems, Impact Analysis,
Empirical Software Engineering, Controlled Experiment

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
EASE ’15, April 27 - 29 2015, Nanjing, China
Copyright 2015 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

1. INTRODUCTION
Traceability has been defined in the IEEE glossary of

software engineering as “the degree to which a relation-
ship can be established between two or more products
of the development process, especially products having a
predecessor-successor or master-subordinate relationship
with each other” [17]. Traceability relations between soft-
ware development artefacts are a solution often suggested
to help people understand software systems and support
their reuse, maintenance, evolution and quality control [8,
9, 11, 18]. The use of traceability relations is considered
more important in larger software systems. To date, how-
ever, none of the published empirical studies on software
traceability have comparatively examined the effects of
system size on the use of traceability links.
Our previous results imply that using traceability links

leads to significantly lower quantity of missing and incorrect
elements in understanding activities, and overall, a higher
quality of change impact analysis for evolution [12]. In this
paper, we provide an additional contribution to the body of
empirical knowledge on software traceability by investigat-
ing the support provided by traceability links for differently
sized software systems. In particular, we compare results in
terms of quantity and quality of the two control groups and
the two experiment groups from two controlled experiments.
In those experiments the same tasks have been performed (as
shown in Table 3) for two Enterprise Service Buses (ESBs),
i.e. very similar software systems, of different size. In par-
ticular, we intend to answer the following research question:
Are the quantity and quality of the retrieved elements in im-
pact evaluation activities differently influenced by the size
of the software systems under study when making use of
traceability links than when they are not used?
To answer this research question, we conducted two con-

trolled experiments at the University of Vienna, Austria in
May 2014. The experiments were conducted with two dif-
ferently sized ESB systems, in particular, UltraESB Version
2.3.0 and PetalsESB Version 4.2.0, that consists of 709 and
1657 source code classes, respectively. In total, 107 stu-
dents of the software architecture course took part: The
first experiment was carried out with 51 students, whereas
the other 56 students participated in the second experiment.
The participants were asked to perform seven impact evalua-
tion activities that are used for both software systems. This
was possible as the two different ESBs share many similar
functionalities and also have many correspondences in their
designs and architectures.
In both experiments, one half of the students were



assigned to the control group (without traceability links),
while the other half was assigned to the experiment group
(with traceability links). The data from the experiments
was analysed, and the quantity of missing and erroneous
retrieved elements and their overall quality were compared.
The results from the experiments demonstrate that using
traceability links leads to a slight difference in the quantity
and quality of retrieved elements for a 133.71% larger
software system. This difference in the absence of traceabil-
ity links, in contrast, significantly increases the quantity
of incorrect elements and reduces the overall quality of
elements retrieved in the larger software system, while
no conclusive evidence concerning the quantity of missing
elements was found.

The rest of this paper is organized as follows: Section 2
describes the related work. Section 3 discusses the design
of the controlled experiments including the introduction of
variables and hypotheses, while the subsequent Section 4
explains the details concerning the execution of the exper-
iments. Section 5 presents the hypotheses tested and the
analysis of the results of the study. Section 6 contains the
interpretation of the findings and a discussion of threats to
validity. Section 7 concludes the study and discusses future
work.

2. RELATED WORK
Several empirical studies have been performed to evaluate

the added value of traceability links. This section broadly
distinguishes between traceability links based on IR-based
traceability recovery tools, traceability visualization tools
and empirical investigations without any specific traceability
tool.

2.1 Empirical Investigations on IR-Based
Traceability Recovery Tools

De Lucia et al. [5, 6], Cuddeback et al. [4] and Dekhtyar et
al. [7] investigate the usefulness of IR-based traceability re-
covery tools. The first experiment of De Lucia et al. [6] was
carried out with 16 master students, who had to perform two
traceability recovery tasks on a development project, with
and without the COCONUT tool. It focuses on the identi-
fication of traceability links between requirements and the
source code. The results indicate that COCONUT signifi-
cantly improves the similarity between source code and re-
lated requirements in presence of comments, while a practi-
cal improvement was also detected without considering com-
ments. In a second study, De Lucia et al. [5] conducted a
controlled experiment and a replication to investigate the
support provided by ADAMS Re-Trace between use cases
and the source code, and between interaction diagrams and
test cases. The study involves 32 master students. The stu-
dents were asked to perform two traceability recovery tasks,
with and without ADAMS Re-Trace, on a software reposi-
tory of a completed project. The results show that ADAMS
Re-Trace significantly reduces the time spent on identifying
trace links and improves the tracing accuracy of the software
engineer.

Cuddeback et al. [4] and Dekhtyar et al. [7] evaluate
human analyst performance in IR-based traceability recov-
ery tools. Cuddeback et al. [4] conducted an experiment in
which the subjects had to prepare the final set of traceabil-
ity links, with different recall precision possibilities in the
RETRO tool, on a project assignment carried out with 26

students of computer science. They focused on the traceabil-
ity links between requirements and test cases. Their findings
show that the participants failed to finalize the correct trace-
ability links, while the participants provided with the lower
recall and precision of traceability links make significant im-
provements. In addition, regardless of size and accuracy of
the initial traceability links, the participants tend to guess
the correct number of traceability links. Dekhtyar et al.
[7] performed two more follow-up experiments to investigate
usability and stability issues in the RETRO tool and pre-
pare the final set of traceability links without tool assistance.
The experiments were conducted with a total of 84 students.
The results demonstrate that the accuracy of initial trace-
ability links and time spent had significant interaction with
the final traceability links, whereas no significant differences
with regard to the tool used, effort applied in searching for
missing links and traceability experience are observed.

2.2 Empirical Investigations on Traceability
Visualization Tools

The works by Cornelissen et al. [3] and Shahin et al. [19]
investigate the support provided by traceability visualiza-
tion tools. Cornelissen et al. analyse the support provided
by the ExTraVis tool, which offers two interactive views,
the sequence view and the circular bundle view of large exe-
cution traces, for program comprehension. The experiment
was carried out with 32 participants. The participants were
asked to perform eight typical tasks aimed at gaining an un-
derstanding of a representative subject system and measured
how a control group (using the Eclipse IDE) and an exper-
iment group (using both Eclipse and ExTraVis) performed
these tasks in terms of time spent and solution correctness.
The results show that ExTraVis significantly decreases the
time requirements and increases the correctness for program
comprehension.
Shahin et al. investigate the usefulness of Compendium,

a tool to visualize architectural design decisions and their
rationale, as a kind of traceability information. The experi-
ment involves 10 participants. The participants were asked
to understand the existing design and to make the new de-
sign according the new requirement, with and without the
Compendium tool. The results show that Compendium sig-
nificantly improves the correctness of understanding archi-
tecture design in the architecting process and does not in-
crease the total time for reading software architecture doc-
umentations and performing design task.

2.3 Empirical Investigations Without Any
Specific Traceability Tool

Mader and Egyed [15] and Javed and Zdun [10, 12] anal-
yse the support provided by traceability links without any
specific tool. Mader and Egyed [15] conducted a controlled
experiment to evaluate the support provided by traceability
links between requirements and the source code. The ex-
periment was conducted with 52 students of computer sci-
ence. They were asked to perform eight maintenance tasks,
half of the tasks with and the other half without traceabil-
ity information, on two third-party development projects.
The results demonstrate that requirement traceability saves
downstream cost and can profoundly improve software main-
tenance quality.
In our own previous studies [10, 12] we conducted four

controlled experiments to evaluate the support provided



by traceability links between architectural models and the
source code. The first two experiments were carried out
with 108 participants from industry and academia [10]. The
participants were asked to answer twelve typical questions
aimed at gaining an architecture-level understanding of
a representative subject system, with and without trace-
ability information. The findings show that the use of
traceability links significantly increases the correctness of
the answers of the participants, whereas no conclusive
evidence concerning the influence of the experience of the
participants are observed. Another two experiments were
conducted with 107 students of the software architecture
course using two different systems [12]. The students were
asked to perform seven impact evaluation activities for the
provided software systems, with and without traceability
information. The results provide statistical evidence that a
focus on traceability links significantly reduces the quantity
of missing and incorrect elements, and increases the overall
quality of architecture impact analysis for evolution. The
major difference of this paper to our previous results is that
the quantity and quality of retrieved elements in UltraESB
Version 2.3.0 and PetalsESB Version 4.2.0 is investigated
individually [12].

The contribution of this study is novel for two main rea-
sons. First, there exist no comparative evidence related to
the added value of traceability links in differently sized soft-
ware systems. Second, most of the earlier works are based on
some specific traceability tools, which does not enable a clear
distinction between tool support and the usefulness of trace-
ability links. In our experiments, for practical reasons and to
study the foundational concepts rather than a specific tool,
the participants were provided with hyperlink-based access
of traceability links and the source code, to investigate the
support provided by traceability links in impact evaluation
activities of differently sized software systems, rather than
the support provided by a specific tool.

3. DESIGN OF THE EXPERIMENT
For the design of the experiments, the guidelines for ex-

periments by Kitchenham et al. [14] and Wohlin et al. [21]
were used. The former present general guidelines for exper-
imentation in software engineering and give some instruc-
tions concerning the context, design, data collection, anal-
ysis, presentation, and interpretation of empirical studies
without going into detail. The latter present the experi-
ment phases in more detail, and also discuss statistical tests
and their suitability for different kinds of studies. Kitchen-
ham et al.’s guidelines were primarily used in the planning
phase of the experiments, while Wohlin et al.’s guidance
was used as a reference for the analysis and interpretation
of the results. The guidelines for reporting controlled ex-
periments by Jedlitschka and Pfahl [13] are used to describe
the experiments in this paper. Note that the subsequent
subsections of the reporting template were omitted, because
they were either not applicable, or their content was already
mentioned in other sections: Relation to existing evidence
is presented in Section 2; inferences and lessons learned are
discussed in Section 6; interpretation and general limitations
of the study are described in Section 6.2. The usage of this
reporting template, however, introduces a certain level of
redundancy, because a distinction between the design and
the actual execution of the experiments is made.

3.1 Goal, Hypotheses, Parameters, and Vari-
ables

The goal of the experiments is to find out, if traceabil-
ity links lead to lower difference in the quantity and quality
of retrieved elements for differently sized software systems
compared to the quantity and quality of elements that are
retrieved without using traceability information. The exper-
iment’s goal led to the following null hypotheses and corre-
sponding alternative hypotheses:

H01: The use of traceability links leads to higher difference
in the quantity of correctly retrieved elements for the
larger software system compared to retrieval without
traceability information.

H1: The use of traceability links leads to lower difference
in the quantity of correctly retrieved elements for the
larger software system compared to retrieval without
traceability information.

H02: The use of traceability links leads to higher difference
in the quantity of incorrectly retrieved elements for the
larger software system compared to retrieval without
traceability information.

H2: The use of traceability links leads to lower difference in
the quantity of incorrectly retrieved elements for the
larger software system compared to retrieval without
traceability information.

H03: The use of traceability links leads to higher differ-
ence in the overall quality of retrieved elements for the
larger software system compared to retrieval without
traceability information.

H3: The use of traceability links leads to lower difference in
the overall quality of retrieved elements for the larger
software system compared to retrieval without trace-
ability information.

Description Scale Type Unit Range 
Quantity of correctly retrieved elements  Interval Points [0 - 1] 
Quantity of incorrectly retrieved elements Interval Points [0 - 1] 
Overall quality of the retrieved elements Interval Points [0 - 1] 

Table 1: Dependent Variables

3.1.1 Dependent Variables
Three dependent variables were observed during the ex-

periments, as shown in Table 1: the quantity of correctly
and incorrectly retrieved elements, and their overall quality
in the differently sized software systems. They were accessed
by using the recall, precision, and F-measure, respectively.
Because analysis and evaluation of software systems involves
a list of system elements, two aspects were specifically taken
into consideration to measure the recall and precision of the
retrieved elements:

• The set of correct elements expected in the solution to
activity a (Ca).

• The set of elements retrieved in the solution to activity
a by participant p (Rp,a).

Recallp,a =
| Ca ∩Rp,a |

Ca
Precisionp,a =

| Ca ∩Rp,a |
Rp,a



Recall is the percentage of correct matches retrieved by
an experiment subject, while precision is the percentage of
retrieved matches that are actually correct. Because recall
and precision measure two different concepts, it can be diffi-
cult to balance between them. Therefore, f-measure, a stan-
dard combination of recall and precision, defined as their
harmonic mean, is used to measure the overall quality of
retrieved elements from the experiments’ participants.

F −measurep,a = 2 ∗ recallp,a ∗ precisionp,a

recallp,a + precisionp,a

3.1.2 Independent Variables
The goal of the experiments was to discover the influence

of traceability links on the quantity and quality of elements
obtained from differently sized software systems. Therefore,
two different treatments were defined for the participants in
each experiment: One group of participants was explicitly
told to perform the impact evaluation activities by using the
information from the architectural documentation and the
source code of the system. The participants in the other
group performed the same activities, but additionally re-
ceived the traceability links between architectural models
and the source code. The first group is referred to as the
control group, the latter as the experiment group. Note
that the first experiment was conducted with a rather small
system (UltraESB), while the second experiment has been
performed with a larger system (PetalsESB).

Table 2 shows five independent variables that could have
an influence on the dependent variables. They relate to the
personal information (programming experience, architecture
experience, affiliation), group affiliation (control group or
experiment group) and time spent in the experiments. In
the design of the study, these variables were eliminated by
balancing the characteristics between the control groups and
the experiment groups in both experiments.

Time Ordinal Minutes 90 minutes (Max) 
Group Affiliation Nominal N/A Control group, Experiment group 
Programming experience Ordinal Years 4 classes: 0-1, 1–3, 3–7, >8 
Architecture experience Ordinal Years 4 classes: 0-1, 1–3, 3–7, >8 
Affiliation Nominal N/A Academia, Industry, Other 

Description Scale Type Unit Range/Possible Values 

Table 2: Independent Variables

3.2 Experiment Design
To test the hypotheses, we conducted two controlled ex-

periments [1] at the University of Vienna, Austria, in May
2014.

3.2.1 Participants
The participants in the experiments were 107 individual

students of the software architecture course held at Univer-
sity of Vienna. The first experiment was conducted with
51 students, while the other 56 students had participated
in the second experiment. All the students had knowledge
of software development, software architecture, as well as of
software traceability.

3.2.2 Objects
The basis for the impact evaluation of differently sized

software systems was UltraESB Version 2.3.0 and PetalsESB
Version 4.2.0. These systems belong to the ESB domain.
They provide an connectivity infrastructure to integrate the
services within a service-oriented architecture. The choice

of using the particular objects is motivated by the following
factors:

• The UltraESB and PetalsESB are free open source sys-
tems, which enables us to conduct the experiments and
disseminate their results.

• These systems are based on industry standards; that
is, they have industrial relevance.

• The domain of the systems is well-known to the par-
ticipants from previous lectures of at least the software
architecture course.

• The UltraESB and PetalsESB are written in the Java
programming language with which the participants
were sufficiently familiar.

• The source code of the UltraESB and PetalsESB ad-
heres to coding standards and is rather easy to under-
stand for most potential subjects.

• The overall source code of the UltraESB and
PetalsESB consists of 709 classes and 1657 classes,
respectively; that is, both of them are not too
large to be studied in the limited time-frame of the
experiments’ sessions and sufficiently different for
performing two independent experiments.

• The UltraESB and PetalsESB belong to the same do-
main, are very similar in structure and implemented
features, but significantly differ with respect to their
sizes. This enables us to find out whether the larger
size of PetalsESB has a positive or negative impact on
the study results.

• The experimenters were familiar with the internals of
the UltraESB and PetalsESB.

3.2.3 Blocking
To be able to explicitly analyse the influence of traceabil-

ity links in differently sized software system, the participants
in both experiments were randomly assigned to the two bal-
anced groups. For each experiment, one group of partici-
pants was asked to answer the impact evaluation activities
by using the information from the architectural documenta-
tion and the source code of the system, whereas the other
group performed the same tasks, but additionally received
the traceability links between architectural models and the
source code. The first group is referred to as control group,
the latter as experiment group.

3.2.4 Instrumentation
To obtain the necessary data related to the influence of

traceability links in differently sized software system, the
instruments discussed in the following paragraphs were used
to carry out the experiments.

Three pages of architectural documentation about the
used objects.
The participants in the first experiment were provided

with the documentation for UltraESB, while the partici-
pants of the second experiment received the documentation
for PetalsESB. The documentation describes the conceptual
architecture and lists technologies and frameworks used in



the implementation. Besides text, a UML component dia-
gram is used to illustrate the components, and their inter-
relationships in parts of the architecture.

Web-based access for the source code.
The participants in the first and second experiment were

provided with the web-based access of syntax-highlighted
source code for the UltraESB and PetalsESB, respectively.
The cover page alphabetically lists the source code pack-
age names and their enclosed code classes, and provides a
hyperlink-based support to ‘jump’ to specific elements (code
classes or packages) located in the Git repository1. The par-
ticipants in the experiment groups were also provided with
the similar support for traceability links, represented as lists:
Each entry in a list contains information about architectural
components and their realized code classes, which represent
individual traceability link. It may be noted that two doc-
toral researchers established the traceability links (including
the first author of the paper) that are later validated by two
other doctoral researchers (also referred to as experimenters)
and a professor (the second author in the paper).

A questionnaire to be filled-in by the participants dur-
ing the experiment.

At the first page of the questionnaire, the participants had
to rate their programming experience, architecture experi-
ence and affiliation, while the subsequent pages contains the
seven impact evaluation activities, as shown in Table 3. In
the context of these activities, two important criteria are
applied: (i) the activities should be representative for key
impact analysis and evolution contexts for both UltraESB
and PetalsESB, and (ii) they should be imaginatively con-
structed to measure the deeper impact understanding from
participant groups. Note that the same impact evaluation
activities listed in Table 3 were used for both UltraESB and
PetalsESB, which was possible as different ESBs share many
implemented features and also have similar design struc-
tures. The results expected from participants for each ac-
tivity were sets of retrieved element names (i.e., names of
individual source code classes or packages and components
from the provided component models).

A1 Investigate the impact of extensions in the transport senders and listeners 
A2 Investigate the consequences of extensions in the traffic monitoring 
A3 Determine the ripple-effects of changes in the ESB configuration 
A4 Investigate the impact of changes in the message interception 
A5 Evaluate the effects of high availability and capacity of ESB server 
A6 Investigate the consequences of new message endpoints 
A7 Determine the impact of new deployment aspect implementation 

ID Description 

Table 3: Impact Evaluation Activities (Used for
Both UltraESB and PetalsESB)

3.2.5 Blinding
To eliminate subjective bias on the part of both exper-

iments’ participants and the experimenters, double blind-
ing was applied in the experiments. Although, participants
perceived that there are two different groups for each ex-
periment, they were not aware about the purpose of group
division and their group affiliation.

The results of the experiments were handed over to two in-
dependent researchers who did not know the real identity of
the participants. This was done to prevent the experiments

1http://git-scm.com

from being biased. To be able to compute the results for the
quantity and quality of retrieved elements, the researchers
were asked to compute the information retrieval statistics by
matching the participants’ answers with the original solution
model. This allows us to objectively evaluate the retrieved
elements for differently sized software systems rather than
by intuitive or ad-hoc human measures.

3.2.6 Data Collection Procedure
After introduction and grouping, the participants received

the instruments, mentioned in Section 3.2.4. The provided
instruments had to be used to perform the impact evaluation
activities. The participants were distributed over separate
rooms according to their group membership. At least one ex-
perimenter was present in each room to answer the questions
related to the instructions and to restrict the participants
from consulting others and using forbidden material. The
participants were given 90 minutes to perform the impact
evaluation activities. After completion of the session, the
filled-in questionnaires were collected by the experimenters
and finally a discussion in the wrap-up phase was arranged
to gather further information from the participant groups.
All the participants were present during the discussion.
The discussion questions were concerning difficulties in the

experiments and influence of traceability links in performing
the impact evaluation activities. While this information is
not required for testing the hypotheses, it is used for vali-
dation and interpretation of the results. The questions af-
ter the experiments are asked for three reasons: 1) because
the traceability links between architectural models and the
source code could have influenced the participants of the
control groups prior to the experiments; 2) because we are
interested in a way the participants performed the impact
evaluation activities for differently sized software systems;
3) in the light of discussion, the participants of the control
groups could have guessed that traceability links played an
important role in the experiment groups, and consciously or
unconsciously also focused on the traceability links.

4. EXECUTION

4.1 Sample and Preparation
As described in Section 3.2, the experiments were con-

ducted in two practical sessions at the University of Vienna,
Austria. The first experiment took place with 51 students
of the software architecture course; the second experiment
was conducted with another 56 students of the same course.
Figure 1 shows the distribution of the participants based

on their previous experience and affiliation, as assigned to
the control group and the experiment group. The data pre-
sented in the figures was accumulated from all the partici-
pants in the two experiments, but also shows the separate
data of the experiments. The Sub-figures (a) and (b) show
the previous experience of the participants concerning pro-
gramming and software architecture, while Sub-figure (c)
shows the affiliation of the participants. Note that the pre-
vious experiences in the control groups is slightly better both
regarding programming and architecture. In the experiment
groups slightly more people with an academic affiliation and
slightly less with an industry affiliation are present. How-
ever, overall the experiences and affiliations are rather well
balanced in the two experiments.



0

5

10

15

20

25

30

35

Control Group Experiment Group

Experiment 1 Experiment 2

0-
1 

Y
ea

rs
 

1-
3 

Y
ea

rs
 3-
7-

Y
ea

rs
 

7+
 Y

ea
rs

 

0-
1 

Y
ea

rs
 

1-
3 

Y
ea

rs
 3-

7-
Y

ea
rs

 

7+
 Y

ea
rs

 

(a) Programming Experience 

0

5

10

15

20

25

30

35

Control Group Experiment Group

Experiment 1 Experiment 2

0-
1 

Y
ea

rs
 

1-
3 

Y
ea

rs
 

3-
7-

Y
ea

rs
 

7+
 Y

ea
rs

 

0-
1 

Y
ea

rs
 

1-
3 

Y
ea

rs
 

3-
7-

Y
ea

rs
 

7+
 Y

ea
rs

 

(b) Architecture Experience 

0

5

10

15

20

25

30

                  Control Group Experiment Group

Experiment 1 Experiment 2

In
du

st
ry

 

In
du

st
ry

 A
ca

da
m

ia
 

A
ca

da
m

ia
 

O
th

er
 

O
th

er
 

(c) Affiliation 

Figure 1: Distribution of Participants

4.2 Data Collection Performed
The data collection procedure was performed as planned

in the study design. There were no participants who
dropped out and no deviations from the study design
occurred.

4.3 Validity Procedure
The experiments were conducted in a controlled environ-

ment. The participants in both experiments were assigned to
different rooms according to their group membership (con-
trol group or experiment group). The participants in each
rooms were supervised by at least one experimenter during
the whole duration, enabling them to ask clarification ques-
tions and restrict them from talking to each other or using
forbidden material. All the participants had to return the
questionnaire before leaving the room. The filled-in ques-
tionnaire were collected from the remaining participants af-
ter completion of experiments’ sessions. No unexpected sit-
uation occurred during the experiments.

5. ANALYSIS

5.1 Descriptive Statistics
The descriptive statistics shows the results of the experi-

ments as a first step in the analysis. The first two subsections
concern the quantity of correctly and incorrectly retrieved
elements respectively. The last subsection presents an anal-
ysis of the overall quality of retrieved elements in the two
experiments.

Control Group Experiment 1 2.701009 (0.3858584 %) 2.565584 (0.3665121 %) 1.808094 (0.2582992 %) 
Experiment 2 2.04751 (0.2925014 %) 1.908818 (0.2726883 %) 1.023914 (0.1462735 %) 

Experiment Group Experiment 1 4.439981 (0.634283 %) 4.868956 (0.6955651 %) 1.708463 (0.2440661 %) 
Experiment 2 4.114883 (0.5878404 %) 4.491484 (0.6416406 %) 1.421371 (0.203053 %) 

Group Affiliation Execution Mean Median Std. Dev. 

Table 4: Descriptive Analysis of the Quantity of
Correct Retrieved Elements

5.1.1 Quantity of Correctly Retrieved Elements
The descriptive statistics for the quantity of correctly re-

trieved elements for the control groups and the experiment
groups from the two experiments are shown in Table 4 and
Figure 2. The data in the table is based on the sum of the
recall measures of the experiments’ activities for each par-
ticipant, while the figure concerns the recall measures for
each experiment activity.

As we see from Table 4, the total difference in the quan-
tity of correctly retrieved elements is lower in the experi-
ment groups than in the control groups. This indicates that
the quantity of correctly retrieved elements is less effected
in the larger software system due to the traceability links.
The results in Figure 2 show that the participants of the

experiment group belonging to the second experiment have
only outperformed the participants of the control group of
the first experiment in Activity 4. This means that the
quantity of correctly retrieved elements in the larger system
(PetalsESB) is higher for all the impact evaluation activities
except activity 4 by focusing on traceability links compared
to the quantity of correctly retrieved elements in the rather
small system (UltraESB) that is performed without trace-
ability information.

0

0,2

0,4

0,6

0,8

1

A1 A2 A3 A4 A5 A6 A7

Exp. 1 - Control Group Exp. 2 - Control Group
Exp. 1 - Experiment Group Exp. 2 - Experiment Group

(a) Mean Difference 

0

0,2

0,4

0,6

0,8

1

A1 A2 A3 A4 A5 A6 A7

Exp. 1 - Control Group Exp. 2 - Control Group
Exp. 1 - Experiment Group Exp. 2 - Experiment Group

(b) Median Difference 

Figure 2: Quantity of Correctly Retrieved Elements
for Each Experiment Activity

5.1.2 Quantity of Incorrectly Retrieved Elements
Table 5 and Figure 3 show the comparisons for the quan-

tity of retrieved elements that are actually correct for the
control groups and the experiment groups in the two ex-
periments. The data in the table is based on the sum of
the precision values of the experiments’ activities for each
participant. Note that the total difference in the quantity
of retrieved elements that are actually correct is lower in
the experiment groups than the control groups. As a conse-
quence, this means that the quantity of incorrectly retrieved
elements is higher in the larger software system when it is
performed without traceability information.

Control Group Experiment 1 3.774333 (0.5391905 %) 3.208333 (0.4583333 %) 1.779565 (0.2542236 %) 
Experiment 2 2.278481 (0.3254973 %) 2.242929 (0.3204185 %) 1.191005 (0.1701435 %) 

Experiment Group Experiment 1 4.826603 (0.6895147 %) 4.6875 (0.6696429 %) 1.865917 (0.2665595 %) 
Experiment 2 4.454726 (0.6363894 %) 4.523485 (0.6462121 %) 1.593693 (0.2276704 %) 

Group Affiliation Execution Mean Median Std. Dev. 

Table 5: Descriptive Analysis of the Quantity of Ac-
tually Correctly Retrieved Elements

0

0,2

0,4

0,6

0,8

1

A1 A2 A3 A4 A5 A6 A7

Exp. 1 - Control Group Exp. 2 - Control Group
Exp. 1 - Experiment Group Exp. 2 - Experiment Group

(a) Mean Difference 

0

0,2

0,4

0,6

0,8

1

A1 A2 A3 A4 A5 A6 A7

Exp. 1 - Control Group Exp. 2 - Control Group
Exp. 1 - Experiment Group Exp. 2 - Experiment Group

(b) Median Difference 

Figure 3: Quantity of Actually Correctly Retrieved
Elements for Each Experiment activity

The results in the Figure 3 concern the precision for each
experiment activity, in which the participants of the exper-
iment group of the second experiment only outperformed
the participants of the control group of the first experiment



in Activity 7. It is interesting to note that the first experi-
ment is conducted with 133.71% smaller system (UltraESB),
while the second experiment was performed with larger sys-
tem (PetalsESB).

5.1.3 Overall Quality of Retrieved Elements
The descriptive statistics for the overall quality of re-

trieved elements for the control groups and the experiment
groups from the two experiments is shown in Table 6 and
Figure 4. The results in the table are based on the sum of the
overall quality of retrieved elements (i.e., the f-measure) of
the experiments’ activities for each participant, while the fig-
ure shows the f-measure results for each experiment activity.
The data in the table and figure show that the average qual-
ity difference of retrieved elements in the experiment groups
is lower than the average quality difference of retrieved el-
ements in the control groups. The results also show that
the participants of the experiment group of the second ex-
periment (conducted with larger system – PetalsESB) have
a higher overall quality for all impact evaluation activities
than the participants of the control group of the first experi-
ment (conducted with the rather small system – UltraESB).

Control Group Experiment 1 2.767399 (0.3953427 %) 2.516986 (0.3595694 %) 1.624837 (0.2321195 %) 
Experiment 2 1.755936 (0.2508479 %) 1.769355 (0.252765 %) 0.7923499 (0.1131928 %) 

Experiment Group Experiment 1 4.377607 (0.6253725 %) 4.275092 (0.6107274 %) 1.722879 (0.2461256 %) 
Experiment 2 3.66901 (0.5241442 %) 3.608125 (0.5154464 %) 1.617311 (0.2310445 %) 

Group Affiliation Execution Mean Median Std. Dev. 

Table 6: Descriptive Analysis for the Overall Quality
of Retrieved Elements

0

0,2

0,4

0,6

0,8

1

A1 A2 A3 A4 A5 A6 A7

Exp. 1 - Control Group Exp. 2 - Control Group
Exp. 1 - Experiment Group Exp. 2 - Experiment Group

(a) Mean Difference 

0

0,2

0,4

0,6

0,8

1

A1 A2 A3 A4 A5 A6 A7

Exp.1 - Control Group Exp. 2 - Experiment Group
Exp.1 - Experiment Group Exp. 2 - Experiment Group

(b) Median Difference 

Figure 4: Overall Quality of Retrieved Elements for
Each Experiment Activity

5.1.4 Dataset Reduction
Outliers in the dataset, i.e., data points that are either

much lower or much higher than other data points, are po-
tential candidates for dataset reduction. Thirteen of the
participants from the two experiments did not perform all
the activities. This results in nineteen missing data points
in the experiments. As it seems that these participants have
spend sufficiently longer time in exploring the source code,
we have not excluded these data points from the study.

To find potential outliers, we also calculated the quan-
tity and quality of the impact evaluation activities for each
participant. Note that four of the participants from the
experiment groups reached a considerable lower quantity
and quality of retrieved elements than the other members
of these groups. A closer analysis showed that they could
not properly make use of traceability links to perform the
impact evaluation activities. However, their results were not
excluded as outliers, because the difference to the other par-
ticipants is not strong enough. Excluding these data points
would have introduced a potential vulnerability of the study
results.

5.2 Analysis of the Opinion of Participants
This subsection summarizes the results of the wrap-up

discussion phase which was arranged after each experiment

session to gather further information from the participant
groups.
The participants in the experiment groups from the two

experiments and the control group of the first experiment
have acknowledged that they had enough time to perform
the impact evaluation activities. However, the participants
in the control group of the second experiment showed con-
cerns related to the provided time for performing the activ-
ities. This is because the second experiment was conducted
with the 133.71% larger system (PetalsESB) compared to
first experiment (UltraESB). The same happened also for
the experience and difficulties of the participants: The par-
ticipants of the control groups experienced more difficulties
in performing the activities than the participants of the
experiment groups, in addition, the participants with ‘0-1
years’ of experience encountered more difficulties than the
participants with ‘1-8+ years’ of experience.
The participants were also asked about their familiarity

with the application domain. The answers imply that en-
terprise service bus, which is the application domain of the
UltraESB and PetalsESB, is well-known to the participants
from previous lectures of the software architecture course.
The next two questions concerned the usage and helpful-

ness of traceability links for impact evaluation of the differ-
ently sized software systems. First, the participants were
asked whether traceability links are useful in performing the
provided activities. The answers reflect that the partici-
pants had knowledge about traceability links. The members
of both groups generally consider traceability links as useful
in analysis and evaluation of the software systems. In the
next question the participants were asked whether they used
traceability links before. The answers show that only a very
few participants have previously used traceability links for
understanding of software elements outside of the lecture in
which the experiments took place.
Finally, the participants were asked to briefly describe how

the impact evaluation activities were performed. This was
primarily done to confirm that the experiment groups used
the traceability links and to find out if the control groups
used any other systematic way to perform the activities.
The answers of the control groups reveal a focus on an in-
tuitive approach, which was mainly driven by personal ex-
perience or judgments. The respondents stated that they
performed the activities by reading the textual description
in the architecture document and intuitively exploring the
code classes. They acknowledged that it is hard to find
the correct links between architecture and implementation
artefacts. This might stem from the fact that software ar-
chitecture is not explicitly represented in the code classes,
for example, as packages and classes or similar code-level
abstractions. The answers of the experiment groups show
a focus on the traceability links. The respondents of the
experiment groups stated that they used traceability links
to identify the architecture artefacts in the code classes and
vice versa. They confirmed that they primarily used this
additional knowledge for performing the impact evaluation
activities for the provided systems.

5.3 Hypothesis Testing and Results

5.3.1 Quantity of Correctly Retrieved Elements
To be able to test the first null hypothesis Ho1, the quan-

tity of correctly retrieved elements in the control groups



and the experiment groups is measured. In the analysis of
the experiments, the Shapiro-Wilk normality test [20] and
Wilcoxon Rank-Sum test [16] are used. First, the Shapiro-
Wilk normality test is used to find out whether equal vari-
ances of the level of correctness can be assumed. Second, as
a consequence of non-normal distributions, the correspond-
ing non-parametric test, Wilcoxon Rank-Sum test, is used
to test the significance of the found results. Note that the
results of tests were interpreted as statistically significant at
α = 0.05 (i.e., the level of confidence is 95%).

Control Group Experiment 1 vs. Experiment 2 W = 406, p-value = 0.3256 
Experiment Group Experiment 1 vs. Experiment 2 W = 406.5, p-value = 0.4672 

Group Affiliation Factor Wilcoxon Rank-Sum Test 

Table 7: Wilcoxon-test for Quantity of Correct Re-
trieved Elements

The results from the Wilcoxon rank-sum test are shown
in Table 7. It provides evidence that Ho1 can be rejected.
This means that the use of traceability links in our experi-
ments leads to a lower difference in the quantity of correctly
retrieved elements for the larger software system compared
to retrieval without traceability links. It can be noted that
we are unable to show that this result is significant when ele-
ments in the differently sized software systems are retrieved
without traceability information.

5.3.2 Quantity of Incorrectly Retrieved Elements
Hypothesis Ho2 was also evaluated with a Wilcoxon rank-

sum test. The results are shown in Table 8. The table
shows that the quantity of incorrectly retrieved elements in
the control groups and the experiment groups provide strong
evidence that Ho2 can be rejected. This means that the use
of traceability links in our experiments leads to a lower differ-
ence in the quantity of incorrectly retrieved elements for the
larger software system compared to retrieval without trace-
ability links. Moreover, it is noticeable to see that this result
is significant when elements in the differently sized software
systems are retrieved without traceability information.

Control Group Experiment 1 vs. Experiment 2 W = 522, p-value = 0.002244 
Experiment Group Experiment 1 vs. Experiment 2 W = 409.5, p-value = 0.4354 

Group Affiliation Factor Wilcoxon Rank-Sum Test 

Table 8: Wilcoxon-test for Quantity of Incorrect Re-
trieved Elements

5.3.3 Overall Quality of Retrieved Elements
The Wilcoxon rank-sum test is also used to evaluate the

Hypothesis Ho3. The results are shown in Table 9. The ta-
ble shows that the difference in the control groups and the
experiment groups provide strong evidence that Ho3 can be
rejected. This means that the use of traceability links in our
experiments leads to a lower difference in the overall quality
of retrieved elements for the larger software system com-
pared to retrieval without traceability links. It is interesting
to note that this result is also significant when elements in
the differently sized software systems are retrieved without
traceability information.

Control Group Experiment 1 vs. Experiment 2 W = 468, p-value = 0.03553
Experiment Group Experiment 1 vs. Experiment 2 W = 445, p-value = 0.1647 

Group Affiliation Factor Wilcoxon Rank-Sum Test 

Table 9: Wilcoxon-test for Overall Quality of Re-
trieved Elements

6. INTERPRETATION

6.1 Evaluation of Results and Implications

6.1.1 Quantity of Correct Retrieved Elements
Hypotheses Ho1 and H1 concern the influence of trace-

ability links on the quantity of correctly retrieved elements
for the larger software system. The results pointed out in
Section 5 show that the null hypothesis Ho1 can be rejected.
Thus, according to our experiments, there is evidence that
the difference in the quantity of correct retrieved elements
is lower in the larger software system if traceability links are
used compared to retrieval without traceability information.
The very small difference in the control groups is surpris-

ing to us because we have assumed that the quantity of
correct retrieved elements is significantly lower in the larger
system compared to the quantity of correctly retrieved ele-
ments in the rather small system. However, the participants
of the control groups from the both experiments performed
rather poorly.

6.1.2 Quantity of Incorrect Retrieved Elements
Hypotheses Ho2 and H2 concern the influence of traceabil-

ity links on the quantity of incorrectly retrieved elements
for the larger software system. The results pointed out in
Section 5 provides strong evidence that the null hypothesis
Ho2 can be rejected. Thus, according to our experiments,
there is evidence that the difference in the quantity of in-
correctly retrieved elements is lower in the larger software
system if traceability links are used compared to retrieval
without traceability information.

6.1.3 Overall Quality of Retrieved Elements
Hypotheses Ho3 and H3 concern the influence of traceabil-

ity links on the overall quality of retrieved elements for the
larger software system. The results pointed out in Section 5
provides strong evidence that the null hypothesis Ho3 can be
rejected. Thus, according to our experiments, there is evi-
dence that the difference in the overall quality of retrieved
elements is lower in the larger software system if traceabil-
ity links are used compared to retrieval without traceability
information.

6.2 Threads to Validity and Limitations of the
Study

Multiple levels of validity threats have to be considered
in the experiments. We have considered the classification
scheme for validity in experiments by Cook and Campbell
[2]. The internal validity concerns the cause effect infer-
ences between the treatment and the dependent variables
measured in the experiments. External validity refers to the
generalizability of the results for a larger population. Con-
struct validity is about the suitability of the study design
for the theory behind the experiment. Finally, conclusion
validity focuses on the relationship between treatment and
outcome and on the ability to draw conclusions from this
relationship. All validity threats in the experiments are cat-
egorized based on this classification.

6.2.1 Internal Validity

• The variation in human performance might distort the
results of the experiments, and then the performance
differences would not arise from the difference in treat-
ments. In these particular experiments, the partici-



pants’ experience is quite comparable among the con-
trol groups and the experiment groups (as shown in
Fig. 1). Thus, this factor is not seen as a strong threat
to validity.

• Another potential threat to validity is that the partici-
pants’ population in the experiments might not be suf-
ficiently competent. This might influence the results
of the experiments. In these particular experiments,
all the participants’ had knowledge about software de-
velopment, software architecture and the ESB domain,
as well as of software traceability. They all studied the
previous lectures and practical assignments of at least
the software architecture course.

• Finally, the analysts could have been biased towards
the experiment groups. We tried to exclude this threat
to validity by not revealing the identity of the partici-
pants or in which of the two groups they have partici-
pated to the analysts. Hence, it is rather unlikely that
this threat occurred.

6.2.2 External Validity

• As discussed in Section 3.2, the experiments were con-
ducted with rather inexperienced participants, the stu-
dents of a software architecture course. Nevertheless,
the results of our previous studies, where we compared
the results from a controlled experiment with students
and professionals, imply that the participants’ experi-
ence does not have a significant influence on the ex-
ternal validity of results [10]. Therefore, we conclude
that it is likely the limited level of experience of the
participants in the two experiments does not distort
the study results.

• The instrumentation in the experiments might have
been unrealistic or old-fashioned. In this case, the
change impact analysis was based on the hyperlinks.
In practice, different tools would be used: These tools
are primarily used to formulate and maintain the trace-
ability or dependence relationships between the related
software elements. In these experiments, for practical
reasons and to study the foundational concepts rather
than a specific tool, the source code of the software
systems and traceability links were readily provided in
a web-based format. We assume that the measured
effect of the experiment groups during traceability re-
covery is independent of the way in which a tool would
visualize the traceability links, but a threat to validity
remains that our results cannot be 1:1 translated to all
existing tools and visualizations.

6.2.3 Construct Validity

• The comparison of two differently sized software sys-
tems in the experiments involves various aspects, for
example, application domain, support features, coding
styles, system structures and comments in the source
code. We tried to mitigate these risks by selecting the
differently sized industrial software systems from the
same domain that are highly comparable. In addition,
the same questionnaire is used for the selected sys-
tems. Therefore, we argue that the size variable plays
a major role in the observed differences. This threat,
however, cannot totally be ignored.

• Another potential threat to validity is the number of
measures used to evaluate the quantity and quality
of retrieved elements. In our case we only used stan-
dard information retrieval metrics, in particular, recall,
precision, and f-measure, to measure the quantity of
correctly and incorrectly retrieved elements, and their
overall quality, respectively. This does not allow for
cross-checking the results with different measures.

6.2.4 Conclusion Validity

• A threat to validity might result from the interpreta-
tion of the impact evaluation activities because impact
of these activities consists of a list of system elements
(e.g., architectural components, source code classes).
We mitigated this risk by calculating the standard in-
formation retrieval metrics for retrieved elements from
all impact evaluation activities. We argue that infor-
mation retrieval measures allow analysts to objectively
evaluate the correctness of impact evaluation activities
rather than intuitive or ad-hoc human measures. We
conclude that this potential threat is mitigated to large
degree.

• Finally, the violation of assumptions made by statisti-
cal tests could distort the results of the experiments.
In the analysis of the experiments, the Shapiro-Wilk
normality test and Wilcoxon Rank-Sum test are used.
First, Shapiro-Wilk normality test is used to find out
whether equal variances of the level of correctness can
be assumed. Second, as a consequence of non-normal
distributions, the corresponding non-parametric sta-
tistical test, the Wilcoxon Rank-Sum test, is used to
test the significance of the found results. Note that
the results of the tests were interpreted as statistically
significant at α = 0.05 (i.e., the level of confidence is
95%). Thus, this factor is not seen as a threat to va-
lidity.

6.2.5 Lessons Learned
The analysis of the differently sized systems showed that

traceability is more important in larger software systems.
This result seemed to be generally applicable for all the
benefits of traceability, such as software reuse, maintenance,
evolution and quality control. In the absence of traceability
information, the developers and architects have to investi-
gate and understand the larger part of the software system.
This is even more cumbersome and costly in the large-sized
systems. Most importantly, the size factor makes it harder
to achieve and maintain the compliance between artefacts
produced in the different activities of the development pro-
cess, such as requirements, architecture design, detailed de-
sign, implementation, and testing.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we describe the results of two controlled

experiments that were conducted with differently sized
ESB systems, in particular, UltraESB Version 2.3.0 and
PetalsESB Version 4.2.0, to find out if traceability links
are specifically beneficial for larger systems. Three aspects
were specifically taken into consideration: the quantity
of correctly and incorrectly retrieved elements, and their
overall quality. The evaluation of the experiments shows



that using traceability links leads to slight difference in the
quantity and quality of retrieved elements for a 133.71%
larger software system. This difference in the absence
of traceability links, however, significantly increases the
quantity of incorrect elements and reduces the overall
quality of elements retrieved in the larger software system,
while no conclusive evidence concerning the quantity of
missing elements was found. It is also interesting to note
that the achieved results were statistically significant for
lower quantity of missing and incorrect elements, and
overall, a higher quality of the retrieved elements for both
UltraESB Version 2.3.0 and PetalsESB Version 4.2.0 when
analysed individually.

As it is usual for empirical studies, replications in different
contexts, with different objects and participants, are good
ways to corroborate our findings. Comparing the results of
the different automation levels of traceability links is part of
our future work agenda. Another direction for future work
is to replicate the experiments with our trace link tool that
is currently under development.

8. ACKNOWLEDGEMENTS
This work is supported by the Austrian Science Fund

(FWF), under project P24345-N23. We also thank to all
the participants for taking part in the experiments.

9. REFERENCES
[1] B. Boehm, H. D. Rombach, and M. V. Zelkowitz.

Foundations of Empirical Software Engineering: The
Legacy of Victor R. Basili. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2005.

[2] T. Cook and D. Campbell. Quasi-experimentation:
design & analysis issues for field settings. Rand
McNally College, 1979.

[3] B. Cornelissen, A. Zaidman, and A. van Deursen. A
controlled experiment for program comprehension
through trace visualization. IEEE Trans. Softw. Eng.,
37(3):341–355, May 2011.

[4] D. Cuddeback, A. Dekhtyar, and J. Hayes. Automated
requirements traceability: The study of human
analysts. In Proceedings of the 2010 18th IEEE
International Requirements Engineering Conference,
RE ’10, pages 231–240. IEEE Computer Society, 2010.

[5] A. De Lucia, R. Oliveto, and G. Tortora. Assessing
ir-based traceability recovery tools through controlled
experiments. Empirical Softw. Engg., 14(1):57–92,
Feb. 2009.

[6] A. De Lucia, R. Oliveto, F. Zurolo, and M. Di Penta.
Improving comprehensibility of source code via
traceability information: A controlled experiment. In
Proceedings of the 14th IEEE International
Conference on Program Comprehension, ICPC ’06,
pages 317–326. IEEE Computer Society, 2006.

[7] A. Dekhtyar, O. Dekhtyar, J. Holden, J. Hayes,
D. Cuddeback, and W.-K. Kong. On human analyst
performance in assisted requirements tracing:
Statistical analysis. In Proceedings of the 2011 19th
IEEE International Requirements Engineering
Conference, RE ’11, pages 111–120. IEEE Computer
Society, Aug 2011.

[8] O. Gotel and A. Finkelstein. An analysis of the
requirements traceability problem. In Proceedings of

the 1994 First IEEE International Requirements
Engineering Conference, pages 94–101. IEEE
Computer Society, Apr 1994.

[9] J. Hayes, A. Dekhtyar, S. Sundaram, E. Holbrook,
S. Vadlamudi, and A. April. Requirements tracing on
target (retro): improving software maintenance
through traceability recovery. Innovations in Systems
and Software Engineering, 3(3):193–202, 2007.

[10] M. A. Javed and U. Zdun. The supportive effect of
traceability links in architecture-level software
understanding: Two controlled experiments. In
Proceedings of the 11th Working IEEE/IFIP
Conference on Software Architecture, WICSA 2014,
pages 215–224. IEEE, 2014.

[11] M. A. Javed and U. Zdun. A systematic literature
review of traceability approaches between software
architecture and source code. In Proceedings of the
18th International Conference on Evaluation and
Assessment in Software Engineering, EASE ’14, pages
16:1–16:10. ACM, 2014.

[12] M. A. Javed and U. Zdun. The supportive effect of
traceability links in change impact analysis for
evolving architectures – two controlled experiments. In
14th International Conference on Software Reuse.
Springer, January 2015.

[13] A. Jedlitschka, D. Hamann, T. Göhlert, and
A. Schröder. Adapting profes for use in an agile
process: An industry experience report. In PROFES,
pages 502–516, 2005.

[14] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard,
P. W. Jones, D. C. Hoaglin, K. El Emam, and
J. Rosenberg. Preliminary guidelines for empirical
research in software engineering. Software Engineering,
IEEE Transactions on, 28(8):721–734, Aug. 2002.

[15] P. Mader and A. Egyed. Assessing the effect of
requirements traceability for software maintenance. In
Proceedings of the 2012 28th IEEE International
Conference on Software Maintenance, ICSM ’12, pages
171–180, 2012.

[16] H. Mann and D. Whitney. On a Test of Whether One
of Two Random Variables is Stochastically Larger
Than the Other. Institute of Mathematical Statistics,
1947.

[17] T. I. of Electrical and E. Engineers. Ieee standard
glossary of software engineering terminology. IEEE
Standard, September 1990.

[18] B. Ramesh and M. Jarke. Toward reference models for
requirements traceability. IEEE Trans. Softw. Eng.,
27(1):58–93, Jan. 2001.

[19] M. Shahin, P. Liang, and Z. Li. Architectural design
decision visualization for architecture design:
preliminary results of a controlled experiment. In
Proceedings of the 5th European Conference on
Software Architecture: Companion Volume, ECSA ’11,
pages 2:1–2:8. ACM, 2011.

[20] S. S. Shapiro and M. B. Wilk. An analysis of variance
test for normality (complete samples). Biometrika,
52(3/4):pp. 591–611, 1965.

[21] C. Wohlin. Experimentation in Software Engineering:
An Introduction: An Introduction. The Kluwer
International Series in Software Engineering. Kluwer
Academic, 2000.


