
Modeling Change Patterns for Impact and Conflict
Analysis in Event-Driven Architectures

Simon Tragatschnig and Uwe Zdun
Research Group Software Architecture

University of Vienna, Austria

Email: {simon.tragatschnig, uwe.zdun}@univie.ac.at

Abstract—In distributed event-driven architectures, compo-
nents are composed in a highly decoupled way, facilitating high
flexibility, scalability and concurrency of distributed systems.
However, the intrinsic loose coupling of its components make rela-
tions hard to identify making it challenging to analyze, maintain,
and evolve an event-based architecture. For understanding the
evolution of an event-based architecture, we require knowledge
about its components’ dependencies, which is often hard to gain
due to the absence of explicit information about these dependen-
cies. Furthermore, assisting techniques for analyzing the impacts
of certain changes are missing, hindering the implementation of
changes in event-driven architectures. We present in this paper
a novel approach providing models to describe changes in event-
based architectures on different levels of abstraction. The explicit
definition of a change enables various types of analysis to increase
the quality of the evolving event based systems architecture, like
invalid access analysis, dangling actors analysis, change impact
analysis, and dead actor analysis.

I. INTRODUCTION

Distributed event-driven architectures are a promising so-
lution for developing distributed systems that facilitates high
flexibility, scalability, and concurrency [1], [2]. A distributed
event-driven architecture consists of a number of computa-
tional or data components that communicate with each other
by emitting and receiving events [2]. Each component may
independently perform a particular task, for instance, accessing
a database, checking a credit card, or interacting with users.
However, the intrinsic loose coupling of its components make
relations hard to identify and therefore it is challenging to
analyze, maintain, and evolve an event-based architecture. This
paper addresses supporting the evolution of distributed event-
driven architecture based on models to express changes on
different levels of abstraction.

As requirements on software systems evolve over time, they
have to be constantly maintained and changed [3]. More than
one quarter of coding time is spent on implementing changes
and investigating their impact [4]. Event-based architectures
are often changed on a low level of abstraction by manipulating
the source code. The implementation of a particular change
on an architectural level involves defining the relevant actions
(e.g., adding, removing, enabling or disabling components,
altering the components’ inputs or outputs, or adjusting the
execution order of components) and carrying out these actions
while taking into account the consequences (as other compo-
nents might be affected by these actions). That is, in order
to enact a change in an event-based architecture, the software
engineers have to deal with many technical details at different
levels of abstraction, which is very tedious and error-prone.

In our work, we investigate and adapt change patterns
in the context of event-based architectures dealing with the
lack of prescribed execution descriptions as well as constituent
elements of a system and their relationships can be arbitrarily
changed at any time. Section II describes our model-based
approach of describing changes on different levels of abstrac-
tion. Based on these models, it is possible to perform different
novel kinds of impact and conflict analysis, like invalid access
analysis, dangling actors analysis, change impact analysis, and
dead actor analysis, as described in Section III. Our approach
is then discussed in Section IV.

II. MODELING CHANGE PATTERNS

The main focus of our work is to support changes for
event-driven architectures. Without loss of generality, we adopt
the notion that a generic event-based architecture comprises
a number of components performing computational or data
tasks and communicating by exchanging events through event
channels [2].

Maintaining event-based architectures is challenging be-
cause of the absence of explicit information on the depen-
dencies of its components, which may have been extracted
from source code. Providing models to specify event-based
architectures allows developers to focus on their concepts, like
events and event emitting or consuming components. Basis for
modeling changes is a model of the event-based architecture,
on which additional tooling can be built upon to support the
maintainers. For demonstration purpose, we use the DERA
framework [5] that provides this basic concepts for modeling
and developing event-based architectures.

The DERA Meta Model, proposed in [5], [6], describes the
basic concepts and can easily be generalized to the concepts
found in many other event-based architectures. In DERA, a
component is represented by an event actor (or actor for short),
which represents a computational or data handling unit. For
instance, this may be the executing a service invocation, or
accessing and transforming data. An event can be considered
essentially as “any happening of interest that can be observed
from within a computer” [2] (or a software system). DERA
uses the notion of event types to represent a class of events that
share a common set of attributes. Actors provide two ports, the
input and the output port. A port describes the interface of an
actor. Instances of the defined event types in the input port will
trigger the actor. The actor will emit instances of event types
defined in its output port when it finishes execution. Execution
domains encapsulate a logical group of related actors.

2015 IEEE 24th International Conference on Enabling Technologies: Infrastructures for Collaborative Enterprises

978-1-4673-7692-1/15 $31.00 © 2015 IEEE

DOI 10.1109/WETICE.2015.13

44

2015 IEEE 24th International Conference on Enabling Technologies: Infrastructures for Collaborative Enterprises

978-1-4673-7692-1/15 $31.00 © 2015 IEEE

DOI 10.1109/WETICE.2015.13

44

To deal with the complexity and the large degree of
flexibility of event-based architectures, we propose express-
ing changes on different levels of abstraction. On the lower
abstraction level, change primitives are used to express fine
granular changes on the modeled DERA application. This
level is used by our system to execute a change. On the next
higher level, change patterns are used to express changes of
the system, for instance moving an actor. Change patterns
are transformed into a set of change primitives, which can
be applied to a DERA application. On the highest level
of abstraction, change pattern descriptions define syntax and
semantics of change patterns. A model for change patterns can
be generated from this change pattern descriptions.

Change Primitives - We use low-level primitives, called
change primitives introduced in [7], for encapsulating the
basic change actions for populating and modifying event-based
architectures, such as adding or removing an event or an
actor, replacing an event or actor, and so forth. We already
implemented the proposed set of primitives for our DERA
prototype. However, we still have to provide a model and
tooling for developers to express change primitives.

Change Patterns - Change patterns for event-based ar-
chitectures support software engineers to describe and apply
desired changes at a higher level of abstraction. They are
defined based on the patterns that are frequently occurring and
supported in most of today’s information systems according to
the survey presented by Weber et al [8].

A change pattern basically expresses that a set of actors
should change it’s position within a DERA application, related
to other implicitly dependent actors with matching interfaces.
We need to define a model to express a specific change pattern.
As this represents a high level change, it can be transformed
in a sequence of change primitives applied by the runtime
environment.

Change Pattern Description - As the possible spectrum
of change patterns is broad, a predefined language to express
changes is not a sufficient tool because it would have to be
adapted for each additional change pattern or pattern variants.
Therefore, there is a need to model change patterns and their
impact - the Change Pattern Descriptions. They allow a change
pattern developer to define and modify her own set of change
patterns and its semantics, using set operated statements like
union, intersection, etc.

III. IMPACT AND CONFLICT ANALYSIS

Applying a change in event-based architectures may cause
undesired side effects. To assist software engineers detecting
these side effects, modeled changes on different levels of ab-
straction enables calculating the impact and possible conflicts
of a specific change on a running DERA application. In this
section we present some analysis.

Invalid Access Analysis - Applying a set of changes
to a system may cause conflicts in the sequence of change
primitives, like referencing actors which were deleted pre-
viously. We identified three scenarios which cause invalid
access of DERA elements: (1) add/remove an actor, which
was already deleted, (2) reference a port of an actor, which
was already deleted, (3) remove an event from an actor’s port

which was already removed. Algorithm 1 shows pseudocode
for identifying invalid access. As trying to delete an already
deleted element has no effect, referencing or adding an already
deleted element may be indicating conflicts. Adding an already
deleted actor to the DERA application is not a conflict, but may
be a hint that some change patterns are conflicting.

Algorithm 1 Invalid Access Analysis

1: removedElements = all primitives removing actors
2: removedElements += all primitives removing events
3: for all primitive statements as statement do
4: for all removedElements as removedElement do
5: if statement references removedElement then
6: if statement is located after removedElement then
7: Show error
8: end if
9: end if

10: end for
11: end for

Dangling Actors Analysis - In the context of event-based
architectures, dangling actors can not trigger other actors or
cause the application’s end because they do not emit output
events which are defined as input events of other actors. This
is not a problem in general, but if an actor becomes a dangling
actor directly after applying a change, this situation may not
be intended. To determine dangling actors caused by changes,
we have to simulate the changes and analyze the results. The
algorithm listed in Algorithm 2 compares each actor’s input
port with each other actors’ output ports. If there is no match
for the actor, this actor is dangling.

Algorithm 2 Dangling Actor Analysis

1: allActors = all existing actors
2: changedActors = all actors affected by primitives
3: for all changedActors as actor1 do
4: for all allActors as actor2 do
5: isDangling = true
6: if actor2 : output equals actor1 : input then
7: isDangling = false
8: break
9: end if

10: end for
11: if isDangling then
12: danglingActors += actor1
13: end if
14: end for

Change Impact Analysis, proposed in [9], allows devel-
opers to identify elements being modified by a certain change
without investigating dependency information from code. This
supports developers to determine the boundary of the region
for further analysis and investigation.

Dead Actor Analysis, proposed in [9], supports the de-
velopers by identifying actors which are unreachable, which
means that no other actor will emit the event types expected
by the unreachable actors. This is an indication that a change
may cause unexpected side effects.

IV. DISCUSSION AND FUTURE WORK

Maintaining event-based architectures is challenging be-
cause of the absence of explicit information on the dependen-
cies of its components. Applying changes may cause unwanted
side effects which are difficult to perceive due to missing
explicit dependency information. We address this challenge in

4545

our work by introducing models to express changes on differ-
ent levels of abstraction. Based on this models it is possible
to run algorithms to predict a change’s approachimpact and
detect anomalies or conflicts.

Weber et al. [8], [10] identified a large set of change
patterns that are frequently occurring in and supported by the
most of today’s process-aware information systems, where a
process is described by a number of activities and a control
flow is defining their execution sequence. Since the process
structure is defined at design time, changing it at runtime
is very difficult. Several approaches try to relax the rigid
structures of process descriptions to enable a certain degree
of flexibility of process execution [11]–[13]. Event-based ar-
chitectures, like DERA, provide a high flexibility for runtime
changes, since only virtual relationships among actors exist.
The change patterns observed by Weber et al. are designed to
target PAIS in which the execution order of the elements are
prescribed at design time and not changed or slightly deviated
from the prescribed descriptions at runtime. Therefore, the
semantics of the change pattern is different in event-based
architectures. Using our proposed model to describe change
patterns, we work on a catalog defining the semantics of
change patterns for event-based architectures.

Based on the definition of change patterns’ semantics,
we are able to calculate the impact of a planned change.
There are a rich body of work focusing on extracting the
dependency information to support analyzing the impact of a
certain change [14]. Unfortunately, they often assume explicit
invocations between elements, and therefore, are not readily
applicable for event-based architectures.

Techniques to extract implicit invocation information from
event-based architectures are based on source code. For in-
stance, Lexical Source Model Extraction (LSME) [15], pro-
gram slicing techniques [16], [17], extracting type information
and dependencies at compile time [18]. Analysis at runtime,
or after changes applied, are not supported. The most closely
related work on supporting impact analysis for event-based
architectures is a technique, namely, Helios, based on message
dependence graphs presented by Popescu et al. [19]. Helios
requires that the underlying systems satisfy some constraints,
including a message-oriented middleware supporting standard
message source and sink interfaces for each component. Our
prerequisites of the underlying event-based architectures are
less strict than Helios and easy to be satisfied by existing event-
based architectures. Also, we introduce appropriate abstrac-
tions and techniques for supporting the developers in analyzing
and performing different types of changes on an event-based
architecture. While all of these techniques are powerful and
promising, they can not be applied for systems that do not have
their source code available, for instance, third-party libraries
and components. In contrast, our work can extract all needed
information either from a model or from meta data of running
instances. The extra cost required by our approach is for
explicitly exposing the in- and outputs of the components.
There is no extra cost when the event-based architectures are
developed using the DERA framework.

As future work we plan to realize model-based domain
specific languages and tooling to express changes on the
proposed levels of abstraction. As a result of our work, the
architect of a distributed event-driven architecture should be

able to design, change, or maintain systems benefiting from
the key benefits regarding the architectural qualities of event-
driven architectures such as high flexibility, scalability, and
concurrency, on the one hand. On the other hand, the architect
can rely on tools that tame the loosely coupled nature of these
architectures and make them manageable and analyzable.

REFERENCES

[1] L. Fiege, G. Mühl, and F. C. Gärtner, “Modular event-based systems,”
Knowl. Eng. Rev., vol. 17, no. 4, pp. 359–388, Dec. 2002.

[2] G. Mühl, L. Fiege, and P. Pietzuch, Distributed Event-Based Systems.
Springer, 2006.

[3] M. M. Lehman, “On understanding laws, evolution, and conservation
in the large-program life cycle,” J. Syst. Softw., vol. 1, pp. 213–221,
Sep. 1984.

[4] T. D. LaToza and B. A. Myers, “Developers ask reachability questions,”
in Proceedings of the 32Nd ACM/IEEE International Conference on
Software Engineering - Volume 1, ser. ICSE ’10, 2010, pp. 185–194.

[5] H. Tran and U. Zdun, “Event-driven actors for supporting flexibility
and scalability in service-based integration architecture,” in 20th Int’l
Conf. Cooperative Information Systems (CoopIS). Springer, 2012, pp.
164–181.

[6] ——, “Event Actors Based Approach for Supporting Analysis and
Verification of Event-Driven Architectures,” in 17th IEEE International
Enterprise Distributed Object Computing Conference (EDOC). IEEE,
Sep 2013, pp. 217–226.

[7] S. Tragatschnig, H. Tran, and U. Zdun, “Change patterns for supporting
the evolution of event-based systems,” in 21st International Conference
on COOPERATIVE INFORMATION SYSTEMS (CoopIS 2013). Graz,
Austria: Springer, September 2013, pp. 283–290.

[8] B. Weber, S. Rinderle, and M. Reichert, “Change patterns and change
support features in process-aware information systems,” in 19th Int’l
Conf. Advanced Information Systems Engineering (CAiSE). Springer-
Verlag, 2007, pp. 574–588.

[9] S. Tragatschnig, H. Tran, and U. Zdun, “Impact analysis for event-
based systems using change patterns,” in 29th Symposium On Applied
Computing (SAC 2014) - Cooperative Systems. ACM, March 2014.

[10] S. Rinderle-Ma, M. Reichert, and B. Weber, “On the formal semantics
of change patterns in process-aware information systems,” in 27th Int’l
Conf. on Conceptual Modeling (ER). Springer, 2008, pp. 279–293.

[11] A. Hallerbach, T. Bauer, and M. Reichert, “Capturing variability in
business process models: the provop approach,” J. Softw. Maint. Evol.,
vol. 22, pp. 519–546, Oct. 2010.

[12] G. Redding, M. Dumas, A. ter Hofstede, and A. Iordachescu, “Mod-
elling flexible processes with business objects,” in IEEE Conf. on
Commerce and Enterprise Computing (CEC), 2009, pp. 41–48.

[13] M. Reichert and P. Dadam, “Enabling adaptive process-aware infor-
mation systems with ADEPT2,” in Handbook of Research on Business
Process Modeling. Information Science Reference, 2009, pp. 173–203.

[14] S. Lehnert, “A taxonomy for software change impact analysis,” in Pro-
ceedings of the 12th International Workshop on Principles of Software
Evolution and the 7th annual ERCIM Workshop on Software Evolution,
ser. IWPSE-EVOL ’11. New York, NY, USA: ACM, 2011, pp. 41–50.

[15] G. C. Murphy and D. Notkin, “Lightweight lexical source model
extraction,” ACM Trans. Softw. Eng. Methodol., vol. 5, no. 3, pp. 262–
292, Jul. 1996.

[16] F. Tip, “A survey of program slicing techniques,” Amsterdam, The
Netherlands, Tech. Rep., 1994.

[17] D. Binkley and M. Harman, “A survey of empirical results on program
slicing,” ser. Advances in Computers. Elsevier, 2004, vol. 62, pp. 105
– 178.

[18] K. R. Jayaram and P. Eugster, “Program analysis for event-based
distributed systems,” in Proceedings of the 5th ACM International
Conference on Distributed Event-based System, ser. DEBS ’11. New
York, NY, USA: ACM, 2011, pp. 113–124.

[19] D. Popescu, J. Garcia, K. Bierhoff, and N. Medvidovic, “Impact analysis
for distributed event-based systems,” in 6th ACM Int’l Conf. Distributed
Event-Based Systems (DEBS). ACM, 2012, pp. 241–251.

4646

