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Abstract

This work describes a novel method for statistical
analysis of multi-material components. The appli-
cation scenario is industrial 3D X-ray computed to-
mography, emphasizing metrology of artefact af-
fected plastics-metal components. The presented
work makes use of dual energy CT data acquisi-
tion for artefact reduction, in order to optimize CT
scans of multi-material components. Using statis-
tical analysis, information on uncertainty is intro-
duced, which allows detailed characterizations of
single materials as well as material interfaces.

The major contribution of this paper is the devel-
opment of a specific pipeline based on the dual ex-
posure technique of dual energy CT. After prefilter-
ing and multi-scan fusion, the statistical analysis
step computes probability volumes of the fused data
using a local histogram analysis technique. The ap-
plication areas as well as the achieved precision of
the presented method are depicted using a test spec-
imen and a real world component.

1 Introduction

State-of-the-art engineering continuously rises the
complexity of industrial components. To assure
the quality of new components, also the demands
in quality control are strongly increasing, requir-
ing new, top of the line techniques. An upcoming
means of quality assurance especially in the pre-
production phase is industrial 3D X-ray computed
tomography (3DCT). 3DCT is a non-touching and
non-destructive method, which allows a fast char-
acterization of a specimen. The main application
areas of 3DCT are none destructive testing and
metrology (the science of measurement), which the
presented work is focussed on. Figure 1 shows a

(a) (b)

Figure 1: Photograph (a) and principle scheme (b)
of an industrial 3D X-ray computed tomography
system. General design: X-ray source (left), rotary
plate (center), matrix detector (right). A single ro-
tation is sufficient to fully characterize a specimen.

photograph of a dual source 3DCT device and the
principle of 3DCT, which can be summed up as
follows: At each angular position of a 360 degree
turn of the specimen, a penetration image contain-
ing the X-ray attenuation is recorded. These pen-
etration images are used to compute a 3D grid of
greyvalues corresponding to the spatial X-ray at-
tenuation [7]. 3DCT is the only method in metrol-
ogy, which fully characterizes a specimen concern-
ing outer, inner and even hidden structure of a spec-
imen. Furthermore, 3DCT has the potential to
overcome current limitations of conventional opti-
cal and tactile metrology, e.g., reflecting or transpar-
ent probes, deformable probes, accessibility / visi-
bility of the measured surface.

One of the most critical issues in the area of
metrology using industrial 3DCT is the problem
of artefacts. The characteristics and strength of an
artefact is mainly determined by the specimen’s ge-
ometry, the penetration lengths, the position and
orientation in the cone beam, the measurement pa-
rameters and the specimen’s material combination.
Some of the most common artefact types are noise
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induced streaks, beam hardening, partial volume,
aliasing, and scattered radiation [7]. In the area
of metrology artefacts may seriously affect or even
prevent reliable metrology. Especially when scan-
ning multi-material components severe streaking
artefacts are introduced due to major changes in at-
tenuation from one projection to the next. We ad-
dressed this problem in our previous work [6] re-
ducing artefacts by data fusion of DECT scans.

A further critical problem is the lack of informa-
tion on the uncertainty of an extracted surface, and
in consequence, on the quality of the extracted di-
mensions. For surface extraction in industrial appli-
cations, usually a single isovalue is specified to dis-
tinguish between material and air. More recently,
research activities concentrate on local surface ex-
traction, e.g., [2], [4] and [20]. Both local and
global surface extractions consider the surface as
ground truth for subsequent measurements. As each
extracted surface only contains sharp borders char-
acterizing the supposed boundary between materi-
als, the entire information on the quality of the in-
terface is lost.

This paper introduces a novel approach which ad-
dresses both the problem of artefacts and the prob-
lem of uncertainty. For artefact reduction of multi-
material components, dual energy CT (DECT) is
used. After prefiltering, a gradient magnitude
based fusion step combines the two complemen-
tary DECT datasets, featuring the strength of each
dataset. Using Bayesian classification, a probabil-
ity volume is extracted containing the probabilities
of each single material. Subsequent evaluations are
based on the probability dataset.

2 Related Work

2.1 Dual Energy CT

Dual energy CT (DECT) was originally used for
characterization of organic and inorganic materials
in baggage control systems for airport security and
for examination of drilling cores concerning mate-
rial properties [8]. More recently the application
area of DECT was expanded to medical and finally
industrial CT. The main idea of DECT is to utilize
different X-ray spectra in order to optimally charac-
terize multi-material probes. DECT is facilitated by
two different techniques: the dual exposure / dual
source and the dual detector technique [14]. The

dual detector technique generates two datasets in
one scan by using multi-layer-detectors, sensitive to
different energy bands. 3DCTs with a single layer
detector are limited to the dual exposure technique.
The used 3DCT device is equipped with a single
layer detector, featuring a high precision microfo-
cus and a high power macrofocus X-ray source.
Therefore the dual exposure technique is used in
this approach.

2.2 Multi-Scan Fusion

In multi-scan fusion (MSF) recent advances ei-
ther focus on enhancing projection images, respec-
tively sinograms or on the reconstructed volumetric
datasets. Sinograms are used by Oehler et al. [13]
for artefact correction and are currently a topic of
research for multi-scan fusion. As we do not have
access to projection images respectively sinograms,
these methods are out of scope.

A straight forward approach of MSF is dual
viewing: Specimens are scanned twice at different
positions and orientations [17] in the cone beam.
Local data fusion allows to identify and reduce
artefacts by considering the differences in gradient
magnitude and greyvalue. However, orientation-
invariant artefacts or artefacts affecting the same re-
gion can not be eliminated. More sophisticated ap-
proaches exploit DECT to combine multiple, cor-
responding slices images [17] or multiple volumet-
ric datasets [6]. We apply a fusion scheme simi-
lar to Heinzl et. al [6], but instead of only fusing
edge regions and neglecting material regions, we
propose a multi-scan fusion scheme, which com-
bines the complete datasets. The presented fusion
scheme emphasizes the complementary strengths
(the main object structure of the macrofocus scan
and the crisp edges of the microfocus scan), avoid-
ing irregularities in the histogram due to only con-
sidering edge regions.

2.3 Statistical Analysis

Recent advances in the area of statistical analysis
focus on uncertainty visualization, fuzzy segmen-
tation, and transfer function design. An overview
of uncertainty visualization is outlined by the fol-
lowing techniques: Wittenbrink et al. [21] are us-
ing geometric glyphs visualizing uncertainty in vec-
tor field data. Kniss et al. [10] proposed a method



to explore uncertainty, risk, and probabilistic deci-
sion of surface boundaries in direct volume render-
ing (DVR). Rheingans and Joshi [15] proposed the
rendering of the likelihood domain itself. Rhodes et
al. [16] are mapping the confidence of isosurfaces
to hue or texture. In this approach, we color-code
uncertainty on isosurfaces and show a color-coded
DVR of a probability datasets.

In fuzzy segmentation, each voxel has a degree
of belonging to a region, facilitating segmentation
at subvoxel accuracy. The importance of fuzzy
classification with respect to material boundaries is
discussed by Tzeng and Ma [19]. Grigoryan and
Rheingans [5] employ a point cloud approach rep-
resenting the spatial uncertainty in segmented data.
Stalling et al. [18] use additional probability infor-
mation in order to supplement region labels. In this
work, we are using the spatial probabilities of each
material to fuzzy segment a real world component.

In the area of transfer function design, Bajaj et
al. [1] introduced the contour spectrum, which per-
forms statistical analysis to create transfer func-
tion lookup tables. Multidimensional transfer func-
tions, introduced by Levoy [11], enhance the trans-
fer function domain using additional dimensions.
While Levoy suggested the use of the gradient mag-
nitude, Kindlmann et al. [9] even included the sec-
ond derivative. Due to artefacts and overlapping
regions, multidimensional transfer functions turned
out to be unusable.

In the presented approach, we follow the idea
of Kniss et al. [10] to use statistical classification
for generating information on uncertainty of CT
datasets. We introduce a pipeline model, which
automatically classifies individual materials in an
easy to use process. In particular, our approach
is based on local histogram analysis using partial
range histograms, which were originally introduced
by Lundström et al. [12].

3 Pipeline for Statistical Analysis of
Multi-Material Components

To facilitate statistical analysis of artefact affected
industrial CT data, a customized pipeline was de-
veloped. The pipeline for statistical analysis of
multi-material components is based on dual energy
CT and combines prefiltering, multi-scan fusion
and statistical analysis (Figure 2). The pipeline is
demonstrated step by step on a real world compo-

Figure 2: Principle scheme of the pipeline for statis-
tical analysis of multi-material components. Input:
HE and LE dataset, Output: probability volume.

nent, the Rubik’s Cube (for a detailed description
of specimen one see section 4.1.1).

3.1 Dual Energy CT Scanning

DECT scans are facilitated by two subsequent scans
without moving the specimen: A low energy (LE)
microfocus scan yields a highly detailed but artefact
affected scan. It generates better scanning results
for low absorbing materials. However, severe arte-
facts are introduced in the presence of high absorb-
ing components (see bright and dark streaks in Fig-
ure 3a). The subsequent high energy (HE) macro-
focus scan yields maximal penetration lengths. HE
scans generate almost artefact free results, but the
bigger focal spot of the X-ray source introduces ad-
ditional blur (Figure 3b).

(a) LE (b) HE

Figure 3: Specimen one: Axial cross sections
through Rubik’s cube dataset. Severe artefacts mod-
ify greyvalues of LE scan (a) near high absorbing
components. (b) Less artefact affected but more
blurry HE scan (see magnified detail image, pho-
tograph courtesy of R. Frisch).



(a) unfiltered (HE scan) (b) filtered (HE scan)

Figure 4: Axial cross sections through HE scan
of specimen one before (a) and after (b) filtering.
The dataset’s inherent noise is significantly reduced
without moving or degrading edges. For a better
visualization of the inherent noise, a contrast win-
dowing was applied on the detail images.

3.2 Preprocessing

3.2.1 Anisotropic Diffusion Filtering

A preprocessing step is used to reduce the prop-
agation of noise and smaller artefacts through the
pipeline. For prefiltering without moving or de-
grading edges, the anisotropic diffusion filtering of
HE and LE data is used similarly to our previous
work [6] (see Figure 4).

3.2.2 Multi-Scan Fusion

To reduce artefacts, which especially emerge when
scanning multi-material components, a custom fu-
sion scheme was developed. The aim of this step is
to extract details of the LE scan, without introduc-
ing artefacts. Compared to our previous work [6],
a smooth fusion throughout the whole dataset has
to be ensured to prevent modifications of the sta-

Figure 5: Axial cross section through fused dataset
of specimen one. Compared to LE scan, artefacts
are significantly reduced. The detail image shows a
smooth characteristic of the greyvalues with sharp
edges.

tistical greyvalue distribution, which is undesirable
in statistical analysis. In the first step the region
type (RT) of each voxel is determined using spatial
greyvalues and gradient magnitudes. Three differ-
ent region types are distinguished: homogeneous,
transition, and artefact affected region. At each spa-
tial position the weights for LE and HE dataset are
computed according to the region type. In arte-
fact affected regions, only the HE dataset is con-
sidered and weighted with 1. Homogeneous re-
gions are equally weighted for noise reduction. For
transition regions a Sigmoid function is used in the
range of 0.5 to 1.0, weighting the greyvalues of each
dataset according to the local gradient magnitude of
the preprocessed HE scan. Compared to a linear

Algorithm 1 Multi Scan Fusion (MSF)
∆GV (greyvalue (GV) difference HE-LE dataset);
∆GM (gradient magnitude (GM) difference HE-LE);
εGV (max GV difference); εGM (max GM differ-
ence); cmin (min GM); cGM (GM transition)

procedure MSF(εGV ,εGM ,cmin,cGM)
for all correspondingvoxels ∈ LE,HE do

RT ← RegionType(εGV ,εGM ,cmin,cGM)
if RT == Arte f actA f f ected then

wLE ← 0;wHE ← 1
else if RT == Transition then

wLE ← Sigmoid(GMHE − cGM)
wHE ← (1−wLE)

else
wLE ← 0.5;wHE ← 0.5

end if
Fused ← (wLE ∗GVLE +wHE ∗GVHE)

end for
end procedure

procedure REGIONTYPE(εGV ,εGM ,cmin,cGM)
if (|∆GV |> εGV or |∆GM |> εGM) then

RT ← Arte f actA f f ected
else

if (∆GM > cmin & GMHE > cGM &
GMLE > cGM) then

RT ← Transition
else

RT ← Homogeneous
end if

end if
return RT

end procedure



weighting, the Sigmoid function allows a stronger
consideration of the detailed LE scan to achieve
sharper boundaries (see Algorithm 1 and Figure 5).

3.3 Statistical Analysis

For statistical analysis, Bayes’ decision theorem is
applied. The basis of Bayesian decision theory is
the idea of quantifying trade-offs and costs in clas-
sification decisions. Classifications using Bayesian
decision theory consists of 3 major steps: 1) feature
selection, 2) selection and estimation of the classi-
fier, and 3) estimation of the class conditional PDF
and decision analysis. Bayes’ decision theorem pro-
vides the relationship between class conditional and
posterior probability. The class conditional proba-
bility is defined as the probability of an event A,
given the occurrence of an other event B. The pos-
terior probability of a random event is the condi-
tional probability that is assigned after the relevant
evidence is taken into account.

3.3.1 Feature Selection

In the case of statistical analysis of multi-material
components the task of the classifier is to distin-
guish between the different materials. Firstly, each
material is assigned to a class ω j , e.g., plastic-metal
components: ω0 ← air, ω1 ← plastics and ω2 ←
metal. The second task is to select ”good” features
to distinguish the different classes. A ”good” fea-
ture is discriminating, easy to extract and should be
position, orientation and scale invariant. For de-
composing CT datasets into single materials, the
spatial greyvalues are used as feature. Including
more dimensions to the feature vector, e.g., gradient
magnitude or 2nd derivative, does not necessarily
result in a better classificator. Due to artefacts and
performance issues of the classification, the feature
vector was not extended.

3.3.2 Classifier Selection and Parameter Esti-
mation

The selection of a reliable classifier is the most crit-
ical step. To construct the classifier, the following
assumptions are applied for 3DCT: Homogeneous
materials should generate constant greyvalues. Due
to partial volume effects, greyvalues are modified
in edge regions of a material. Furthermore, irregu-
larities are introduced due to the characteristics of

detector and X-ray source as well as the 3D recon-
struction. As the greyvalues of a homogeneous ma-
terial tend to be continuously distributed, the classi-
fier is modelled by a probablistic distribution (prob-
ability density function p(x|ω j), x denotes a sam-
ple feature vector). Based on these assumptions we
consider the classifier to be Gaussian-distributed for
the subsequent steps.

Gaussian curve fitting is used to setup the prob-
ability density function (PDF) p(x|ω j) of a class
ω j . An expectation maximization scheme based on
Gaussian mixture models, which was applied to the
global histogram, turned out to produce suboptimal
PDFs. Due to the overlapping characteristic of the
material distributions in the histogram, especially of
the low absorbing material and air, the Gaussian pa-
rameters degenerated.

In contrast, local histogram analysis allows to re-
construct each material’s histogram Hω j . We ap-
ply a method for histogram decomposition, which
is based on Lundström et al. [12]. Initially, the his-
togram of a dataset is divided into partial range his-
tograms (PRH). PRHs are regional sub-histograms
around a local maximum in the range of µ ±α ∗
σ (α denotes range of considered standard devi-
ations). In order to reconstruct each material’s
histogram Hω j by recombination of PRHs, Lund-
ström et al. rely on a custom heuristic for med-
ical datasets, which is not applicable to uncali-
brated industrial CT data. Therefore we developed
a new recombination method, which is based on
weighted multi-dimensional KMeans and applica-
ble on datasets of any domain: For each extracted
PRH a feature vector is defined, which consists of µ
and σ . While µ corresponds to the highest peak in
the PRH, σ is estimated by Gaussian curve fitting,
minimizing the accumulated height difference. The
wider the partial ranges µ ±α ∗ σ , the more data
of the PRH is considered for the fit. As in each
PRH only one feature is dominant, α of 2 covers
the range of about 95% of the Gaussian distribution
for the fit.

For recombination of the PRHs to a material’s
histogram Hω j , weighted KMeans [3] is used. The
extracted feature vector of each PRH is weighted
with the sum of frequencies in the PRH. This allows
preferring larger PRHs over smaller ones. KMeans
clustering requires the number of clusters to be sep-
arated, which corresponds to the number of defined
classes ω j . Using random initial cluster centers,



KMeans assigns each feature vector to the nearest
center, with respect to the Euclidean distance. Af-
ter the feature vectors are classified, a new cluster
center is calculated and the algorithm restarts. If
the cluster centers are not changing anymore, the fi-
nal cluster centers are found. Finally the PRHs of
each cluster are combined to generate each mate-
rial’s histogram Hω j .

To estimate the classifier for a class ω j , the pa-
rameters of the PDF p(x|ω j) of each material’s his-
togram Hω j have to be estimated. µω j is considered
to coincide with the highest peak in the histogram.
To reduce errors of irregularities and smaller spikes
in the histogram, σω j is calculated as the mean
of two estimations: Firstly, σω j ,1 is estimated by
a Gaussian curve fitted to the peak of the mate-
rial’s sub-histogram with a wide partial range us-
ing α = 2. Secondly, the overall standard deviation
σω j ,2 of the histogram Hω j is calculated. A mean of
both estimations σω j ,1 and σω j ,2 guarantees a robust
probability density function p(x|ω j). The resulting
material histograms for each class ω j of specimen
one and the corresponding PDFs p(x|ω j) are de-
picted in Figure 6.

(a) ω0 (air)

(b) ω1 (plastics)

(c) ω2 (metal)

Figure 6: Resulting histograms of specimen one for
class ω0 (air) (a), ω1 (plastics) (b) and ω2 (metal)
(c). The blue to green graphs depict the extracted
PDFs p(x|ω j) scaled to the maximum of the corre-
sponding histogram peak.

3.3.3 Estimation of Class Conditional PDF and
Decision Analysis

For decision analysis a probability dataset is cal-
culated from the prefiltered and fused LE and HE
datasets. The probability dataset contains a prob-
ability vector at each spatial position. The scalar
values of a probability vector contain the posterior
probabilities of the corresponding spatial greyvalue
of belonging to a considered class ω j . The proba-
bility vector is calculated using Bayes’ theorem:

p(ω j|x) =
p(x|ω j)P(ω j)

p(x)
, (1)

The posterior p(ω j|x) of a random event weights
the class conditional PDF p(x|ω j) against the ob-
served evidence p(x) and the prior information
P(ω j). Class conditional PDFs p(x|ω j) describe
the probabilities of a greyvalue belonging to a cer-
tain class ω j . The evidence is defined as

p(x) =
c

∑
j=1

p(x|ω j)P(ω j), (2)

which is the sum of all class conditional PDFs
p(x|ω j). The evidence serves as a scaling fac-
tor, which guarantees the posterior probabilities
p(ω j|x) to sum to 1. The prior probability value
P(ω j) is a marginal probability, which describes the
statistical probability of a material ω j when picking
a random position in the dataset.

In order to calculate the probability volume of
a fused DECT dataset, first of all the prior prob-
abilities P(ω j) for each material have to be deter-
mined. As the volumetric ratios of a material should
not influence local boundaries, the priors P(ω j) for
each material ω j are evenly set to 1/( j + 1). The
class conditional PDF p(x|ω j) is estimated using
the local histogram approach introduced in subsec-
tion 3.3.2. The evidence p(x) is calculated using
equation 2 and the posterior p(ω j|x) using equa-
tion 1. In Figure 7 the resulting posterior probabil-
ity volume of specimen one is depicted. Figure 7a
shows an axial cross section which depicts the pos-
terior probability of class ω0 (air), Figure 7b of
class ω1 (plastics) and Figure 7c of class ω2 (metal).
Bright areas depict regions with high probabilities,
dark regions vice versa. In this context probability
volumes allow robust and reproducible fuzzy seg-
mentations of each material.



(a) ω0 (air) (b) ω1 (plastics)

(c) ω2 (metal)

Figure 7: Axial cross section through resulting
probability volume of specimen one depicting the
probabilities of air (a), plastics (b) and metal (c)
and the implicit fuzzy segmentation of each mate-
rial. Bright regions refer to high probabilities, dark
regions to low ones. Minor modifications due to HE
dataset are still visible in probability volume.

4 Results and discussion

All evaluated specimens are multi-material compo-
nents consisting of low absorbing material (plastics)
and high absorbing material (metal). The CT scans
were performed on a HWM RayScan 250E system
with a 225 kV microfocus and a 450 kV macrofo-
cus X-ray source. The measurement parameters are
listed in Table 1. As reference, CAD models are
used. The demo application was implemented in
Visual C++ using ITK and VTK.

Table 1: Measurement Parameters

Parameter Spec1HE Spec1LE Spec2HE Spec2LE
projections 810 810 900 900

U (kV) 420 150 440 200
I (µA) 1200 400 1300 450

tint (ms) 285 500 2000 1000
filter plates 1mm W 1mm Cu 1mm W 1mm Cu

1.5mm Cu 1.5mm Cu
extent[X] 401 401 508 508
extent[Y] 401 401 523 523
extent[Z] 401 401 611 611

voxelsize (µm) 200 200 200 200

(a) LE (b) HE

Figure 8: Specimen two: Axial cross sections
through TP03 dataset. LE scan (b) shows severe
artefacts in presence of metallic screws. Compared
to LE, the HE scan (b) is less artefact affected but
less precise and contains more noise (see magnified
detail image).

4.1 Specimens

4.1.1 Specimen one: Rubik’s Cube

Specimen one (Figure 3) is a mechanical puzzle.
The original Rubik’s cube consists of 3 intermedi-
ate levels in height, width and depth. Each face is
covered by nine stickers of one of six solid colors.
Disassembling the cube returns 21 pieces: a core
piece consisting of three intersecting axes, which
hold the six center squares, and twenty smaller plas-
tic pieces for the subsections. The six squares of
the core piece are mounted to the axis cross using
six steel screws. Springs pushing the squares of the
core piece allow flexible movement of the axes.

4.1.2 Specimen two: TP03

Specimen two (Figure 8) is a polyethylene (PE)
test-part consisting of a cone with an attached cylin-
der. Six smaller drill holes are placed on the top,
at the bottom and on the shell of the component.
The central drill and the six smaller drill holes are
equipped with screws and a steel bar, in order to ar-
tificially create a multi-material component.

4.2 Tuning the pipeline

The differentiation between the different region
types in the fusion step is controlled by greyvalue
and gradient magnitude based parameters. The pa-
rameters εGM , εGV and cGM are determined by his-
togram analysis of difference datasets, which con-
tain the spatial differences in greyvalue respectively



gradient magnitude. εGM and εGV are used to spec-
ify the main peak range of the corresponding his-
togram, while cGM sets the minimum between the
transition air to low absorbing material. cmin is a
negative value depicting the minimal threshold of
∆GM, which helps to avoid streaking artefacts in
the fused result. It is supposed to be lower than
εGM and set in the range of 0.5 ∗ εGM to εGM . The
extraction of partial range histograms requires two
parameters to control the extraction process of each
material’s histogram. εPRH controls the generation
and extent of PRHs. The higher εPRH , the more ho-
mogeneous is the corresponding region of a PRH,
but also the more PRHs are extracted. Values be-
tween 0.8 and 0.9 proved to be a good trade-off be-
tween number of extracted PRHs and homogeneity.
Furthermore, the precision of a PRH is controlled
by the neighborhood size N. 83 is a typical set-
ting for our datasets. To capture more filigree struc-
tures lowering the size N is suggested. Due to the
weighted multi-dimensional KMeans PRH recom-
bination, the specification of further parameters is
not necessary.

4.3 Evaluation of results

4.3.1 Extraction of PDFs

The extraction of class conditional PDFs and
the corresponding posteriors is demonstrated us-
ing specimen two. Narrow PDFs p(x|ω j) re-
sult in sharp transitions of the posterior p(ω j|x).
However, sharp transitions generate segmentation-
like probability volumes, which degenerate the ex-
tracted probability surfaces to jagged representa-
tions. Wide and overlapping probability density
functions allow the calculation of posteriors with

Figure 9: Histogram of specimen two. Blue to
green graphs depict the extracted class condistional
PDFs p(x|ω j) of each material. Yellow to or-
ange graphs plot smooth and overlapping posteriors
p(ω j|x) for calculating the probability volume.

(a) (b)

Figure 10: Volume rendering of threshold-based bi-
nary segmentation (a) and fuzzy segmentation (b)
of plastics of specimen one. Fuzzy segmentation
generates a precise representation of the segmented
material (see red circles).

smooth transitions, which serve for calculating
probability volumes with fuzzy transitions. Fig-
ure 9 depicts the extracted class conditional PDFs
p(x|ω j) (blue to green graphs) and the resulting
posteriors p(ω j|x) (yellow to orange graphs) in the
corresponding histogram.

4.3.2 Fuzzy segmentation

Another application area realized by probability
volumes is fuzzy segmentation. Common segmen-
tation methods based on binary encoding are lack-
ing information on uncertainty. Probability volumes
contain spatial probability values and therefore an
implicit fuzzy segmentation. Using fuzzy segmen-
tation, transition and artefact affected regions are
considered with decreased probability values and
do not generate jagged structures due to binary seg-
mentation. Figure 7 depicts axial cross sections of
each material of specimen one. Figure 10 shows
volume renderings of a threshold based binary seg-
mentation (a) and the resulting fuzzy segmentation
(b) of the plastics class of the Rubik’s cube dataset.

4.3.3 Metrology

To get an overview of a surface model’s devia-
tions compared to reference geometry data, ac-
tual/nominal comparisons are widely used. Ac-
tual/nominal comparisons color-code deviations be-
tween the surfaces of test model and reference
model on the surface of the reference model. Fig-
ure 11 depicts 4 actual/nominal comparisons (ref-
erence: CAD model): The upper 2 images depict



(a) Isosurface (b) Probability surface

(c) Isosurface (d) Probability surface

Figure 11: Actual/nominal comparisons of proba-
bility surface and isosurface of specimen two. Outer
surface shows similar deviations. 2D cross sections
reveal that only the probability approach captures
internal transitions (red circles and arrows).

3D actual/nominal comparisons of the best global
isosurface (a) respectively isoprobability surface
(b). Compared to the isosurface, the actual/nominal
comparison of the isoprobability surface shows sim-
ilar or marginally lower deviations on the outer sur-
face. To reveal internal deviations, two 2D compar-
isons are carried out on the best global isosurface
(c) respectively isoprobability surface (d). A 2D
actual/nominal comparison shows the deviations of
reference and test model on the contour of the ref-
erence’s surface at a predefined cutting plane. 2D
actual/nominal comparisons reveal the major ad-
vantage when using probability volumes on internal
structures. The global isosurface is not able to cap-
ture transitions to neighboring higher absorbing ma-
terial and lower absorbing material using one single
threshold (c). Erroneous results are generated due
to incomplete data (red circles). The isoprobability
surface facilitates an evaluation of all transitions to
all neighboring materials (d).

4.3.4 Uncertainty Visualization

Visualizing uncertainty allows an overall estimation
on the quality of a scan. We present two differ-
ent approaches, uncertainty mapping and direct vol-

(a) Uncertainty mapping (b) DVR of uncertainty

Figure 12: Uncertainty visualization. Color cod-
ing of an isosurface of specimen one mapping in-
terpolated uncertainty on the surface (a). DVR us-
ing color and opacity transfer functions (b). Bot-
tom area with elevated uncertainty due to greyvalue
modifications caused by the specimen holder.

ume rendering of probability data demonstrated on
the Rubik’s cube: Using uncertainty mapping (Fig-
ure 12a), the interpolated spatial uncertainty values
of a considered class are color-coded on the evalu-
ated surface. Blue regions depict high uncertainty,
while yellow indicates low uncertainty. The green
areas depict elevated uncertainty due to minor de-
formations and smaller artefacts (scattered radia-
tion between the subsections of each level in the
cube). Figure 12b shows a direct volume rendering
(DVR), color-coding the probabilities using a color
and opacity transfer function. Green depicts high
probabilities of 95 - 100%, while red depicts proba-
bilities down to 50%. Elevated uncertainy is clearly
visible in the bottom section due to greyvalue mod-
ifications caused by the specimen holder.

5 Conclusion

A novel pipeline for statistical analysis of multi-
material components is presented applying DECT
for artefact reduction. After prefiltering and multi
scan fusion, the statistical analysis is carried out by
computing probability volumes using a local his-
togram analysis technique. The accuracy and the
applicability of the pipeline has been discussed us-
ing a test part and a real world component. The
wide-spread application areas can be found in fuzzy
segmentations, metrology applications and uncer-
tainty visualization. In our future work we will fur-
ther increase the precision of the pipeline and ex-
plore additional uncertainty visualizations.
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