

A Domain-specific Language for Modeling Method

Definition: from Requirements to Grammar

Niksa Visic
Faculty of Computer

Science,

University of Vienna,

Vienna, Austria,

niksa.visic@univie.ac.at

Hans-Georg Fill
Faculty of Computer

Science,

University of Vienna,

Vienna, Austria,

hg@dke.univie.ac.at

Robert Andrei

Buchmann
Faculty of Economic

Sciences and Business

Administration,

Babes-Bolyai University,

Cluj Napoca, Romania,

robert.buchmann@econ.

ubbcluj.ro

Dimitris Karagiannis
Faculty of Computer

Science,

University of Vienna,

Vienna, Austria

dk@dke.univie.ac.at

Abstract— The core process a modeling method engineer

needs to accomplish starts with the acquisition of domain

knowledge and requirements, and ends with the deployment of a

usable modeling tool. In between, a key intermediate deliverable

of this process is the modeling method specification which,

ideally, should be platform independent. On one hand, it takes

input from a structured understanding of the application domain

and scenarios; on the other hand, it provides sufficiently

structured input to support the implementation of tool support

for modeling activities. It is quite common that such modeling

methods are domain-specific, in the sense that they provide

concepts from the domain as "first-class modeling citizens".

However, for the purposes of this paper, we raise the level of

abstraction for "domain specificity" and consider "modeling

method engineering" as the application domain. Consequently,

we raise several research questions - whether a domain-specific

language can support this domain, and what would be its

requirements, properties, constructs and grammar. We propose

an initial draft of such a language – one that abstracts away from

meta-modeling platforms by establishing a meta2 layer of

abstraction where a modeling method can be defined in a

declarative manner, then the final modeling tool is generated by

automated compilation of the method definition for the meta-

modeling environment of choice.

Keywords— domain-specific language; modeling method;

meta-modeling; modeling tool

I. INTRODUCTION

The goal of this paper is to introduce a domain-specific
language (DSL) that supports the realization of modeling
methods by establishing a meta-meta layer that abstracts away
from common meta-modeling environments, allowing the
method engineer to focus on the conceptual building blocks of
a modeling method rather than on a meta-modeling platform's
technical specificity. A demonstrative editor and compiler have
been implemented to evaluate feasibility of the proposal.

The work is grounded in the notion of a modeling method,
as introduced by [1] and further refined by [2]. Therefore, for
the purposes of this paper, a modeling method is defined in
terms of several building blocks – modeling language,
procedure and functionality (mechanisms and algorithms for
model processing) - which provide "first-class citizen"

concepts for the hereby proposed domain-specific language
(the relation between these building blocks and the DSL
constructs will be discussed in Section III). In other words,
modeling method engineering becomes the application domain
addressed by the "domain specificity" of the introduced
language. This is the sense in which we will use "domain-
specific" and the DSL acronym throughout the entire paper
(not to be confused with the domain specificity of modeling
methods that can be created with the proposed language).

Relative to OMG's MOF framework [3], the language
provides a meta

2
-model that supports the compilation of a

modeling method definition (in terms of the proposed DSL) for
deployment on a meta-modeling environment of choice (thus
producing a modeling prototype for end-users).

The work is complemented by the contextual goal of
advocating the notion of agile modeling method engineering
(within the methodological context of the Open Model
Initiative Laboratory [4]), inspired by principles of agile
software engineering. The main assumption is that a modeling
method is not necessarily fixed (or driven by the versioning of
standard languages like UML [5] or BPMN [6]). Instead,
modeling methods may evolve iteratively based on changing
modeling requirements and feedback loops. The DSL
introduced here is aimed to support a quick text-based
declarative editing of a modeling method definition, which can
be compiled for fast prototyping on the meta-modeling
environment of choice. An agile modeling method
distinguishes itself from established standards (e.g. UML,
BPMN) by several characteristics:

1. Deeper specialization driven by the end-user's
application domain to the detriment of reusability across
domains. There is always a trade-off in the design of modeling
languages between reusability and requirements coverage.
Agility is a key requirement for methods aiming to serve a
narrow domain, or even the internal needs of an enterprise;

2. Richer semantics captured both on notational level (as
visual cues in the language symbols) and on semantic level (as
editable properties). Semantics are, again, driven by
requirements which may come directly from modeling
stakeholders, or indirectly from required functionality (e.g.

Hans Georg Fill
Schreibmaschinentext
Copyright held by IEEE - Final published version available at Ieeexplore.com 2015

model queries, run-time applications that must consume
models etc.). Typically they are extension or hybridization
requirements (e.g. the extension of i* into DEST [7]);

3. Granular evolution driven by changing requirements.
Standards are more rigid in this respect, with a versioning
process determined by standardization bodies and broad

Fig. 1. The sequential structure of one iteration during agile modeling method engineering

requirements consolidated from a global community. Just
as in agile software engineering, requirements may change due
to multiple factors – improved common understanding of the
domain, additional capabilities requested by end-users,
additional semantics required as input by various model-driven
runtime components, or even a collateral effect of some
organizational evolution in the sense discussed by [8].

Establishing a full methodology of agile method
engineering is not in the scope of this paper – however its
inherent iterative nature provides motivational rationale for
positioning the work. The overall process for realizing one
iteration of an evolving modeling method (including its
modeling language) encompasses several phases (Fig. 1),
according to the framework established by the Open Model
Initiative Laboratory [4]:– (1) create, (2) design, (3) formalize,
(4) develop, and (5) deploy/validate. Inter-phase validation
may occur within the same iteration, to ensure consistency
between intermediate deliverables. The process reiterates as
knowledge emerges gradually from the domain, together with
evolving modeling requirements.

The creation phase is a mix of knowledge acquisition and
requirements elicitation processes, with the aim of defining the
modeling language requirements (concepts and relations
needed in a modeling language) and the modeling functionality
requirements (e.g. competence questions that models should be
able to answer; decisions to be supported by model analysis;
other functionality pertaining to model visualization, checking
or transformation). This phase may also benefit from analyzing
requirements pertaining to the run-time systems that will
consume the models, if interoperability between design-time
and run-time is needed. Different types of knowledge are
sought for – e.g. procedural (processes), motivational (goals),
relational (dependencies, constraints) as well as the semantics
of first-class entities to be included. Hence a mix of techniques
ranging from documentation analysis to direct stakeholder
interviewing must ensure a common understanding between
the methodologist and those who will apply the method.

The design phase is the core meta-modeling effort for
specifying a structured metamodel, the language grammar, the

recommended visualization and functionality. Existing
languages commonly used for domain modeling (e.g. class
diagrams, ER diagrams) may be used for this purpose, although
dedicated languages can be tailored to include metamodel
management functionality (e.g. tracking metamodel changes).
The DSL introduced by this paper takes direct input from this
phase, as the metamodel design specification becomes
executable once translated in the proposed DLS's constructs.

The formalization phase describes the outcome of previous
phases non-ambiguously, either with the purpose of sharing
them within a scientific community (in terms of algebra, first
order logic, Petri Nets etc.) or with the purpose of preparing the
method implementation (in terms of the hereby introduced
DSL). A formalization framework has been established in [9]
to describe metamodels and models for the ADOxx meta-
modeling platform [10].

The development phase involves a concrete meta-modeling
platform in order to produce a modeling prototype, as well as a
compiler that translates the hereby introduced DSL abstraction
to the technology-specific constructs of the targeted platform.

The deployment/validation phase deals with packaging and
installing the modeling prototype for user acceptance tests. The
deployment may consider different options such as standalone
modeling tools or cloud-enabled modeling-as-a-service. The
feedback and lessons learned feed into the next iteration,
together with any possible additional requirements which
normally emerge from first-hand experience of potential users
and a gradual understanding of how a modeling method can
support them.

The DSL proposed in this paper aims to support the design-
to-development phases and enables a quick redeployment of
multiple iterations for an evolving modeling method and across
multiple meta-modeling platforms. For demonstration purposes
a proof-of-concept editor and a compiler for the ADOxx meta-
modeling platform are showcased.

The paper will present the DSL in terms of three facets of
the research challenge – (a) the motivating requirements, (b)
formal grammar aspects and (c) details on the proof-of-concept

implementation. The remainder of the paper is organized as
follows: Section II will briefly cover the state of the art in
language design, which was the baseline for developing the
DSL. Section III provides an overview of various classes of
requirements that have been considered in the proposed DSL's
development, based on an in-depth analysis of various meta-
modeling platforms and a repository of modeling methods
accumulated through the Open Model Initiative. Section IV
provides excerpts from the proposed language's EBNF
grammar specification, while Section V describes a minimal
running example serving as "validation by instantiation" of the
designed artefact. The paper concludes with a SWOT
evaluation and formulates a takeaway message.

II. RELATED WORK

The state of the art in language design, especially in the
area of domain-specific languages and modeling languages has
been extended in the recent years, with concepts showing
significant growth in their maturity both in academic research
and in industrial use [11]. Some of the notions involved in the
design of domain-specific languages provide means of defining
custom programming/modeling artifacts or code generation
facilities. The most relevant of these are further discussed
below:

Language Oriented Programming [12] is a novel way of
organizing the development of a large software system. The
approach starts by developing a formally specified, domain-
oriented, high-level language which is well-suited to develop
the system under consideration. After the system has been
implemented in the before developed language, it is translated
using a compiler or an interpreter to existing technology.
Among claimed advantages for domain analysis, rapid
prototyping, maintenance, portability, and reuse of
development work, LOP provides higher development
productivity and faster time to market.

Language Driven Development [13] is a software
development method which involves the use of multiple DSLs
at various points in the development life-cycle. It is based on
the ability to rapidly design new languages and tools in a
unified and interoperable manner. By allowing engineers and
domain expert to express their designs in the language that they
are most comfortable with and that will give them most
expressive power, productivity can be increased. The LDD
vision relies heavily on the language integration. Languages
should be weaved together to form a unified view of the
software system.

Model Driven Architecture [14] is a term commonly used
for the generation of program code from (semi-)formal models
(e.g., UML, UML profiles, various DSLs). System
functionality is defined using a platform-independent model
(PIM) which is described in an appropriate DSL. The PIM is
then translated to one or more platform-specific models (PSM)
that computers can run. The transformation process is generally
automated by dedicated tools [15].

Software Factories [16] refer to software assets used to
create specific types of software components. They help
structure the development process and are used for developing
languages that support the construction of software

components. A software factory may include processes,
templates, integrated development environment (IDE)
configurations and views. The type of software a factory may
produce is defined when the factory is created.

Superlanguages [17] provide control over all aspects of
representation and execution. They can be extended with new
features, which can be seamlessly weaved into the existing
features. Execution mechanisms can be changed to reflect the
needs of each new application. Superlanguages also provide a
powerful control over the language engine via meta-features –
a way of tailoring a language in a modular way without
polluting programs with unnecessary code.

"Language Workbench" is a term proposed by Martin
Fowler to designate the IDE support for development of
domain-specific languages [18][19]. There are many examples
of such IDEs, some of them specifically designed for
development of textual languages (e.g., Xtext [20], Irony [21]),
and some for development of graphical languages (e.g., VS
Visualization & Modeling Tools [22], MetaEdit+ [23]).

"Meta-modeling Platform" [1] is a term used to describe an
environment specifically targeting the development of
graphical modeling languages and modeling methods using a
meta-modeling approach – a layered approach (see OMG’s
MOF [3]) where one describes the modeling language structure
by instantiating an already existing meta

2
model provided by

the platform. Because of this approach, a platform can provide
support to the modeling language being developed through
already existing features and functionality (e.g., algorithms and
mechanism for model analysis and simulation) [24].

Closely related works are Graphiti (Eclipse-based) [25] and
XModeler/XMF [26], in the sense that they also provide a
Language Oriented Programming approach to metamodeling.
However, they do not aim to provide a new layer of abstraction
relative to the variety of existing platforms (via platform-
specific compilers); instead they are themselves standalone
meta-modeling platforms with some significant productivity
improvements.

The work at hand relates to the notion of Meta-modeling
Platform in the sense that it abstracts away from its instances
while providing compilers to transfer a modeling method
definition to a specific meta-modeling technology. The concept
makes use of lessons learned from Language Oriented
Programming and Language Driven Development, by
transferring some of their principles to the discipline of meta-
modeling. Its implementation can be considered itself a
Language Workbench for the development of modeling
languages, therefore the paper makes to the domain of
modeling method engineering a contribution inspired by meta-
programming experiences.

III. CLASSES OF REQUIREMENTS FOR A DSL FOR MODELING

METHOD DEFINITIONS

The primary class of requirements comes from the
language's application domain. As mentioned previously, the
application domain for the proposed DSL is modeling method
engineering. The secondary requirements come from the meta-
modeling platforms that act as candidates for deployment

environments, therefore providing dedicated functionality that
can be rather generic (e.g. the way of defining a metamodel) or
more specific (e.g. the way of defining mechanisms for model
analysis and simulation). The tertiary requirements come from
generally accepted principles and best practices governing the
overall design process of programming and domain-specific
languages, including the definition of language statements,
control structures, expressions etc. The quaternary
requirements come from the outlook on the emerging and
future technologies and their possible influence on modeling
and meta-modeling techniques. To accommodate emerging
approaches (e.g., models, methods, and modeling tools as a
service) the DSL under consideration should support its own
evolution through language extensibility (i.e. introduction of
new domain concepts) and metamorphosis (i.e. complete
syntax change). These classes of requirements will be further
analyzed in this section.

A. The Application Domain: Modeling Method Engineering

The design of a DSL for modeling methods entails a very
specific set of domain-specific features. To understand the
requirements of such a language one needs to get familiar with
various modeling method characteristics and isolate the most
important ones.

The modeling method building blocks are adapted here
from the work of Karagiannis and Kühn (see [1][24]) with a
slight deviation due to the formalization possibilities (Fig. 2):
(1) a modeling language, (2) modeling algorithms, and (3)
mechanisms and modeling procedures.

Fig. 2. The building blocks of a modeling method

The primary building block is the graphical modeling
language, further structured in (abstract) syntax, semantics and
notation. The syntax provides the language grammar, typically
through production or well-formedness rules. The semantics
give meaning to the syntax of a language, defining the
terminological taxonomy of symbols, the property set for each
class of syntactical constructs, including their relations and
semantic constraints that must be applied to them. The notation

defines the graphical symbols of a modeling language together
with the morphological variations dictated by semantics (visual
variations determined dynamically by the values of some key
properties). a graphical representation of a modeling language.
Not all constructs introduced in the syntax of a modeling
language need to have a graphical representation – these
constructs are typically considered abstract (i.e. not to be
instantiated in models) and are present on the higher layers of
the terminological taxonomy, typically for reusability of
semantics (e.g. property inheritance).

The secondary building block comprises modeling
algorithms. These define model-processing functionality built
on top of the language structure (e.g. model analysis,
simulation, evaluation).

The tertiary building block comprises aspects that are not
covered by the hereby proposed DSL. On one hand,
mechanisms represent functionality that is native to the meta-
modeling platform used for implementation and deployment,
therefore technology-specific (e.g. model publishing services).
On the other hand, the modeling procedure is typically a
methodological component, expressed through informal
guidelines and steps that need to be taken by modelers to reach
their goal. These can be complemented by modeling algorithms
providing automated validation and checks for particular steps
(e.g. to block the creation of swimlanes in a business process
model unless an organizational model was previously defined
to provide semantics to those swimlanes).

The DLS for modeling method definition draws its main
class of requirements from these building blocks.

B. Analyzing the Concepts from the Application Domain

To understand what kind of first-class constructs are
required in a modeling method definition DSL, various existing
modeling languages have been scrutinized. For example,
BPMN has four distinct groups of constructs: flow objects
(event, activity, and gateway), connecting objects (sequence
flow, message flow, and association), swim lanes (pool and
lane), and artifacts (data object, group, annotation). Petri Nets
[27] consist of places, transitions, and arcs. UML class diagram
structures a model using classes, their attributes, operations and
relationships among the classes. Finite state machine diagrams
[28] used to design both computer programs and sequential
logic circuits employ constructs like state and transition.

A closer look reveals that all of these modeling languages
rely on the common notions of knowledge representation: a
concept of a class (e.g. place, class, event, activity, state), a
concept of relationship having classes as domain and range
(e.g., sequence flow, association, arcs, transitions), and a
concept of attribute that specifies class semantics (e.g. name,
cost, color, height, position, salary). This has been addressed in
the past many times as meta-elements by the OMG’s MOF but
can be traced back to Parmenide's way of describing reality in
terms of categories of being and provides the base for
knowledge representation approaches. Ultimately the
metamodel of a modeling language is an ontological view on
the domain addressed by that language. There exist many
meta

2
models providing similar primitive meta-elements (Ecore,

GME, GOPPRR and ADOxx – see the overview of [29]) with

Figure 1. Modeling Method Components.

slightly different naming conventions (property instead of
attribute, atom instead of class, etc.) or with higher level
constructs (roles on properties can be considered relations of
higher arity) – however they can be reduced to these basic
notions [29] which, therefore, must also be captured in a DSL
for modeling method definition.

The notions of class, relationship, attribute as well as
different ways of relating them (domain, range, specialization)
are the main tools of abstraction. However, besides
abstraction, a modeling method also requires decomposition,
which is necessary to manage the complexity of models.
Decomposition can be present (a) as a language construct in
the models themselves (as a grouping container e.g. a swimlane
in business processes, or as a link between an element and its
parts, e.g. a business process and its subprocesses), but can also
be (b) established at the method definition level, by partitioning
the language syntax into model types (groups of constructs that
can address particular problems). Having relationships defined
across model types will ensure that they can be structurally and
semantically connected.

Using the four notions – class, relationship, attribute, and
model type – a typical modeling language syntax (how
modeling objects can be connected by modeling relations) and
semantics (property sets of classes, model types and relations)
can be defined. Additional constructs in the DSL are needed to
the extent of desired expressivity for constraints and rules. For
this, the extensibility of the DSL must be considered as a key
requirement, not unlike the way ontology languages (e.g. OWL
[30]) evolve by incorporating new built-in concepts (e.g.
transitive property types, qualified cardinality restrictions).

For the current proof-of-concept implementation of the
proposed DSL only the expressivity that can be directly
mapped on the ADOxx meta-modeling functionality has been
included (e.g. cardinality constraints).

Another requirement comes from the necessity to define the
notation and its morphology (dynamic notation, mapping
multiple notations to the same class, with variations dictated by
its instance-level attributes).

With respect to modeling algorithms, analysis and
simulation are the most common functionality, but there can be
many specific scenarios for various modeling methods (see
[31] for more information). The basic building blocks for
describing an algorithm can be borrowed from algorithm
design and implementation in software engineering [32][33].
Those are input, operations, and output. A major part of
operations are control structures: conditionals (if, else …),
iterations (also known as loops: while, for …), and selective
structures (switch …), partitioning code into functions.

C. Analyzing Existing Artefacts from the Domain

For further requirements analysis towards the design of a
DSL for modeling methods, with a purpose of extracting the
key modeling language constructs, nineteen implementations
of modeling methods (developed within OMiLAB [4] and
hosted on the Open Model Initiative repository of modeling
method implementations [31]) have been analyzed: BEN, BIM,
CIDOC (based on [34]), eduWEAVER, EKD, HORUS,

IMP2.0, i* (based on [35]), OMi*T, InSeMeMo, MeLCa,
OKM, Secure Tropos (based on [36]), UML, PetriNets,
MoSeS4eGov, PROMOTE, SeMFIS (based on [37]), and
VLML (based on [38]). All methods are implemented on the
ADOxx metamodeling platform, together with a dozen of
custom made services [39] that enhance the modeling tool
development process on various levels – from the creation of
graphical syntax to the generation of documentation.

After a quantitative analysis of nineteen modeling methods
(Fig. 3) one can notice the diversity in the number of basic
artifacts. This hints to the complexity of abstractions used to
describe a specific modeling domain, with the higher numbers
representing modeling methods with deeper domain specificity.
While some of the methods are quite fixed due to their standard
nature (e.g. UML, i*), others reclaim the requirement for agile
evolution.

During the agile evolution of such a method, intuitively the
number of artifacts grows as more specialization is added to the
language (i.e. subtyping the artefacts). However, it can also
happen that the number reduces, as it can be seen in the case of
CIDOC, where the newer implementation has significantly less
classes and relations. The complexity of CIDOC was
transferred from classes and relations to attributes, thus
improving usability (less constructs on the modeling toolbar,
more configuration in the properties of those constructs)

BEN
BIM

CIDOC (OLD)
CIDOC (NEW)
EDUWEAVER

EKD
HORUS
IMP20

INSEMEMO
ISTAR

OMISTART
MELCA

MOSES4EGOV
OKM

PETRINETS
PROMOTE

SECURETROPOS
SEMFIS

VLML
UML

0 20 40 60 80 100 120 140 160

Relationships Classes

Fig. 3. Number of relations and classes in OMI implementations

During the initial requirements analysis a relatively long list
of concepts which repeatedly appear in many of the analyzed
modeling methods was compiled – the recurring top 10 classes
in descending order are: container, actor, label, resource,
decision, activity, process, start, end, and goal; the recurring
top 10 relationships in descending order are: associates,
depends, flows, specializes, has, part of, contributes,
decomposes, relates, and uses. The mentioned concepts and
their percentage of occurrence in the analyzed method
definitions are indicated in Table I.

A key question that can be raised here is if such recurring
concepts should be part of a domain-specific language for
modeling method definition. Technically, they are on a
different level of abstraction than the previously discussed
notion (class, attribute), so they belong rather to the application

output of the DSL rather than being first-class citizens of the
DSL.

TABLE I. TOP 10 MODELING METHOD CONCEPTS AND RELATIONSHIPS

WITHIN OMI

Classes Relationships

Name % Name %

Container 68 Associates 42

Actor 53 Depends 37

Label 53 Flows 37

Resource 53 Specializes 37

Decision 47 Has 32

Activity 37 Part of 32

Process 37 Contributes 21

Start 37 Decomposes 21

End 37 Relates 21

Goal 32 Uses 16

However, programming languages also show this feature of
extending the language with predefined instances in the form
of libraries, macros etc. with the goal of providing ready-to-use
application-level constructs, thus increasing productivity.
Standard libraries are typically deployed together with basic
programming language compilers. This can be a valuable
requirement for the hereby proposed DSL, in order to provide
ready-to-use modeling language fragments in the form of a
"standard library", which can take the form of a predefined
collection of classes, relationships, even model types.

D. Analyzing Meta-modeling Platform Functionality

The output of a DSL for modeling method definitions must
be ultimately executed on a meta-modeling environment that
can produce a usable modeling tool, therefore existing
platforms have been analyzed to identify their functional and
non-functional requirements. As a result several key meta-
modeling platform components were isolated. The key
conceptual components are depicted in Fig. 4 and can be
mapped to functional requirements.

Fig. 4. Conceptual view on the components of a meta-modeling platform

1. The meta
2
model is the key enabler from which all

metamodels are instantiated, providing the core
concepts and functionality. A key requirement for a

meta-modeling platform is to have a meta
2
model that is

generic enough to be able to instantiate concepts from
a wide range of domains, but at the same time to be
sufficiently rich to enable a detailed modeling
language specification;

2. A sophisticated control mechanism enabling structured
abstract syntax and semantics definition and
manipulation for the concepts instantiated from the
meta

2
model is the second functional requirement;

3. The development of graphical modeling languages is
more complex than the development of textual
languages. Textual languages (e.g., textual
programming languages, textual specification
languages) can have their syntax specified in a textual
form (e.g., EBNF), where, most of the times, abstract
and concrete syntax are joined together and defined at
the same place. In case of graphical modeling
languages, it is common to have multiple notations
connected with one modeling element, meaning that
abstract syntax can have multiple concrete syntax
representations. The third functional requirement is to
provide a mapping mechanism between the abstract
syntax and the graphical representation;

4. Graphical modeling elements are not only static figures
on the modeling canvas. They also provide a complex
interface between the user and the model enabling
predefined functionality (e.g., triggers for functionality,
hyperlinks towards other models). Being able to design
appropriate graphical representations including an
embedded user interface embedded into modeling
elements is a fourth requirement;

5. Modeling procedures enforce the order in which
modeling elements needs to be used. In most cases this
is not necessary, because one wants to give more
freedom to the modeler. However, there exist modeling
methods which strictly define the order one can use the
modeling elements – e.g. if one wants to model
information security, one should describe physical
security (e.g., server locked in protected environment)
before virtual security (e.g., firewall, access control,
etc.). The enforcement of modeling procedures is
another meta-modeling platform functional
requirement;

6. Algorithms are the means which are used to define and
implement additional functionality of a modeling
method. To be able to use and reuse already present
platform functionality for defining various algorithms
and mechanism, one needs an interface to this
functionality, typically realized as a well-documented
and interoperable set of APIs;

7. A meta-modeling platform needs a dedicated
repository for storing a modeling method definition,
and for storing models defined by a modeling method.
Repositories provide the possibility to reuse already
defined modeling elements, to track changes for both
development of modeling methods and models, to

propagate changes done on the modeling method layer
to the model layer.

Tot this list we add several non-functional requirements
that typically characterize meta-modeling platforms:

Extensibility [40] takes under consideration future growth.
It is a measure of the ability to extend a system and the level of
effort required to implement the extension. Extensions can
mean addition of new functionality or modification of existing
functionality. As complex software system, meta-modeling
platforms should have a public application programming
interface (API) that allows extension and modification of the
platform’s behavior by developers who do not have access to
the original source code.

Interoperability [41] is the ability of systems to work
together by exchanging information and using the information
that has been exchanged. One of the means allowing meta-
modeling platforms to communicate is based on open
standards. Products implementing the common protocols
defined in the standard are thus interoperable by design. By
providing users with a freedom to start their implementation of
a modeling method on one platform, continue it on the second,
and finish it on the third is a tangible benefit.

Scalability [42] allows handling a growing amount of work
in a capable manner. This issue can be illustrated on an
example where one provides an implemented modeling method
as a service that needs to scale up with the number of users.

E. Analyzing Best Practices and Guidelines for the Design of

DSLs

Designers need to avoid the common undesirable features
that make the learning and using of the language harder than it
should be. A substantial part of this difficulty arises from the
structure, syntax and semantics of a language. Desirable and
undesirable features also raise requirements for the very nature
of a DSL.

Programming language designers are programming experts
typically far removed both temporally and cognitively from the
difficulties experienced by novice programmers. This can
result in languages that are either too restrictive or too powerful
(or sometimes, paradoxically, both) [43]. To avoid falling into
a trap of designing a language only highly trained experts are
able to use efficiently, we have collected a couple of key
desirable language features, as well as a couple of undesireable
ones, which should be avoided if possible. According to [43]
the most notable desirable features are:

 User expectation conformity. Languages should be
designed so that reasonable assumptions based on prior
non-programing-based knowledge (e.g., domain expert
knowledge) remain reasonable assumptions in the
programming domain, meaning that the constructs of a
language should not violate user expectations;

 Readable and consistent syntax. By choosing the
constructs with which the recipient is already familiar
(e.g. ‘if’ rather than ‘cond’, ‘head/tail’ rather than
‘car/cdr’) syntactic noise can be minimized; on one
hand, reducing syntactic noise might involve

minimizing the overall syntax; alternatively, it may be
better to increase the complexity of the syntax in order
to reduce homonyms which blur the signal;

 Small and orthogonal set of features. A small non-
overlapping set of language features with distinct and
mnemonic syntactic representations and with semantics
which mirror as closely as possible the real-world
concepts; features that are not necessary should not be
included in the language;

 Error diagnosis. Without good error detection and
debugging support users can spent hours trying to
decipher why isn’t the program doing what it is
intended; on the other hand error messages should be
meaningful and without unnecessary technical jargon.

It also helps if the designer is knowledgeable in the domain
for which the language is being developed, thus having better
awareness of the real-world concepts that need to be included
into the language and the ways these concepts are expressed.

Some of the most undesirable features from the language
user’s perspective, according to the same source are:

 Paradigmatic purity. Strict adherence to a single
functional, logical or object oriented paradigm can
make for a certain conceptual simplicity and elegance,
but in practice it can also lead to extremely obscure and
unreadable code; in some cases relatively simple
programs must be substantially restructured to achieve
even basic effects;

 Language bloat. Extreme complexity and a large palette
of features might seem as a good idea at first, but they
come together with a steeper learning curve, higher
level of confusion, difficulties of adequate error
detection, very complex syntax and semantics;

 Syntactic synonyms. Two or more syntaxes are available
to specify a single construct; common example is
dynamic array access in C, where the second element of
an array may be accessed by any of the following
syntaxes, some of which are legal only in certain
contexts: array[1], *(array+1), 1[array], *++array;

 Syntactic homonyms. Constructs which are syntactically
the same, but have two or more different semantics
depending on the context are perhaps a more serious
flaw in a language then syntactic synonyms; an extreme
example may be seen in Turing, in which the construct
A(B) has five distinct meanings, but not as extreme as
LISP and its variants, which can be viewed as one
massive homonym;

 Hardware dependency. There seems to be no
convincing reason why the user, already struggling to
master syntax and semantics of various constructs,
should also be forced to deal with details of
representational precision, varying machine word sizes,
or awkward memory models; the data types are
particularly problematic in C as they are generally not
portable, for example, the standard int type varies from
16-bit to 32-bit representations depending on the

machine and the implementation; this can lead to
strange and unexpected errors when overflow occurs;

 Backward compatibility. This property is surely useful
from the experienced programmer’s point of view, as it
promotes reuse of both code and programming skills,
but one needs to be careful, because it constraints the
design of a new language; Stroustrup [44]
acknowledged this problem: “Over the years, C++’s
greatest strength and its greatest weakness has been its
C compatibility.”

In the long run some of these features are very hard to
avoid, especially if there was no plan for language evolution in
the design phase. Taking a systematic approach and
considering future needs of language users plays a significant
role in the further development of a language.

F. The Evolution Requirement

Languages evolve and this is also relevant for DSLs [45].
Evolution, in this context, does not only mean that one
language has changed over a period of time. It also means that
new languages have been created using some of the concepts
from older, already existing, languages. Good examples are
C++ and C# evolving from C, JavaScript starting from
concepts used in Java, etc.

Nowadays, a considerable amount of new languages are
designed by a single person or a small team, making DSLs a
popular paradigm with other reasons being: affordable
investments, standardization is not a necessity as it used to be
in the past, out-of-the-box tools for development of tailored
languages, the Internet as a medium for distribution and user
feedback and requests. Evolution can be enabled if the DSL
has been designed to follow the progress of technology it
depends upon, and predict the future changes in the domain it
describes.

Concerning the hereby proposed DSL, one should consider
the following: (1) the future development of meta-modeling
platforms, and (2) the possible changes in the application
domain, which can come from various sources: new findings in
the academia or industry, insights during the use of the DSL.
To be able to cope with the upcoming issues, the DSL under
consideration should have at least these important features: (1)
extensible abstract syntax, concrete syntax and semantics, and
(2) extensible execution engine.

Extensible abstract syntax allows modification, removal or
addition of concepts. The same is true for extensible concrete
syntax, and semantics. It is also important to have a mapping
mechanism between abstract and concrete syntax, and between
abstract syntax and semantics, which should support extensions
as well.

The execution engine (compiler) is responsible for
transforming code written in the DSL to the format that can be
run on a meta-modeling platform. Therefore, it is essential that
changes done to the target platforms can be implemented into
the engine.

IV. THE GRAMMAR OF THE DOMAIN-SPECIFIC MODELING

METHOD DEFINITION LANGUAGE

A first draft of the introduced DSL's context-free grammar
in formal EBNF form was made available at [46], with the
current section providing only an overview of it.

The language is designed around the concepts of
inheritance (reuse of characteristics from parent classes,
typically of abstract nature, to child classes, to be instantiated
in models) and referencing (reusing previously defined objects
by passing their identifiers to other constructs).

Table 2 provides an excerpt of the language grammar,
highlighting the main statements of the language. A design
decision was made to avoid the tagging overhead of an XML-
based syntax and to opt for a simple declarative style that can
accommodate easily existing code editing approaches (XText
[20]) and algorithm description approaches (XBase [47]).

TABLE II. EXCERPT FROM THE EBNF GRAMMAR OF A DSL FOR

MODELING METHOD DEFINITION

Statement Statement Specification in
EBNF

Meaning

Root root ::= methodname
embedcode* method

The root of the method
definition document

Method
Name

methodname ::= 'method' name

Embed embedcode ::= 'embed' name '<'
name-embedplatformtype (':'

name-embedcodetype)? '>' 'start'
embeddedcodegoeshere 'end'

In the case that native
code for the target
metamodeling platform
will be embedded, the
platform must be
declared.

Method method ::= enumeration*
symbolstyle* symbolclass*
symbolrelation* metamodel

algorithm* event*

Container for the method
building blocks and
auxiliary elements

Enumeration enumeration ::= 'enum' name '{'
enumvalues+ '}'

An auxiliary element of a
method definition,
defining a list of values
(typically used to restrict
attributes of modeling
objects)

Metamodel metamodel ::= class+ relation*
attribute* modeltype+

The main building block
of a method, describing
structurally the language
metamodel

Class class ::= 'class' name ('extends'
name-class)? ('symbol'

symbolclass)? '{' (attribute |
insertembedcode)* '}'

The definition of a
modeling concept,
including assignment of
its graphical notation (if
instantiable), its editable
property set and
prescribed inheritance, to
be instantiated by
modeling objects

Relation relation ::= 'relation' name
('extends' name-relation)?

('symbol' name-
symbolrelation)? 'from' name-

class 'to' name-class '{' (attribute
| insertembedcode)* '}'

The definition of a
modeling relation,
including assignment of
its graphical notation, its
editable property set and
prescribed inheritance

Attribute attribute ::= 'attribute' name ':' The definition of a

type ('access' ':' acesstype)? property (for a modeling
concept or relation)

Access acesstype ::= 'write' | 'read' |
'internal'

The definition of the
access mode for a
property

Model Type modeltype ::= 'modeltype' name
'{' 'classes' name-class+
'relations' ('none' | name-

relation+) 'modes' ('none' |
name-mode+) '}'

The definition of a
model type as a partition
of the language
metamodel

Mode mode ::= 'mode' name 'include'
'classes' name-class+ 'relations'

('none' | name-relation+)

The definition of a mode
(view) on a model type
limiting its available
constructs

Class
Symbol

symbolclass ::= 'classgraph'
name ('style' name-

symbolstyle)? '{' (svgcommand |
insertembedcode)* '}'

The definition of
graphical notations and
styles for modeling
concepts

Relation
Symbol

symbolrelation ::=
'relationgraph' name ('style'

name-symbolstyle)? '{' 'from'
(svgcommand |

insertembedcode)* 'middle'
(svgcommand |

insertembedcode)* 'to'
(svgcommand |

insertembedcode)* '}'

The definition of
graphical notations and
styles for modeling
relations

SVG
Command

svgcommand ::= (rectangle |
circle | ellipse | line | polyline |

poligon | path | text)
symbolstyle

The SVG-style
description of notation
elements (language
symbols)

Symbol
Style

symbolstyle ::= 'style' name '{'
'fill' ':' ('none' | fillcolor) 'stroke'
':' strokecolor 'stroke-width' ':'
strokewidth ('font-family' ':'
fontfamily)? ('font-size' ':'

fontsize)? '}'

The definition of
graphical styles to be
applied on notations

Algorithm algorithm ::= 'algorithm' name
'{' (algorithmoperation |
insertembedcode)* '}'

The description of a
modeling algorithm
(including the possibility
of embedding native
code from the target
platform)

Event event ::= 'event' name-event '.'
'execute' '.' name-algorithm

The definition of an
algorithm trigger

V. PROOF-OF-CONCEPT

The hereby introduced concept has been evaluated with
respect to feasibility by implementing it in a modeling method
definition environment (based on XText) together with a
compiler for the ADOxx meta-modeling platform. The editor
includes compile time error checking, code autocompletion,
highlighting, and reusable code templates. Tests have been
performed with (additively) evolving requirements. A minimal
representative example will be showcased in this section,
reflecting the final set of requirements for a "car parking"
modeling method to be detailed below.

The assumed modeling requirements are that a tool should
allow the modeler to describe (a) courier tasks as sequences of
actions and path-splitting decisions (hence they can be
considered rudimentary workflows); (b) the allocation of
parking spaces of different types to geographical areas (cities);
(c) mappings between the various steps of a courier task to the

geographical areas where they must be performed. Actually
these can be considered already early design hints – the
originating requirements are rather query-oriented (e.g. I want
to be able to retrieve the list of all parking areas required after
a particular courier decision) or functional-oriented (e.g. I
want to be able to generate a list of parking objects from a list
of parking identifiers).

Fig. 5 grounds this in design decisions at metamodel level,
also capturing some key representative features: the language is
partitioned into two model types – one for courier tasks, one
for city-parking area-parking type allocations. Semantics are
expressed (a) as property sets for both objects (e.g. a city has a
country) and relations (the condition of the Next "arrow"); (b)
as class specializations based on some abstract classes (e.g.
everything in a courier task is a Node, which has a name and a
universal identifier); (c) as navigable relations between models
of different types (the requiresParkingInCity hyperlink
between courier actions and cities). Not reflected in the
metamodel, there is also the requirement of generating
modeling objects from a list of universal identifiers (the URI
attribute inherited by all concepts from the abstract RootClass).

Fig. 5. Metamodel of the running example

The final outcome is the modeling tool visible in Fig. 6,
where one sample of each model type is shown
(OnDemandTask of type CourierTask, Parkings of type
ParkingMap), together with screenshots of property sets for
various elements (e.g. the Condition of the Next arrow, the
Country of the City) and the cross-model hyperlink between
Actions and Cities (requiresParkingInCity).

The code following the figure illustrates the building blocks
of this modeling method definition (code comments highlight
some key features). It is important to note that the compiler
generates (as much as possible) defaults wherever the method
definition is lacking mandatory elements. This is particularly
relevant in graphical notations – wherever they are omitted,
shapes of random size and color will be generated, which is a
nice feature for fast prototyping focused on the language
semantics rather than visualization. It is also a fallback
mechanism for meta-modeling platforms that might not support

features provided by the DSL (e.g. a platform that does not
support dynamic vectorial notation definition, only static
bitmaps).

Also, a particular approach to extensibility and
interoperability is noticeable in this example: the possibility of
embedding native code of the targeted meta-modeling platform

(ADOxx in this case) for features that are not (temporarily or
by design) supported by the DSLs compiler. This is applied
here for the algorithm that generates modeling objects from
imported identifiers, which falls back on native ADOxx code
(for the general case, the platform-independent algorithm
description syntax is based on XBase [47]).

Fig. 6. Model samples created with the modeling method implementation of the running example

method CourierTaskModeling

def EmbedPlatformType ADOxx
embed ShowNameGraph <ADOxx:Notebook>
 {"ATTR \\\"Name\\\" x:0pt y:9pt w:c"}
embed URIImportAlgorithm <ADOxx:AdoScript>
{ "
SETL cls_name:(\\\"ParkingArea\\\")
SETL mod_type_name:(\\\"ParkingMap\\\")
SETL attr_uri_name:(\\\"URI\\\")
SETL obj_cnt:(0)

 // native ADOxx code is embedded to compensate missing features

….}

style Orange {fill:orange stroke:black stroke-width:1}
style Red {fill:red stroke:black stroke-width:1}
…

// style definitions to be used in notations

classgraph GraphParkingArea {
 rectangle x=-20 y=-20 w=40 h=40 style Orange
 polygon points=-20,20 0,20 -20,0 style Red
 polygon points=0,-20 20,-20 20,0 style Red
 text "P" x=-2 y=-2
 insert ShowNameGraph
}
…
// notation definition for one modeling class (if this section is

omitted, shapes of random size and color are generated by the compiler
for each class

relationgraph GraphNext style Red{
 from
 middle
 insert DynConditionGraph

 to
 polygon points=-2,2 2,0 -2,-2
}
// notation definition for one modeling relation

class Root
 {attribute URI:string}
// abstract class definition (name attributes are generated by default,

so they don't have to be explicitly defined)

class ParkingArea extends Root symbol GraphParkingArea
 {attribute Type:string}
// property inheritance (from Root) and assignment of graphical

notation to a modeling class

class Action extends Node
 {reference requiresParkingInCity -> modeltype ParkingMap

class City}
// definition of hyperlink between models of different types

relation acceptsVehiclesOfType symbol GraphAcceptsVehicles
from ParkingArea to VehicleType {}
// definition of visual modeling relation

relation next symbol GraphNext from Node to Node
 {attribute Condition:string}

modeltype ParkingMap {
 classes City ParkingArea Car Truck Motorcycle Bicycle
 relations acceptsVehiclesOfType contains
 modes none}
// grouping language constructs into a model type

algorithm URIImport {
 insert URIImportAlgorithm}
// embedding native ADOxx functionality as algorithms, due to the

temporary unavailability of the algorithm description component of the
grammar

VI. CONCLUSIVE SWOT EVALUATION

After the research conducted on several different areas -
modeling methods, meta-modeling platforms and various
computer language design principles - a wide range of
requirements have been collected as the starting point for
designing a DSL for the application domain of modeling
method engineering, with the main motivation being (a) to
provide an ability of quickly editing a modeling method that
must evolve agilely and (b) to do it in a platform-independent
manner, which can be mapped through platform-specific
compilers to any targeted meta-modeling environment.

Further on, a language grammar has been formulated for
the envisioned DSL in terms of EBNF, validated through an
XText-based implementation of a programming environment
which includes a code editor and a compiler for the ADOxx
meta-modeling platform.

Based on this proof-of-concept implementation, a SWOT
evaluation has been performed:

Strengths: The proposal treats modeling method
engineering as an application domain for a domain-specific
language that enables code-based platform-independent
definition of conceptual modeling methods. The language was
designed flexible enough to include native code for the targeted
meta-modeling platform if its features prove insufficient for
specific cases (at least until a new version is developed);

Weaknesses: Compilers need to be written in order to
deploy the modeling method definition on popular meta-
modeling platforms and produce the final outcome – modeling
tools. Currently only a compiler for ADOxx was realized,
employed in the presented proof-of-concept. Other compilers
may emerge in the future from individual or community-based
efforts invited and fostered through the research environment
of the Open Model Initiative Laboratory, which is a medium-
term goal;

Opportunities: A "write-once, run-everywhere" principle,
as well as improved portability, may be embraced for modeling
method engineering if compilers emerge for popular meta-
modeling platforms. This may have significant impact on
productivity and fast prototyping, as well as on putting forth
agility as a key quality attribute for modeling methods;

Threats: The proposed DSL adds a new abstraction layer
to meta-modeling, one that requires its own learning curve.
Methodologists familiar with a particular meta-modeling
platform may prefer to specialize and support further evolution
of the preferred platform rather than taking the necessary
distance to approach modeling method engineering through
platform-independent programming. Again, availability of
additional compilers and case-based demonstrations or
requirements are key factors in advocating the versatility of the
hereby proposed approach.

The takeaway message is that quickly evolving modeling
requirements need enablers for fast prototyping across
metamodeling platforms. The concept of modeling method
should be platform-independent in the sense that
methodologists should work primarily with concepts
representing its building blocks, then use existing platforms to
deploy and fine tune then, rather than having the modeling
method as a byproduct of an implementation effort for a
specific platform. This view highlights the importance of pre-
implementation phases in modeling method engineering
(relative to Fig. 1) - just like in general software engineering,
platform-independent design decisions should propagate to
platform-specific implementation and deployment, and not the
other way around.

REFERENCES

[1] D. Karagiannis and H. Kühn, “Metamodelling Platforms,” in E-
Commerce and Web Technologies, vol. 2455, K. Bauknecht, A. M.
Tjoa, and G. Quirchmayr, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 182.

[2] H.-G. Fill and D. Karagiannis, "On the Conceptualisation of Modelling
Methods Using the ADOxx Meta Modelling Platform", Enterprise
Modelling and Information Systems Architectures, Vol. 8, Issue 1, 2013,
pp. 4-25.

[3] “OMG’s MetaObject Facility (MOF) Home Page.” [Online]. Available:
http://www.omg.org/mof/. [Accessed: 8-Feb-2015].

[4] "Open Model Initiative Laboratory" [Online]. Available:
http://www.omilab.org/. [Accessed: 8-Feb-2015].

[5] “Object Management Group - UML.” [Online]. Available:
http://www.uml.org/. [Accessed: 8-Feb-2015].

[6] “BPMN Information Home.” [Online]. Available:
http://www.bpmn.org/. [Accessed: 8-Feb-2015].

[7] F.B. Aydemir, P. Giorgini, J. Mylopoulos, F. Dalpiaz, "Exploring
Alternative Designs for Sociotechnical Systems", in M. Bajec, M.

Collard, R. Deneckere (eds.), Proceedings of the 8th Int. Conf. RCIS,
2014, IEEE, pp. 1-12

[8] M. Ruiz, S. Espana, O. Pastor, "Supporting Organisational Evolution by
Means of Model-Driven Reengineering Frameworks", in R. Wieringa, S.
Nurcan, C. Rolland, J.L. Cavarero (eds.), Proceedings of the 7th IEEE
Int. Conf. RCIS, 2013, IEEE, pp. 1-10

[9] H.-G. Fill, T. Redmond, D. Karagiannis, "FDMM: A Formalism for
Describing ADOxx Meta Models and Models", in: L. Maciaszek, A.
Cuzzocrea and J. Cordeiro: Proceedings of ICEIS 2012 - 14th
International Conference on Enterprise Information Systems, Vol.3,
SciTePress, 2011, pp. 133-144.

[10] "The ADOxx meta-modeling platform" [Online]. Available:
http://www.adoxx.org/. [Accessed: 8-Feb-2015].

[11] C. Atkinson, M. Gutheil, and B. Kennel, “A Flexible Infrastructure for
Multilevel Language Engineering,” IEEE Transactions on Software
Engineering, vol. 35, no. 6, pp. 742–755, Dec. 2009.

[12] M. P. Ward, “Language Oriented Programming,” SOFTWARE—
CONCEPTS AND TOOLS, vol. 15, pp. 147–161, 1995.

[13] T. Clark, P. Sammut, and J. Willans, “Applied metamodelling: a
foundation for language driven development.,” 2008. [Online].
Available: http://eprints.mdx.ac.uk/6060/. [Accessed: 23-Sep-2011].

[14] D. S. Frankel, Model Driven Architecture: Applying MDA to Enterprise
Computing. Wiley, 2003.

[15] D. Ameller, X. Franch, and J. Cabot, “Dealing with Non-Functional
Requirements in Model-Driven Development,” in Requirements
Engineering Conference (RE), 2010 18th IEEE International, 2010, pp.
189 –198.

[16] J. Greenfield and K. Short, Software factories: assembling applications
with patterns, models, frameworks, and tools. Wiley Pub., 2004.

[17] T. Clark, P. Sammut, and J. Willans, “Superlanguages: developing
languages and applications with XMF.,” 2008. [Online]. Available:
http://itcentre.tvu.ac.uk/~clark/docs/Superlanguages.pdf. [Accessed: 15-
Jan-2013].

[18] M. Fowler, “Language Workbenches: The Killer-App for Domain
Specific Languages?” [Online]. Available:
http://www.martinfowler.com/articles/languageWorkbench.html.
[Accessed: 8-Feb-2015].

[19] M. Fowler and R. Parsons, Domain Specific Languages, 1st ed.
Addison-Wesley Longman, Amsterdam, 2010.

[20] M. Eysholdt and H. Behrens, “Xtext: implement your language faster
than the quick and dirty way,” in Proceedings of the ACM international
conference companion on Object oriented programming systems
languages and applications companion, New York, NY, USA, 2010, pp.
307–309.

[21] “Irony - .NET Language Implementation Kit. - Home.” [Online].
Available: http://irony.codeplex.com/. [8-Feb-2015].

[22] “Microsoft Visual Studio 2010 Visualization & Modeling SDK,”
Microsoft Download Center. [Online]. Available:
https://www.microsoft.com/en-us/download/details.aspx?id=23025.
[Accessed: 8-Feb-2015].

[23] J.-P. Tolvanen and S. Kelly, “MetaEdit+: defining and using integrated
domain-specific modeling languages,” in Proceedings of the 24th ACM
SIGPLAN conference companion on Object oriented programming
systems languages and applications, New York, NY, USA, 2009, pp.
819–820.

[24] D. Karagiannis and N. Visic, “Next Generation of Modelling Platforms,”
in Perspectives in Business Informatics Research, vol. 90, J. Grabis and
M. Kirikova, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 19–28.

[25] "Graphiti". [Online]. Available: http://www.eclipse.org/graphiti/.
[Accessed: 8-Feb-2015].

[26] T. Clark: Xmodeler Homepage. [Online]. Available:
http://www.eis.mdx.ac.uk/staffpages/tonyclark/Software/XModeler.html
. [Accessed: 8-Feb-2015].

[27] “Petri Nets.” [Online]. Available: http://www.petrinets.info/. [Accessed:
8-Feb-2015].

[28] T. Koshy, Discrete Mathematics with Applications. Academic Press,
2004.

[29] H. Kern, A. Hummel, and S. Kühne, “Towards a comparative analysis of
meta-metamodels,” in Proceedings of the compilation of the co-located
workshops on DSM’11, TMC’11, AGERE!’11, AOOPES’11,
NEAT’11; VMIL’11, New York, NY, USA, 2011, pp. 7–12.

[30] "The OWL 2 Language Primer" [Online]. Available:
http://www.w3.org/TR/owl2-primer/. [Accessed: 8-Feb-2015].

[31] “Open Model Initiative Projects” [Online]. Available:
http://www.omilab.org/web/guest/projects. [Accessed: 8-Feb-2015].

[32] Y. Moschovakis, What Is an Algorithm? 2001.

[33] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction
to Algorithms, 2nd ed. McGraw-Hill Higher Education, 2001.

[34] “The CIDOC CRM.” [Online]. Available: http://www.cidoc-crm.org/.
[Accessed: 8-Feb-2015].

[35] D. L. Moody, P. Heymans, and R. Matulevicius, “Improving the
Effectiveness of Visual Representations in Requirements Engineering:
An Evaluation of i* Visual Syntax,” in Requirements Engineering
Conference, 2009. RE ’09. 17th IEEE International, 2009, pp. 171 –
180.

[36] S. Islam, H. Mouratidis, and J. Jürjens, “A framework to support
alignment of secure software engineering with legal regulations,” Softw.
Syst. Model., vol. 10, no. 3, pp. 369–394, Jul. 2011.

[37] H.-G. Fill, “On the Conceptualization of a Modeling Language for
Semantic Model Annotations,” in Advanced Information Systems
Engineering Workshops, vol. 83, C. Salinesi and O. Pastor, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 134–148.

[38] M. Glinz, “Very Lightweight Requirements Modeling,” in Requirements
Engineering Conference (RE), 2010 18th IEEE International, 2010, pp.
385–386.

[39] “OMILab auxiliary tools and services” [Online]. Available:
http://www.omilab.org/web/guest/tools. [Accessed: 8-Feb-2015].

[40] M. Völter and E. Visser, “Language extension and composition with
language workbenches,” in Proceedings of the ACM international
conference companion on Object oriented programming systems
languages and applications companion, New York, NY, USA, 2010, pp.
301–304.

[41] H. Kühn and M. Murzek, “Interoperability Issues in Metamodelling
Platforms,” in Proceedings of the 1st International Conference on
Interoperability of Enterprise Software and Applications, Geneva, 2006,
pp. 215–226.

[42] K. Sledziewski, B. Bordbar, and R. Anane, “A DSL-Based Approach to
Software Development and Deployment on Cloud,” in 2010 24th IEEE
International Conference on Advanced Information Networking and
Applications (AINA), 2010, pp. 414–421.

[43] L. McIver and D. Conway, “Seven deadly sins of introductory
programming language design,” in Software Engineering: Education and
Practice, 1996. Proceedings. International Conference, 1996, pp. 309–
316.

[44] B. Stroustrup, The design and evolution of C++. New York, NY, USA:
ACM Press/Addison-Wesley Publishing Co., 1994.

[45] “Research in Programming Languages | Tagide.” [Online]. Available:
http://tagide.com/blog/2012/03/research-in-programming-languages/.
[Accessed: 8-Feb-2015].

[46] "The MM-DSL grammar specification" [Online]. Available:
http://www.omilab.org/c/document_library/get_file?uuid=eb040aac-
ea0d-4df7-a0a9-80b73f00c5f8&groupId=10122, [Accessed: 8-Feb-
2015].

[47] "Generic XBase grammar for algorithm descriptions" [Online].
Available:https://github.com/eclipse/xtext/blob/master/plugins/org.eclips
e.xtext.xbase/src/org/eclipse/xtext/xbase/Xbase.xtext. [Accessed: 8-Feb-
2015].

