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Abstract— The core process a modeling method engineer 

needs to accomplish starts with the acquisition of domain 

knowledge and requirements, and ends with the deployment of a 

usable modeling tool. In between, a key intermediate deliverable 

of this process is the modeling method specification which, 

ideally, should be platform independent. On one hand, it takes 

input from a structured understanding of the application domain 

and scenarios; on the other hand, it provides sufficiently 

structured input to support the implementation of tool support 

for modeling activities. It is quite common that such modeling 

methods are domain-specific, in the sense that they provide 

concepts from the domain as "first-class modeling citizens". 

However, for the purposes of this paper, we raise the level of 

abstraction for "domain specificity" and consider "modeling 

method engineering" as the application domain. Consequently, 

we raise several research questions - whether a domain-specific 

language can support this domain, and what would be its 

requirements, properties, constructs and grammar. We propose 

an initial draft of such a language – one that abstracts away from 

meta-modeling platforms by establishing a meta2 layer of 

abstraction where a modeling method can be defined in a 

declarative manner, then the final modeling tool is generated by 

automated compilation of the method definition for the meta-

modeling environment of choice. 

Keywords— domain-specific language; modeling method; 

meta-modeling; modeling tool 

I.  INTRODUCTION 

The goal of this paper is to introduce a domain-specific 
language (DSL) that supports the realization of modeling 
methods by establishing a meta-meta layer that abstracts away 
from common meta-modeling environments, allowing the 
method engineer to focus on the conceptual building blocks of 
a modeling method rather than on a meta-modeling platform's 
technical specificity. A demonstrative editor and compiler have 
been implemented to evaluate feasibility of the proposal. 

The work is grounded in the notion of a modeling method, 
as introduced by [1] and further refined by [2]. Therefore, for 
the purposes of this paper, a modeling method is defined in 
terms of several building blocks – modeling language, 
procedure and functionality (mechanisms and algorithms for 
model processing) - which provide "first-class citizen" 

concepts for the hereby proposed domain-specific language 
(the relation between these building blocks and the DSL 
constructs will be discussed in Section III). In other words, 
modeling method engineering becomes the application domain 
addressed by the "domain specificity" of the introduced 
language. This is the sense in which we will use "domain-
specific" and the DSL acronym throughout the entire paper 
(not to be confused with the domain specificity of modeling 
methods that can be created with the proposed language). 

Relative to OMG's MOF framework [3], the language 
provides a meta

2
-model that supports the compilation of a 

modeling method definition (in terms of the proposed DSL) for 
deployment on a meta-modeling environment of choice (thus 
producing a modeling prototype for end-users). 

The work is complemented by the contextual goal of 
advocating the notion of agile modeling method engineering 
(within the methodological context of the Open Model 
Initiative Laboratory [4]), inspired by principles of agile 
software engineering. The main assumption is that a modeling 
method is not necessarily fixed (or driven by the versioning of 
standard languages like UML [5] or BPMN [6]). Instead, 
modeling methods may evolve iteratively based on changing 
modeling requirements and feedback loops. The DSL 
introduced here is aimed to support a quick text-based 
declarative editing of a modeling method definition, which can 
be compiled for fast prototyping on the meta-modeling 
environment of choice. An agile modeling method 
distinguishes itself from established standards (e.g. UML, 
BPMN) by several characteristics: 

1. Deeper specialization driven by the end-user's 
application domain to the detriment of reusability across 
domains. There is always a trade-off in the design of modeling 
languages between reusability and requirements coverage. 
Agility is a key requirement for methods aiming to serve a 
narrow domain, or even the internal needs of an enterprise; 

2. Richer semantics captured both on notational level (as 
visual cues in the language symbols) and on semantic level (as 
editable properties). Semantics are, again, driven by 
requirements which may come directly from modeling 
stakeholders, or indirectly from required functionality (e.g. 
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model queries, run-time applications that must consume 
models etc.). Typically they are extension or hybridization 
requirements (e.g. the extension of i* into DEST [7]); 

3. Granular evolution driven by changing requirements. 
Standards are more rigid in this respect, with a versioning 
process determined by standardization bodies and broad  

 

Fig. 1. The sequential structure of one iteration during agile modeling method engineering 

requirements consolidated from a global community. Just 
as in agile software engineering, requirements may change due 
to multiple factors – improved common understanding of the 
domain, additional capabilities requested by end-users, 
additional semantics required as input by various model-driven 
runtime components, or even a collateral effect of some 
organizational evolution in the sense discussed by [8]. 

Establishing a full methodology of agile method 
engineering is not in the scope of this paper – however its 
inherent iterative nature provides motivational rationale for 
positioning the work. The overall process for realizing one 
iteration of an evolving modeling method (including its 
modeling language) encompasses several phases (Fig. 1), 
according to the framework established by the Open Model 
Initiative Laboratory [4]:– (1) create, (2) design, (3) formalize, 
(4) develop, and (5) deploy/validate. Inter-phase validation 
may occur within the same iteration, to ensure consistency 
between intermediate deliverables. The process reiterates as 
knowledge emerges gradually from the domain, together with 
evolving modeling requirements. 

The creation phase is a mix of knowledge acquisition and 
requirements elicitation processes, with the aim of defining the 
modeling language requirements (concepts and relations 
needed in a modeling language) and the modeling functionality 
requirements (e.g. competence questions that models should be 
able to answer; decisions to be supported by model analysis; 
other functionality pertaining to model visualization, checking 
or transformation). This phase may also benefit from analyzing 
requirements pertaining to the run-time systems that will 
consume the models, if interoperability between design-time 
and run-time is needed. Different types of knowledge are 
sought for – e.g. procedural (processes), motivational (goals), 
relational (dependencies, constraints) as well as the semantics 
of first-class entities to be included. Hence a mix of techniques 
ranging from documentation analysis to direct stakeholder 
interviewing must ensure a common understanding between 
the methodologist and those who will apply the method. 

The design phase is the core meta-modeling effort for 
specifying a structured metamodel, the language grammar, the 

recommended visualization and functionality. Existing 
languages commonly used for domain modeling (e.g. class 
diagrams, ER diagrams) may be used for this purpose, although 
dedicated languages can be tailored to include metamodel 
management functionality (e.g. tracking metamodel changes). 
The DSL introduced by this paper takes direct input from this 
phase, as the metamodel design specification becomes 
executable once translated in the proposed DLS's constructs. 

The formalization phase describes the outcome of previous 
phases non-ambiguously, either with the purpose of sharing 
them within a scientific community (in terms of algebra, first 
order logic, Petri Nets etc.) or with the purpose of preparing the 
method implementation (in terms of the hereby introduced 
DSL). A formalization framework has been established in [9] 
to describe metamodels and models for the ADOxx meta-
modeling platform [10]. 

The development phase involves a concrete meta-modeling 
platform in order to produce a modeling prototype, as well as a 
compiler that translates the hereby introduced DSL abstraction 
to the technology-specific constructs of the targeted platform. 

The deployment/validation phase deals with packaging and 
installing the modeling prototype for user acceptance tests. The 
deployment may consider different options such as standalone 
modeling tools or cloud-enabled modeling-as-a-service. The 
feedback and lessons learned feed into the next iteration, 
together with any possible additional requirements which 
normally emerge from first-hand experience of potential users 
and a gradual understanding of how a modeling method can 
support them. 

The DSL proposed in this paper aims to support the design-
to-development phases and enables a quick redeployment of 
multiple iterations for an evolving modeling method and across 
multiple meta-modeling platforms. For demonstration purposes 
a proof-of-concept editor and a compiler for the ADOxx meta-
modeling platform are showcased. 

The paper will present the DSL in terms of three facets of 
the research challenge – (a) the motivating requirements, (b) 
formal grammar aspects and (c) details on the proof-of-concept 



   

implementation. The remainder of the paper is organized as 
follows: Section II will briefly cover the state of the art in 
language design, which was the baseline for developing the 
DSL. Section III provides an overview of various classes of 
requirements that have been considered in the proposed DSL's 
development, based on an in-depth analysis of various meta-
modeling platforms and a repository of modeling methods 
accumulated through the Open Model Initiative. Section IV 
provides excerpts from the proposed language's EBNF 
grammar specification, while Section V describes a minimal 
running example serving as "validation by instantiation" of the 
designed artefact. The paper concludes with a SWOT 
evaluation and formulates a takeaway message. 

II. RELATED WORK 

The state of the art in language design, especially in the 
area of domain-specific languages and modeling languages has 
been extended in the recent years, with concepts showing 
significant growth in their maturity both in academic research 
and in industrial use [11]. Some of the notions involved in the 
design of domain-specific languages provide means of defining 
custom programming/modeling artifacts or code generation 
facilities. The most relevant of these are further discussed 
below: 

Language Oriented Programming [12] is a novel way of 
organizing the development of a large software system. The 
approach starts by developing a formally specified, domain-
oriented, high-level language which is well-suited to develop 
the system under consideration. After the system has been 
implemented in the before developed language, it is translated 
using a compiler or an interpreter to existing technology. 
Among claimed advantages for domain analysis, rapid 
prototyping, maintenance, portability, and reuse of 
development work, LOP provides higher development 
productivity and faster time to market. 

Language Driven Development [13] is a software 
development method which involves the use of multiple DSLs 
at various points in the development life-cycle. It is based on 
the ability to rapidly design new languages and tools in a 
unified and interoperable manner. By allowing engineers and 
domain expert to express their designs in the language that they 
are most comfortable with and that will give them most 
expressive power, productivity can be increased. The LDD 
vision relies heavily on the language integration. Languages 
should be weaved together to form a unified view of the 
software system. 

Model Driven Architecture [14] is a term commonly used 
for the generation of program code from (semi-)formal models 
(e.g., UML, UML profiles, various DSLs). System 
functionality is defined using a platform-independent model 
(PIM) which is described in an appropriate DSL. The PIM is 
then translated to one or more platform-specific models (PSM) 
that computers can run. The transformation process is generally 
automated by dedicated tools [15]. 

Software Factories [16] refer to software assets used to 
create specific types of software components. They help 
structure the development process and are used for developing 
languages that support the construction of software 

components. A software factory may include processes, 
templates, integrated development environment (IDE) 
configurations and views. The type of software a factory may 
produce is defined when the factory is created. 

Superlanguages [17] provide control over all aspects of 
representation and execution. They can be extended with new 
features, which can be seamlessly weaved into the existing 
features. Execution mechanisms can be changed to reflect the 
needs of each new application. Superlanguages also provide a 
powerful control over the language engine via meta-features – 
a way of tailoring a language in a modular way without 
polluting programs with unnecessary code. 

"Language Workbench" is a term proposed by Martin 
Fowler to designate the IDE support for development of 
domain-specific languages [18][19]. There are many examples 
of such IDEs, some of them specifically designed for 
development of textual languages (e.g., Xtext [20], Irony [21]), 
and some for development of graphical languages (e.g., VS 
Visualization & Modeling Tools [22], MetaEdit+ [23]). 

"Meta-modeling Platform" [1] is a term used to describe an 
environment specifically targeting the development of 
graphical modeling languages and modeling methods using a 
meta-modeling approach – a layered approach (see OMG’s 
MOF [3]) where one describes the modeling language structure 
by instantiating an already existing meta

2
model provided by 

the platform. Because of this approach, a platform can provide 
support to the modeling language being developed through 
already existing features and functionality (e.g., algorithms and 
mechanism for model analysis and simulation) [24]. 

Closely related works are Graphiti (Eclipse-based) [25] and 
XModeler/XMF [26], in the sense that they also provide a 
Language Oriented Programming approach to metamodeling. 
However, they do not aim to provide a new layer of abstraction 
relative to the variety of existing platforms (via platform-
specific compilers); instead they are themselves standalone 
meta-modeling platforms with some significant productivity 
improvements. 

The work at hand relates to the notion of Meta-modeling 
Platform in the sense that it abstracts away from its instances 
while providing compilers to transfer a modeling method 
definition to a specific meta-modeling technology. The concept 
makes use of lessons learned from Language Oriented 
Programming and Language Driven Development, by 
transferring some of their principles to the discipline of meta-
modeling. Its implementation can be considered itself a 
Language Workbench for the development of modeling 
languages, therefore the paper makes to the domain of 
modeling method engineering a contribution inspired by meta-
programming experiences. 

III. CLASSES OF REQUIREMENTS FOR A DSL FOR MODELING 

METHOD DEFINITIONS 

The primary class of requirements comes from the 
language's application domain. As mentioned previously, the 
application domain for the proposed DSL is modeling method 
engineering. The secondary requirements come from the meta-
modeling platforms that act as candidates for deployment 



   

environments, therefore providing dedicated functionality that 
can be rather generic (e.g. the way of defining a metamodel) or 
more specific (e.g. the way of defining mechanisms for model 
analysis and simulation). The tertiary requirements come from 
generally accepted principles and best practices governing the 
overall design process of programming and domain-specific 
languages, including the definition of language statements, 
control structures, expressions etc. The quaternary 
requirements come from the outlook on the emerging and 
future technologies and their possible influence on modeling 
and meta-modeling techniques. To accommodate emerging 
approaches (e.g., models, methods, and modeling tools as a 
service) the DSL under consideration should support its own 
evolution through language extensibility (i.e. introduction of 
new domain concepts) and metamorphosis (i.e. complete 
syntax change). These classes of requirements will be further 
analyzed in this section. 

A. The Application Domain: Modeling Method Engineering 

The design of a DSL for modeling methods entails a very 
specific set of domain-specific features. To understand the 
requirements of such a language one needs to get familiar with 
various modeling method characteristics and isolate the most 
important ones. 

The modeling method building blocks are adapted here 
from the work of Karagiannis and Kühn (see [1][24]) with a 
slight deviation due to the formalization possibilities (Fig. 2): 
(1) a modeling language, (2) modeling algorithms, and (3) 
mechanisms and modeling procedures. 

 

Fig. 2. The building blocks of a modeling method 

The primary building block is the graphical modeling 
language, further structured in (abstract) syntax, semantics and 
notation. The syntax provides the language grammar, typically 
through production or well-formedness rules. The semantics 
give meaning to the syntax of a language, defining the 
terminological taxonomy of symbols, the property set for each 
class of syntactical constructs, including their relations and 
semantic constraints that must be applied to them. The notation 

defines the graphical symbols of a modeling language together 
with the morphological variations dictated by semantics (visual 
variations determined dynamically by the values of some key 
properties). a graphical representation of a modeling language. 
Not all constructs introduced in the syntax of a modeling 
language need to have a graphical representation – these 
constructs are typically considered abstract (i.e. not to be 
instantiated in models) and are present on the higher layers of 
the terminological taxonomy, typically for reusability of 
semantics (e.g. property inheritance). 

The secondary building block comprises modeling 
algorithms. These define model-processing functionality built 
on top of the language structure (e.g. model analysis, 
simulation, evaluation). 

The tertiary building block comprises aspects that are not 
covered by the hereby proposed DSL. On one hand, 
mechanisms represent functionality that is native to the meta-
modeling platform used for implementation and deployment, 
therefore technology-specific (e.g. model publishing services). 
On the other hand, the modeling procedure is typically a 
methodological component, expressed through informal 
guidelines and steps that need to be taken by modelers to reach 
their goal. These can be complemented by modeling algorithms 
providing automated validation and checks for particular steps 
(e.g. to block the creation of swimlanes in a business process 
model unless an organizational model was previously defined 
to provide semantics to those swimlanes). 

The DLS for modeling method definition draws its main 
class of requirements from these building blocks. 

B. Analyzing the Concepts from the Application Domain 

To understand what kind of first-class constructs are 
required in a modeling method definition DSL, various existing 
modeling languages have been scrutinized. For example, 
BPMN has four distinct groups of constructs: flow objects 
(event, activity, and gateway), connecting objects (sequence 
flow, message flow, and association), swim lanes (pool and 
lane), and artifacts (data object, group, annotation). Petri Nets 
[27] consist of places, transitions, and arcs. UML class diagram 
structures a model using classes, their attributes, operations and 
relationships among the classes. Finite state machine diagrams 
[28] used to design both computer programs and sequential 
logic circuits employ constructs like state and transition. 

A closer look reveals that all of these modeling languages 
rely on the common notions of knowledge representation: a 
concept of a class (e.g. place, class, event, activity, state), a 
concept of relationship having classes as domain and range 
(e.g., sequence flow, association, arcs, transitions), and a 
concept of attribute that specifies class semantics (e.g. name, 
cost, color, height, position, salary). This has been addressed in 
the past many times as meta-elements by the OMG’s MOF but 
can be traced back to Parmenide's way of describing reality in 
terms of categories of being and provides the base for 
knowledge representation approaches. Ultimately the 
metamodel of a modeling language is an ontological view on 
the domain addressed by that language. There exist many 
meta

2
models providing similar primitive meta-elements (Ecore, 

GME, GOPPRR and ADOxx – see the overview of [29]) with 

 

 

 
Figure 1. Modeling Method Components. 



   

slightly different naming conventions (property instead of 
attribute, atom instead of class, etc.) or with higher level 
constructs (roles on properties can be considered relations of 
higher arity) – however they can be reduced to these basic 
notions [29] which, therefore, must also be captured in a DSL 
for modeling method definition. 

The notions of class, relationship, attribute as well as 
different ways of relating them (domain, range, specialization) 
are the main tools of abstraction. However, besides 
abstraction, a modeling method also requires decomposition, 
which is necessary to manage the complexity of models. 
Decomposition can be present (a) as a language construct in 
the models themselves (as a grouping container e.g. a swimlane 
in business processes, or as a link between an element and its 
parts, e.g. a business process and its subprocesses), but can also 
be (b) established at the method definition level, by partitioning 
the language syntax into model types (groups of constructs that 
can address particular problems). Having relationships defined 
across model types will ensure that they can be structurally and 
semantically connected. 

Using the four notions – class, relationship, attribute, and 
model type – a typical modeling language syntax (how 
modeling objects can be connected by modeling relations) and 
semantics (property sets of classes, model types and relations) 
can be defined. Additional constructs in the DSL are needed to 
the extent of desired expressivity for constraints and rules. For 
this, the extensibility of the DSL must be considered as a key 
requirement, not unlike the way ontology languages (e.g. OWL 
[30]) evolve by incorporating new built-in concepts (e.g. 
transitive property types, qualified cardinality restrictions). 

For the current proof-of-concept implementation of the 
proposed DSL only the expressivity that can be directly 
mapped on the ADOxx meta-modeling functionality has been 
included (e.g. cardinality constraints). 

Another requirement comes from the necessity to define the 
notation and its morphology (dynamic notation, mapping 
multiple notations to the same class, with variations dictated by 
its instance-level attributes). 

With respect to modeling algorithms, analysis and 
simulation are the most common functionality, but there can be 
many specific scenarios for various modeling methods (see 
[31] for more information). The basic building blocks for 
describing an algorithm can be borrowed from algorithm 
design and implementation in software engineering [32][33]. 
Those are input, operations, and output. A major part of 
operations are control structures: conditionals (if, else …), 
iterations (also known as loops: while, for …), and selective 
structures (switch …), partitioning code into functions. 

C. Analyzing Existing Artefacts from the Domain 

For further requirements analysis towards the design of a 
DSL for modeling methods, with a purpose of extracting the 
key modeling language constructs, nineteen implementations 
of modeling methods (developed within OMiLAB [4] and 
hosted on the Open Model Initiative repository of modeling 
method implementations [31]) have been analyzed: BEN, BIM, 
CIDOC (based on [34]), eduWEAVER, EKD, HORUS, 

IMP2.0, i* (based on [35]), OMi*T, InSeMeMo, MeLCa, 
OKM, Secure Tropos (based on [36]), UML, PetriNets, 
MoSeS4eGov, PROMOTE, SeMFIS (based on [37]), and 
VLML (based on [38]). All methods are implemented on the 
ADOxx metamodeling platform, together with a dozen of 
custom made services [39] that enhance the modeling tool 
development process on various levels – from the creation of 
graphical syntax to the generation of documentation. 

After a quantitative analysis of nineteen modeling methods 
(Fig. 3) one can notice the diversity in the number of basic 
artifacts. This hints to the complexity of abstractions used to 
describe a specific modeling domain, with the higher numbers 
representing modeling methods with deeper domain specificity. 
While some of the methods are quite fixed due to their standard 
nature (e.g. UML, i*), others reclaim the requirement for agile 
evolution. 

During the agile evolution of such a method, intuitively the 
number of artifacts grows as more specialization is added to the 
language (i.e. subtyping the artefacts). However, it can also 
happen that the number reduces, as it can be seen in the case of 
CIDOC, where the newer implementation has significantly less 
classes and relations. The complexity of CIDOC was 
transferred from classes and relations to attributes, thus 
improving usability (less constructs on the modeling toolbar, 
more configuration in the properties of those constructs) 

BEN
BIM

CIDOC (OLD)
CIDOC (NEW)
EDUWEAVER

EKD
HORUS
IMP20

INSEMEMO
ISTAR

OMISTART
MELCA

MOSES4EGOV
OKM

PETRINETS
PROMOTE

SECURETROPOS
SEMFIS

VLML
UML

0 20 40 60 80 100 120 140 160

Relationships Classes  

Fig. 3. Number of relations and classes in OMI implementations 

During the initial requirements analysis a relatively long list 
of concepts which repeatedly appear in many of the analyzed 
modeling methods was compiled – the recurring top 10 classes 
in descending order are: container, actor, label, resource, 
decision, activity, process, start, end, and goal; the recurring 
top 10 relationships in descending order are: associates, 
depends, flows, specializes, has, part of, contributes, 
decomposes, relates, and uses. The mentioned concepts and 
their percentage of occurrence in the analyzed method 
definitions are indicated in Table I. 

A key question that can be raised here is if such recurring 
concepts should be part of a domain-specific language for 
modeling method definition. Technically, they are on a 
different level of abstraction than the previously discussed 
notion (class, attribute), so they belong rather to the application 



   

output of the DSL rather than being first-class citizens of the 
DSL. 

TABLE I.  TOP 10 MODELING METHOD CONCEPTS AND RELATIONSHIPS 

WITHIN OMI 

Classes Relationships 

Name % Name % 

Container 68 Associates 42 

Actor 53 Depends 37 

Label 53 Flows 37 

Resource 53 Specializes 37 

Decision 47 Has 32 

Activity 37 Part of 32 

Process 37 Contributes 21 

Start 37 Decomposes 21 

End 37 Relates 21 

Goal 32 Uses 16 

 

However, programming languages also show this feature of 
extending the language with predefined instances in the form 
of libraries, macros etc. with the goal of providing ready-to-use 
application-level constructs, thus increasing productivity. 
Standard libraries are typically deployed together with basic 
programming language compilers. This can be a valuable 
requirement for the hereby proposed DSL, in order to provide 
ready-to-use modeling language fragments in the form of a 
"standard library", which can take the form of a predefined 
collection of classes, relationships, even model types. 

D. Analyzing Meta-modeling Platform Functionality 

The output of a DSL for modeling method definitions must 
be ultimately executed on a meta-modeling environment that 
can produce a usable modeling tool, therefore existing 
platforms have been analyzed to identify their functional and 
non-functional requirements. As a result several key meta-
modeling platform components were isolated. The key 
conceptual components are depicted in Fig. 4 and can be 
mapped to functional requirements. 

 

Fig. 4. Conceptual view on the components of a meta-modeling platform 

1. The meta
2
model is the key enabler from which all 

metamodels are instantiated, providing the core 
concepts and functionality. A key requirement for a 

meta-modeling platform is to have a meta
2
model that is 

generic enough to be able to instantiate concepts from 
a wide range of domains, but at the same time to be 
sufficiently rich to enable a detailed modeling 
language specification; 

2. A sophisticated control mechanism enabling structured 
abstract syntax and semantics definition and 
manipulation for the concepts instantiated from the 
meta

2
model is the second functional requirement; 

3. The development of graphical modeling languages is 
more complex than the development of textual 
languages. Textual languages (e.g., textual 
programming languages, textual specification 
languages) can have their syntax specified in a textual 
form (e.g., EBNF), where, most of the times, abstract 
and concrete syntax are joined together and defined at 
the same place. In case of graphical modeling 
languages, it is common to have multiple notations 
connected with one modeling element, meaning that 
abstract syntax can have multiple concrete syntax 
representations. The third functional requirement is to 
provide a mapping mechanism between the abstract 
syntax and the graphical representation; 

4. Graphical modeling elements are not only static figures 
on the modeling canvas. They also provide a complex 
interface between the user and the model enabling 
predefined functionality (e.g., triggers for functionality, 
hyperlinks towards other models). Being able to design 
appropriate graphical representations including an 
embedded user interface embedded into modeling 
elements is a fourth requirement; 

5. Modeling procedures enforce the order in which 
modeling elements needs to be used. In most cases this 
is not necessary, because one wants to give more 
freedom to the modeler. However, there exist modeling 
methods which strictly define the order one can use the 
modeling elements – e.g. if one wants to model 
information security, one should describe physical 
security (e.g., server locked in protected environment) 
before virtual security (e.g., firewall, access control, 
etc.). The enforcement of modeling procedures is 
another meta-modeling platform functional 
requirement; 

6. Algorithms are the means which are used to define and 
implement additional functionality of a modeling 
method. To be able to use and reuse already present 
platform functionality for defining various algorithms 
and mechanism, one needs an interface to this 
functionality, typically realized as a well-documented 
and interoperable set of APIs; 

7. A meta-modeling platform needs a dedicated 
repository for storing a modeling method definition, 
and for storing models defined by a modeling method. 
Repositories provide the possibility to reuse already 
defined modeling elements, to track changes for both 
development of modeling methods and models, to 



   

propagate changes done on the modeling method layer 
to the model layer. 

Tot this list we add several non-functional requirements 
that typically characterize meta-modeling platforms: 

Extensibility [40] takes under consideration future growth. 
It is a measure of the ability to extend a system and the level of 
effort required to implement the extension. Extensions can 
mean addition of new functionality or modification of existing 
functionality. As complex software system, meta-modeling 
platforms should have a public application programming 
interface (API) that allows extension and modification of the 
platform’s behavior by developers who do not have access to 
the original source code. 

Interoperability [41] is the ability of systems to work 
together by exchanging information and using the information 
that has been exchanged. One of the means allowing meta-
modeling platforms to communicate is based on open 
standards. Products implementing the common protocols 
defined in the standard are thus interoperable by design. By 
providing users with a freedom to start their implementation of 
a modeling method on one platform, continue it on the second, 
and finish it on the third is a tangible benefit. 

Scalability [42] allows handling a growing amount of work 
in a capable manner. This issue can be illustrated on an 
example where one provides an implemented modeling method 
as a service that needs to scale up with the number of users. 

E. Analyzing Best Practices and Guidelines for the Design of 

DSLs 

Designers need to avoid the common undesirable features 
that make the learning and using of the language harder than it 
should be. A substantial part of this difficulty arises from the 
structure, syntax and semantics of a language. Desirable and 
undesirable features also raise requirements for the very nature 
of a DSL. 

Programming language designers are programming experts 
typically far removed both temporally and cognitively from the 
difficulties experienced by novice programmers. This can 
result in languages that are either too restrictive or too powerful 
(or sometimes, paradoxically, both) [43]. To avoid falling into 
a trap of designing a language only highly trained experts are 
able to use efficiently, we have collected a couple of key 
desirable language features, as well as a couple of undesireable 
ones, which should be avoided if possible. According to [43] 
the most notable desirable features are: 

 User expectation conformity. Languages should be 
designed so that reasonable assumptions based on prior 
non-programing-based knowledge (e.g., domain expert 
knowledge) remain reasonable assumptions in the 
programming domain, meaning that the constructs of a 
language should not violate user expectations; 

 Readable and consistent syntax. By choosing the 
constructs with which the recipient is already familiar 
(e.g. ‘if’ rather than ‘cond’, ‘head/tail’ rather than 
‘car/cdr’) syntactic noise can be minimized; on one 
hand, reducing syntactic noise might involve 

minimizing the overall syntax; alternatively, it may be 
better to increase the complexity of the syntax in order 
to reduce homonyms which blur the signal; 

 Small and orthogonal set of features. A small non-
overlapping set of language features with distinct and 
mnemonic syntactic representations and with semantics 
which mirror as closely as possible the real-world 
concepts; features that are not necessary should not be 
included in the language; 

 Error diagnosis. Without good error detection and 
debugging support users can spent hours trying to 
decipher why isn’t the program doing what it is 
intended; on the other hand error messages should be 
meaningful and without unnecessary technical jargon. 

It also helps if the designer is knowledgeable in the domain 
for which the language is being developed, thus having better 
awareness of the real-world concepts that need to be included 
into the language and the ways these concepts are expressed. 

Some of the most undesirable features from the language 
user’s perspective, according to the same source are: 

 Paradigmatic purity. Strict adherence to a single 
functional, logical or object oriented paradigm can 
make for a certain conceptual simplicity and elegance, 
but in practice it can also lead to extremely obscure and 
unreadable code; in some cases relatively simple 
programs must be substantially restructured to achieve 
even basic effects; 

 Language bloat. Extreme complexity and a large palette 
of features might seem as a good idea at first, but they 
come together with a steeper learning curve, higher 
level of confusion, difficulties of adequate error 
detection, very complex syntax and semantics; 

 Syntactic synonyms. Two or more syntaxes are available 
to specify a single construct; common example is 
dynamic array access in C, where the second element of 
an array may be accessed by any of the following 
syntaxes, some of which are legal only in certain 
contexts: array[1], *(array+1), 1[array], *++array; 

 Syntactic homonyms. Constructs which are syntactically 
the same, but have two or more different semantics 
depending on the context are perhaps a more serious 
flaw in a language then syntactic synonyms; an extreme 
example may be seen in Turing, in which the construct 
A(B) has five distinct meanings, but not as extreme as 
LISP and its variants, which can be viewed as one 
massive homonym; 

 Hardware dependency. There seems to be no 
convincing reason why the user, already struggling to 
master syntax and semantics of various constructs, 
should also be forced to deal with details of 
representational precision, varying machine word sizes, 
or awkward memory models; the data types are 
particularly problematic in C as they are generally not 
portable, for example, the standard int type varies from 
16-bit to 32-bit representations depending on the 



   

machine and the implementation; this can lead to 
strange and unexpected errors when overflow occurs; 

 Backward compatibility. This property is surely useful 
from the experienced programmer’s point of view, as it 
promotes reuse of both code and programming skills, 
but one needs to be careful, because it constraints the 
design of a new language; Stroustrup [44] 
acknowledged this problem: “Over the years, C++’s 
greatest strength and its greatest weakness has been its 
C compatibility.” 

In the long run some of these features are very hard to 
avoid, especially if there was no plan for language evolution in 
the design phase. Taking a systematic approach and 
considering future needs of language users plays a significant 
role in the further development of a language. 

F. The Evolution Requirement 

Languages evolve and this is also relevant for DSLs [45]. 
Evolution, in this context, does not only mean that one 
language has changed over a period of time. It also means that 
new languages have been created using some of the concepts 
from older, already existing, languages. Good examples are 
C++ and C# evolving from C, JavaScript starting from 
concepts used in Java, etc. 

Nowadays, a considerable amount of new languages are 
designed by a single person or a small team, making DSLs a 
popular paradigm with other reasons being: affordable 
investments, standardization is not a necessity as it used to be 
in the past, out-of-the-box tools for development of tailored 
languages, the Internet as a medium for distribution and user 
feedback and requests. Evolution can be enabled if the DSL 
has been designed to follow the progress of technology it 
depends upon, and predict the future changes in the domain it 
describes. 

Concerning the hereby proposed DSL, one should consider 
the following: (1) the future development of meta-modeling 
platforms, and (2) the possible changes in the application 
domain, which can come from various sources: new findings in 
the academia or industry, insights during the use of the DSL. 
To be able to cope with the upcoming issues, the DSL under 
consideration should have at least these important features: (1) 
extensible abstract syntax, concrete syntax and semantics, and 
(2) extensible execution engine.  

Extensible abstract syntax allows modification, removal or 
addition of concepts. The same is true for extensible concrete 
syntax, and semantics. It is also important to have a mapping 
mechanism between abstract and concrete syntax, and between 
abstract syntax and semantics, which should support extensions 
as well. 

The execution engine (compiler) is responsible for 
transforming code written in the DSL to the format that can be 
run on a meta-modeling platform. Therefore, it is essential that 
changes done to the target platforms can be implemented into 
the engine. 

IV. THE GRAMMAR OF THE DOMAIN-SPECIFIC MODELING 

METHOD DEFINITION LANGUAGE 

A first draft of the introduced DSL's context-free grammar 
in formal EBNF form was made available at [46], with the 
current section providing only an overview of it. 

The language is designed around the concepts of 
inheritance (reuse of characteristics from parent classes, 
typically of abstract nature, to child classes, to be instantiated 
in models) and referencing (reusing previously defined objects 
by passing their identifiers to other constructs). 

Table 2 provides an excerpt of the language grammar, 
highlighting the main statements of the language. A design 
decision was made to avoid the tagging overhead of an XML-
based syntax and to opt for a simple declarative style that can 
accommodate easily existing code editing approaches (XText 
[20]) and algorithm description approaches (XBase [47]). 

TABLE II.  EXCERPT FROM THE EBNF GRAMMAR OF A DSL FOR 

MODELING METHOD DEFINITION 

Statement  Statement Specification in 
EBNF 

Meaning 

Root root ::= methodname 
embedcode* method 

The root of the method 
definition document 

Method 
Name 

methodname ::= 'method' name 

Embed embedcode ::= 'embed' name '<' 
name-embedplatformtype (':' 

name-embedcodetype)? '>' 'start' 
embeddedcodegoeshere 'end' 

In the case that native 
code for the target 
metamodeling platform 
will be embedded, the 
platform must be 
declared.  

Method method ::= enumeration* 
symbolstyle* symbolclass* 
symbolrelation* metamodel 

algorithm* event* 

Container for the method 
building blocks and 
auxiliary elements 

Enumeration enumeration ::= 'enum' name '{' 
enumvalues+ '}' 

An auxiliary element of a 
method definition, 
defining a list of values 
(typically used to restrict 
attributes of modeling 
objects) 

Metamodel metamodel ::= class+ relation* 
attribute* modeltype+ 

The main building block 
of a method, describing 
structurally the language 
metamodel 

Class class ::= 'class' name ('extends' 
name-class)? ('symbol' 

symbolclass)? '{' (attribute | 
insertembedcode)* '}' 

The definition of a 
modeling concept, 
including assignment of 
its graphical notation (if 
instantiable), its editable 
property set and 
prescribed inheritance, to 
be instantiated by 
modeling objects 

Relation relation ::= 'relation' name 
('extends' name-relation)? 

('symbol' name-
symbolrelation)? 'from' name-

class 'to' name-class '{' (attribute 
| insertembedcode)* '}' 

The definition of a 
modeling relation, 
including assignment of 
its graphical notation, its 
editable property set and 
prescribed inheritance 

Attribute attribute ::= 'attribute' name ':' The definition of a 



   

type ('access' ':' acesstype)? property (for a modeling 
concept or relation) 

Access acesstype ::= 'write' | 'read' | 
'internal' 

The definition of the 
access mode for a 
property 

Model Type modeltype ::= 'modeltype' name 
'{' 'classes' name-class+ 
'relations' ('none' | name-

relation+) 'modes' ('none' | 
name-mode+) '}' 

The definition of a 
model type as a partition 
of the language 
metamodel 

Mode mode ::= 'mode' name 'include' 
'classes' name-class+ 'relations' 

('none' | name-relation+) 

The definition of a mode 
(view) on a model type 
limiting its available 
constructs 

Class 
Symbol 

symbolclass ::= 'classgraph' 
name ('style' name-

symbolstyle)? '{' (svgcommand | 
insertembedcode)* '}' 

The definition of 
graphical notations and 
styles for modeling 
concepts 

Relation 
Symbol 

symbolrelation ::= 
'relationgraph' name ('style' 

name-symbolstyle)? '{' 'from' 
(svgcommand | 

insertembedcode)* 'middle' 
(svgcommand | 

insertembedcode)* 'to' 
(svgcommand | 

insertembedcode)* '}' 

The definition of 
graphical notations and 
styles for modeling 
relations 

SVG 
Command 

svgcommand ::= (rectangle | 
circle | ellipse | line | polyline | 

poligon | path | text) 
symbolstyle 

The SVG-style 
description of notation 
elements (language 
symbols) 

Symbol 
Style 

symbolstyle ::= 'style' name '{' 
'fill' ':' ('none' | fillcolor) 'stroke' 
':' strokecolor 'stroke-width' ':' 
strokewidth ('font-family' ':' 
fontfamily)? ('font-size' ':' 

fontsize)? '}' 

The definition of 
graphical styles to be 
applied on notations 

Algorithm algorithm ::= 'algorithm' name 
'{' (algorithmoperation | 
insertembedcode)* '}' 

The description of a 
modeling algorithm 
(including the possibility 
of embedding native 
code from the target 
platform) 

Event event ::= 'event' name-event '.' 
'execute' '.' name-algorithm 

The definition of an 
algorithm trigger 

V. PROOF-OF-CONCEPT 

The hereby introduced concept has been evaluated with 
respect to feasibility by implementing it in a modeling method 
definition environment (based on XText) together with a 
compiler for the ADOxx meta-modeling platform. The editor 
includes compile time error checking, code autocompletion, 
highlighting, and reusable code templates. Tests have been 
performed with (additively) evolving requirements. A minimal 
representative example will be showcased in this section, 
reflecting the final set of requirements for a "car parking" 
modeling method to be detailed below. 

The assumed modeling requirements are that a tool should 
allow the modeler to describe (a) courier tasks as sequences of 
actions and path-splitting decisions (hence they can be 
considered rudimentary workflows); (b) the allocation of 
parking spaces of different types to geographical areas (cities); 
(c) mappings between the various steps of a courier task to the 

geographical areas where they must be performed. Actually 
these can be considered already early design hints – the 
originating requirements are rather query-oriented (e.g. I want 
to be able to retrieve the list of all parking areas required after 
a particular courier decision) or functional-oriented (e.g. I 
want to be able to generate a list of parking objects from a list 
of parking identifiers). 

Fig. 5 grounds this in design decisions at metamodel level, 
also capturing some key representative features: the language is 
partitioned into two model types – one for courier tasks, one 
for city-parking area-parking type allocations. Semantics are 
expressed (a) as property sets for both objects (e.g. a city has a 
country) and relations (the condition of the Next "arrow"); (b) 
as class specializations based on some abstract classes (e.g. 
everything in a courier task is a Node, which has a name and a 
universal identifier); (c) as navigable relations between models 
of different types (the requiresParkingInCity hyperlink 
between courier actions and cities). Not reflected in the 
metamodel, there is also the requirement of generating 
modeling objects from a list of universal identifiers (the URI 
attribute inherited by all concepts from the abstract RootClass). 

 

Fig. 5. Metamodel of the running example 

The final outcome is the modeling tool visible in Fig. 6, 
where one sample of each model type is shown 
(OnDemandTask of type CourierTask, Parkings of type 
ParkingMap), together with screenshots of property sets for 
various elements (e.g. the Condition of the Next arrow, the 
Country of the City) and the cross-model hyperlink between 
Actions and Cities (requiresParkingInCity). 

The code following the figure illustrates the building blocks 
of this modeling method definition (code comments highlight 
some key features). It is important to note that the compiler 
generates (as much as possible) defaults wherever the method 
definition is lacking mandatory elements. This is particularly 
relevant in graphical notations – wherever they are omitted, 
shapes of random size and color will be generated, which is a 
nice feature for fast prototyping focused on the language 
semantics rather than visualization. It is also a fallback 
mechanism for meta-modeling platforms that might not support 



   

features provided by the DSL (e.g. a platform that does not 
support dynamic vectorial notation definition, only static 
bitmaps). 

Also, a particular approach to extensibility and 
interoperability is noticeable in this example: the possibility of 
embedding native code of the targeted meta-modeling platform  

(ADOxx in this case) for features that are not (temporarily or 
by design) supported by the DSLs compiler. This is applied 
here for the algorithm that generates modeling objects from 
imported identifiers, which falls back on native ADOxx code 
(for the general case, the platform-independent algorithm 
description syntax is based on XBase [47]). 

 

Fig. 6. Model samples created with the modeling method implementation of the running example 

method CourierTaskModeling 
 
def EmbedPlatformType ADOxx 
embed ShowNameGraph <ADOxx:Notebook> 
 {"ATTR \\\"Name\\\" x:0pt y:9pt w:c"} 
embed URIImportAlgorithm <ADOxx:AdoScript>  
{ " 
SETL cls_name:(\\\"ParkingArea\\\") 
SETL mod_type_name:(\\\"ParkingMap\\\") 
SETL attr_uri_name:(\\\"URI\\\") 
SETL obj_cnt:(0) 

 // native ADOxx code is embedded to compensate missing features 
 
….} 

  
style Orange {fill:orange stroke:black stroke-width:1} 
style Red {fill:red stroke:black stroke-width:1} 
… 

// style definitions to be used in notations 
 

classgraph GraphParkingArea { 
 rectangle x=-20 y=-20 w=40 h=40 style Orange 
 polygon points=-20,20 0,20 -20,0 style Red 
 polygon points=0,-20 20,-20 20,0 style Red 
 text "P" x=-2 y=-2 
 insert ShowNameGraph 
} 
… 
// notation definition for one modeling class (if this section is 

omitted, shapes of random size and color are generated by the compiler 
for each class 

 
relationgraph GraphNext style Red{ 
 from 
 middle  
 insert DynConditionGraph 



   

 to  
 polygon points=-2,2 2,0 -2,-2 
} 
// notation definition for one modeling relation 
 
class Root 
 {attribute URI:string} 
// abstract class definition (name attributes are generated by default, 

so they don't have to be explicitly defined) 
 
class ParkingArea extends Root symbol GraphParkingArea 
 {attribute Type:string} 
// property inheritance (from Root) and assignment of graphical 

notation to a modeling class 
 
class Action extends Node 
 {reference requiresParkingInCity -> modeltype ParkingMap 

class City} 
// definition of hyperlink between models of different types 

 
relation acceptsVehiclesOfType symbol  GraphAcceptsVehicles 
from ParkingArea to VehicleType {} 
// definition of visual modeling relation 
 
relation next symbol GraphNext from Node to Node 
 {attribute Condition:string} 
 
modeltype ParkingMap { 
 classes City ParkingArea Car Truck Motorcycle Bicycle 
 relations acceptsVehiclesOfType contains 
 modes none} 
// grouping language constructs into a model type 
 
algorithm URIImport { 
 insert URIImportAlgorithm} 
// embedding native ADOxx functionality as algorithms, due to the 

temporary unavailability of the algorithm description component of the 
grammar 

VI. CONCLUSIVE SWOT EVALUATION 

After the research conducted on several different areas - 
modeling methods, meta-modeling platforms and various 
computer language design principles - a wide range of 
requirements have been collected as the starting point for 
designing a DSL for the application domain of modeling 
method engineering, with the main motivation being (a) to 
provide an ability of quickly editing a modeling method that 
must evolve agilely and (b) to do it in a platform-independent 
manner, which can be mapped through platform-specific 
compilers to any targeted meta-modeling environment.  

Further on, a language grammar has been formulated for 
the envisioned DSL in terms of EBNF, validated through an 
XText-based implementation of a programming environment 
which includes a code editor and a compiler for the ADOxx 
meta-modeling platform. 

Based on this proof-of-concept implementation, a SWOT 
evaluation has been performed: 

Strengths: The proposal treats modeling method 
engineering as an application domain for a domain-specific 
language that enables code-based platform-independent 
definition of conceptual modeling methods. The language was 
designed flexible enough to include native code for the targeted 
meta-modeling platform if its features prove insufficient for 
specific cases (at least until a new version is developed); 

Weaknesses: Compilers need to be written in order to 
deploy the modeling method definition on popular meta-
modeling platforms and produce the final outcome – modeling 
tools. Currently only a compiler for ADOxx was realized, 
employed in the presented proof-of-concept. Other compilers 
may emerge in the future from individual or community-based 
efforts invited and fostered through the research environment 
of the Open Model Initiative Laboratory, which is a medium-
term goal; 

Opportunities: A "write-once, run-everywhere" principle, 
as well as improved portability, may be embraced for modeling 
method engineering if compilers emerge for popular meta-
modeling platforms. This may have significant impact on 
productivity and fast prototyping, as well as on putting forth 
agility as a key quality attribute for modeling methods; 

Threats: The proposed DSL adds a new abstraction layer 
to meta-modeling, one that requires its own learning curve. 
Methodologists familiar with a particular meta-modeling 
platform may prefer to specialize and support further evolution 
of the preferred platform rather than taking the necessary 
distance to approach modeling method engineering through 
platform-independent programming. Again, availability of 
additional compilers and case-based demonstrations or 
requirements are key factors in advocating the versatility of the 
hereby proposed approach. 

The takeaway message is that quickly evolving modeling 
requirements need enablers for fast prototyping across 
metamodeling platforms. The concept of modeling method 
should be platform-independent in the sense that 
methodologists should work primarily with concepts 
representing its building blocks, then use existing platforms to 
deploy and fine tune then, rather than having the modeling 
method as a byproduct of an implementation effort for a 
specific platform. This view highlights the importance of pre-
implementation phases in modeling method engineering 
(relative to Fig. 1) - just like in general software engineering, 
platform-independent design decisions should propagate to 
platform-specific implementation and deployment, and not the 
other way around. 
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