
Two Controlled Experiments on Model-based
Architectural Decision Making

Ioanna Lytra∗, Patrick Gaubatz, Uwe Zdun
Software Architecture Research Group, University of Vienna, Austria

Abstract

Context: In recent years, architectural design decisions are becoming more and
more common for documenting software architectures. Rather than describing
the structure of software systems, architectural decisions capture the design ra-
tionale and – often reusable – architectural knowledge. Many approaches and
tools have been proposed in the literature to support architectural decision mak-
ing and documentation (for instance, based on models, ontologies, or templates).
In this context, the capturing, organization, and effective reuse of architectural
knowledge has gained a lot of attention. Objective: However, there is little em-
pirical evidence about the supportive effect of reusable architectural knowledge
on the effectiveness and efficiency of architectural decision making. Method:
To investigate these aspects, we conducted two separate controlled experiments
with software architecture students in which we tested the supportive effect of
reusable decision models in decision making and documentation. Results: Our
results show that the use of reusable decision models can significantly increase
both the efficiency and the effectiveness of novice architects. Conclusion: We
can report, that our findings are in line with similar studies and support the
claims regarding reusable architectural design decisions in principle.

Keywords: architectural design decision, architectural decision model,
architectural knowledge, controlled experiment

1. Introduction

In recent years, architectural design decisions (ADDs) have been promoted
to first class citizens in software architecture documentations [1]. Rather than
documenting the structure of software systems (e.g., components and connec-
tors), ADDs contribute to the capturing of design rationale. There are numerous
attempts on documentation and leveraging of design rationales with focus on

∗Corresponding author: Ioanna Lytra, Faculty of Computer Science, University of Vienna,
Währingerstraße 29, 1090 Vienna, Austria; Phone, +43-1-4277-78523

Email addresses: ioanna.lytra@univie.ac.at (Ioanna Lytra),
patrick.gaubatz@univie.ac.at (Patrick Gaubatz), uwe.zdun@univie.ac.at (Uwe Zdun)

Preprint submitted to IST March 16, 2015

the reduction of architectural knowledge (AK) vaporization [2], reusability of
ADDs [3], and AK sharing [4]. Apart from that, the documentation of ADDs
for providing architectural guidance in software projects has gained much at-
tention in industrial practice [5, 6], lately. In this context, capturing the design
solutions and their rationale is important not only for the experienced software
architects but also for novice software designers who need to be educated on the
existing AK and the systematic reasoning on ADDs to avoid both reinventing
the wheel and making ADDs of bad quality.

Reusing ADDs can contribute to simplifying architecting [7]. Thus, address-
ing systematic documentation of ADDs and providing guidance during decision
making for recurring design issues, the use of reusable ADD models has been
proposed in the literature [3]. Similar to leveraging patterns for architectural
decision making [2], reusable ADD models provide proven solutions – both ap-
plication generic and technology specific – to various design issues along with
their forces and consequences. Examples of reusable ADD models that have
been documented cover solutions for designing service-oriented architectures
(SOA) [8] and service-based platform integration solutions [9].

A few reusable ADD models and related tools that support their manage-
ment (such as [10]) have been evaluated in real-life contexts. For instance,
Zimmermann et al.’s ADD model consisting of 300 ADDs from the SOA do-
main covering various aspects such as Web service integration and transac-
tion management has been used by practitioner communities and in industrial
projects [8]. However, no feedback or empirical evidence has been gathered on
whether and to which extent reusable ADD models are beneficial (i.e., they
support effectiveness and efficiency of architects) in the architectural decision
making process. While a few studies have investigated how reusable AK man-
agement and sharing is practiced in industrial contexts [5, 11] and have validated
the supportive effect of pattern-based reusable AK in the decision making pro-
cess [12], the software architecture community lacks empirical evidence on the
positive impact of reusable AK on ADD making and documentation. Such
empirically-grounded findings are important not only for validating the ben-
efits of reusable AK in practice, but also for understanding, improving, and
supporting the management and leveraging of reusable ADDs.

Therefore, we conducted two controlled experiments with students to test
whether the use of reusable ADD models increases the efficiency and effective-
ness of architects in the decision making and documentation process. We ex-
plicitly considered software architecture students in our evaluation, as reusable
ADD models are supposed to be used as guidance models by trainers for sys-
tematically teaching patterns and technology best practices to new or inexpe-
rienced members in a software development team [13]. In the two controlled
experiments, 49 and 122 students, respectively, with background in software ar-
chitecture and design patterns, were asked to make and document ADDs while
designing the architecture of two different software systems. For this, a Web-

2

based tool support, called CoCoADvISE1, was provided to the experiment and
control groups. Both the experiment and control group received material with
related patterns and technology documentations and could use the tool to make
and document decisions. Contrary to the control group, the tool provided addi-
tional semi-automated decision making guidance based on reusable ADD models
for the participants of the experiment group. We found that participants who
were supported by our semi-automated decision making guidance approach . . .

• delivered more documented ADDs.

• delivered ADDs of better quality.

• invested less time for documenting ADDs.

The remainder of the paper is structured as follows. We give an overview of
the approaches related to architectural decision making and documentation and
compare existing architectural decision management tools with CoCoADvISE
in Section 2. We present our Web-based tool CoCoADvISE for decision making
and documentation and discuss its main concepts in Section 3. In Sections 4
and 5 we describe our experimental settings, as well as the analysis of the results
for the two controlled experiments we conducted. Our findings, implications,
and validity threats are discussed in Section 6, and finally, Section 7 concludes
with a summary of our contributions and discusses future work.

2. Related Work

In this section, we discuss the concept of ADDs, present existing tools and
methods for decision making and documentation, and summarize the few em-
pirical studies related to ADDs that exist in the literature.

2.1. Architectural Design Decisions
ADD documentations contain not only the resulting designs but also the

justification, the strengths and weaknesses, as well as alternatives for the se-
lected design solutions. Thus, software architects capture ADDs for analyzing
and understanding, as well as sharing and communicating the rationale and
implications of these decisions. Apart from that, the documentation of ADDs
prevents the potential loss of AK, a phenomenon which is known as architec-
tural knowledge vaporization [1, 2]. There are numerous attempts on supporting
ADDs and capturing their design rationales. Clements et al. suggest a gen-
eral outline for documenting architectures and guidelines for justifying design
decisions [15] while Tyree and Akerman present a rich template for capturing

1CoCoADvISE is the web-based version of our previous tool ADvISE for decision making
and documentation [14] and shares common concepts with other reusable ADD approaches
that have been documented in the literature (such as [3]). CoCoADvISE was developed for
the needs of the controlled experiments and in order to provide additionally collaboration
support.

3

and documenting several aspects of ADDs [16]. A different technique proposed
by Lee and Kruchten aims at establishing formalized ontological descriptions
of architectural decisions and their relationships [17]. Zimmermann et al. use
decision meta-models to capture reusable AK [3] to be reused among different
projects of the same domain. In addition, patterns are regarded proven knowl-
edge for capturing ADDs and their rationale [2] and are considered often in the
aforementioned approaches.

Numerous tools for the management of ADDs have been proposed in the
literature [18–20]. In addition, a substantial amount of work has been done in
the direction of documenting the AK using architectural decision modeling (re-
fer to [18] for a comparison of existing architectural decision models and tools).
For instance, Jansen and Bosch propose a meta-model for capturing decisions
that consist of problems, solutions and attributes of the AK [1]. Zimmermann
et al.’s meta-model for capturing ADDs [6] consists of three core domain enti-
ties: Architectural Decision (AD) related to one or more ADTopics organized
in ADLevels, entailing ADAlternatives, the selection of which leads to an AD-
Outcome. The advantage of such ADD models is that they are reusable and
can be used as guidance for architectural decision making activities, whenever
recurring design issues emerge. Reusable ADD models share common concepts
with patterns (see [2]), that is, they both provide proven solutions for specific
design issues along with their motivation and rationale. The main difference is
that reusable ADD models provide the means for defining formally more com-
plex relationships for ADDs (e.g., the selection of a design option may exclude
a design solution). Furthermore, they allow us to capture except for generic
knowledge – usually addressed by patterns – also domain and technology spe-
cific AK. Yet, the relationship between architectural patterns and reusable ADD
models can be eventually synergetic [3], for instance, reusable decision models
can be integrated with patterns and guide the selection of patterns. Various
reusable ADD models have been documented in the literature, covering SOA-
related solutions [8], service-based platform integration [9], the design of domain
specific languages [21], and model and metadata repositories [22].

In our empirical study, we focus on the evaluation of reusable AK in the
form of reusable ADD models. For this, we provide reusable ADD models for
the participants of the experiment groups of the two controlled experiments
similar to the aforementioned reusable ADD models.

2.2. Tools for Architectural Decision Making and Documentation
Several tools have been developed to ease capturing, managing and sharing

of architectural decisions. In most of the cases, the focus is set on the manipula-
tion of architectural decision artifacts and their relationships, and the capturing
and reuse of AK, as well as collaboration aspects. In our work, we do not intend
to develop “yet another tool” for ADD management but rather to implement ex-
isting concepts in architectural decision support such as reusable architectural
decision models [3] and the Questions-Options-Criteria (QOC) approach [23]
and provide semi-automated tool support integrating these concepts. Our main
goal is to gather empirical evidence on the supportive effect of reusable ADDs

4

in architectural decision making. In this section, we discuss existing tools for
architectural decision making and documentation and compare these to Co-
CoADvISE, the Web-based tool we have evaluated in our empirical study.

PAKME [24] and ADDSS [25] are some of the first attempts to develop
tools for decision making and documentation. PAKME aims at providing AK
management support for knowledge acquisition, maintenance, retrieval, and pre-
sentation, and contains features for capturing and classifying ADDs, integrating
pattern-based knowledge, and relating ADDs with quality-based scenarios and
requirements. Similar to PAKME, ADDSS can be used for storing, managing
and documenting ADDs. CoCoADvISE targets both decision making and doc-
umentation. For the decision making, reusable ADD models are leveraged [3]
and for the documentations, a text template like the one introduced by Tyree
and Akerman [16] is used. Unlike tools that focus on the visualization and un-
derstandability of ADDs (such as [26, 27]), we mainly target decision guidance
and automation of steps in decision making and documentation.

Many tools in the literature support the integration of ADDs in the software
architecture and development processes. For instance, Archium aims primarily
at capturing architectural decisions and weaving them into the development pro-
cess, that is, binding them with models and system implementation [28]. Also,
the ADVERT approach targets the capturing of pattern-specific ADDs with
their rationale along with decision-relevant requirements, quality attributes,
and architectural elements [29]. In our previous work, we have integrated
ADDs modeled in CoCoADvISE tool with architectural views, in particular,
component-and-connector views [14]. These aspects are out of the scope of this
paper though.

Some of the tools have been developed with focus on collaboration between
architects. Software Architecture Warehouse (SAW) supports collaborative ar-
chitectural decision making and enhances situational awareness by providing an
environment for real-time synchronization of design spaces, voting, and discus-
sion for software architects [30]. The purpose of the wiki-based tool ADkwik is
also to support collaboration in decision making through sharing of knowledge
about ADDs across project boundaries [31].

Although automated support is an important aspect in decision making,
it is addressed very little by existing approaches. Ameller et al. propose Ar-
chitech to support software architects during the architectural decision-making
process by suggesting alternative decisions for satisfying non-functional require-
ments [32]. For this, optimization techniques are applied on an AK ontology.
Also, ArchDesigner provides a quantitative quality-driven approach to find the
best possible fit between various quality goals, competing architectural concerns
and constraints [33]. It uses Multiple Attribute Decision Making (MADM) and
optimization techniques to find a best-fitting architecture composed of inter-
dependent architectural design decisions that satisfies prioritized quality goals.
CoCoADvISE provides semi-automated support at the following steps: (1) de-
cision making is guided through questionnaires and (2) semi-complete ADD
documentations are generated based on suggested design solutions.

Similar to our tool, Zimmermann et al. provide an architectural design

5

method to combine pattern languages with reusable architectural decision mod-
els [6]. The goal of their approach is to provide domain-specific pattern selection
advice and traceability links from platform-independent patterns to platform-
specific decisions. However, the reusable ADD models have to be used manually
by software architects while in CoCoADvISE automated decision guidance based
on reusable decision models is provided.

The majority of the proposals have been evaluated either in case studies
(e.g., [6, 26]), in industrial projects [25], or focus groups [30], and in a few cases
no evaluation is reported. None of the tools has been empirically validated
and only little feedback has been gathered by the users2. We conducted two
controlled experiments with 171 software architecture students in total to test
the supportive effect of the main concept of CoCoADvISE, namely the reusable
ADD models, on capturing ADDs.

The reader can refer to Table 1 for an overview of the tools discussed in this
subsection. In particular, we report on the type of the tool support (decision
making or/and documentation), whether it provides automation support, and
how it has been evaluated.

2.3. Other Empirical Studies Related to ADDs
There are various literature surveys and reviews on the approaches and tools

for architectural decision making and documentation. For instance, Falessi et
al. provide a comparison of various techniques for selecting architectural alter-
natives during decision making [7]. Shahin et al. provide a survey on existing
ADD models and tools [18] while Bu et al. provide an analysis of decision-centric
approaches for design support [36]. The mapping study by Tofan et al. provides
an overview and taxonomy of the existing literature on ADDs [20]. Furthermore,
Weinreich and Groher compare software architecture management approaches
with focus on the main aims of documenting AK as well as the elements used
to represent AK [37].

Except for these literature surveys and reviews, little empirical evidence
(especially quantitative results) exists on the use and benefits of ADDs in the
industry and by practitioners. Heesch et al. conducted a multiple-case study
with four teams of software engineering students working in industrial projects
in order to find out whether decision documentation supports novice architects
in following a rational design process [38]. Shahin et al. test their hypothesis
that the visualization of ADDs and their rationale improves the understanding
of architecture designs in a controlled experiment with 10 participants [34].
Also, the supportive effect of pattern use in recovering of ADDs in terms of
quality and quantity of documented ADDs has been validated in a controlled
experiment with 33 software architecture experts and practitioners in a different
study [12]. A few other qualitative studies such as [39, 40] focus on how software

2Except for two studies [30, 34] which contain only a very brief summary of the results and
do not study their statistical significance.

6

Name Decision
Making

Documen-
tation

Automation
Support

Approach Evaluation

ArchPad [6] + − − Case study from the fi-
nance industry. SOA-
related decisions (300)
are documented.

ArchiTech [32] + − Suggests al-
ternative de-
cisions based
on NFRs

No evaluation reported

ADkwik [31] − + − SOA-related decisions
(300) are documented

Archium [28] + + − Motivating example
MAD 2.0 [26] + + − Case study (CRM sys-

tem)
PAKME [24] + + − No evaluation reported
Compendium [27] + + − SOA-related decisions

are documented
ADDSS [25] + + − Two industrial projects

(multimedia system and
virtual reality applica-
tion)

ADVERT [29] + − − Evaluation using the
Common Component
Modeling Example
(CoCoME)1

ArchDesigner [33] + − Making
trade-offs
between
stakeholders

Industrial project (Glass
Box)

SAW [30] + − − In a focus group. 20 par-
ticipants considered 100
issues with 5 alternatives
each.

CoCoADvISE + + Predefined
question-
naires used
during deci-
sion making

Two controlled experi-
ments with 49 and 122
students respectively

1 CoCoME is an example system which provides a benchmark for component-based modeling ap-
proaches [35].

Table 1: Comparison Overview of ADD Tools

7

architects make and document ADDs and which of them are being eventually
documented. To the best of our knowledge, no empirical-grounded evidence
exists yet on the impact of reusable AK and in particular reusable ADD models
on the efficiency and effectiveness of software architects.

3. Architectural Decision Making Using CoCoADvISE

In this section, we introduce the CoCoADvISE prototype. In particular,
we discuss its ADD meta-model (see Section 3.1) and core functionalities (see
Section 3.2), and provide selected implementation details (see Section 3.3). Co-
CoADvISE (Constrainable Collaborative Architectural Design Decision Support
Framework) provides semi-automated support for architectural decision making
and documentation. In addition, it supports collaboration in decision making
under various stakeholders’ constraints, but this will not be discussed further
in the current paper. The Web-based version of the tool was developed for the
needs of the controlled experiments in such a way that our approach could be
generalizable to a big extent. That is, the utilization of reusable ADD models,
as well as the tasks – to be performed by the software architects – for making
and documenting ADDs (see Section 4 for details) were designed in such a way
that the obtained results can be generalizable and not bound to the use of the
specific tool.

3.1. Reusable ADD Meta-model
CoCoADvISE provides tool support for modeling of reusable ADDs inspired

by the Questions, Options, and Criteria (QOC) approach [23]. The CoCoAD-
vISE ADD model extends the traditional QOC approach with – among others
– additional dependencies between options, such as enforcement or inclusion,
options and questions or decisions (i.e., an option triggers a next question or
decision). In addition, it supports categorizing reusable solutions (i.e., options
in QOC).

CoCoADvISE introduces a reusable ADD meta-model (see Figure 1) for the
design space of certain application domains, consisting of Decisions, Questions,
Options, and Solutions, as well as various relationships among them. For each
design issue – that indicates a decision that has to be made given a specific
design problem – a set of Questions (including one or more first Questions)
providing multiple Options has to be modeled. Examples of relationships are
that a selection of an Option triggers a follow-up Decision or an Option is
incompatible with or enforces another Option. A selection of an Option may
lead to a Solution to be suggested to the software architect. This Solution will
be applied using an Architecture Guidance, that is a Technology-related AK,
a Design Pattern, an Architectural Pattern, or a Composite Reusable Solution
combining any of the aforementioned Architectural Guidance types.

The concepts that we introduce in CoCoADvISE are comparable to existing
reusable ADD approaches such as the ones documented in [3, 9, 22]. Therefore,
our hypotheses testing and evaluation results are considered to apply on similar
approaches as well.

8

1..*1

2..*

1

Decision

0..1

1

*

*

*

*

*

1

Architecture

Guidance

Solution

triggers

applies on

triggers

Question

*

*

incompatible with

has

has

leads to

enforces

*
*

Design Pattern

Architectural

Pattern

Technology-

related AK

Technology

*1

has first

Option *

1

Composite

Reusable Solution

is related to

Figure 1: Reusable ADD Meta-model

3.2. Decision Support Based on Reusable ADD Models
The advantage of CoCoADvISE’s reusable ADD models is that they are

created only once for a recurring design situation and can be reused multiple
times following the model-driven paradigm. In similar application contexts,
corresponding questionnaires can be generated and used for making concrete
decisions. Based on the outcomes of the questionnaires answered by software
architects through the decision making process, CoCoADvISE can automatically
resolve potential constraints and dependencies (e.g., reveal follow-on questions
and decisions, deactivate incompatible options, etc.), recommend best-fitting
design solutions, and eventually, generate half-filled ADD documentations. Us-
ing CoCoADvISE the software architect can choose from a list of reusable ADD
models (see 1 of Figure 2) and generate a questionnaire based on this model.
The questionnaire provides architectural decision guidance through single-choice
questions which lead to follow-on questions, decisions, and recommendations as
indicated in 2 . Finally, software architects may generate semi-complete docu-
mentations based on the CoCoADvISE recommendations such as the one shown
in 3 . CoCoADvISE fills in automatically some of the fields of the ADD doc-
umentations in template form [16]; architects need to fill in afterwards the rest
of the required information.

3.3. Prototype Implementation Details
CoCoADvISE is the Web-based version of our previous Eclipse-based tool

ADvISE [14] and was developed for the needs of the controlled experiments.

9

List of reusable ADD models.

Architectural decision guidance through
questionnaires.

ADD documentation with automatically half-filled
template fields.

1

2

3

Figure 2: Screenshots of CoCoADvISE

10

It supports additionally collaborative architectural decision making. CoCoAD-
vISE is a mostly client-side executed Single-page Web application that is im-
plemented using Google’s AngularJS3 framework. The back-end of this Thin
Server Architecture is founded on the Node.js4 framework and runtime environ-
ment. In particular, it utilizes the real-time synchronization engine Racer5 and
persists the application state in a MongoDB6 database.

4. Controlled Experiments

To measure the effect of using reusable architectural decision models on the
efficiency and effectiveness of software architecture students we have conducted
two separate controlled experiments with software engineering students. For
the design and execution of the two experiments, we followed the guidelines of
Kitchenham [41] while for the analysis, evaluation, and presentation of results
we have consulted the advice of Wohlin et al. [42]. In the following subsections,
we discuss the common goals and hypotheses of the controlled experiments and
present their design and execution in detail.

4.1. Goals and Hypotheses
The goal of the experiments is to study and quantify the benefits of using

CoCoADvISE and in consequence reusable ADD models for making and docu-
menting ADDs in terms of quantity and quality related effectiveness, as well as
time efficiency. For this, we compare two groups of students, one using reusable
ADD models and one using an ad-hoc process based on pattern documentations
to make and document ADDs in template form.

We postulate the following three null hypotheses and corresponding alterna-
tive hypotheses: Making and documenting ADDs using reusable ADDmodels. . .

H01 leads to lower or equal quantity related effectiveness of software architecture
students compared to an ad-hoc process for architectural decision making.

H1 leads to increased quantity related effectiveness of software architecture stu-
dents compared to an ad-hoc process for architectural decision making.

H02 leads to lower or equal quality related effectiveness of software architecture
students compared to an ad-hoc process for architectural decision making.

H2 leads to increased quality related effectiveness of software architecture stu-
dents compared to an ad-hoc process for architectural decision making.

H03 leads to lower or equal time related efficiency of software architecture stu-
dents compared to an ad-hoc process for architectural decision making.

3http://angularjs.org
4http://nodejs.org
5http://github.com/codeparty/racer
6http://mongodb.org

11

H3 leads to increased time related efficiency of software architecture students
compared to an ad-hoc process for architectural decision making.

We perform statistical tests to find out whether the corresponding null hy-
potheses can be rejected. We expect that the users of CoCoADvISE will deliver
ADDs of better quality and will manage to document more ADDs and in less
time.

4.2. Parameters and Values
Several variables have been observed during the two experiments. In the

following subsections, we discuss all dependent, independent, and derived vari-
ables we used for testing our hypotheses. A detailed list of variables (description,
type, scale type, unit, and range) is provided in Table 2.

4.2.1. Dependent Variables
All dependent variables have been captured by and extracted automatically

from CoCoADvISE’s database. In particular, we instrumented its source code in
such a way that we could precisely record all user activities within the system.
The variable time indicates a single user’s total time spent logged in in the
application. The number of decisions that were documented by each student
is indicated with the variable numOfDecisions. Finally, the variable quality
refers to the quality of each ADD that was evaluated in a scale from 1 to 10 by
two independent experts.

4.2.2. Derived Variables
To allow for a meaningful comparison of the time spent by the students to

document the decisions we decided to introduce the variable timeNorm which
expresses the time needed per decision. In this way, we exclude the possibility
that one treatment group needed less time to perform the tasks because they
just delivered less work. In addition, we calculate the average points per student
for the total of documented decisions (qualityPerStudent).

4.2.3. Independent Variables
The independent variables group, exp and commExp can potentially influ-

ence the dependent variables. In particular, group indicates the participant’s
treatment group (i.e., control or experiment), and exp and commExp refer to
their programming experience in general and in the industry, respectively.

4.3. Experiment Design
The controlled experiments were conducted in the context of Information

System Technologies and Software Architecture lectures respectively at the Fac-
ulty of Computer Science, University of Vienna, Austria. The first controlled
experiment took place in Winter Semester 2013/2014 (January 2014) and the
second in Summer Semester 2014 (June 2014). All participants were at the final
semesters of their bachelor studies and had background in software architec-
ture and design patterns. The readers can refer to Table 3 for a summary of

12

T
yp

e
N

am
e

D
es

cr
ip

ti
on

S
ca

le
T

yp
e

U
n
it

R
an

ge

D
ep

en
de
nt

ti
m
e

O
ve
ra
ll

ti
m
e

ne
ed
ed

to
m
ak
e
an

d
do

cu
m
en
t
de
ci
-

si
on

s

R
at
io

M
in
ut
es

N
at
ur
al

nu
m
be

rs
in
cl
ud

in
g
0

n
u
m
O
f
D
ec
is
io
n
s

N
um

be
r

of
do

cu
m
en
te
d

de
ci
si
on

s
R
at
io

–
N
at
ur
al

nu
m
be

rs
in
cl
ud

in
g
0

qu
a
li
ty

Q
ua

lit
y

of
do

cu
m
en
te
d

de
ci
si
on

In
te
rv
al

–
1
(l
ow

es
t)

to
1
0
(h
ig
he
st
)

D
er
iv
ed

ti
m
eN

or
m

(=
ti
m

e
n
u
m

O
f
D
e
c
is
io
n
s
)

T
im

e
ne
ed
ed

pe
r
de
ci
si
on

R
at
io

M
in
ut
es

N
at
ur
al

nu
m
be

rs
in
cl
ud

in
g
0

qu
a
li
ty
P
er
S
tu
d
en
t

(=

n
u
m

O
f
D

e
c
i
s
i
o
n
s

∑ i
=

1

q
u
a
li
ty

n
u
m

O
f
D
e
c
is
io
n
s

)

A
ve
ra
ge

qu
al
it
y

of
de
ci
-

si
on

s
In
te
rv
al

–
1
(l
ow

es
t)

to
1
0
(h
ig
he
st
)

In
de
pe

nd
en
t

g
ro
u
p

T
re
at
m
en
t
gr
ou

p
N
om

in
al

–
E
it
he
r
“e
xp

er
im

en
t”

or
“c
on

tr
ol
”

ex
p

P
ro
gr
am

m
in
g
ex
pe

ri
en
ce

O
rd
in
al

Y
ea
rs

4
cl
as
se
s:

0-
1,

1-
3,

3-
6,
>
6

co
m
m
E
x
p

C
om

m
er
ci
al

pr
og
ra
m
-

m
in
g

ex
pe

ri
en
ce

in
in
du

st
ry

O
rd
in
al

Y
ea
rs

4
cl
as
se
s:

0-
1,

1-
3,

3-
6,
>
6

T
ab

le
2:

O
bs
er
ve
d
an

d
D
er
iv
ed

V
ar
ia
bl
es

13

the experiment design in the two cases. We will refer to the first and second
controlled experiment as ORExp (Online Retailer Experiment) and UniISExp
(University Information System Experiment) respectively from the correspond-
ing case studies that were used in each case.

ORExp UniISExp

Location University of Vienna, University of Vienna,
Austria Austria

Time January 2014 June 2014
Case Study Online Retailer University Information System
Participants 49 (27 control / 22 exp.) 122 (56 control / 66 exp.)
ADDs 319 762
ADD Models 5 (16 patterns) 5 (40 patterns)

Table 3: Experiment Design Data

Participants. In the first controlled experiment in January 2014, from the 49
students of the lecture, 27 participated in the control group and 22 in the ex-
periment group. In the second experiment in June 2014, a bigger sample of 122
students (56 in the control group and 66 in the experiment group) participated.

The experiments have been conducted in the course of mandatory practical
exercises on architectural decisions for service-based software systems and dis-
tributed software systems respectively. The experiments took place in separate
exercise groups (4 in the first and 6 in the second experiment) and in different
computer labs at different times, which also explains the unequal number of
participants in the corresponding control and experiment groups. The students
in each group were assigned to the treatment groups randomly. In summary,
319 ADDs were documented in ORExp and 762 in UniISExp. All participants
had experience with Java programming and design patterns and were familiar
with the concepts of software architecture and architectural design decisions, as
these topics had been already discussed in the corresponding lectures or were
prerequisites to accomplish the previous exercises of the corresponding subjects.

Objects. A list of documented architectural design patterns and technology-
related solutions was integrated in the CoCoADvISE tool for both groups in
wiki format. The design patterns and architectural decision models were selected
based on the lecture materials known to the students as well as the students’
experiences from the previous programming exercises. The experiment group
was provided additionally with a set of reusable architectural decision models
and instructions how to use them for getting decision support with the aid of
the CoCoADvISE tool.

Instrumentation. In the preparation phase, all students were asked to study the
catalog of architectural design patterns and related technologies (afterwards in-
tegrated in the CoCoADvISE tool). Before starting with the experiment tasks,

14

all participants had to fill in a short questionnaire regarding their programming
experience. Afterwards, the participants of both the control and experiment
groups were provided with a description and requirements of the system to be
designed. That was “An Online Retailer for Selling Books and Gadgets” and “A
University Information System (IS)” for the ORExp and UniISExp experiments
respectively. Both systems and their requirements were based on the experi-
ence of the authors with similar software systems from industrial projects. In
Table 4 and Table 5 we give examples of the aforementioned software system’s
requirements. The complete descriptions of the design exercises can be found
at http://andromeda.swa.univie.ac.at/advise-experiment/exercises.

Name Description

Take
Orders

Customers can place orders via two different channels: Web site
and call center. Each of these systems is based on a different tech-
nology and stores incoming orders in a different data format. The
call center system is a packaged application, while the Web site is
a custom J2EE application. We want to treat all orders equally,
regardless of their source. For example, a customer should be able
to place an order via the call center and check the order status
on the Web site. Decide how to deal with the different channels
and feed the retailer with unified messages.

Table 4: Excerpt from the “Online Retailer for Selling Books and Gadgets” Requirements

Name Description

Research
Network

The University is collaborating with a central research system
for establishing networks between researchers, dissemination of
research results, access to publications, etc. The University IS
should be able to send updates of new publications and research
projects of its research staff. In this case, reliability and per-
formance are not very important. The Research Network uses
only the XML-RPC protocol for communication with external
systems. Decide how you will design the communication between
the University IS and the Research Network.

Table 5: Excerpt from the “University Information System (IS)” Requirements

The students had to consider six sets of requirements in ORExp (Take Or-
ders, Process Orders, Logging, Track Orders, Announcements, and Customer
Login) and also six sets of requirements in UniISExp (General Requirements,
Student Services, Services for Research and Administrative Staff, Library Ser-
vice, Stream Service, and Research Network) – concerning different parts of the
software system – given in descriptive form. Additionally, some hints were pro-
vided with information about the concrete decisions that were expected (e.g.,

15

“Decide how to deal with the different channels and feed the retailer with uni-
fied messages” from Table 4). For each requirement, one or more ADDs were
expected to be documented by the students.

Eventually, all participants were given access to the CoCoADvISE tool. The
functionality of CoCoADvISE is described in Section 3 and the setting provided
to the students can be viewed at http://andromeda.swa.univie.ac.at/orexp
and http://andromeda.swa.univie.ac.at/uniisexp for ORExp and UniIS-
Exp respectively7. The participants of the experiment groups could reuse five
ADD models which were different for the two controlled experiments. The
names and descriptions of the provided ADD models are documented in Table 6
(for more details refer to the CoCoADvISE settings accessible at the aforemen-
tioned URLs.). In contrast, CoCoADvISE was modified for the participants of
the control groups, so that the ADD model based support was hidden.

Blinding. In order to reduce the subjective bias of the participants and the re-
viewers we have applied double-blinding in both experiments. The participants
were not aware of the two different treatment groups and different CoCoAD-
vISE settings, therefore, they were not able to guess the goal of the experiments
and whether they belong to an experiment or control group. In addition, the
participants’ documented ADDs were scrambled and given anonymized to the
reviewers for evaluation. It was, thus, not possible to find out whether an ADD
comes from the control or experiment group, which ADDs belong to which par-
ticipants, and which ADDs belong together (i.e., were documented by the same
person). Also, the reviewers did not get any other information about the goals
and the different settings of the experiments.

4.4. Execution
As described in the previous section, the controlled experiments were ex-

ecuted in the context of the Information System Technologies and Software
Architecture lectures (Faculty of Computer Science, University of Vienna) with
students in the end of their bachelor studies, in Winter Semester 2013/2014 and
Summer Semester 2014 respectively.

The practical course groups were randomly assigned to experiment and con-
trol groups. That is the reason why we have unequal groups of participants,
namely 27 (control group) and 22 (experiment group) participants in ORExp
and 56 (control group) and 66 (experiment group) participants in UniISExp.
Nine students that participated in both experiments were excluded from the
second experiment – although the topic and the tasks required in ORExp and
UniISExp were different – in order to reduce the result bias. That led to a
reduced sample of 50 and 63 participants for the control and experiment group
of UniISExp respectively.

7To view and use the tools use the following user names (no password required): experiment
or control for the experiment and control settings respectively.

16

ORExp

External Interface Design Use this reusable architectural decision model
in order to decide how the service-based system
will expose its interfaces to the external world.

Lifecycle Management Use this reusable architectural decision model
to decide how the lifecycle management of the
remote objects (e.g., by creating per-request in-
stances) and the resource consumption of the
service-based system will be designed.

Message Routing Use this reusable architectural decision model
in order to make decisions on strategies for
routing the messages in the service-based sys-
tem.

Message Transformations Use this reusable architectural decision model
in order to make decisions on methods for
transforming the messages inside the service-
based system.

Service-based Invocations Use this reusable architectural decision model
to decide on the type of remote asynchronous
invocations that will be used as well as the type
of communication channels required for the ex-
change of messages.

UniISExp

Application Structure Use this reusable architectural decision model
in order to decide which architectural style(s)
you will use to structure your application ar-
chitecture.

Data Store Use this reusable architectural decision model
in order to decide if and how you will need to
store your data.

Distribute Components Use this reusable architectural decision model
in order to decide how you will distribute the
different components of your system and how
to design the communication between compo-
nents.

Handling Processing Tasks Use this reusable architectural decision model
in order to decide how you will handle complex
processing tasks required in your application.

UI Design Use this reusable architectural decision model
in order to decide how you will design the UI
of your application.

Table 6: Reusable ADD Models Overview

17

In addition, before the execution of the controlled experiments we decided
to exclude students that did not manage to achieve more than 50% of maximum
points at the practical course. However, the final grade of the students at the
practical course was not known at the time of execution, therefore, we excluded
participants in the end of the semester and before we started with the analysis
of the results. No students were excluded in ORExp while we had to exclude
one student from the control group and two students from the experiment group
in UniISExp. Thus, our sample for UniISExp was further reduced to 49 and 61
participants for the control and experiment group respectively.

Information about the programming experience of the students has been
gathered with questionnaires that were given to the students in the beginning
of the experiments. As we can see in Figure 3 and Figure 4 the programming
experience, as well as the industry programming experience of the participants
are quite similar for both groups. In ORExp, the control group has slightly
more programming experience while in UniISExp we observe the opposite. The
majority of the students in both experiments has 1 to 3 years of programming
experience while some of the participants are quite experienced in programming
(i.e., have more than 3 years of programming experience). However, only very
few participants of both experiments have experience in industrial projects8.

The exact same materials were handed out to all participants in the begin-
ning of the exercise. As mentioned before, the experiment and control groups
used different versions of CoCoADvISE, that is, the experiment group could use
the reusable ADD models as shown in Figure 2 while this feature was deacti-
vated for the control group. The participants had 90 minutes9 time for reading,
understanding, and performing the exercise. They were allowed to finish with
the tasks earlier though. Access to the Web-based tool was given only during
this session to avoid any offline work or discussion among the students. Apart
from that, in order to avoid communication between the students or use of other
materials the participants were prevented (i.e., using Web browser policies) from
opening Web pages other than that of CoCoADvISE.

The collection of the participants’ data was performed automatically during
the experiment. In particular, all relevant information, such as created question-
naires, documented decisions, as well as all relevant events, such as deletions
or modifications of architectural decisions, were saved in a database. In Ap-
pendix A we present six exemplary ADDs documented by the participants in
the two controlled experiments along with their evaluations. The evaluation
of the documented ADDs with the use of a Likert scale from 1 (lowest) to 10
(highest) was performed afterwards by two independent experts. The experts
were instructed to consider the distances between the points of the 1–10 Likert
scale to be constant. Hence, we argue that the corresponding variables quality

8Most of the students with industrial experience have been working from a couple of months
to maximum one year at a company.

9This is a typical duration for a lab exercise in the two computer science courses. The
experiments’ tasks were thus designed given the limited time that the students would spend
in the controlled environment.

18

and qualityPerStudent qualify as interval scale type. In case of high distances
between the evaluations (i.e., 4 points or more between the ratings) the two
experts discussed their evaluations until they reached a consensus. In total, 47
and 122 ADDs in ORExp and UniISExp respectively had to be revised. For the
evaluation of the ADDs the following criteria were applied by both experts:

- The decision is stated clearly.

- The rationale of the decision is stated clearly.

- The decision corresponds to the described issue.

- The documented decision is a viable solution with regard to the described
issue.

- Potential alternatives are documented.

Regarding the execution of the two controlled experiments no deviations
from the initial study design occurred and no situations in which participants
behaved unexpectedly.

0

5

10

15

control experiment

0−1 years 1−3 years 3−6 years >6 years

Programming Experience

0

5

10

15

20

control experiment

0−1 years 1−3 years 3−6 years >6

Programming Experience in Industry

Figure 3: ORExp: Participants’ Programming Experience

5. Analysis of Results

In order to analyze the data collected during the two controlled experiments
and test our hypotheses (see 4.1) we used the R language and environment
for statistical computing [43]. The raw data for these results are available at
http://andromeda.swa.univie.ac.at/advise-experiment/.

19

0

10

20

30

control experiment

0−1 years 1−3 years 3−6 years >6 years

Programming Experience

0

10

20

30

40

50

control experiment

0−1 years 1−3 years 3−6 years >6 years

Programming Experience in Industry

Figure 4: UniISExp: Participants’ Programming Experience

5.1. Descriptive Statistics
As a first step in the analysis of the results we used descriptive statistics

to compare the means and medians of the observed variables. In particular,
Table 7 and Table 8 along with Figure 5 and Figure 6 display the mean and
median values of the number of documented ADDs (numOfDecisions), the
quality per ADD (quality), as well as the average quality of ADDs per student
(qualityPerStudent), the time needed for completing the required tasks (time)
and for documenting one decision (timePerDecision), for both control and
experiment groups in the ORExp and UniISExp experiments respectively.

It is noticeable that the participants of the experiment group documented
one ADD more on average than the control group: 7 against 6 and 6 against 5
for ORExp and UniISExp respectively. However, this is not necessarily an in-
dicator of “higher efficiency” of the students as the experiment group may have
needed more time for performing the tasks and thus has delivered more ADDs.
We notice, though, that the control groups spent also more time on document-
ing a single decision, that is, 3.91 and 2.64 more minutes than the corresponding
experiment groups on average. Therefore, the experiment groups needed less
time to document more decisions although they have dedicated some of their
time to understand and use the reusable ADD models. The reason is that Co-
CoADvISE with ADD model support generated semi-complete documentations
which saved some time for the experiment group. We also calculated the average
number of characters used for each ADD to find out whether the smaller number
of ADDs and the increased time spent on their documentation was due to the
smaller “size” of decisions. However, both treatment groups documented deci-
sions of almost the same size in ORExp (489 characters for the control group

20

and 431 for the experiment group). We notice also a small difference in the
length of the ADDs in UniISExp – 890 characters for the control group and
588 for the experiment group. This can be explained by the fact that often the
participants of the control group reused parts of the pattern documentations to
fill in some ADD template fields (e.g., Argumentation/Implications) which led
to longer ADD texts – unlike for the experiment group these documentations
provided the main source for decision support.

Variable Means Medians

control exp. control exp.

numOfDecisions 5.59 7.57 6 7
quality 4.82 5.46 4.85 5.29
qualityPerStudent 4.9 5.35 4.5 5.5
time (min) 44.71 35.75 48.11 36.69
timePerDecision (min) 9.06 5.15 8.12 4.79

Table 7: Means and Medians of Observed Variables for ORExp

As mentioned in Section 4, each documented ADD was evaluated by two
independent experts using a 10-point Likert scale ranging from very low quality
(1) to very high quality (10). Likert scales are treated in the literature as
both ordinal (e.g., [44]) and interval (e.g., [45]) scales. Ordinal scales show us
the order, but not the distances between the ranking, that means, that in a
10-point Likert scale 2 means better quality than 1, 3 better quality than 2,
and so on. Interval scales, on the other hand, show the order of things with
equal intervals between the scale points. In order to be able to use descriptive
statistics and statistical tests to analyze the quality of decisions we must treat
the 10-point Likert scale as an interval scale. We assume, therefore, that this
holds true in our case.

The average quality of the experiment group’s ADDs is 5.46 and 6.96 com-
pared to 4.82 and 6.34 in the control group for the ORExp and UniISExp re-
spectively. In addition, the students in the experiment group delivered ADDs
of better quality on average. To summarize, we would say that the treatment
group that used the ADD models support documented more ADDs and achieved
results of better quality and in less time.

On average, the participants of the experiment groups used 7 (ORExp) and
6 reusable ADD models. In addition, we calculated the time needed for filling
in the questionnaires and the ADD templates separately. In ORExp 25% and
in UniISExp 16% of the total time (1.07 and 0.81 minutes per questionnaire
respectively) was spent on answering the questionnaires. The rest of the time
was spent on filling in the semi-complete ADD documentations. Therefore, the
effort for using the decision support capabilities of CoCoADvISE is very small
in comparison with the effort needed to make and document decisions without
automated or semi-automated guidance.

21

0

10

20

30

40

50

control experiment

Total Time (min)

0.0

2.5

5.0

7.5

control experiment

Time per Decision (min)

0

2

4

control experiment

Quality of Decision

0

2

4

control experiment

Average Quality per Student

0

2

4

6

control experiment

Number of Decisions

mean

median

Figure 5: ORExp: Comparison of Means and Medians for the Observed Variables

5.2. Data Set Reduction
The few outliers that we noticed by studying the deviations from the means

for each of the observed variables correspond to different participants, that is,

22

Variable Means Medians

control exp. control exp.

numOfDecisions 5.70 6.72 5 6
quality 6.34 6.96 6.79 7.04
qualityPerStudent 6.37 6.92 7 7
time (min) 57.50 44.99 58.37 45.74
timePerDecision (min) 10.72 8.08 11.52 7.20

Table 8: Means and Medians of Observed Variables for UniISExp

these outliers correspond to ADDs documented by different students. Thus,
the fact that these points have much higher or much lower values than the
means (e.g., a student documented only a few decisions or needed much time
for one decision) does not make necessarily the participant an outlier. Therefore,
we excluded only students from the second controlled experiment (UniISExp)
that had participated in the first as well and students who did not complete
the practical course successfully (i.e., scoring less than 50% of the maximum
points), and who therefore would make the study results vulnerable. This was
done, however, before the data analysis (see explanation in Section 4.4); at this
stage, we did not perform any further data set reduction.

5.3. Hypotheses Testing
5.3.1. Testing for Normal Distribution

Parametric tests like the t-test assume the normal distribution of the an-
alyzed data. In order to decide whether to use parametric or non-parametric
test for the analysis of the data, we applied the Shapiro-Wilk [46] normality
test. The null hypothesis of the Shapiro-Wilk test states that the input data
is normally distributed. We test the normality at a level of confidence of 95%.
That means that if the calculated p-value is lower than 0.05 the null hypothesis
is rejected and the input data is not normally distributed. Conversely, if the
p-value is higher than 0.05, we can not reject the null hypothesis that the data
is normally distributed.

Table 9 lists the p-values of the Shapiro-Wilk normality test for each observed
variable and treatment group (all values are rounded to 4 decimal digits) for
both controlled experiments. P-values that indicate normal distribution are
emphasized (i.e., using bold font). We can see that only numOfDecisions and
qualityPerStudent for ORExp and time for UniISExp controlled experiment
exhibits a tendency of being normally distributed, while for the other variables
we can not assume that they are normally distributed. As a result, we decided
to pursue a non-parametric statistical test for analyzing the data.

5.3.2. Comparing the Means of Variables
To compare the means of the observed variables for the control and exper-

iment groups, we applied the one-tailed Wilcoxon rank-sum test [47], a non-

23

0

20

40

60

control experiment

Total Time (min)

0

3

6

9

12

control experiment

Time per Decision (min)

0

2

4

6

control experiment

Quality of Decision

0

2

4

6

control experiment

Average Quality per Student

0

2

4

6

control experiment

Number of Decisions

mean

median

Figure 6: UniISExp: Comparison of Means and Medians for the Observed Variables

parametric test for assessing whether one of two data samples of independent
observations is stochastically greater than the other. Its null hypothesis, which is
appropriate for the hypotheses in our experiments, is that the means of the first

24

0

2

4

6

control experiment

Mean Time Needed

0

2

4

control experiment

Median Time Needed

editDecision editQuestionnaire editDecision editQuestionnaire

Figure 7: ORExp: Comparison of Time Spent by Participants for Making and Documenting
ADDs

0.0

2.5

5.0

7.5

control experiment

Mean Time Needed

0

2

4

6

control experiment

Median Time Needed

editDecision editQuestionnaire editDecision editQuestionnaire

Figure 8: UniISExp: Comparison of Time Spent by Participants for Making and Documenting
ADDs

variable’s distribution is less than or equal to the means of the second variable’s
distribution, so that we can write H0 : A ≤ B. The Wilcoxon rank-sum test
tries to find a location shift in the distributions, i.e., the difference in means of
two distributions. The corresponding alternative hypothesis HA could be writ-
ten as HA : A > B. If a p-value for the test is smaller than 0.05 (i.e., the level
of confidence is 95%), the null hypothesis is rejected and the distributions are
shifted. If a p-value is larger than 0.05, the null hypothesis can not be rejected,
and we can not claim that there is a shift between the two distributions.

Table 10 contains the p-values of five Wilcoxon rank-sum tests that were
performed to find out whether we can reject the null hypotheses presented in

25

ORExp UniISExp
Variable p-Value p-Value

control exp. control exp.

numOfDecisions 0.493 0.0941 0.0009 0.0042
quality 0(10−5) 0(10−5) 0(10−11) 0(10−9)
qualityPerStudent 0.7323 0.7145 0.0046 0.0643
time (min) 0.0107 0.8832 0.3593 0.2717
timePerDecision (min) 0.002 0.918 0.5181 0(10−10)

Table 9: Shapiro-Wilk Normality Test

Section 4.1. Note that only the first four decimal places of the results are
reported. Based on the obtained p-values, we can assess that almost all distri-
butions show a statistically significant shift between each other and that most of
the null hypotheses can be rejected. Analogously, Table 11 contains the p-values
of t-Tests for those variables, where the assumption of normal distribution could
not be rejected (see Table 9).

Testing Hypothesis H1. The experiment group documented significantly more
ADDs than the control group. We reject the null hypothesis H01 (i.e., the use of
reusable ADD models has no effect on the quantity related effectiveness of soft-
ware architecture students) since the calculated p-value is 0.0027 (t-test: 0.0021)
and 0.008 for the ORExp and UniISExp experiments respectively. Hence, there
is evidence that the use of reusable ADD models for decision making and doc-
umentation increases the quantity related effectiveness of software architecture
students.

Testing Hypothesis H2. In our experiments, we observed that the participants
of the experiment groups delivered ADDs of better quality than the participants
of the control groups. As this observation holds for both variables quality and
qualityPerStudent we tested the null hypothesis H02 (i.e., the use of reusable
ADD models has no effect on the quality related effectiveness of software archi-
tecture students) for these two variables. In the experiment ORExp, the p-values
0.0332 and 0.055 (> 0.05) do not allow us to reject H02 completely (however,
t-test: 0.0330). We can reject this hypothesis for the quality of single ADDs
but not for the average quality of documented ADDs per student. For UniIS-
Exp though, in which we tested a bigger sample of ADDs and participants, H02

could be rejected given the p-values 0.0459 and 0.0173 for the variables quality
and qualityPerStudent respectively. Therefore, there is evidence for supporting
H2, that is, the ADDs of the experiment group were in total of better quality –
according to the reviewers’ evaluations – than those of the control group and the
single participants’ performance was also significantly “better”. Hence, we can
report evidence that using reusable ADD models for making and documenting
decisions also increases the quality related effectiveness of its users.

26

Testing Hypothesis H3. Finally, we discovered that the experiment group needed
significantly less time to document a decision. This holds also for the total time
this group spent on the assigned tasks. With a p-value of 0.0045 and 0.0001
for time and timePerDecision in ORExp and corresponding values close to
0 (10−5) in UniISExp we can reject the null hypothesis H03 for both experi-
ments (the same holds for the corresponding t-test for the variable time), that
is, the use of reusable ADD models has no effect on the time related efficiency
of software architecture students. Thus, we can conclude that there is evidence
that reusable ADD models lead to increased time related efficiency of software
architecture students as well.

Hypothesis Variable (µ) p-Value

(Assumption) ORExp UniISExp

H01 (µexp ≥ µcontrol) numOfDecisions 0.0027 0.0080
H02 (µexp ≥ µcontrol) quality 0.0332 0.0459

qualityPerDecision 0.0550 0.0173
H03 (µexp ≤ µcontrol) time 0.0045 0(10−5)

timePerDecision 0.0001 0(10−5)

Table 10: Hypotheses Testing Results (Wilcoxon rank-sum Test)

Hypothesis Variable (µ) p-Value

(Assumption) ORExp UniISExp

H01 (µexp ≥ µcontrol) numOfDecisions 0.0021
H02 (µexp ≥ µcontrol) qualityPerDecision 0.0330
H03 (µexp ≤ µcontrol) time 0(10−6)

Table 11: Hypotheses Testing Results (t-Test)

6. Discussion

The following subsections discuss our main findings and their implications
and inferences for software architects. We also report on the threats to validity.

6.1. Evaluation of Results and Implications
Increased Effectiveness. The first two hypotheses, i.e., H1 and H2, are related
to the effectiveness of software architecture students which we study separately
with regard to the quantity and the quality of the documented ADDs. As
reported in Section 5, we have provided strong evidence for rejecting the corre-
sponding null hypotheses H01 and H02. Thus, reusable ADD models contribute
both to the completeness and the quality of ADD documentations.

27

The semi-automated guidance using questionnaires provided by the Co-
CoADvISE tool allowed software architecture students (representative for novice
software architects) to (1) identify the ADDs that had to be made, (2) under-
stand the design space in the corresponding case study, (3) find out the alter-
natives for each design issue, and finally (4) document the appropriate design
solution according to the requirements. Some of the participants of the ex-
periment groups stated afterwards that CoCoADvISE’s reusable models helped
them find quickly the answer to their problem without needing to read all de-
sign pattern documentations. Especially, that turned out to be useful in cases
where the design solutions were not so obvious from the requirements and re-
quired a better research and analysis of the design situation. For instance, for
handling some complex processing tasks in the UniISExp case study, “single or
multi threaded implementation of the tasks” would be viable solutions inferred
by the reusable ADD models. Yet, most of the participants of the control group
opted for a “pipes and filters” solution, which would clearly be “overkill” in this
specific situation. Another phenomenon that we observed was that participants
of the control groups were often not confident about what they should docu-
ment in the ADD template fields. On the contrary, the reusable ADD models
provided support (i.e., some fields are filled in automatically) and guidance (i.e.,
the reusable ADD models already contain design rationale) for filling in the de-
cision related fields. We decided not to fill in further fields automatically (e.g.,
positions, arguments, etc.) as this would give a big advantage to the experiment
groups and would make the comparison between the treatment groups difficult.

The observed phenomenon of experiment groups documenting more decisions
can possibly be explained as follows. The reusable ADD models guided the
students to follow-on decisions that were not considered by the participants of
the control groups at all.

Systematically capturing and leveraging reusable AK in the form of reusable
ADD models therefore may lead to increased effectiveness of architects. Our
findings also validate Zimmermann et al.’s claim about some of the benefits
of architecting with reusable ADD models: reusable ADD models (1) provide
means for the semi-automatic decision identification and (2) improve the quality
of decision making [8].

Increased Efficiency. We showed in the previous section that we accept our last
alternative hypothesis H3, that is, using CoCoADvISE’s support on reusable
ADD models reduces time and effort for software architecture students. This
finding was highly expected though, as much “manual” work for making and
documenting ADDs (e.g., reading documentations, filling in ADD templates re-
peatedly) is made redundant due to the semi-automated guidance by the ques-
tionnaires and the semi-complete documentations generated from decision rec-
ommendations. Thus, architects may need less time to document ADDs when
guided by reusable ADD models.

28

6.2. Threats to Validity
To ensure the validity of our results, we consider the categorization of validity

threats of Wohlin et al. [42] and discuss each of them separately in the context
of our controlled experiments.

Conclusion Validity. The conclusion validity focuses on the relationship be-
tween the treatment we used in the experiment and the actual outcome, i.e.,
on the existence of a significant statistical relationship. The way we measured
the working time of the students automatically from the database entries may
pose a threat to conclusion validity, as the users might have spent some working
time idle or with pen and paper. Apart from that, to measure the actual time
spent on working with CoCoADvISE for performing the assigned tasks is very
difficult, if not impossible, as the participants may have spent some time reading
the tasks or familiarizing with the tool. However, we think that idle working
times, times spent on other tasks, or offline work can largely be excluded due
to the limited experiment time of 90 minutes in which the participants needed
to work in a concentrated manner in order to get the work done.

In addition, the interpretation of the 10-point Likert scale that was used to
rate the ADDs may pose a threat to the conclusion validity. In Section 5, we
argued that we consider the Likert scale an interval scale, and thus the descrip-
tive statistics and statistical tests that we applied are, making this assumption,
valid. Another potential threat to validity is the subjectivity of the quality
ratings of the reviewers. It could have happened as well that the one reviewer
evaluated more strictly than the other. To reduce these risks, we asked two
independent experts in the field of software architecture to evaluate all ADDs
for both experiments and calculated afterwards the quality of each ADD on
average. In case of disagreements in the evaluations the two reviewers needed
to discuss their ratings until they reached a consensus. Nevertheless, this does
not erase the subjectivity of the evaluations completely as some aspects related
to the quality of ADDs like the evaluation of ADDs after the implementation of
the software system are not taken into consideration in our case.

Internal Validity. The internal validity refers to the extent to which treatment
or independent variables caused the effects seen on the dependent variables.
In order to reduce this kind of validity threats, we made sure that the par-
ticipants of both groups had at least medium experience in programming and
design – with slight differences – and that they were aware of the architectural
design patterns they had to use for making and documenting architectural de-
cisions. For this, the participants were asked to study all related patterns in
advance. Apart from that, the students had applied some of the architectural
design patterns that appeared in the controlled experiments in previous practi-
cal assignments (i.e., in programming exercises concerning the implementation
of various software systems).

The experiments were carried out in controlled environments and the treat-
ment group members were in different rooms. Thus, they could not know the
goals of the experiment, as they were not aware of the existence of different

29

groups or/and the different CoCoADvISE settings for the two treatment groups.
During the experiment, the students were allowed to use only the CoCoADvISE
tool and all other applications and Web pages were blocked. This way, we
prevented access to other Internet materials as well as the participants’ commu-
nication through chat applications. Also, an observer in the room ensured that
no interactions between the participants of the same room occurred to ensure
that the students worked individually.

We also prevented any access to CoCoADvISE and the accompanying ma-
terials outside the dedicated session or outside the labs where the controlled
experiments were carried out.

Construct Validity. The construct validity focuses on the suitability of the ex-
periment design for the theory behind the experiment and the observations.

The variables that have been observed in the experiment are regarded ac-
curate and objective as they are related to the actual use of tools and were
automatically extracted from the database. The students did not have any
training or experience with the tools. A potential threat to validity may be
posed by improper use of CoCoADvISE by participants who did either not un-
derstand the purpose of the reusable ADD models and the questionnaires or did
not comprehend the tasks. We also need to take into account language diffi-
culties in some cases (CoCoADvISE texts were in English, all other materials
were both in English and German). We tried to overcome such problems by en-
couraging the students to ask the instructors for further explanations. Another
potential threat to construct validity is the fact that only one measure was used
to evaluate the quality of the documented ADDs, which does not allow us to
cross-check the experiments’ results.

Finally, there is a potential threat to validity imposed by the participating
subjects, knowing the research topics of our research group and therefore being
able to “guess” results that we hoped to obtain. We tried to minimize the impact
of this threat by choosing independent and external experts that were not aware
of our research agenda.

External Validity. The external validity is concerned with whether the results
are generalizable outside the scope of our study. The subjects of the experiments
had medium programming experience and were familiar with the ADDs they
were asked to make. However, only few students had experience in the industry.
We hence consider the participants of both controlled experiments to be rep-
resentative for novice software developers or architects. A threat to validity of
the relevance of our study’s findings in practice is the use of students instead of
practitioners in both experiments. We tried to mitigate the threat by educating
the students on the patterns and architectural decisions used in the experiment.
At the time of the experiments, all participants had theoretical knowledge of,
as well as programming experience with the majority of the design solutions
that had to be considered for the required tasks. Therefore, to a certain extent,
our results can be transferred to novice software architects. However, we will
need to conduct similar experiments with practitioners in order to be able to

30

consider our experiment results generalizable – applicable to professional novice
(or more experienced) software architects.

Also, the fact that the treatment groups used the CoCoADvISE tool only,
poses the threat that the results are specific only for this tool. However, we tried
to implement in CoCoADvISE general concepts and practices from reusable
ADD models [3] and ADD documentations [16]. Hence, we expect the same
results if the participants worked with tools based on similar concepts as well.

As mentioned before, the measurements were extracted from the tool data-
base, avoiding any bias by the experimenters.

6.3. Inferences
van Heesch et al. found out that the quality of ADDs increases when focus is

set on the use of design patterns for documentation [12]. Our findings confirm
and supplement these previous results for students of software architecture.
That means that the use of design patterns in the form of reusable ADD models
further increases the effectiveness of students leading to less effort and better
quality for ADD documentations. We claim that our results can be transferable
to novice/trainee software architects, that needs to be proven, however, in an
industrial context with practitioners.

Although we have conducted our experiments with students with software
architecture background and with little commercial experience, we believe that
our results can apply similarly to novice or more experienced architects in the
industry. To validate these claims we will need more empirical evidence and
feedback from the use of reusable architectural decision models in practice and
in the context of industrial projects.

In practice, ADDs remain either undocumented or partially documented and
the documentations are often dispersed in different places like wikis, meeting
minutes, and issue tracking systems [40]. In addition, documenting ADDs that
correspond to recurring design issues is tedious and time-consuming. Providing
the means for semi-automated decision making and documentation based on
reusable ADD models may encourage software architects to capture AK regu-
larly and systematically. That will contribute to reducing AK vaporization [2].

It is of course important that reusable ADD models that have been doc-
umented in the literature (e.g., [8, 9, 21, 22]) and have been tested in a very
limited scale (i.e., by practitioners of the same company, etc.) get validated and
enriched by practitioners from different domains. That will increase the accep-
tance of such reusable AK and confirm Nowak et al.’s vision of collaboration
and knowledge exchange between different AK repositories (i.e., repositories
containing reusable architectural decision models) [48]. Therefore, the useful-
ness of tools like CoCoADvISE which provide semi-automated decision support
based on such ADD models will get more significant.

7. Conclusions and Future Work

In this paper, we reported the results of two separate controlled experiments
on architectural decision making and documentation based on reusable ADD

31

models. Due to the current lack of empirical evidence, the experiments were
designed to determine the supportive effect of reusable ADD models for soft-
ware architects. We were particularly interested in quantifying the impact of
reusable ADD models on a software architecture student’s efficiency and effec-
tiveness while making and documenting decisions. Hence, we implemented and
instrumented a custom-made tool (CoCoADvISE) for making and documenting
ADDs, that tries to incorporate the best practices of current (i.e., state of the
art) ADD tools, in such a way that each action in the tool was timestamped
and stored in a database. This valuable information allowed us to extract and
deduce efficiency and effectiveness related metrics.

Our experiments provided strong evidence that reusable ADD models can
potentially increase both the effectiveness and the efficiency of software archi-
tecture students while making and documenting ADDs. We can further report,
that our findings are in line with similar studies (see, e.g., [12]) and support
the claims regarding reusable ADDs (see, e.g., [8, 9, 21, 22]) in principle. We
consider our results to be applicable for novice software architects as well. Thus,
as part of our ongoing future work, we will repeat our experiments with differ-
ent reusable ADD models and different types of participants. In particular, we
strive for experimenting with practitioners to see if our assumptions and results
are still valid in industrial contexts. At the same time, we plan to further in-
vestigate the educational aspect of reusable ADD models. To that end we want
to find out if and to what extent reusable ADD models are conducive for novice
software architects to learning how to systematically use patterns.

Acknowledgments

We would like to thank the reviewers who evaluated the architectural deci-
sions in both controlled experiments. We also thank all students for participat-
ing in the experiments.

Appendix A. Examples of Documented ADDs

We present in this appendix exemplary ADDs documented by the partic-
ipants of the two controlled experiments along with the experts’ ratings for
these decisions. In particular, we include three decisions from ORExp and three
decisions from UniISExp.

32

Name D01: Use Fire and Forget for Logging

Group Communication/Logging

Issue All messages that the online retailer exchanges are sent to a logging
system that stores them in a database for 1 year.

Decision Fire and Forget Pattern

Assumptions Loss of logging messages is acceptable.

Positions Our logging service is implemented as a remote object. Recording of
log messages must not influence the execution of the client and loss
of individual log messages is acceptable. In this case Fire and Forget
can be used.

Arguments/
Implications

A client application wants to notify a remote object for an event. Nei-
ther a result is expected, nor does the delivery have to be guaranteed.
A one-way exchange of a single message is sufficient.
-> simple, non-blocking communication

Related Decisions -

Table A.1: Example 1 from ORExp / Reviewer 1: 7, Reviewer 2: 8

Name Process Orders - Multiple single orders

Group Messaging

Issue Inventory systems can only process single orders.

Decision Splitter

Assumptions The Splitter splits the order into individual order items. Each message
refers to the original message (e.g., the order ID) so that the processing
results can be correlated back to the original message.

Positions -

Arguments/
Implications

A Splitter can break large messages into individual messages to sim-
plify further processing. In our Systems this needs to be done be-
cause the inventory systems can only process single orders. The only
downside is that the overhead gets bigger because of the correlation
identifiers.

Related Decisions Process Orders - Routing and Take Orders.

Table A.2: Example 2 from ORExp / Reviewer 1: 7, Reviewer 2: 5

Name OrderMessageLocationProcessor-ADD1: Message processing

Group Message Routing and Processing

Issue OrderMessageLocationProcessor ADD1: Message processing

Decision Use a message splitter

Assumptions The order processing sever need to receive orders from different lo-
cations, the call center and the website. The order processing server
needs to know where is one order coming from and treat all orders
equally.

Positions Message splitter with Message aggregator

Arguments/
Implications

Each order message contents the location information and the order
information, before processing the order, a splitter is needed to split
the order message. As the retailer wants to treat each order equally,
an aggregator is not needed here.

Related Decisions OrderConfirmMessageRouter-ADD2: Message routing/filtering

Table A.3: Example 3 from ORExp / Reviewer 1: 10, Reviewer 2: 9

33

Name Decision 02 S-T

Group Streaming

Issue Streams should be kept on a central server and be downloaded on de-
mand, bandwidth and transformation in different audio/video formats
is a problem.

Decision I have chosen asynchronous streaming where the sequence of the pack-
ets is important, but not the time.

Assumptions Because of the high amount of students it is important to keep the
bandwidth low when streaming. Because of that, the streaming should
be asynchronous, because it is faster and needs less bandwidth as
synchronous or isochronous streaming.

Positions Alternatives would be synchronous or isochronous streaming, which
are “better” but also need a lot more resources, especially when
streaming to multiple clients like it is done at the university.

Arguments/
Implications

Streaming offers high scalability as it requires less memory usage at
the server side. Also, it is simple to implement and maintain. How-
ever, it cannot support transactional processing or interaction between
different clients. And as I chose the asynchronous streaming I can de-
crease the memory usage even more.

Related Decisions none

Table A.4: Example 4 from UniISExp / Reviewer 1: 9, Reviewer 2: 9

Name Communication between the University-IS and e-learning

Group Communication between the uni-IS and the e-learning

Issue Current system: bad communication between the uni-is and the e-
learning and the information not in time.

Decision Shared repository

Assumptions Invocation parameters are inefficient for large data sets also bad if the
information varies from invocation to invocation.

Positions Very often data needs to be shared between components. In sequential
architectures the only way to share data between the components is
to use invocation parameters but this is inefficient for large data sets.
Also it might be inefficient, if the shared information varies from in-
vocation to invocation. Finally the long-term persistence of the data
requires a centralized data management. Thus, Shared Repository is
used as a central data store, accessed by all other independent com-
ponents. It offers suitable means for accessing the data, for instance,
a query API or language and is scalable to meet the clients’ require-
ments. It must ensure data consistency and must handle problems of
resource contention, for example by locking accessed data. It might
also introduce transaction mechanisms. A Shared Repository main-
tains the common data on which the application’s components oper-
ate, the components themselves access and modify the data in the
shared repository, and the state of the data in the Shared Repository
instigates the control flow of specific components.

Arguments/
Implications

The Shared Repository pattern increases the level of abstraction in the
code. This may decrease understandability for developers who are un-
familiar with the pattern. Although implementing the pattern reduces
the amount of redundant code, it generally increases the number of
classes that must be maintained. The Shared Repository pattern helps
to isolate both the service and the list access code. Isolation makes
it easier to treat them as independent services and to replace them
with mock objects in unit tests. Typically, it is difficult to unit test
the repositories themselves, so it is often better to write integration
tests for them. If the data is being cached in heavily loaded systems,
performance can be an issue.

Related Decisions Faster, better for large data and long term persistence of the data
requires, suitable for accessing the data

Table A.5: Example 5 from UniISExp / Reviewer 1: 6, Reviewer 2: 5

34

Name D01: Architectural style for distribution

Group System Design

Issue System needs to be deployed on different machines

Decision Design of a service-oriented architecture

Assumptions (1) System needs to be scalable and deployed onto several different ma-
chines. (2) Heterogenous components like e-learning platforms (that
change very fast), research networks and library components need to
be integrated in such a way that changing or replacing one of the
subsystems does not lead to a huge effort in reprogramming the core
application.

Positions A poor alternative to this approach would be to implement each func-
tionality on its own and just access a shared repository where in-
put/output data is stored.

Arguments/
Implications

Service-based architecture is a very well established pattern and meets
all the requirements for this project. As there is a very loose coupling
between the communicating entities, it is no problem to replace or
add subsystems which is very crucial for such a dynamic system.

Related Decisions -

Table A.6: Example 6 from UniISExp / Reviewer 1: 8, Reviewer 2: 9

References

[1] A. Jansen, J. Bosch, Software Architecture as a Set of Architectural Design
Decisions, in: 5th Working IEEE/IFIP Conference on Software Architec-
ture (WICSA), Pittsburgh, PA, USA, IEEE Computer Society, 2005, pp.
109–120.

[2] N. B. Harrison, P. Avgeriou, U. Zdun, Using Patterns to Capture Architec-
tural Decisions, IEEE Software 24 (4) (2007) 38–45.

[3] O. Zimmermann, T. Gschwind, J. Küster, F. Leymann, N. Schuster,
Reusable Architectural Decision Models for Enterprise Application Devel-
opment, in: 3rd International Conference on Quality of Software Architec-
tures (QoSA), Medford, MA, USA, Springer, 2007, pp. 15–32.

[4] R. Farenhorst, R. Izaks, P. Lago, H. Van Vliet, A Just-In-Time Architec-
tural Knowledge Sharing Portal, in: Seventh Working IEEE/IFIP Confer-
ence on Software Architecture (WICSA), 2008, pp. 125–134.

[5] M. Galster, M. A. Babar, Empirical Study of Architectural Knowledge
Management Practices, in: IEEE/IFIP Conference on Software Architec-
ture (WICSA), 2014, pp. 239–242.

[6] O. Zimmermann, U. Zdun, T. Gschwind, F. Leymann, Combining Pattern
Languages and Reusable Architectural Decision Models into a Compre-
hensive and Comprehensible Design Method, in: 7th Working IEEE/IFIP
Conference on Software Architecture (WICSA), Vancouver, BC, Canada,
IEEE Computer Society, 2008, pp. 157–166.

35

[7] D. Falessi, G. Cantone, R. Kazman, P. Kruchten, Decision-making Tech-
niques for Software Architecture Design: A Comparative Survey, ACM
Computing Survey 43 (4) (2011) 33:1–33:28.

[8] O. Zimmermann, J. Koehler, L. Frank, Architectural Decision Models as
Micro-Methodology for Service-Oriented Analysis and Design, in: D. Lübke
(Ed.), Proceedings of the Workshop on Software Engineering Methods for
Service-oriented Architecture (SEMSOA 2007), Hannover, Germany, 2007,
pp. 46–60.

[9] I. Lytra, S. Sobernig, U. Zdun, Architectural Decision Making for Service-
Based Platform Integration: A Qualitative Multi-Method Study, in: Pro-
ceedings of the 2012 Joint Working IEEE/IFIP Conference on Software
Architecture and European Conference on Software Architecture, WICSA-
ECSA’12, IEEE Computer Society, Washington, DC, USA, 2012, pp. 111–
120.

[10] S. Abrams, B. Bloom, P. Keyser, D. Kimelman, E. Nelson, W. Neuberger,
T. Roth, I. Simmonds, S. Tang, J. Vlissides, Architectural Thinking and
Modeling with the Architects’ Workbench, IBM Systems Journal 45 (3)
(2006) 481–500.

[11] J. F. Hoorn, R. Farenhorst, P. Lago, H. van Vliet, The Lonesome Architect,
Journal of Systems and Software 84 (9) (2011) 1424–1435.

[12] U. van Heesch, P. Avgeriou, U. Zdun, N. Harrison, The supportive effect
of patterns in architecture decision recovery – A controlled experiment,
Science of Computer Programming 77 (5) (2012) 551–576.

[13] O. Zimmermann, Architectural Decisions as Reusable Design Assets, IEEE
Software 28 (1) (2011) 64–69.

[14] I. Lytra, H. Tran, U. Zdun, Supporting Consistency Between Architectural
Design Decisions and Component Models Through Reusable Architectural
Knowledge Transformations, in: Proceedings of the 7th European Confer-
ence on Software Architecture (ECSA), ECSA’13, Springer-Verlag, Berlin,
Heidelberg, 2013, pp. 224–239.

[15] P. Clements, D. Garlan, L. Bass, J. Stafford, R. Nord, J. Ivers, R. Little,
Documenting Software Architectures: Views and Beyond, Pearson Educa-
tion, 2002.

[16] J. Tyree, A. Akerman, Architecture Decisions: Demystifying Architecture,
IEEE Software 22 (2) (2005) 19–27.

[17] L. Lee, P. Kruchten, Capturing Software Architectural Design Decisions,
in: 2007 Canadian Conference on Electrical and Computer Engineering,
IEEE Computer Society, 2007, pp. 686–689.

36

[18] M. Shahin, P. Liang, M. R. Khayyambashi, Architectural design decision:
Existing models and tools, in: IEEE/IFIP Conference on Software Archi-
tecture/European Conference on Software Architecture, IEEE, 2009, pp.
293–296.

[19] A. Tang, P. Avgeriou, A. Jansen, R. Capilla, M. A. Babar, A comparative
study of architecture knowledge management tools, Journal of Systems and
Software 83 (3) (2010) 352–370.

[20] D. Tofan, M. Galster, P. Avgeriou, W. Schuitema, Past and future of soft-
ware architectural decisions – A systematic mapping study, Information
and Software Technology 56 (8) (2014) 850–872.

[21] U. Zdun, M. Strembeck, Reusable Architectural Decisions for DSL Design:
Foundational Decisions in DSL Development, in: Proceedings of 14th Eu-
ropean Conference on Pattern Languages of Programs (EuroPLoP 2009),
Irsee, Germany, 2009, pp. 1–37.

[22] C. Mayr, U. Zdun, S. Dustdar, Reusable Architectural Decision Model for
Model and Metadata Repositories, in: F. de Boer, M. Bonsangue, E. Made-
laine (Eds.), Formal Methods for Components and Objects, Vol. 5751 of
Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2009, pp.
1–20.

[23] A. MacLean, R. Young, V. Bellotti, T. Moran, Questions, Options, and
Criteria: Elements of Design Space Analysis, Human-Computer Interaction
6 (1991) 201–250.

[24] M. A. Babar, I. Gorton, A Tool for Managing Software Architecture
Knowledge, in: Proceedings of the Second Workshop on SHAring and
Reusing architectural Knowledge Architecture, Rationale, and Design In-
tent, SHARK-ADI’07, IEEE Computer Society, Washington, DC, USA,
2007, pp. 11–.

[25] R. Capilla, F. Nava, J. C. Duenas, Modeling and Documenting the Evo-
lution of Architectural Design Decisions, in: Proceedings of the Second
Workshop on SHAring and Reusing Architectural Knowledge Architecture,
Rationale, and Design Intent, SHARK-ADI’07, IEEE Computer Society,
Washington, DC, USA, 2007, pp. 9–.

[26] A. Zalewski, S. Kijas, D. Sokołowska, Capturing Architecture Evolution
with Maps of Architectural Decisions 2.0, in: Proceedings of the 5th Eu-
ropean Conference on Software Architecture, ECSA’11, Springer-Verlag,
Berlin, Heidelberg, 2011, pp. 83–96.

[27] M. Shahin, P. Liang, M. R. Khayyambashi, Improving Understandability
of Architecture Design Through Visualization of Architectural Design De-
cision, in: Proceedings of the 2010 ICSE Workshop on Sharing and Reusing
Architectural Knowledge, SHARK’10, ACM, New York, NY, USA, 2010,
pp. 88–95.

37

[28] A. Jansen, J. V. D. Ven, P. Avgeriou, D. K. Hammer, Tool Support for
Architectural Decisions, in: Proceedings of the 6th working IEEE/IFIP
Conference on Software Architecture, IEEE Comp. Soc., 2007, pp. 4–4.

[29] M. Konersmann, Z. Durdik, M. Goedicke, R. H. Reussner, Towards
Architecture-centric Evolution of Long-living Systems (the ADVERT Ap-
proach), in: Proceedings of the 9th International ACM SIGSOFT Confer-
ence on Quality of Software Architectures, QoSA’13, ACM, New York, NY,
USA, 2013, pp. 163–168.

[30] M. Nowak, C. Pautasso, Team Situational Awareness and Architectural
Decision Making with the Software Architecture Warehouse, in: Proceed-
ings of the 7th European Conference on Software Architecture, ECSA’13,
Springer-Verlag, Berlin, Heidelberg, 2013, pp. 146–161.

[31] N. Schuster, O. Zimmermann, C. Pautasso, ADkwik: Web 2.0 Collabora-
tion System for Architectural Decision Engineering, in: Nineteenth Inter-
national Conference on Software Engineering and Knowledge Engineering
(SEKE), Knowledge Systems Institute Graduate School, 2007, pp. 255–260.

[32] D. Ameller, O. Collell, X. Franch, ArchiTech: Tool Support for NFR-guided
Architectural Decision-Making, in: Requirements Engineering Conference
(RE), 2012 20th IEEE International, 2012, pp. 315–316.

[33] T. Al-Naeem, I. Gorton, M. A. Babar, F. Rabhi, B. Benatallah, A Quality-
driven Systematic Approach for Architecting Distributed Software Applica-
tions, in: 27th International Conference on Software Engineering, ICSE’05,
ACM, New York, NY, USA, 2005, pp. 244–253.

[34] M. Shahin, P. Liang, Z. Li, Architectural Design Decision Visualization
for Architecture Design: Preliminary Results of A Controlled Experiment,
in: Proceedings of the 1st Workshop on Traceability, Dependencies and
Software Architecture (TDSA), ACM, 2011, pp. 5–12.

[35] S. Herold, H. Klus, Y. Welsch, C. Deiters, A. Rausch, R. Reussner, K. Krog-
mann, H. Koziolek, R. Mirandola, B. Hummel, M. Meisinger, C. Pfaller,
CoCoME - The Common Component Modeling Example, in: The Common
Component Modeling Example: Comparing Software Component Models
[result from the Dagstuhl research seminar for CoCoME, August 1-3, 2007],
2007, pp. 16–53.

[36] W. Bu, A. Tang, J. Han, An Analysis of Decision-centric Architectural
Design Approaches, in: Proceedings of the 2009 ICSE Workshop on Shar-
ing and Reusing Architectural Knowledge, SHARK’09, IEEE Computer
Society, Washington, DC, USA, 2009, pp. 33–40.

[37] R. Weinreich, I. Groher, A Fresh Look at Codification Approaches for
SAKM: A Systematic Literature Review, in: Proceedings of the 8th Eu-
ropean Conference on Software Architecture (ECSA), ECSA’14, Springer-
Verlag, Berlin, Heidelberg, 2014, pp. 1–16.

38

[38] U. van Heesch, P. Avgeriou, A. Tang, Does decision documentation help
junior designers rationalize their decisions? A comparative multiple-case
study, Journal of Systems and Software 86 (6) (2013) 1545–1565.

[39] C. Zannier, F. Maurer, A qualitative empirical evaluation of design deci-
sions, ACM SIGSOFT Software Engineering Notes 30 (4) (2005) 1–7.

[40] C. Miesbauer, R. Weinreich, Classification of Design Decisions: An Expert
Survey in Practice, in: Proceedings of the 7th European Conference on
Software Architecture, ECSA’13, Springer-Verlag, Berlin, Heidelberg, 2013,
pp. 130–145.

[41] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C.
Hoaglin, K. E. Emam, J. Rosenberg, Preliminary Guidelines for Empirical
Research in Software Engineering, IEEE Trans. Softw. Eng. 28 (8) (2002)
721–734.

[42] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, A. Wess-
lén, Experimentation in Software Engineering: An Introduction, Kluwer
Academic Publishers, Norwell, MA, USA, 2000.

[43] R. C. Team, et al., R: A language and environment for statistical comput-
ing, R foundation for Statistical Computing.

[44] G. Vigderhous, The level of measurement and ’permissible’ statistical anal-
ysis in social research, Pacific Sociological Review 20 (2) (1977) 61–72.

[45] H. R. Maurer, Todd J.; Pierce, A Comparison of Likert Scale and Tra-
ditional Measures of Self-Efficacy, Journal of Applied Psychology 83 (2)
(1998) 324–329.

[46] S. S. Shapiro, M. B. Wilk, An analysis of variance test for normality (com-
plete samples), Biometrika 3 (52).

[47] H. B. Mann, W. D. R., On a Test of Whether One of Two Random Variables
is Stochastically Larger than the Other, Annals of Mathematical Statistics
18 (1) (1947) 50–60.

[48] M. Nowak, C. Pautasso, O. Zimmermann, Architectural Decision Mod-
eling with Reuse: Challenges and Opportunities, in: Proceedings of the
2010 ICSE Workshop on Sharing and Reusing Architectural Knowledge,
SHARK’10, ACM, New York, NY, USA, 2010, pp. 13–20.

39

