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Abstract. We propose a semi-supervised, kinetic modeling based seg-
mentation technique for molecular imaging applications. It is an iterative,
self-learning algorithm based on uncertainty principles, designed to al-
leviate low signal-to-noise ratio (SNR) and partial volume effect (PVE)
problems. Synthetic fluorodeoxyglucose (FDG) and simulated Raclopride
dynamic positron emission tomography (dPET) brain images with ex-
cessive noise levels are used to validate our algorithm. We show, qualita-
tively and quantitatively, that our algorithm outperforms state-of-the-art
techniques in identifying different functional regions and recovering the
kinetic parameters.

1 Introduction

Molecular imaging is a new scientific area merging concepts of molecular biol-
ogy with non-invasive imaging technologies. In dPET [1], for example, radioac-
tive tracers can act as biomarkers to track spatio-temporal molecular and cel-
lular processes. Kinetic modeling (KM) is an essential step for molecular image
quantification [2]. KM parameters of tissue perfusion, tracer transport or recep-
tor binding are typically calculated by fitting the average time activity curves
(TACs) within a region of interest (ROI) to underlying mathematical models.
Manual ROI delineation of functional regions is a tedious, time-consuming, and
error-prone task, that relies on subjective user assessment and is influenced by
image quality. This leads to inaccuracies in KM parameter estimation.

In this paper, we focus on segmentation and KM parameter estimation from
dPET as it is considered the leading technology for molecular imaging due to its
high specificity and sensitivity. Nevertheless, our proposed method is applicable
to other modalities whose analysis utilize KM such as dynamic contrast enhanced
magnetic resonance imaging and contrast enhanced ultrasound.

Several methods had been proposed to segment dPET images into different
functional regions. Barber applied factor analysis to planar dynamic Gamma
camera images to identify functional regions [3]. Gou et al. applied hierarchical
TAC clustering [4]. This algorithm was purely based on the TAC dynamics ignor-
ing the spatial-domain information. Kamasak et al. simultaneously clustered and
estimated each cluster’s TAC directly from the sinogram data, without the need
for tomographic reconstruction [5]. However, using such a projection domain



based approach makes it difficult to incorporate much needed user knowledge
given the low SNR. Maroy et al. extracted the dPET TACs in the organ cores,
where they are least affected by motion and spillover effects [6]. This algorithm
might be problematic for regions with small cores and low SNR, since a large
number of TACs is needed to achieve acceptable estimates of organ kinetics. Saad
et al. incorporated a KM based image prior constraint during the segmentation
instead of considering only the observed TACs [7]. However, their approach did
not guarantee globally optimal segmentations nor did it address PVE.

In this paper, we develop a multi-class, seed-initialized, iterative segmenta-
tion algorithm for molecular images. Random walker (RW) [8] is adopted at the
core of our algorithm (Sec. 2.1) guaranteeing a global optimal segmentation in
each iteration with automatically updated seeds. A KM image prior term is incor-
porated into RW to capture the underlaying physiological information (Sec. 2.2).
An iterative, self-learning, uncertainty-based approach is developed to overcome
the low SNR for image prior estimation, especially with a low number of user pro-
vided seeds (Sec. 2.3). The KM parameter fitting utilizes a confidence-weighted
averaging of TACs in each region, which addresses the problem of PVE (Sec. 2.4).

2 Method

The details of our KM based RW with self-learning (RWSL-KM) method are
given in the following sections.

2.1 Random walker

As proposed in [8], the RW segmentation is formulated in a graph theoretic set-
ting where image pixels are graph vertices v and edge weights w reflect similarity
between neighboring pixels. The probability of assigning label q ∈ {1, 2, ..., Q} to
vertex vi reflects the probability of a random walker starting at vi reaching the
seeds of region q out of Q possible regions. This results in a probability vector
xqi . The set of user-labeled seeds is denoted VL and the set of unlabeled vertices
is denoted VU . The probability of a labeled vertex vi ∈ VL with label s is given
by xqi = 1 if q = s and 0 otherwise. Grady et al.[8] showed that an xq that
minimizes the energy functional
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can be obtained by solving the following linear system of equations
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where Eprior and Ereg are the data fidelity and regularization energy terms, re-
spectively.4UU and4UL are partitions from the combinatorial graph Laplacian
matrix defined in [8]. λqi represent the likelihood that vertex vi belongs to class
q. Λq is a diagonal matrix with values λq along the diagonal. γreg and γprior are
weighting parameters; setting their values is discussed in (Sec. 2.3). With xqi in



hand, vertex vi is assigned a label using argmax
q

xqi .

We extend the classical RW formulation to deal with time-varying dPET images
in the following ways:

– Each vertex vi now represents a TAC Ii, where Ii = [I1
i I

2
i ...I

T
i ] and T is the

total number of time steps. Ii is typically sampled non-uniformly with time,
with smaller sampling intervals suffering from lower SNR, which in turn is
due to the lower Gamma photon counts acquired in a shorter interval.

– The similarity between two TACs Ii and Ij is measured using the weighted

L2 distance gij =
√∑T

t=1(Iti − Itj)2zt, where zt is a weight that accounts
for the non-uniform time sampling encountered in dPET. Shorter sampling
intervals with lower SNR are weighted less.

– A reciprocal weighting function is used to calculate the edge weights wij =
β

gij+ε
, where β is a mapping parameter and ε is a small number for stability.

2.2 Kinetic modeling based image prior terms
In order to calculate the likelihood term λqi in (2), we need to estimate the TAC
distribution in different classes. However, higher dimensional density estimation
is impractical beyond a few dimensions [9], which is the case for dPET data since
a TAC at each pixel is a roughly 40 dimensional vector (T ≈ 40 time steps).
Further, there are no training images that we can use for the density estimation
as different tracers lead to completely different intensity distributions. Here, we
assume that the TAC classes are multivariate Gaussian distributions with the
same scaled identity covariance matrix but with different means, which is the
same assumption as in the widely used K-means clustering algorithm. We can
now consider the distance to the class mean TAC as the inverse of the likelihood
term with proper mapping, as follows

uqi =

√√√√ T∑
t=1

‖Iti − µtq‖2zt (3)

where uqi represents the weighted L2 intensity difference between TAC Ii and
mean TAC µq for class q.

As dPET tracer kinetics are often described using compartmental KM, we
apply the KM process to the means µq for the Q classes prior to applying (3). We
thus ensure that the prior terms capture the physiological phenomena under con-
sideration and not only the observed TACs from the dPET data. Consequently,
(3) becomes

uqfiti =

√√√√ T∑
t=1

‖Iti − µtfitq‖
2zt (4)

where µfitq is the activity TAC produced by solving a specific KM (e.g. two
tissue compartmental KM) for each region mean activity µq [7]. The likelihood
at each vertex is then estimated by

λqfiti = Υ/(uqfiti + ε) (5)



where Υ is a free mapping parameter. By incorporating KM TAC likelihood
terms into RW, (2) becomes

(γreg4UU + γprior

Q∑
q=1

ΛqUfit)x
q
U = −γreg4ULxqL + γpriorλ

q
Ufit

. (6)

2.3 Self-learning using uncertainty principles

The main assumption underlying RW is that labels are diffused on the graph
according to the similarity between TACs. On the one hand, low SNR affects
the similarity calculations, which in turn affects the energy term Ereg. On the
other hand, we can not build a good estimate for Eprior with the low number
of seeds expected from the user. Here, we develop a self-learning technique to
boost the number of vertices used in the prior estimation Eprior. Self-learning
is a commonly used concept in semi-supervised learning, in which a classifier
is first trained with a small amount of labeled data and then used to classify
the unlabeled data. Then, the most confident unlabeled vertices, together with
their predicted labels, are added to the training set. The classifier is re-trained
and the procedure repeated [10]. To identify the most confident vertices, we use
uncertainty principles from information theory. The entropy at vi is defined as

h(vi) =
Q∑
q=1

xqi log2(xqi ). (7)

Vertices with sufficiently high certainty or confidence will have a sufficiently low
entropy, i.e. h(vi) < ℵ, where ℵ is a confidence threshold, and are, hence, dubbed
confident. Nevertheless, confident vertices are not at par with user-specified
seeds. Therefore, they are added to a new set Vconfident, rather than to the
seeds set VL (i.e. xq 6= 1 for vi ∈ Vconfident whereas xqL = 1 for vi ∈ VL), to
allow them to be relabeled as the algorithm iterates. Each region mean TAC µq
is estimated by averaging all TACs ∀vi ∈ Vconfident ∪ VL with label q.

Energy minimizing segmentation methods, RW included, are generally sen-
sitive to the choice of weighting between spatial regularization and conformance
to certain appearance or pixel intensity. In (6), such weighting balance is dic-
tated by the weighting parameters γreq and γprior. We devise a novel, automatic
iteration-dependant schedule for setting these weighting parameters. Given an
initial small number of seeds, we wish to weight the Ereg term more to ensure
that the vertices added to Vconfident will be spatial neighbors and similar to
the seeds. As the algorithm iterates, we wish to weight the Eprior more as we
will have a better estimate of the TAC distribution in different classes given the
larger number of vertices added to Vconfident. So (6) is modified as follows

(α4UU + (1− α)
Q∑
q=1

ΛqUfit)x
q
U = −α4ULxqL + (1− α)λqUfit . (8)

The α scheduling can be written as α(k + 1) = ζα(k) where 0 < ζ < 1 and k is
the iteration index.



2.4 Certainty weighted mean TAC

After the labeling process, the standard KM proceeds by equally-weighted aver-
aging of all the TACs belonging to each functional region to produce µfinalq [2].
Here, we propose a certainty-weighted averaging to calculate each region’s mean
TAC by utilizing the confidence of the labeling process. This compensates for the
PVE by weighting pure tissue TACs differently, compared to those of mixture-
tissues using the uncertainty principles. More specifically

µfinalq =

∑
vi labeled q ψiIi∑
vi labeled q ψi

where ψi = 1/(h(vi) + ε). (9)

Our RWSL-KM method is summarized in Alg.1.
Algorithm 1 Kinetic modeling based random walker with self-learning

Input: (i) dynamic molecular image data and (ii) user seeds for different classes.
Result: Segmented functional regions with their corresponding kinetic parameters.
Initialize VL from user seeds and Vconfident = {}.
Initialize k = 0 and α(k) = 1.
repeat

Compute the probability xq
i ∀q at each vi ∈ VU by applying (8).

Assign a class to vi using argmax
q

xq
i .

Update Vconfident by adding vi to Vconfident iff h(vi) < ℵ.
Compute each region mean TAC µq using only vi ∈ Vconfident ∪ VL.
Find KM parameters producing µfitq closest to µq in the least-square sense [7].
Update α(k + 1) = ζα(k) and k = k + 1.

until Convergence: No significant change in either µfitq or Vconfident

Compute final certainty-weighted region mean TAC µfinalq by applying (9).

3 Materials and implementation

We used synthetic and simulated dPET data with known ground truth to eval-
uate the proposed algorithm. For the synthetic dPET data, we generated an
[18F]FDG-PET image dataset with TACs corresponding to 6 functional regions
(Q = 6): background (BG), skull (SK), grey matter (GM), white matter (WM),
cerebellum (CM) and putamen (PN). A two-tissue compartmental KM was used
to simulate the dynamics for different regions with real kinetic parameters from
the dPET clinical literature. The resulting TACs are assigned to a 2D down-
sampled labeled MRI image that was blurred with a Gaussian filter (full width
at half maximum = 8mm). We ran 5 trials each with 5 Gaussian noise levels
[1, 3, 5, 8, 10]σ. σ is used to scale the unit variance of the random noise gener-
ator to the scale of the synthetic TAC intensity at each time step. The dPET
image has dimensions of 91×109 with 46 time steps: 12×10s, 10×30s, 10×120s,
10×300s and finally 4×600s with an isotropic voxel size of 2mm. Fig 1 shows
the MRI slice used and the last dPET time step with different noise levels. We
show the last time step as it has the highest SNR, as is typical in dPET (i.e. the
preceding time frames are even noisier).

For the simulated dPET data, we used the publicly available simulated
3D+time dataset PET-SORTEO with known ground truth [11]. Ten simulated



Fig. 1. From left to right: Labeled 2D Brain MRI slice. The last time step slice (highest
SNR) of the synthetic dPET data blurred with a Gaussian kernel (i.e. introduces PVE)
with increasing noise levels [0, 1, 3, 5, 8, 10]σ, where 0σ level has no additive noise.

[11C]Raclopride PET brain studies, accounting for inter-subject anatomical vari-
ability as well as different dPET image degradation factors, have been used. The
PET-SORTEO image has dimensions of 128×128×63 with 26 time steps: 6×30s,
7×60s, 5×120s and finally 8×300s with voxel size of 2.11× 2.11× 2.42mm3.

In order to validate our algorithm, we compare it with two of the state-of-the-
art techniques in dPET segmentation: K-means with KM and a MRF-regularized
version thereof [7], abbreviated KMN-KM and MRF-KM, respectively. We also
compare to the original RW (with necessary extensions noted in (Sec. 2.1)) [8].
For the synthetic experiment, the comparison criterion is based on the recovery
of the FDG glucose metabolic rate K = K1k3/(k2 + k3) [4]. We define the KM
recovery error as

REq = ‖Kq
fit −K

q
true‖2 (10)

where Kq
true is the ground truth K used to generate the data in a functional

region q. A perfect segmentation technique is the one that can recover Kq
true

(yielding REq = 0). Each segmentation technique produces different Kq
fit.

The KM development is based on COMKAT [12]. The RW is partially based
on the code accompanying [8]. We chose empirically the following values for the
algorithm free parameters β = 1, Υ = 1, α(0) = 1, ζ = 0.9 and ℵ = 1.1863
with Q = 6. The value of ℵ corresponds to a minimum likelihood probability
of 0.8 for one class and equal probabilities for the other classes. The same set
of seeds was used for the initialization of different segmentation techniques: to
calculate the initial means for KMN-KM and MRF-KM, and as initial seeds for
RW and RWSL-KM. |VL| is 2.5% of the original image size in the 2D synthetic
experiment and 0.02% in the simulated 3D experiment.
4 Results

Fig 2 qualitatively compares the four algorithms using the synthetic data with a
noise level of 5σ. KMN-KM and MRF-KM result in isolated, scattered functional
labels especially in the WM and GM regions. Further, the PN is underestimated
as it has very similar kinetics to the CM region. Classical RW results in Voronoi
regions with respect to the provided seeds due to the excessive noise (in agree-
ment with [8]). RWSL-KM overcomes these two limitations and performs better
than the other approaches. Most of the regions are sufficiently recovered espe-
cially in the PN region. Nevertheless, RWSL-KM misclassified a band around
the CM as PN (green surrounding blue). Also, the area between the GM and the
SK was misclassified as WM (the yellow perimeter). These misclassifications are
the result of PVE. This behavior is not surprising and can further be explored
by examining the uncertainty map (rightmost image in Fig 2). This image is a
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Fig. 2. Comparison between four segmentation algorithms. The rightmost figure is the
negative entropy map generated by RWSL-KM (uncertain regions appear darker).
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Fig. 3. Recovery error (RE) of the physiological parameters with different noise levels
and multiple trials. ROI corresponds to the mean TAC extracted using the ground truth
labeling. RWSL-KM-CW uses the certainty weighted mean TAC for each region. Note
the different scale on the y-axis to demonstrate the differences between algorithms.

mapping of the negative entropy at each pixel to a grey level color: uncertain
pixels appear darker. Misclassified regions with low certainty (darker) indicate
that the classification of these regions is almost arbitrary. This supports our jus-
tification that the extracted mean TAC from each region should be weighted by
the amount of certainty at each voxel (as in (9)) before estimating the kinetic
parameters, which is the main objective of dPET analysis and not the segmen-
tation per se.

Fig 3 shows a quantitative comparison between the different algorithms ac-
cording to (10). It shows that K calculated from certainty-weighted mean TAC
using RWSL-KM (RWSL-KM-CW) constantly outperforms other algorithms.
Furthermore, Fig 3 shows that our method even outperforms ground truth la-
beling. This may seem unrealistic at first, however given that the ground truth
labeling itself is a crisp (non fuzzy) labeling, TACs at the interface between func-
tional regions will suffer from PVE and hence produce worse K estimates. This
is particularly noticed in WM, CM and PN. Our certainty-weighted averaging,
on the other hand, can handle the PVE well.

For the simulated dPET data, we don’t have access to the generated kinet-
ics, so we can not evaluate the algorithm according to (10). Hence, we chose the
Dice coefficient to measure the overlap between a segmented region and ground
truth. Note that the Dice metric doesn’t take the segmentation confidence into
account, so one of the features of our algorithm is unutilized. Fig 4 shows the
Dice coefficient averaged over 10 patients. It shows the RWSL-KM outperform-
ing the different algorithms except for the CM region and slightly in the GM
region. This can be explained by knowing that the CM region should be devoid
of the Raclopride tracer, which is the reason it is used as the reference tissue in
graphical KM methods [2]. Further, RWSL-KM exhibits the lowest variability
in different regions, especially in the GM region.
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Fig. 4. Performance evaluation between the four algorithms using the Dice metric.
The error bars show one standard deviation.

5 Discussion
In this paper, we developed a semi-supervised segmentation technique for molec-
ular images incorporating spatial regularization, kinetic modeling and uncer-
tainty principles. We showed qualitatively and quantitatively that RWSL-KM
produces better results than other state-of-the-art techniques.

We intend to extend RWSL-KM by incorporating structural MRI or CT in-
formation for better localization of tracer activity. Further, we need to investigate
the performance of our algorithm with real datasets from multiple modalities.
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