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We present a sparsification technique, called hierarchical graph decomposition, and
survey its recent applications to problems relevant in computer-aided verification. We
provide some intuition for which kind of problems this technique can lead to algorithms
with improved asymptotic runtimes, in particular for dense graphs. Apart from classical
graphs, we also consider Markov decision processes (MDPs) and (two-player) game graphs.
For the definitions of the listed problems as well as their application in computer-aided
verification we refer the reader to the cited literature. For example, parity games with
three priorities can be used to analyze timed automaton games (a model for real-time
systems) with reachability and safety objectives [9, 8, 4, 7].

Related Work. Henzinger et al. [10] introduced the hierarchical graph decomposition
as a graph sparsification technique to replace ’m’, the number of edges, with ’n’, the
number of vertices, in the running time bound. They considered the problem of quickly
identifying a new connected component in an undirected graph after a batch of edge
deletions, motivated by a problem in computational biology. Chatterjee and Henzinger [2]
extended the technique to directed graphs, MDPs, and game graphs. They applied it to two
problems where the basic algorithms are based on repeated vertex deletions: Computing
the maximal end-component decomposition of MDPs (MEC) and computing the winning
sets of both players in Büchi games (Büchi).

problem previous runtime when m = Θ(n2) new algorithm

MEC O(min{mn2/3, m3/2}) [1] O(n8/3) O(n2) [2]
Büchi (ignoring log factors) O(mn) [6, 5] O(n3) O(n2) [2]
Parity-3 O(mn) [14] O(n3) O(n5/2) [3]
Streett (simplified runtime) O(min{mn, m3/2}) [12] O(n3) O(n2) [3]
2SCC O(mn) [15, 13] O(n3) O(n2) [11]

Results. In recent work [3] we applied the technique in two ways: We showed how the
runtime analysis can be modified in the case where vertices are not removed from the
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graph, which yields a faster algorithm for the nonemptiness problem of Streett automata
(Streett) in dense graphs; and we showed how the technique can be used to combine
and speed up known algorithms for the winning sets in Parity games with three priorities
(Parity-3). The latter approach extends to Parity games with an arbitrary number of
priorities and is different from the algorithm for Büchi games (which are equal to Parity
games with two priorities). For completeness we also list our recent improved algorithm
for a classical graph problem (2SCC) [11]. We summarize the running time improvements
in our and related work in the table above. Note that while for some problems the runtime
can only be improved for dense graphs, for other problems the runtime is improved for all
cases except when the number of edges m is in the order of the number of vertices n.

Decomposition. We decompose a directed graph G = (V, E) with m = |E| edges and
n = |V | vertices into a hierarchy of graphs Gi = (V, Ei) for levels i ∈ {1, . . . , dlog ne}. We
will define the set of edges Ei such that |Ei| is O(n · 2i), Ei−1 ⊆ Ei for all i > 1, and
Edlog ne = E. Whether an edge (u, v) ∈ E is included in Ei will depend on the in- and
out-degree of u and v, and can for game graphs additionally depend on the player to which
the vertices on the other end of the incoming or outgoing edges of u and v belong. For
example, in the algorithms for MEC and Streett the set Ei contains all edges (u, v) ∈ E
for which the out-degree of u is at most 2i. In the algorithm for Parity-3 the set Ei

additionally contains the first 2i incoming edges of each vertex, where the incoming edges
are sorted such that those from Player 2 come first. For now we call all vertices that are
not missing outgoing edges in Gi white.

Size-Degree Relation. To see why this definition can be useful, think about a strongly
connected component that has no outgoing edges, called a bottom scc. Let C be a bottom
scc with 2i vertices. Then each vertex in C must have an out-degree of less than 2i, i.e.,
in Gi all vertices in C are white. This implies that if we search for bottom sccs in Gi

that only contain white vertices, then we will detect C. In the algorithms for MEC and
Streett we repeatedly search for such bottom sccs after some vertices were removed
from the graph. This search is started at level i = 1, and the level is increased by one
until the search is successful. Whenever we have to go up to level i∗ to identify such a
bottom scc C, then C has to contain more than 2i∗−1 vertices since otherwise it would
have been identified at level i∗ − 1. The hierarchical graph decomposition can only be
applied if one can show a similar relation between the size of searched sets and the degree
of the vertices in this set. For Parity games the searched sets of vertices are part of the
winning set of one of the players.

Runtime Analysis. A bottom scc in Gi can be found in time O(|Ei|), which is O(n ·2i).
In the algorithm for MEC the vertices in the identified bottom scc are then removed
from the graph and thus can be charged the work to identify them, which leads to a
total runtime of O(n2). Although for Streett the identified bottom scc is not removed
from the graph, we can show the same runtime (for this part of the algorithm) using
a parallel search in the reverse graph. For Parity-3 the time to identify a part of the
winning set is proportional to |Ei| times the size of this part; the runtime bound of O(n2.5)
comes from searching only for parts with at most

√
n vertices with the hierarchical graph

decomposition and using an O(n2) algorithm for larger parts.
When can it be applied? All the mentioned problems can be seen as vertex or edge

partitioning problems (e.g. partition of vertices into winning set of Player 1 and (parts
of) winning set of Player 2). Further, they all have a basic algorithm that iteratively



refines a maintained partition, i.e., there exists a “fast” way to either further divide a
set in the maintained partition or to decide that no further refinement is needed. When,
e.g., the algorithm for Streett identifies a bottom scc, then it recurses on each of the
bottom scc and the subgraph induced by the remaining vertices and thereby refines the
(implicitly) maintained partition. The crucial step in applying the presented technique is
to show a similar size-degree relation, as described above for bottom sccs, for a set of
vertices or edges that can be used to refine the maintained partition and that can be found
“fast” (e.g. in linear time). We believe that more problems with such a structure exist.
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