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Abstract

The computation of the winning set for one-pair Streett objectives and for k-pair Streett objectives
in (standard) graphs as well as in game graphs are central problems in computer-aided verification,
with application to the verification of open systems, checking interface compatibility, well-formedness
of specifications, the synthesis of systems from specifications, and the synthesis of reactive systems.
We give faster algorithms for the computation of the winning set for (1) one-pair Streett objectives (aka
parity-3 problem) in game graphs and (2) for k-pair Streett objectives in graphs. For both problems
this represents the first improvement in asymptotic running time in 15 years.

Keywords: (1) Graph games; (2) Streett objectives; (3) Graph algorithms; (4) Computer-aided verification.

1 Introduction

Game graphs and graphs. Consider a directed graph (V, E) with a partition (V7, V2) of V, which is called
a game graph. Let n = |V| and m = |E|. Two players play the following alternating game on the graph
that forms an infinite path. They start by placing a token on an initial vertex and then take turns indefinitely
in moving the token: At a vertex v € V; player 1 moves the token along one of the outedges of v, at a
vertex u € V5 player 2 moves the token along one of the outedges of u. If V5 = (), then we simply have a
standard graph.

Objectives and winning sets. Objectives are subsets of infinite paths that specify the desired set of paths
for player 1, and the objective for player 2 is the complement of player-1 objective (i.e., we consider
zero-sum games). Given an objective ®, an infinite path satisfies the objective if it belongs to ®. Given
a starting vertex x € V' and an objective ®, if player 1 can guarantee that the infinite path starting at x
satisfies ®, no matter what choices player 2 makes, then player 1 can win from x and = belongs to the
winning set of player 1, and since the winning sets partition the game graph [31], the complement of the
winning set for player 1 is the winning set for player 2. In case the game graph is a standard graph (i.e.,
Vo = (), the winning set consists of those vertices x such that there exists an infinite path starting at 2 that
satisfies . The winning set computation for game graphs is more involved than for standard graphs due
to the presence of the adversarial player 2.

Relevant objectives. The most basic objective is reachability where, given a set U C V of vertices, an
infinite path satisfies the objective if the path visits a vertex in U at least once. The next interesting
objective is the Biichi objective that requires an infinite path to visit a vertex in U infinitely often. The next
and a very central objective in formal verification and automata theory is the one-pair Streett objective that
consists of a pair (L1, Uy ) of sets of vertices (i.e., L1 C V and U; C V), and an infinite path satisfies the
objective iff the following condition holds: if some vertex in L; is visited infinitely often, then some vertex
in U] is visited infinitely often (intuitively the objective specifies that if one Biichi objective holds, then



another Biichi objective must also hold). A generalization of one-pair Streett objectives is the k-pair Streett
objective (aka general Streett objective) that consists of k-Streett pairs (L1, Uy), (Lo, Us), ..., (L, Ug),
and an infinite path satisfies the objective iff the condition for every Streett pair is satisfied (in other words
the objective is the conjunction of k one-pair Streett objectives).

We study (1) game graphs with one-pair Streett objectives and (2) graphs with general Streett
objectives.

Significance in verification. Two-player games on graphs are useful in many problems in computer science,
specially in verification and synthesis of systems such as the synthesis of systems from specifications
and synthesis of reactive systems [10, 34, 35], verification of open systems [2], checking interface
compatibility [13], well-formedness of specifications [14], and many others. General and one-pair Streett
objectives are central in verification as most commonly used specifications can be expressed as Streett
automata [36, 40].

Game graphs with one-pair Streett objectives arise in many applications in verification. We sketch
two of them. (A) Timed automaton games are a model for real-time systems. The analysis of such games
with reachability objectives and safety objectives (which are the dual of reachability objectives) reduces to
game graphs with one-pair Streett objectives [12, 11, 7, 9]. (B) The synthesis of Generalized Reactivity(1)
(aka GR(1)) specifications exactly require the solution of game graphs with one-pair Streett objectives;
GR(1) specifications are standard for hardware synthesis [33] and even used in synthesis of industrial
protocols [22, 4]'.

General Streett objectives in standard graphs arise, for example, in the verification of closed systems
with strong fairness conditions [29, 15, 21]. In program verification, a scheduler is strongly fair if every
event that is enabled infinitely often is scheduled infinitely often. Thus, verification of systems with strong
fairness conditions directly corresponds to checking the non-emptiness of Streett automata, which in turn
corresponds to determining the winning set in standard graphs with Streett objectives. Note, however,
that a Streett objective can either specify desired behaviors of the system or erroneous ones, and for
erroneous specifications, it is useful to have a certificate (as defined below) to identify an error trace of the
system [16, 29].

Note that standard graphs are relevant for testing the non-emptiness of Streett automata and the
verification of closed systems, while game graphs are relevant for the synthesis and verification of open
systems.

Previous results. We summarize the previous results for game graphs and graphs with Streett objectives.

Game graphs. We consider the computation of the winning set for player 1 in game graphs. For
reachability objectives, the problem is PTIME-complete, and the computation can be achieved in time
linear in the size of the graph [3, 25]. For Biichi objectives, the current best known algorithm requires
O(nQ) time [5, 6]. For general Streett objectives, the problem is coNP-complete [17], and for one-pair
Streett objectives the current best known algorithm requires O(nm) time [27]. One-pair Streett objectives
also corresponds to the well-known parity games problem with three priorities (the parity games problem
in general is in UP N coUP [26]; it is one of the rare and intriguing combinatorial problems that lie in UP
M coUP, but not known to be in PTIME). Despite the importance of game graphs with one-pair Streett
objectives in numerous applications and several algorithmic ideas to improve the running time for general
parity games [41, 28, 37] or Biichi games [8, 5, 6], there has been no algorithmic improvement since
2000 [27] for one-pair Streett games.

Graphs. In standard graphs we study the computation of the winning set for general Streett objectives.
If « belongs to the winning set, it is often useful to output a certificate for x. Let S be a (not necessarily
maximal) strongly connected component (SCC) that is reachable from x such that forall 1 < j < k we
have either SN L; = or SN U; # 0 (i.e., if S contains a vertex from L; then it also contains a vertex
from Uj). A certificate is a “lasso-shaped” path that reaches S and then visits all vertices in S infinitely
often to satisfy the general Streett objective. The basic algorithm [19, 30] for the winning set problem has

'A GR(1) specification expresses that if a conjunction of Biichi objectives holds, then another conjunction of Biichi objectives
must also hold, and since conjunction of Biichi objectives can be reduced in linear time to a single Biichi objective, a GR(1)
specification reduces to implication between two Biichi objectives, which is an one-pair Streett objective.



an asymptotic running time of O((m + b) min(n, k)) with b = Z§:1(‘LJ’| + |U;|) < 2nk. Within the
same time bound Latvala and Heljanko [29] additionally compute a certificate of size at most n min(n, 2k).
Duret-Lutz et al. [15] presented a space-saving “on-the-fly” algorithm with the same time complexity for
the slightly different transition-based Streett automata. The current fastest algorithm for the problem by
Henzinger and Telle [24] from 1996 has a running time of O(m min(v/mlogn, k,n) + b min(logn, k)),
however, given a start vertex z, to report the certificate for z it takes time O(m min(y/mlogn, k,n) +
bmin(logn, k) + nmin(n, k)).

Our contributions. In this work our contributions are two-fold.

Game graphs. We show that the winning set computation for game graphs with one-pair Streett
objectives can be achieved in O(n?) time. Our algorithm is faster for m > n!®, and breaks the long-
standing O(nm) barrier for dense graphs. We also discuss the implications of our algorithm for general
parity games in Remark 1.

Graphs. We present an algorithm with O((n? 4 b) log n) running time for the winning set computation
in graphs with general Streett objectives, which is faster for m > max(n*/3, b%/3) log'/?n and k >
n?m~!logn. We additionally give an algorithm that computes a certificate for a vertex x in the winning
setin time O(m+nmin(n, k)). We also provide an example where the certificate has size ©(n min(n, k)),
showing that no algorithm can compute and output a certificate faster. In contrast to [24] the running time
of our algorithm for the winning set computation does not change with certificate reporting. Thus when
certificates need to be reported and k = €(n), our algorithm is optimal up to a factor of log n as the size
of the input is at least b and the size of the output is Q(n?).

Technical contributions. Both of our algorithms use a hierarchical (game) graph decomposition technique
that was developed by Henzinger et al. [23] to handle edge deletions in undirected graphs. In [5, 6] it
was extended to deal with vertex deletions in directed and game graphs. We combine and extend this
technique in two ways.

Game graphs. The classical algorithm for one-pair Streett objectives repeatedly solves Biichi games
such that the union of the winning sets of player 1 in the Biichi games is exactly the winning set for the
one-pair Streett objective. Schewe [37] showed that an algorithm for parity games by Jurdzinski [27] can
be used to compute small subsets of the winning set of player 1, called dominions, and thereby improved
the running time for general parity games. However his ideas do not improve the running time for one-pair
Streett (aka parity-3) games. With this algorithm dominions of size h in Biichi games can be found in
time O(mh). We extend this approach by using the hierarchical game graph decomposition technique
to find small dominions quickly and call the O(n?) Biichi game algorithm of [5, 6] for large dominions.
This extension is possible as we are able to show that, rather surprisingly, it is sufficient to consider game
graphs with O(nh) edges to detect dominions of size h (see Lemma 2.5).

Graphs. In prior work that used the hierarchical graph decomposition technique the runtime analysis
relied heavily on the fact that identified vertex sets that fulfilled a certain desired condition were removed
from the (game) graph after their detection. The work for identifying the vertex set was then charged in an
amortization argument to the removed vertex set. This is not possible for general Streett objectives on
graphs, where SCCs are identified and some but not all of its vertices might be removed. As a consequence
a vertex might belong to an identified SCC multiple times. We show how to overcome this difficulty by
identifying, when an SCC S splits into multiple SCCs, an SCC X C .S whose size is at most half of the size
of S. We identify X by using Tarjan’s SCC algorithm [39] on the graph and its reverse graph in lock-step,
thereby finding the smallest fop (i.e. with no incoming edges) or bottom (i.e. with no outgoing edges) SCC
contained in S. The smallest such SCC X has size at most |S|/2 and the algorithm takes time O(| X |n) to
find it, which we charge to the vertices in X . In this way, every time a vertex is “‘charged”, the size of the
identified vertex set to which it belongs is halved, guaranteeing that each vertex is charged only O(logn)
times.

In Section 2 we present our algorithm for one-pair Streett objectives in game graphs, in Section 3 the
algorithm for general Streett objectives in graphs.



2 One-Pair Streett Objectives in Game Graphs
2.1 Preliminaries

Parity games. A parity game P = (G, «) consists of a game graph G = ((V, E), (Vo, Vg)) and a parity
function o : 'V — 7 that assigns an integer value to each vertex. We denote the two players with O
(for odd) and & (for even). Player O (resp. player £) wins a play if the lowest priority occurring in the
play infinitely often is odd (resp. even). We say that the vertices in V» are O-vertices and the vertices in
Vg are E-vertices. We use p to denote one of the players {O, £} and p to denote his opponent. We will
specifically consider parity-3 games with « : V' — {—1,0, 1} and Biichi games with o : V' — {0, 1},
where the vertices in the set B = {v | a(v) = 0} are called Biichi vertices. Biichi games are denoted as
(G, B).

One-pair Streett and parity-3 games. A one-pair Streett objective with pair (L1, U;) is equivalent to a
parity game with three priorities. Let the vertices in Uy have priority —1, let the vertices in L \ Uy have
priority 0 and let the remaining vertices have priority 1. Then player 1 wins the game with the one-pair
Streett objective if and only if player O wins the parity-3 game. As the known algorithms for parity-3
games are special cases of algorithms for general parity games, we will use the notion of parity games
(i.e., player O and player £ instead of player 1 and player 2).

Plays. For technical convenience we consider that every vertex in the game graph G has at least one
outgoing edge. A game is initialized by placing a token on a vertex. Then the two players form an infinite
path called play in the game graph by moving the token along the edges. Whenever the token is on a
vertex in V), player p moves the token along one of the outgoing edges of the vertex. Formally, a play is
an infinite sequence (vg, v1,v2, . ..) of vertices such that (v;,v;41) € E forall j > 0.

For a vertex v € V, we write Out(u) = {v € V | (u,v) € E} for the set of successor vertices
of uand In(u) = {v € V | (v,u) € E} for the set of predecessor vertices of u. We denote by
Outdeg(u) = | Out(u)| the number of outgoing edges from u, and by Indeg(u) = | In(u)| the number
of incoming edges.

Strategies. A strategy of a player p € {O, £} is a function that, given a finite prefix of a play ending at
v € V), selects a vertex from Out(v) to extend the play. Memoryless strategies do not depend on the
history of a play but only on the current vertex. That is, a memoryless strategy of player p is a function
7 : V, = V such that 7(v) € Out(v). It is well-known that for parity games it is sufficient to consider
memoryless strategies (see Theorem 2.1 below). Therefore we will only consider memoryless strategies
from now on. A start vertex v together with a strategy o for £ and a strategy 7 for O defines a unique
play w(v, o, ) = (vg, v1, V2, . ..), which is defined as follows: vg = v and for all j > 0, if v; € Vg, then
o(vj) = vjq1, and if v; € Vp, then 7(v;) = vj41.

Winning strategies and sets. A strategy 7 is winning for player p at start vertex v if the resulting play is
winning for player p irrespective of the strategy of player p. A vertex v belongs to the winning set W,
of player p if player p has a winning strategy from v. By the following theorem every vertex is winning
for exactly one of the two players. When required for explicit reference of a specific game graph G or
specific parity game P we use W,(G) and W),(P) to refer to the winning sets.

Theorem 2.1 ([18, 32]). For every parity game the vertices V can be partitioned into the winning set Wg
of € and the winning set Wo of O. There exists a memoryless winning strategy for £ (resp. Q) for all
vertices in Wg (resp. Wo).

The algorithmic question for parity games is to compute the set Wg. We will use the following
algorithm for Biichi games as a subroutine in our algorithm.

Theorem 2.2 ([5, 6]). Let (G, B) be a Biichi game with game graph G and Biichi vertices B. There is an
algorithm BUCHI(G, B) that computes W in time O(n?).

For the analysis of our algorithm we further introduce the notions of closed sets, attractors, and
dominions.



Closed sets and attractors. A set U C V is p-closed if for all p-vertices u in U we have Out(u) C U
and for all p-vertices v in U there exists a vertex w € Out(v) N U. Note that player p can ensure that a
play that currently ends in a p-closed set never leaves the p-closed set against any strategy of player p by
choosing an edge (v, w) with w € Out(v) N U whenever the current vertex v is in U N V}; (see also [6,
Proposition 2.2]). Given a game graph G and a p-closed set X, we will denote by G[X| the game graph
induced by the set X of vertices.

In a game graph G a p-attractor Attr,(U, G) of aset U C V is the set of vertices from which player p
has a strategy to reach U against all strategies of player p. We have that U C Attr, (U, G). A p-attractor
can be constructed inductively as follows: Let Ry = U; and for all ¢ > 0 let

Riy1=R;U {1) S Vzp ‘ Out(v) NR; # @} U {U € Vﬁ | Out(v) - Rz} (i)

Then Attr,(U, G) = J;>( Ri- The lemma below summarizes some well-known facts about closed sets,
attractors, and winning sets.

Lemma 2.3. Let p € {O, E}. The following assertions hold for parity games.
1. The set V' \ Attr,(U, G) is p-closed in G [42, Lemma 4].
2. Let U C V be p-closed. Then Attrp(U, G) is p-closed [42, Lemma 5].
3. The attractor Attr,(U, G) can be computed in O(ZUeAttrp(U,G) |In(v)|) time [3, 25].
4. Let U C Wp(Q) and let A = Attr,(U,G). Then Wy(G) = AU W,(G[V \ A]) and W;(G) =
Wi(GV \ A]) [28, Lemma 4.5].

Dominions. A set of vertices D C V is a p-dominion if D # (), player p has a winning strategy from
every vertex in D that also ensures only vertices in D are visited, and D is a p-closed set. We will only
consider £-dominions in this paper and therefore usually omit the reference to the player. Dominions of
size |D| < h can be computed by running the small-progress measure algorithm of Jurdziriski [27] with a
reduced codomain [37]. A description of the small-progress measure algorithm for Biichi games is given
in [6, Section 2.4.1]. We will use the following algorithm as a subroutine.

Theorem 2.4 ([27, 37, 6]). Let (G, B) be a Biichi game with game graph G and Biichi vertices B. There
is an algorithm BUCHIPROGRESSMEASURE(G, B, h) that returns the set of all dominions of size at most
h in time O(mh).

2.2 Algorithm

In this section we present our new algorithm to compute the winning set of player £ in a parity-3 game
P = (G, a) in time O(n*?). Its complement is the winning set of player O.

Initialization (Steps 1-3 of Algorithm PARITY-3). First the algorithm constructs the modified game graph
G' = ((V,E'), (Vo, Vg)) from G. Let Z be the vertices in V with priority —1. In G’ the vertices in Z are
made absorbing, that is, the outgoing edges of the vertices in Z are replaced with self-loops. Otherwise G’
contains the same edges as G. We will consider a Biichi game on G’ where the vertices in Z have priority
1, and thus in the Biichi game there are only two priorities (priority 0 and 1). The construction of G’
ensures that dominions in the Biichi game are also dominions in the parity-3 game P (see Lemma 2.10).

Iterated vertex deletions (Steps 4-9 of Algorithm PARITY-3). The algorithm will repeatedly remove
vertices from the graphs G and G’. Initially the set V is the set of vertices in the input game graph G.
During the algorithm, we denote with V' the set of remaining vertices after vertex deletions and we denote
with G[V] and G'[V] the subgraphs induced by the vertices remaining in V. The set of Biichi vertices B
maintains the set of priority-0 vertices in V. The vertex set removal is achieved by identifying dominions
and removing their attractors.

Dominion find and attractor removal. The algorithm repeatedly finds dominions in the Biichi game
(G'[V], B). After a dominion in the Biichi game G'[V] is found, its E-attractor in G[V] is removed from
V and B. Then the search for dominions is continued on the remaining vertices. If all vertices in the



ALGORITHM PARITY-3: New Algorithm for Parity-3 aka One-Pair Streett Objective

Input :agame graph G = ((V, E), (V, Vg)) and a priority function o : V- — {—1,0,1}
Output : the winning set W of player £

1 Z={veV]aWw) =-1hFE ={(u,u) |[ue Z} U{(u,v) e E|uecV\Z}

2 G =(V,E) /* vertices with a=—1 are absorbing in G’ x/
3W+—0;B+{veV]al)=0}

4 repeat

5 D < BUCHIDOMINION(G'[V], B, /n)

6 if D =0 then D + BUCHI(G'[V], B)

7 A+ Attre(D,G[V]); W« WUA

8 V«V\A B+ B\A

9 until D = ()

10 return W

11 Procedure BUCHIDOMINION(G' = ((V, E"), (Vo, Ve)), B, hynax)
12 for i < 1 to [log(2hmay)| do

13 construct G%; Bl; < {v € Vo | Outdeg(v) > 2}

14 Y, + Att?”@(Bli, G;)

15 D; «+ BUCHIPROGRESSMEASURE(GA[V \ Y], B\ Y;, 2%)
16 if D; # () then return union of dominions in D;

17 return ()

Biichi game are winning for O, i.e., no dominion exists in the Biichi game, then Algorithm PARITY-3
terminates. The winning set of player £ is the union of the £-attractors of all found dominions. The
remaining vertices are winning for player O. We now describe the steps to find dominions.

Steps of dominion find. For the search for dominions in the Biichi game (G'[V'], B) we use two different
algorithms, BUCHI and BUCHIDOMINION. We first search for “small” dominions with up to O(hpax)
vertices with hpax = 4/n with Procedure BUCHIDOMINION. If no dominion is found, we can conclude
that either all dominions contain more than /n vertices or the winning set of £ on the current game graph
is empty (in this case the algorithm terminates). The former case occurs at most \/n times and in such a
case we use the O(n?) algorithm BUCHI (Theorem 2.2) to obtain a dominion. Below we describe the
details of BUCHIDOMINION.

Graph decomposition for BUCHIDOMINION. In the Procedure BUCHIDOMINION we use the following
graph decomposition. For a game graph G’ = ((V, E’), (Voo, Vg)) we denote its decomposition with { G, }.
We consider the incoming edges of each vertex in E’ in a fixed order: First the edges from vertices in Vg,
then the remaining edges. We construct log n graphs G, = (V, EY), 1 < i < log n, where the set of edges
E contains for each vertex v € V with Outdeg(v) < 2% all its outgoing edges in E’ and in addition for
each vertex v € V its first 2 incoming edges in E’. Note that (1) E! C E!_,, (2) |E}] < 2"*!n, and (3)
logn = G- We color O-vertices v with OQutdeg(v) > 2° blue in G} and denote the set of blue vertices
with Bl;. We call vertices with Outdeg(v) < 2¢ white.
Procedure BUCHIDOMINION (Steps 11-17 of Algorithm PARITY-3). The Procedure BUCHID OMINION
searches for dominions in the subgraphs G, starting at ¢ = 1. The index 7 is increased one by one up to at
most i = [log(2hmax) | (With hmax = /1) as long as no dominion was found. Let Y; be the O-attractor of
blue vertices in G, i.e., of O-vertices that are missing outgoing edges in G;. To ensure that dominions
found in the subgraph G/ are also dominions in G’, only the vertices in V' \ Y; are considered. The
BUCHIPROGRESSMEASURE algorithm (Theorem 2.4) is used to find dominions of size at most O(2¢) in
GV \ Y.
The following key lemma describes the central connection between dominions of a certain size and
our graph decomposition. Namely, if a dominion D is found in G/ but not in G),_, then Attre(D,G’)



contains more than 2/~! vertices. This has the remarkable consequence, detailed in Corollary 2.6, that
every dominion of size h can be found by searching for a dominion in G, with i = [log(2h)]. This will
be crucial for our runtime analysis.

Lemma 2.5. Let G' = (V, E'), Vo, Vz)) be a game graph and {G',} its graph decomposition. For 1 <

i < logn we define the following sets: the set of blue vertices Bl; = {v € Vo | Outdeg(v) > 2'}, the at-
tractor of blue vertices Y; = Attro(Bl;, G.), and the set of dominions D; = BUCHIPROGRESSMEASURE(G}[V'\
Y;], B\ Yi,2%). If a dominion D is contained in D; but not in D;_1, then Attre(D,G') contains more

than 21~ vertices.

Proof. We distinguish three cases:

Case 1: The dominion D contains more than 2°~! vertices. This situation might arise as Proce-
dure BUCHIPROGRESSMEASURE(G_; [V \ Y;_1], B \ Yi—1,2"1) only guarantees to detect dominions
of size at most 2/~ 1. In this case the lemma is satisfied trivially.

Case 2: The dominion D contains a vertex v € V thatis blue in G;_l, i.e., an O-vertex with more than
2i=1 outgoing edges. Since D is O-closed, we have Out(v) C D. Thus |Attre(D,G")| > |D| > 201 in
this case.

Case 3: All vertices v € Vo in D are white in G;_, and thus the outgoing edges of the O-vertices in
D are the same in G;_l and G;. There are two subcases.

Case 3a: All edges (u,v) from vertices u € Ve N D to vertices v € D that are present in G/, are also
present in G;_,. Let o be the winning strategy of £ for the vertices in D found in G. This implies that (i)
D is O-closed in G,_, and (ii) all edges (u,v) with u € D N Vg and v = o(u) are contained in G}_.
Thus o is also a winning strategy of £ for the vertices in D in G_;. Hence the set D is a dominion in
G,_,. Thus either Case 1 applies or the dominion would already have been detected in iteration i — 1, a
contradiction.

Case 3b: There exists a vertex u € Vg N D that has an outgoing edge (u,v) to a vertex v € D in G,
but not in G._;. This implies Indeg(v) > 2¢1. By the ordering of the incoming edges and the fact that
u € Vg, at least 20! edges in In(v) emanate from vertices in Ve. By the definition of an attractor, all
these vertices are contained in Attre(D, G’). Thus we have |Attre (D, G')| > 2= as required.

Corollary 2.6. Let G', {G}}, Bl;, Y;, and D; be defined as in Lemma 2.5. Let D be a dominion in G’
with D = Attre(D,G") and h = |D|. Then for i = [log(2h)] the set of dominions D; contains D.

Proof. By the definition of i we have 2072 < h < 2/~!. Assume by contradiction that D; does not contain
D. Since G' = G{Ogn and Yiog,, = 0, by Theorem 2.4 there exists some i’ with i < i < logn, such

that D, contains D. Let 7* be the smallest 7’ such that D, contains D. Note that i* > 7. We have that
D ¢ D;«_1. By Lemma 2.5 this implies |Attre (D, G')| > 27" ~1, a contradiction to h < 2°~1. 1

Corollary 2.7. Either the Procedure BUCHIDOMINION(G'[V], B, hyax) returns a dominion or every
dominion D in G'|[V]| with D = Attre(D, G'[V]) has size greater than hyqy.

In the runtime analysis we will additionally use the following lemma, which follows from the inductive
construction of attractors.

Lemma 2.8. Let the game graphs G and G’ and the vertex set V be defined as in Algorithm PARITY-3.
Then for a player p € {E,O} and every set U C V it holds that Attr,(U, G'[V]) C Attr, (U, G[V]).

Proof. Let us consider the attractor computation Attry,(U, G'[V]) and Attr,(U, G[V]) as defined in (%),
and let us call the respective sequences as R, and R; respectively. By the definition of G’ for every vertex
vin V either (1) Out'(v) = Out(v) or (2) Out'(v) = {v}. It is straightforward to prove by induction
that Rg C R; and the desired result follows. B

Lemma 2.9 (Runtime). Algorithm PARITY-3 can be implemented in O(n?®) time.



Proof. Algorithm PARITY-3 can be initialized in O(m) time as the graph G’ and the set B can be
constructed from G in linear time. Note that the number of edges m/ in G’ is at most the number of edges
min G.

For the operations in the repeat-until loop we analyze the fotal running time over all iterations of the
loop. The runtime analysis relies heavily on the fact that when a dominion D is identified, the vertices in
Attrg (D, G) and their incident edges are removed from G and G’. In combination with Corollary 2.7,
this ensures that BUCHI is called at most O(n/hmay) times. By Theorem 2.2 one call to BUCHI takes
time O(n?). With Ay = /7 We obtain a total time spent in BUCHI of O(n?).

To analyze the total time spent in BUCHIDOMINION, we first show how to efficiently construct the
graph decomposition {G}} of G'. We maintain the following data structure for G’ over all iterations of
Algorithm PARITY-3. At each vertex v of G’ we maintain (a) a sorted list of inedges In(v), and (b) a list
of outedges Out(v). Additionally we maintain for each edge (u, v) a pointer to its position in the inlist of
v and the outlist of v. This allows us to update the data structure in time proportional to the degree of
v when a vertex v is removed. As each vertex can be deleted at most once, the total time to update this
data structure is bounded by O(n + m). We next analyze the time needed per iteration ¢ of the for-loop
in BUCHIDOMINION. Given the above data structure, the graph Gg, the set of blue vertices Bl;, and the
attractor Y; = Attro(Bl;, G) can be constructed in time O(n - 2). By Theorem 2.4 the time for one call
of the subroutine BUCHIPROGRESSMEASURE(., ., 2¢) on graph G, is O(n - 2 - 2¢) = O(n - 2%).

Let ¢* be the iteration at which Procedure BUCHIDOMINION stops after it is called by Algo-
rithm PARITY-3. The runtime for this call to Procedure BUCHIDOMINION from ¢ = 1 to ¢* forms
a geometric series that is bound by O(n - 2%"). By Lemmata 2.5 and 2.8 and Corollary 2.7 either (1) a
dominion D with |Attre(D,G)| > 2¢"~! vertices was found by BUCHIDOMINION or (2) all dominions
in G’ have more than hp,y vertices or there are no more dominions in G’. Thus either (2a) a dominion D
with more than hy,y vertices is detected in the subsequent call to BUCHI or (2b) there is no dominion in
G’ and this is the last iteration of Algorithm PARITY-3. Case (2b) can happen at most once and its runtime
is bounded by O(n - 22108(2mma)) = O(n?). In the cases (1) and (2a) more than 2¢" 2 vertices are removed
from the graph in this iteration, as hmax > 2° ~2. We charge each such vertex O(n - 2i*) =O(n - hmax)
time. Hence the total runtime for these cases is O(n? - hpax) = O(n?9).

It remains to consider the total time needed to compute A = Attre(D, G[V]). By Lemma 2.3. (3)
the attractor A can be computed in time O(>_ . 4|In(v)|). Since the edges adjacent to vertices in A are
removed from G after the iteration in which D was found, this attractor computation can be done in total
time O(m). We conclude that the runtime of Algorithm PARITY-3 is O(n??). i

We will show the correctness of Algorithm PARITY-3 by first proving that every dominion found in
the Biichi game on G’ is indeed a dominion in the parity-3 game on G. Together with Lemma 2.3. (4) this
implies that the computed set W is indeed a part of the winning set of player £ in the parity-3 game. We
then provide a winning strategy for player O for all remaining vertices.

Lemma 2.10. Let the game graphs G and G’ and the vertex sets V and B be defined as in Algo-
rithm PARITY-3. If D is a dominion in the Biichi game (G'|V], B), then D is a dominion in the parity-3
game P = (G[V], ).

Proof. Let Z be the vertices in V' with priority o equal to —1. The vertices in Z have priority 1 in the
Biichi game, i.e., Z N B = (). Whenever a play in G'[V| reaches a vertex v in Z, only u will be visited
in the subsequent play since Out(u) = {u}. Thus no vertex in Z is winning for £ in (G'[V], B), i.e.,
D N Z = (). Hence for all vertices in D the outgoing edges are the same in G[V] and G'[V]. Thus D
is O-closed in G[V] and the winning strategy of player £ for D in the Biichi game (G'[V], B) is also
winning for player £ for all vertices in D in the parity-3 game P. I

Lemma 2.11 (Correctness). Given a parity-3 game P, let W be the output of Algorithm PARITY-3. We
have: (1) (Soundness). W C W¢(P); and (2) (Completeness). Wg(P) C W.

Proof. The first part on soundness follows from Lemmata 2.10 and 2.3. (4). We now prove the complete-
ness result. Given the output W, let W denote the complement set. When Algorithm PARITY-3 terminates,



the winning set of player & in the Biichi game (G'[W], B) is empty (otherwise the algorithm would not
have terminated). Also note that since the algorithm removes attractors for &, the set W is closed for £
(by Lemma 2.3. (1)). Consider the set Z = {v € W | a(v) = —1}, its attractor X = Attro(Z, GIW)),
and the subgame induced by U = W \ X. Note that in U the game graphs G and G’ coincide. Thus all
vertices in U must be winning for player O in the Biichi game (G[U], B) as otherwise Wg would have

been non-empty for (G'[W], B). We prove the lemma by describing a winning strategy for player O in
P for all vertices in . Since W is £-closed, for vertices in Z N Vp, the winning strategy chooses an
edge in W. For vertices in X player O follows his attractor strategy to Z. In the subgame induced by
U =W \ X player O follows his winning strategy in the Biichi game (G[U], B). Then in a play either
(1) X is visited infinitely often; or (ii) from some point on only vertices in U are visited. In the former case,
the attractor strategy ensures that then some vertex in Z with priority —1 is visited infinitely often; and in
the later case, the subgame winning strategy ensures that only vertices with priority 1 and no vertices with
priority 0 are visited infinitely often. It follows that W C W (P), i.e., We(P) C W, and the desired

result follows. i
Lemmata 2.9 and 2.11 yield the following result.

Theorem 2.12. Algorithm PARITY-3 correctly computes the winning sets in parity-3 games in O(n??)
time.

Computation of winning strategies. In parity-3 games the previous results for computing winning strategies
for the players in their respective winning sets are as follows: The small-progress measure algorithm
of [27] requires O(nm) time to compute the winning strategy of the player whose parity is equal to
the parity of the lowest priority and O(n?m) time to compute the respective winning strategies for
both players; Schewe [38] shows how to modify the small-progress measure algorithm to compute the
respective winning strategies of both players in O(nm) time. We show that our algorithm also computes
the respective winning strategies in O(n?%) time. We first observe that the algorithm of [6] that solves
Biichi games in O(n?) time also computes the respective winning strategies of both players (the algorithm
is based on identifying traps and attractors, and the corresponding winning strategies are identified
immediately with the computation). In Lemma 2.11 we describe the strategy computation for a winning
strategy for player O which involves an attractor strategy and the sub-game strategy for Biichi games, each
of which can be computed in O(n?) time. A winning strategy for player & is obtained in the iterations of
the algorithm, i.e., whenever we obtain a dominion by solving Biichi games we also obtain a corresponding
winning strategy, and similarly for the attractor computation. Thus the winning strategy for player £ can
be computed in O(n?) time.

Corollary 2.13. Winning strategies for player £ and player O in parity-3 games in their respective
winning sets can be computed in O(n*?°) time.

Remark 1. (DISCUSSION ON GENERAL PARITY GAMES). We now discuss the implication of our
result for general parity games (we do not discuss general Streett games where the problem is coNP-
complete [17]). The current best known algorithm for parity games with dependence on the number
of priorities d is from [37], and the (simplified) running time for d = o(/n) is O(n"9 . m), where
v(d) is approximately d/3 for large d. More precisely, v(d) = d/3 4+ 1/2 — 1/([0.5d]|0.5d]) for odd
d,and y(d) =d/3+1/2 —1/(3d) — 1/([0.5d]|0.5d]) for even d. Our algorithm for parity-3 games
also extends to parity games as a recursive algorithm as follows: we apply our initialization step and
iterated vertex deletions, and to find dominions we replace BUCHI by our recursive algorithm that handles
games that have one less priority and replace BUCHIDOMINION by a procedure to find dominions with
small-progress measure of [27] with our graph decomposition and codomain bounded by A (Where
hmax 1s chosen to balance the running time of the two dominion find procedures). For the sake of simplicity
of presentation we consider the case of constantly many priorities and refer for the analysis of the general
case to [37]. Using the notation of [37] with 3(d) = ~v(d)/(|0.5d] + 1), we obtain with . = 7% a
running time of our algorithm of O (n't7(@+1)) = O(n?+1(D=A()) for parity games with d priorities, i.e.,



’ # priorities ‘ 3 \ 4 \ 5 \ 6 \ 7 ‘

Schewe [37] O(mn) | O(mn3/2) | O(mn?) | O(mn™/3) | O(mn't/*)
[37]if m = O(n?) | O(n®) | O(n'/?) O(n%) O(n33) | O(n!94)
this paper O(n??) O(n?3) O(ni%3) | O(n'®*) | O(n%/15)

Table 1: Comparison of running times of [37] and our algorithm for small priorities.

it replaces m of [37] by n2~#(4). We present the details of the calculation. We show by induction that our
algorithm solves parity games with d — 1 priorities in O(n1+7(d)) time. The base case of d—1 = 3 follows
from our algorithm for parity-3 games. The inductive case is as follows: To solve a parity game with d
priorities, our algorithm calls the progress measure algorithm (on the graph decomposition) for d — 1
priorities with e = n%(@ and recursively calls the algorithm for d — 1 priorities at most O(n'=" (d))
times. The total time for the progress measure algorithm is bounded by O(n2n5 (@) L0'5‘”) and the total
time for all calls to the algorithm for d — 1 priorities is bounded by O(n!=# (d)nHV(d)). We obtain the
recurrence y(d + 1) = 1 + ~(d) — 5(d), which yields y(d) as defined above and a running time of
O(n'+7(4+1) for d priorities. In the limit 5(d) approaches 2/3. For small d we compare our running
times with Schewe’s in Table 1. We have presented the details for parity-3 games for the following reasons:
(1) All the key ideas and conceptual details are easily demonstrated for the simpler case of parity-3 games
and (2) while all previous ideas for general parity games (such as [28, 37]) and for Biichi games (such
as [8, 5, 6]) fail to improve the running time for parity-3 games, our approach succeeds to break the
long-standing O(nm) barrier for dense graphs.

3 K-Pair Streett Objectives in Graphs

3.1 Preliminaries

Let G[S] denote the subgraph of a graph G = (V, E) induced by the set of vertices S C V. RevG denotes
the graph with vertices V' and all edges of G reversed. Let Reach(S, G) be the set of vertices in G that
can reach a vertex in S C V. A strongly connected component (SCC) of a directed graph G = (V, E) is a
subgraph G[S] induced by a subset of vertices S C V such that there is a path in G[S] between every
pair of vertices in .S. We call an SCC frivial if it only contains a single vertex and no edges. All other
SCCs are non-trivial. The set Reach(S,G) and the maximal SCCs of a graph G can be found in linear
time [3, 25, 39].

Algorithm STREETT and good component detection. The input is a directed graph G = (V, F) and k
Streett pairs (L;,U;), j = 1,..., k. The size of the input is measured in terms of m = |E|, n = |V,
k,and b = Z?Zl(]Lj\ + |Uj|). Consider a maximal scc C'; the good component detection problem
asks to (a) output a non-trivial SCC G[X| C C such that for all 1 < j < k either no vertex in L; or
at least one vertex in Uj is contained in the SCC (i.e., L; N X = () or U; N X # ), or (b) detect that
no such SCC exists. In the former case, there exists an infinite path that visits X infinitely often and
satisfies the Streett objective, while in the later case there exists no infinite path that visits vertices in
C infinitely often and satisfies the Streett objective. It follows from the results of [1] that the following
algorithm, called Algorithm STREETT, suffices for the winning set computation: (1) Compute the maximal
Scc decomposition of the graph; (2) for each maximal ScC C' for which the good component detection
returns an SCC, label the maximal ScC C as satisfying; (3) output the set of nodes that can reach a
satisfying maximal SCCs as the winning set. Since the first and last step are linear time, the runtime of
Algorithm STREETT is dominated by the detection of good components in maximal SCCs. In the following
we assume that the input graph is strongly connected and focus on good component detection.

Certificate computation. Given a start vertex x that belongs to the winning set, a certificate is an example of
an accepting run, i.e., an infinite path from x that satisfies the objective. The output of Algorithm STREETT
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Figure 1: An example for a “jungle” constructed by Tarjan’s SCC algorithm for an SCC. Backedges are
dotted, spanning tree edges are solid. Backlinks are marked with a dot. The numbers of the vertices
represent the order in which the vertices are visited, the numbers in brackets are the lowlinks.

eA

(D) -+ 00) -, o)

Figure 2: Let the only path between s and ¢ be of length ©(n/2) = ©(n), not containing any of the
vertices v; for 1 < j < k. Let the Streett pairs (L;,U;) be given by L; = {s} and U; = {v;} for
1 < j < k. For this example the size of the smallest certificate is ©(nk), where k can be of order ©(n).

can be used to construct such an accepting run. Given a start vertex = and a good component G[X]
reachable from z, we generate the accepting run as follows. A path from z to X can be found in linear
time by a depth-first search. Let v be the vertex in X where this path ends. We call v the root of the SCC
G[X]. We show next how to obtain, in O(m + n min(n, k)) time, from the SCC G| X]| a cycle starting and
ending at the root v such that the resulting certificate is indeed an accepting run. For this it is sufficient
that the cycle in G[X] contains for each L; with L; N X # () a vertex in U; N X, i.e., we do not have to
include all vertices in X.

We can use Tarjan’s depth-first search based SCC algorithm [39] to traverse the subgraph G[X] in
linear O(m) time, starting from root v. Tarjan’s algorithm constructs a graph called jungle with O(|X|)
edges that for an SCC G[X] consists of a spanning tree and at most one backedge per vertex in X. The
vertices are assigned pre-order numbers in the order they are traversed. We say an edge of G[X] is a
backedge if it leads from a vertex with a higher number to a vertex with a lower number. Spanning tree
edges always lead from lower numbered vertices to higher numbered vertices. In Tarjan’s algorithm a
lowlink is determined for each vertex w which refers to the lowest numbered vertex w that « can reach by
a sequence of tree edges followed by at most one backedge. We additionally store at each vertex u # v
a backlink that is the first edge on the path from u to its lowlink. The backlinks can be determined and
stored during the depth-first search without increasing its running time.

With this data structure we can find within G[X] a path from root v to a vertex v € X, u # v, and
back by first searching for « in the spanning tree and then following the backlinks back to v. Since no
vertex will appear more than twice on this path, its size and the time to compute it is O(| X|). As it suffices
to find such paths for one vertex per nonempty set U; N X, we can generate a certificate from G[X] in
O(m + | X|min(|X|, [{j | Uj N X # 0}])) time, which can be bounded with O(m + n min(n, k)). This
certificate has a size of O(n min(n, k)). As shown in Figure 2, the smallest existing certificate can be as
large as ©(n min(n, k)).

Next, we introduce the different concepts used in the algorithm for good component detection. First
we describe the hierarchical graph decomposition technique for this setting. This decomposition will be
crucial for the runtime analysis.

Graph decomposition. In our algorithm we decompose a graph G in the following way. Let G; = (V, E;)
be a subgraph of G with E; = {(u,v) | Outdeg(u) < 2'}, i.e., the edges of G; are the outedges of the
vertices with outdegree at most 2°. Note that for i = logn we have that G; = G. We say vertices in G
with Outdeg(v) > 2! are colored blue in G; and denote the set of blue vertices in G; by Bl;. All other
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vertices are white. Note that all vertices in G' = G4, are white and that all vertices in Bl; have outdegree
zero in G;.

Top and bottom strongly connected components. The algorithm will repeatedly find a top or a bottom
SCC in the remaining graph G. A bottom SCC G[S] in a directed graph G is an SCC with no edges from
vertices in S to vertices in V' \ S, i.e., no outgoing edges. A top SCC is a bottom SCC of RevG, i.e., an
scc without incoming edges. Top and bottom SCCs are by definition maximal SCCs. Note that every
graph has at least one bottom and at least one top SCC. If they are not the same, then they are disjoint and
thus one of them contains at most half of the vertices of G.

Lock-step search. The lock-step search of Even and Shiloach [20] was already applied (in a different
way) to the detection of good components in [24]. Lock-step search simulates parallel execution by
alternatingly making one step in each parallel instance. The execution finishes as soon as the first instance
terminates. In our algorithm we use this technique to search in parallel for the smallest top or bottom SCC,
where the search for a top SCC is performed by searching for a bottom SCC in RevG.

Bad vertices. In contrast to good components we also define bad vertices. The basic idea behind the
algorithms for good component detection, described for example in [24], is to repeatedly delete bad
vertices until either a good component is found or it can be concluded that no such component exists. A
vertex is bad if for some index j with 1 < j < k the vertex is in L; but it is not strongly connected to any
vertex in U;. All other vertices are good. Note that good vertices can become bad if some vertex deletion
disconnects an SCC or a vertex in a set Uj is deleted. A good component is then a non-trivial SCC that
only contains good vertices.

Data structure. The algorithm maintains for the current graph G = (V, E) (some vertices of the input
graph might have been deleted) a decomposition into vertex sets S C V such that every SCC of G is
completely contained in G[S] for one of the sets S. For all the sets S a data structure D(.S) is saved in
a list Q). The data structure D(S) supports the following operations: (1) Construct(S) initializes the
data structure for the set S, (2) Remowve (S, D(S), B) removes a set B C V from S and updates the data
structure of S accordingly, and (3) Bad(D(S)) returns the set {v € S | 3j withv € Lj and U; N S = 0}.
In [24] an implementation of this data structure was given that achieves the following running times. For
a set of vertices S C V' let bits(S) be defined as Z?:l (ISNL;|+|SnUj)).

Lemma 3.1 (Lemma 2.1 in [24]). After a one-time preprocessing of time O(k), the data structure
D(S) can be implemented in time O(bits(S) + |S|) for Construct(S), time O(bits(B) + |B|) for
Remove(S, D(S), B), and constant running time for Bad(D(S)).

3.2 Algorithm

By abuse of notation we denote by G the current graph maintained by the algorithm where some edges
and vertices might have been deleted and use input graph to denote the unmodified, strongly connected
graph for which a good component is searched. Our algorithm for good component detection is given in
Algorithm GOODCOMPONENT. It maintains in a list () a partition of the vertices in GG into sets such that
every SCC of (G is contained in the subgraph induced by one of the vertex sets. The list is initialized with
the set of all vertices in the strongly connected input graph. We will show that if a good component exists,
it must be fully contained in one of the vertex sets in the partition. The algorithm repeatedly removes a set
S from () and identifies and deletes bad vertices from G[S]. If no edge is contained in G[S], the set S is
removed as it can only induce trivial components. Otherwise the subgraph G[S] is either determined to be
strongly connected and output as a good component or a “small” maximal SCC in G[S] is identified. To
find a small maximal SCC the algorithm searches in lock-step in G[S] and in RevG|[S] for a bottom SCC
and stops as soon as one of the searches stops. (A bottom SCC in RevG[S] is a top SCC in G[S].) We only
describe the search in G[S] here, the search in Rev(G|[S] is analogous. The algorithm uses the hierarchical
graph decomposition in G[S]. The subgraph G;[.S] for any ¢ contains only the outedges of vertices with
an outdegree of at most 2°. The search for a bottom SCC is started at 4 = 1, then 7 is increased one by one
if necessary, up to at most logn. If for some ¢ we can identify a bottom SCC that does not contain any
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blue vertex (i.e. a vertex for which some edges are missing in G;), then the found scc in G;[S] must also
be a bottom SCC in G[S]. If multiple bottom SCCs (without blue vertices) are found in G;[S], we only
consider the smallest one. We then put the newly detected SCC and the “rest” of S back into ().

ALGORITHM GOODCOMPONENT: Detection of good components for the winning set computation
in graphs with k-pair Streett objectives

input :strongly connected graph G = (V, E), Streett pairs (L;,U;) forj =1,...,k
output:a good component in G if one exists

1 add Construct(V') to Q
2 while Q # () do

3 pull D(S) from @

4 while Bad(D(S)) # 0 do D(S) < Remove(S, D(S), Bad(D(S)))

5 if G[S] contains at least one edge then

6 in lock-step for H € {G, RevG}

7 for ; < 1 tologn do

8 construct H;[S]; Bl; <+ {v € S | Outdeg(v) > 2'} /* Outdeg in H */
9 Z <+ S\ Reach(Bl;, H;[S]) /* Z cannot reach Bl; x/
10 if Z # () then
1 H[X] < SmallestBottomSCC (H;[Z])
12 if X = S then return H|[S]
13 if | X| < |S]|/2 then
14 break

15 add Remove(S, D(S), X) and Construct(X) to Q

16 return no good component exists

The idea of the running time analysis is as follows. We can show that a bottom ScC of G[S] identified
in iteration i of the for-loop must contain (2%) vertices. In time O(n2?) a standard sCC algorithm can
compute all SCCs of G;[S] and thus also the smallest bottom SCC. The time needed for the search in all
graphs G#[S] up to ¢ can be bounded with an additional factor of two. Thus the work for the search is
O(n) per vertex in the identified SCC.

Given that the subgraph G[S] was split into at least one top and one bottom SCC, the smallest top or
bottom SCC contains at most half of the vertices of the subgraph. By searching for a smallest bottom SCC
(without blue vertices) in G;[S] and RevG;[S] we find one top or bottom SCC with at most half of the
vertices of the subgraph. We charge the work for finding such an SCC to the vertices in this SCC. This
guarantees that each vertex will be charged at most O(log n) times over the whole running time of the
algorithm. Thus we can bound the total running time for computing SCCs by O(n?logn).

We additionally have to take the time for the maintenance of the data structures into account. Here
we use the properties of the data structure D(S) described in Lemma 3.1 to obtain a running time of
O((n + b) logn) for the maintenance of the data structures and the identification of bad vertices over the
whole algorithm. Combined these ideas lead to a total running time of O((n? + b) log n).

Lemma 3.2. Whenever in Algorithm GOODCOMPONENT the for-loop stops for H € {G, RevG} and
some i = i* with a nonempty vertex set Z = S\ Reach(Bl;~, H;+[S]) and the smallest bottom sCC H[X|
in H;«[Z] returned by SmallestBottomSCC (H+[Z]) with | X| < |S|/2, then H[X] contains at least
20" =1 yertices.

Proof. As Bl;«_1 is the set of vertices in H;=_1[S] with outdegree larger than 2¢"~1 any bottom SCC
H{[Y'] that contains a vertex of Bl;«_1, has |Y| > 2" ~1. Hence it suffices to show that X N Bl # 0.
Assume by contradiction that X N Bl;+_1 = (). Since H[X] is a bottom SCC, no vertex in X can reach
any vertex in Blj«_1,i.e., X C S\ Reach(Blj«_1, H+[S]). As all edges in H;«_1[S] are contained in
H;«[S], this implies X C S\ Reach(Bl;«_1, Hi+_1[S]). Since SmallestBottomSCC finds the smallest
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bottom SCC in graph H; for each i, the for-loop would thus have terminated in an iteration ¢ < ¢* — 1.
Contradiction. i

Lemma 3.3 (Runtime). Algorithm GOODCOMPONENT can be implemented in time O((n? + b) logn).

Proof. The preprocessing and initialization of the data structure and the removal of bad vertices in the
whole algorithm take time O(m + k + b) using Lemma 3.1. Additionally we maintain at each vertex a
list of its incoming and a list of its outgoing edges including pointers to the lists of its neighbors, which
we use to update the lists of its neighbors. Since each vertex is deleted at most once, this data structure
can be constructed and maintained in total time O(n?).

Consider the while loop where a set S is removed from (). The lock-step search for G[S] and RevG|[S]
only increases the running time by a factor of two, thus we restrict the analysis of the running time to
G[S]. The construction of G;[S], Z, and G[X] can all be done in time O(n2?) for each i, i.e., in total
time O(n2"") up to level i*. If X = S, then the algorithm terminates and the time for processing S can
be bounded by O(n2°8™) = O(n?). If the processing of S ends when some bottom scc G[X] C G[9]
is found, let ¢* be the value of ¢ when G[X] is detected and inserted into (). By Lemma 3.2 the set X
contains at least 2" ~! vertices. We charge O(n) to each vertex in X. Since |X| < |S|/2, a vertex v is
only charged when the size of the set in () containing v is halved, which can happen at most [log n| times.
Thus the total running time for processing all sets .S, except for the work in Remove and Construct,
can be bounded by O(n?logn). The Remove and Construct are called once per found bottom SCC
G[X] with X # S and take by Lemma 3.1 time O(| X| + bits(X)) time. Hence, by charging O(1) to
the vertices in X and, respectively, to bits(X), the total running time for this part can be bounded by
O((n + b) logn) as each vertex and bit will only be charged O(logn) times. Combining all parts yields
the claimed running time bound of O((n? + b)logn). i

To prove the correctness of Algorithm GOODCOMPONENT we first show that all candidates for good
components are in () before each iteration of the algorithm.

Lemma 3.4. Before each iteration of the outer while-loop every good component of the input graph is
contained in one of the subgraphs G|S| for which the data structure D(S) is maintained in the list Q.

Proof. We will show that the algorithm never removes edges or vertices that belong to a good component,
which together with a correct initialization of the list () will imply the lemma. At the beginning of the
algorithm one data structure for the whole strongly connected input graph is added to ). Thus every
good component is contained in this data structure in () after the initialization. At the beginning of each
iteration of the outer while-loop the data structure of one of the subgraphs G[S] is pulled from the list ).
In Line 4 we remove vertices from the subgraph that are in some set L; but not strongly connected to
any vertex in Uj, i.e., bad vertices. In Line 5 we remove trivial SCCs. Observe that a good component
is non-trivial and does not contain any bad vertices. Thus the removal of bad vertices and trivial SCCs
does not remove any vertices of a good component, i.e., after the removal of these vertices the updated
subgraph G/[S] still contains the good components it contained before. If no good component is identified
in this iteration, i.e., the algorithm does not terminate, we find a bottom or top SCC G[X], which is by
definition a maximal SCC. Since a good component has to be strongly connected, every good component
in G[S] must either be a subgraph of the newly identified SCC G[X] or does not contain any vertex in X.
Thus the removed edges between G[X | and the remaining subgraph cannot belong to a good component.
Finally, we add the data structures for G[X] as well as for G[S \ X] to Q. Thus no vertex or edge of
a good component was removed and every good component continues to be completely contained in a
subgraph in ). i

As all candidates for good components are maintained in the list (), it remains to show that the
algorithm makes progress in each iteration and correctly outputs a good component if and only if one
exists.

Lemma 3.5 (Correctness). Algorithm GOODCOMPONENT outputs a good component if one exists,
otherwise the algorithm reports that no such component exists.
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Proof. First we show that whenever Algorithm GOODCOMPONENT outputs a subgraph G[S], then G[S]
is a good component. Line 5 ensures only non-trivial SCCs are considered. After the removal of bad
vertices from S in Line 4 we know that for all 1 < j < k and all vertices in S N L; there exists a vertex in
S N Uj. Thus if G[S] is strongly connected, then G[S] is a good scc. The algorithm computes a maximal
scc in G[S]. If G[S] is equal to the found maximal SCC, i.e., G[S] remains strongly connected, then G[S]
is a good component and is output in Line 12. This is the only case when Algorithm GOODCOMPONENT
outputs a subgraph G[S]; thus if the algorithm outputs a component, it is a good component.

Algorithm GOODCOMPONENT terminates if a good component is identified or () is empty. Lemma 3.4
shows that before every iteration of the outer while-loop every good component is contained in one of
the subgraphs G[S] in Q. That is, if a good component exists in G, the algorithm will not terminate until
a good component is identified. Whenever the algorithm does not terminate in an iteration of the outer
while-loop, either (a) a trivial SCC is removed from @ (Line 5) or (b) one of the subgraphs from @ is
split into two smaller subgraphs (Line 15). Each case can happen at most n times. This implies that
the algorithm terminates after a finite number of steps if no good component exists. Next we show that
if there exists a good component in GG, then the algorithm will output a good component. Let Y be a
maximal good component in G and let Sy be the vertex set maintained in () that currently contains the
vertices in Y. By the arguments above after a finite number of steps either (1) another good component
is detected or (2) D(Sy) is pulled from (). By Lemma 3.4 Y is never split by the algorithm thus after
Case (2) happened at most n times, one of the following two cases occurs: either (2a) D(Sy ) is pulled
from @ with G[Sy] D Y and after the removal of bad vertices from Sy, G[Sy] without the bad vertices
is equal to Y or (2b) G[Sy| = Y is pulled from Q. In both cases the good component Y is output and the
algorithm terminates: Since Y is non-trivial, the condition in Line 5 is satisfied. The algorithm searches
for a top or bottom SCC in Y. Since Y is strongly connected, the only top or bottom SCCin Y is Y itself.
Hence the algorithm outputs Y in Line 12. i

Recall Algorithm STREETT that calls Algorithm GOODCOMPONENT for each maximal SCC in the
input graph and then computes reachability to the union of the identified good components. Lemmata 3.3
and 3.5 yield the following result.

Theorem 3.6. Algorithm STREETT correctly computes the winning set in graphs with k-pair Streett
objectives in O((n? + b) log n) time. Given a vertex x in the winning set, a certificate for x can be output
in time O(m + nmin(n, k)).
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