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Abstract—By moving business processes into the cloud,
business partners can benefit from lower costs, more flexibility
and greater scalability in terms of resources offered by the
cloud providers. In order to execute a process or a part of it, a
business process owner selects and leases feasible resources
while considering different constraints; e.g., optimizing re-
source requirements and minimizing their costs. In this context,
utilizing information about the process models or the depen-
dencies between tasks can help the owner to better manage
leased resources. In this paper, we propose a novel resource
allocation technique based on the execution path of the process,
used to assist the business process owner in efficiently leasing
computing resources. The technique comprises three phases,
namely process execution prediction, resource allocation and
cost estimation. The first exploits the business process model
metrics and attributes in order to predict the process execution
and the required resources, while the second utilizes this
prediction for efficient allocation of the cloud resources. The
final phase estimates and optimizes costs of leased resources by
combining different pricing models offered by the provider.

I. INTRODUCTION
Business processes are means to implement and execute

business logic of an enterprise [2]. Relevant tasks are or-
chestrated in the right order (control flow) while exchanging
data (data flow). Moreover, the organizational aspect is
reflected by assigning resources such as users, machines, or
services to tasks during runtime. All relevant information
about a business process can be described by a process
model, which is used by a task scheduler for controlling the
execution of the process. The scheduler decides on the path
the process will take based on control/data flow, and utilizes
the underlying resources for executing and synchronizing the
tasks along the execution path.

Traditionally, a process owner holds and utilizes an in-
house fixed set of resources used for executing business
processes. These resources are managed and scheduled by
the owner, which entails several issues related to flexibility
and scalability, as well as the tremendous costs that engen-
ders the maintaining of these resources. With the advent of
cloud computing, business processes can benefit from the
full potential of scalable and elastic cloud resources [3], as
well as on-demand pricing models. However, if the same
allocation strategies are applied as with in-house resources
this can lead to high resource redundancy, which can still
result in high costs. Therefore, efficient resource allocation
and cost optimization based on the execution path of the
process is still required by the owner.

While there is a body of work on resource allocation and
management in the BPM context [4], [5], [6], only lately
more attention has been paid to process scheduling in the
cloud [7], [8], [9], [10]. The main focus is to propose tech-
niques to optimize the actual scheduling and deployment of
cloud resources for business processes, from the perspective
of the cloud provider. However, such approaches only reduce
costs for the provider, while a customer, i.e., a process owner
can still end up with high costs due to low utilization of
leased resources and poor selection of pricing models.

In our work, we adopt the perspective of a process owner,
and formulate the problem as follows: How can a business
process owner estimate and minimize costs for allocating
cloud resources by utilizing the prediction of the process ex-
ecution path? The prediction considers different metrics and
the behavior of a process during the runtime. Consequently,
resource allocation must satisfy all the constraints and the
requirements of the tasks. Finally, cost estimation should
provide different pricing options and highlight the best one.

We take the offline approach by predicting the execution
path and estimating resource requirements prior the actual
deployment. The approach is used for resource capacity and
budget planning before moving business processes to cloud,
as well as for offline resource scheduling, i.e., defining lease
contracts and associating tasks with resources. The approach
comprises three phases/contributions for achieving the above
defined goal, namely:

• Business process metrics and prediction - we utilize
process model metrics and attributes in order to derive
resource requirements based on the predicted process
execution path.

• Resource allocation - we minimize resource require-
ments by reusing the resources of sequentially execut-
ing tasks that are obtained from the prediction phase.

• Cost estimation and optimization - we estimate the
lowest cost leasing option based on the resource alloca-
tion and pricing models offered by the cloud provider.

The paper is structured as follows. Section II describes
a motivating example and summarizes the challenges, and
Section III presents the fundamentals. Sections IV, V and
VI detail the three phases of our approach, while Section
VII evaluates the methods. Finally, Section VIII discusses
the related work, and Section IX summarizes the paper.
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Figure 1: E-mail voting for resolving issues [1]

II. MOTIVATING EXAMPLE

The example depicted in Figure 1 describes an E-mail
voting process presented in BPMN 2.0 specification. The
example represents a simplified version of the process found
in [1], and illustrates a process for resolving issues through
e-mail votes. The grey boxes describe the tasks to be exe-
cuted, while the diamonds define the relationship between
them and the order of their execution; i.e., the control flow.
The dashed links define the data flow and the items to be
exchanged between the tasks.

The issue list manager sets up a list of issues (task A) that
will be discussed through the voting process. When the list is
ready, the issues are announced (task B) and the discussion
process is launched through e-mail exchanges (task C) and a
possible conference call (tasks D and E). The discussion is
then evaluated (task F ) and the votes are collected (task G).
The votes are calculated and the results are finally announced
and published (task H).

It should be noted, that each of these tasks requires
a specific application and an amount of resources to be
executed. For example, task E might require conference
terminals for each participant of the conference call, which
would result in several small machines being allocated.
Commonly, the business process owner would allocate all
the resources required for executing the entire process.

However, D and E might not be executed, so their re-
sources would be wasted. This provides a trade-off between
selecting the most probable path, or playing it safe and
allocating redundant resources. Furthermore, if task D also
requires small machines, they might be reused for task E,
which would reduce the number of redundant machines.
Finally, if resources for task B are leased from the provider
until the end of the entire process, they can be reused for
any task after B, as the resources are already paid for.

Based on the discussion, we define 3 research questions:
• How can business process owner utilize knowledge

about the process in order to predict an execution path
and the required resources for this path?

• How can the owner utilize this prediction of the re-
source requirements in order to efficiently allocate them
on a cloud infrastructure?

• How can the owner use the allocation in order to derive
the cheapest pricing scheme from the cloud provider?

III. FUNDAMENTALS

This section introduces the main concepts and definitions
related to business processes and cloud infrastructure. They
are used throughout the paper for formulating the context of
the problem, solution and evaluation.

A. Business Process Model

A process model defines the relationship between the
tasks of an organization needed to achieve a business
goal. This relationship may characterize either the control
or data flow structure; i.e. control or data dependencies
between the process tasks. A process is represented by a
directed acyclic graph where nodes are tasks, gateways or
events and edges are data or control dependencies (Figure 1).

Definition 1 (Process Model): A process model is a tuple
(O, −→c ,

−→
d , D) where:

• O is a set of objects which can be partitioned into
disjoint set of tasks T , gateways G and events E

• G is a set of gateways which can be partitioned into
disjoint sets of exclusive XOR gateways and parallel
AND gateways.

• E is a set of events which can be partitioned into
disjoint sets of start and end events.

• D is the set of data objects.
• −→c : O →O is a control flow relation between the

objects.
•
−→
d : T ×T → D is a data flow relation between the
tasks.

In the following, we assume that the choice patterns (XOR
gateways) of a process model are annotated with branching
probabilities; i.e., the probability of choosing a branch. In
practice, this can be determined using mining techniques of
previous executions of the process model.

Definition 2 (Task): A task t is a unit of work performed
to complete a job and is defined as a tuple (name, input,
output, δ, R), Where:
• input ⊂ D with ∀d ∈ input,∃t′ with

−→
d (t′, t) = d.

• output ⊂ D with ∀d ∈ output,∃t′ with
−→
d (t, t′) = d.

• δ is the average time for executing t.
• R is the set of resources required by the task t; e.g.

storage, CPU.



B. Cloud Infrastructure Model

Cloud represents computing and storage resources, i.e.,
machines that can be leased by a process owner, and are
used for satisfying resource requirements of the process
tasks, as shown in Figure 2. In the figure, the first task
requires a set of resources, which can be satisfied by the
two machines as they have sufficient configuration. The
machines represent a cloud infrastructure and are configured
according to certain flavors.

Definition 3 (Cloud model): A cloud model is a tuple
(M, ~F) where:
• M is a set of machines m connected over the network.

Each machine is defined as a tuple m(h, f), where h
indicates a type, e.g., storage or a computing machine,
while f defines a flavor, namely a resource capacity. In
the real-world, a machine can be any type of isolated
computing resources such as a physical or virtual
machine (VM), or a container, e.g., two VMs running
on top of a physical machine as shown in Figure 2.

• F is a set of flavors f , a preconfigured package of
resources such as RAM, CPU, storage and network
bandwidth, defined in ordinal scale, e.g., small, medium
and large VMs. Figure 2 shows two flavors, where only
larger one can satisfy resource requirements of the task,
namely 32G of storage, 4 cpus and 4G of RAM.

Finally, we define a mapping between the resources
required by a task and the resources provided by a cloud
infrastructure, i.e., machines, through the definition and
configuration of flavors.

Definition 4 (Resources): Resource requirement r is a
tuple r(f, b, e), where:
• f is a flavor, as shown in Figure 2 where resource

requirements of the task are mapped to the flavor of
the machines.

• s defines start time when the resources are required.
• e defines end time when the resources can be freed.
Both s and e are derived from the δ attribute of a task.

Finally, a task can require a set of resources R, where each
requirement r ∈ R can have different flavor f .
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Figure 2: Cloud model

IV. BUSINESS PROCESS METRICS AND PREDICTION

In this section, we present the metrics that are used to
predict the execution path of a business process, as well as
the resource requirements of each task.

Communication overhead: represents the amount of
data to be transferred between a pair of tasks. We assume
that communication overhead can be measured in bytes.
We also assume that the average size in bytes of data d is
known, and we write size(d) to denote this size. We define
the functions α(t) and β(ti, tj) as follows:

Function 1 (Execution Number α(t)): The function α(t)
represents the number of times a task t is executed in a
single instance of the business process.

Function 2 (Follow Probability β(ti, tj)): Function
β(ti, tj) represents the probability that a task ti follows a
task tj for a single instance of the business process.

Details about how to calculate the execution number of
a task and the follow probability between two tasks in a
process model can be found in [11]. The communication
overhead is given by the following equation:
co(t1, t2) = Σ

d∈
−→
d (t1,t2)

α(t1) × β(t1, t2)× size(d) (1)

In the equation, the communication overhead between two
tasks t1 and t2 is equal to the sum of the data sent from t1
to t2 multiplied by (i) the number of the execution of t1;
i.e., α(t1) (e.g. in a loop), (ii) the probability that t2 follows
t1, and (iii) the size of data d. The communication overhead
is used to estimate the storage requirements by the owner.

In general, an execution of a process follows the order
and the dependencies defined in its model. During runtime,
instances can take different paths based on the choices
they make (e.g., XOR pattern). A path represents a set
of tasks that can be executed by a single instance, from
start to end following the control flow of the process . The
resources required by a given instance depend exclusively
on its execution path. Therefore, predicting the path that
will be taken by a given instance is used for estimating the
amount of the required resources. In this context, we use
two different approaches as follows:

Optimistic Path: represents the path with the highest
occurrence probability. To determine the optimistic path,
we parse the process model from start to end and for
each choice gateway, we choose the branch with the highest
probability. Tasks with a low execution probability are not
considered in this path. The optimistic path is given by Equa-
tion 2, where |−→c (oi, oj)| represents the value (probability)
of the control dependency between the objects oiand oj (an
object can be a task or a gateway).

OP (M) = argmaxP∈M [
∏

oi,oj∈P
|−→c (oi, oj)|] (2)

It should be noted that the calculation of the optimistic path
does not take into consideration the resource requirements
(e.g., communication overhead).
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Figure 3: Critical path (all tasks) and Optimistic path (dark
colored tasks)

Critical Path: represents the path that requires the
maximum of resources. To determine the critical path, we
parse the process model from start to end and for each
choice gateway (XOR), we choose the branch with tasks
that require the maximum of resources. The amount of
resources required by a task is weighted by its execution
time and the average execution number. For example, in a
choice between two tasks t1 and t2 that require resources
R1 and R2, and have the execution times δ1 and δ2 re-
spectively, the task that belongs to the critical path is given
by max{t1,t2}(|R1| × δ1 × α(t1), |R2| × δ2 × α(t2)). The
calculation of the critical path is given by Equation 3.

CP (M) = argmaxP∈M [Σt∈P |Rt| × δt × α(t)

+Σ(ti,tj)∈P co(ti, tj)]
(3)

Since we deal with two types of resources; i.e., computing
resources and storage, then it is possible to have two dif-
ferent critical paths of the same process model; i.e., one for
each resource type. For example, consider a choice between
two tasks t1 and t2, which require R1 and R2 as computing
resources, and R′1 and R′2 as storage resources, respectively.
If we assume that R1 <R2 but R′1 >R

′
2, then the critical

path in term of storage is the one containing t1, and the
critical path in terms of computing resources is the one
containing t2. In this case, we use the both critical paths,
estimate their costs (cf. next Sections), and chose the one the
most costly. The critical and optimistic paths of our example
scenario are shown in Figure 3.

V. RESOURCE ALLOCATION

In the previous section we define business process metrics
used for predicting execution path of the process, and derive
start times s and end times e of the path tasks, as well as
the amount of required resources. Software resources are
not considered in the allocation as each task requires fresh
software, and therefore each allocated machine has to be
reimaged. However, hardware resources, i.e., machines can
be reused for satisfying time constrained tasks by mapping
the tasks to available machines. The mapping problem can
be formulated as Fixed Job Scheduling (FJS) problem, also
known as interval scheduling problem or k-track assignment
problem [12]. Finally, it should be noted that the same
approach can be applied for computing and storage machines
utilized by the tasks.

Resource requirements: FJS defines a set R =
{r1, ..., rn} of n jobs and each job ri requires processing
without interruption from a given start time si to a given
end time ei. Each machine, while available all the time,
can process at most one job at a time. The objective is
to determine the minimum number of machines needed to

process all the jobs. In our case, jobs represent resources
requirements of tasks. Furthermore, our problem includes
different machine configurations, i.e., flavors, which make
it strongly NP-hard [13]. Therefore, we apply heuristics in
order to optimize allocation, more specifically we apply
modified best-fit algorithm and combine it with FJS (Al-
gorithm 1).

The algorithm receives a set of n requested resources R,
where each request ri is defined with the start time si, end
time ei and flavor fi. Output of the algorithm is a list of
machinesM where each machine mj is scheduled to satisfy
a subset of requested resources Rj ⊆ R. Each machine is
defined with flavor fj and a flag aj , which is used to mark
machine’s availability during resource allocation within the
algorithm. In line 1 of the algorithm, start time si and end
time ei of the requested resources are placed in a single
vector, thus creating 2n endpoints, namely {p1, p2...p2n}.
Afterwards, from line 2 to 4 the endpoints are sorted by
three attributes. Firstly, the endpoints are sorted in ascending
order by time indicating start or the end. Secondly, if times
are equal, the start times are set before the end time, in order
to first release the expired resources and then allocate new
ones. Finally, the endpoints are sorted by the execution time
of the related resources in a descending order, so that longer
requirements are served first.

Algorithm 1: Resource requirements prediction

Input: R = {r1, r2, ...rn}, where ri(si, ei, fi)

Output: M = {m1,m2, ...mm}, where mj(Rj ⊆ R, fj , aj) so
that R = R1

⋃
...

⋃
Rc and R1

⋂
...

⋂
Rc = ∅

1 Perform three level sort on 2n endpoints
(p1 ← s1, p2 ← e1, ...p2n−1 ← sn, p2n ← en)

2 • sort in ascending order so that p1 ≤ p2 ≤ ... ≤ p2n

3 • if pk = pk+1 = ... = pk+w then s is set before e

4 • if pk = pk+1 = ... = pk+w then apply descending order by
execution time so that ei − si ≥ ei+1 − si+1

5 F ← F
⋃
{fi}, where i = [1, n] and fi is unique

6 sort(F ) in descending order
7 foreach f ∈ F do
8 for i = 1 to 2n do
9 if (fi = f) then

10 if (pk = si) then
11 mj ← getAvailable() ; // Alg 2

12 Rj ←Rj
⋃
{rj}

13 aj ← false

14 else
15 aj ← true, where mj ∈M and ri ∈ Rj

16 return M

The set of distinct flavors F are extracted from the
requested resources R (line 5) and sorted in a descending
order (line 6). For each distinct flavor fz in line 7 the
algorithm performs allocation by going through the set
of 2n endpoints (line 8). It first checks in line 9 if the
current endpoint pk belongs to the requested resources with
a specified flavor fz (line 9) and if the endpoint is the start



(line 10). If conditions are true function getAvailable (line
11) gets first available machine mj and takes the resource
ri to which the start time pk = si belongs to, and adds it
to the schedule list Rj of machine mj (line 12). In other
words, it satisfies resource requirement ri with the machine
mj . Finally, the flag aj of the machine mj is set to false,
thus indicating that it is no longer available (line 13).

In case the endpoint pk = ei is the end instead of the
start (line 14), machine mj corresponding to ri is placed is
released by setting aj to true, hence flagging it as available
(line 15). This means that machine mj can now be used for
other resource requirements. Once all the endpoints of the
specific flavor are allocated, the algorithm returns to line 7
and starts allocating smaller flavors, since F is sorted in a
descending order in line 6. Once all the flavors are allocated,
the algorithm returns the set of machinesM containing their
schedules.

Reusing resources: Function getAvailable in line 11
of Algorithm 1 defines how resources are reused. We define
three strategies formulated as part of joined Algorithm 2 and
shown in Figure 4 for reusing machine mj with flavor fj for
satisfying resource requirement ri with flavor fi. Comments
on the right of the algorithm define to which strategy the
code line is applied to, namely:

(1) no reuse: always allocates a new machine for each
resource requirement, as shown in Algorithm 2 with Lines
7, 8 and 9 where a new machine is allocated, added to the
set of existing machines, and finally returned, respectively.
This strategy serves as the baseline approach and commonly
requires most resources as shown in Figure 4.

(2) fi = fj: reuses only the same size machines, as
shown in Figure 4 where tasks B, D and F are sequen-
tially executed on machine m1. Available machines M are
searched through (Line 1) and checked for the same flavor
required by ri (Line 2). If the machine is available (Line 4)
it is returned by the function (Line 6). In case no machine
satisfies the criteria, a new machine is allocated in line 6-8,
the same as for strategy (1).
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Figure 4: Resource Requirements through Time

(3) fi ≤ fj: reuses larger machines for running smaller
resource requirements, hence increasing the utilization of the
same machines. For example, task E in Figure 4 requires
small flavor, but was executed on a large machine m1 as the
latter was available during the requested time period. Similar
to strategy (2), available machines are searched through
(Line 1). However instead of accepting only the same size
flavor, the larger flavors satisfy the criteria as well (Line 3).
Note that this does not break the constraints as the larger
machines can satisfy smaller resource requirements of tasks.
Along with checking the availability of the machine (Line
4), the end time ei is used to check if the current resource
requirement can fit the time gap between the current moment
and the sk of the following requirement that is satisfied with
the machine. Last four lines are equivalent to strategy (2).

Algorithm 2: Algorithms for machine reusage strategies
Input: getAvailable(M, fi, ei)
Output: mj

1 foreach mj ∈M do (2)(3)
2 if fj = fi then (2)
3 if fj ≥ fi then (3)
4 if aj = true then (2)(3)
5 if ei ≤ next(sk ∈ Fj)) then (3)
6 return mj ; (2)(3)

7 mj ← new m(fi) ; (1)(2)(3)

8 M ←M
⋃
{mj} ; (1)(2)(3)

9 return mj ; (1)(2)(3)

Resource deployment: Resource deployment includes
deploying the required resources on top of the cloud infras-
tructure, e.g., deploying VMs on top of physical machines.
Deployment is done by the cloud provider, who can benefit
from business process metrics by achieving lower costs
due to efficient resource planning. Resource (re)deployment
algorithm is executed when existing resources are no longer
needed or new resources are required, namely when a task
starts or ends. Reusing the existing machines is done by
simply deallocating the old ones and allocating new ones
closer to data source, rather than re-imaging the machines
and migrating them.

Here, we also discuss that the business process owner can
also benefit from providing process metrics to the provider,
as the provider can lower the costs and therefore offer
a discount. On one hand, the trade-off for the owner is
privacy/confidentiality of the business process, where the
owner has to make some of the process information publicly
available to the provider. On the other hand, the provider has
to implement more complex deployment algorithms in order
to process additional information. Algorithms such as [14]
can be adapted for resource deployment and consolidation,
while [15] can be used for data locality awareness. However,
due to page restrictions, detailed algorithm is out of the
scope of this paper.



VI. COST ESTIMATION AND OPTIMIZATION

Once the capacity and type of required resources are
predicted, the costs for cloud deployment can be estimated.
We consider two lease policies commonly practised:
• Static - a subscription type policy where all the re-

sources are leased from the beginning, to ensure the
whole execution of the business process.

• Dynamic - an on-demand policy where resources are
leased when needed and released afterwards.

Cloud providers usually offer several pricing models that
are more convenient for the both leasing policies. Pricing
models can be defined as a tuple z(v, c), where v is the
duration of the lease, and c is the price of the resources for
that time period. In order to calculate a total price for all
machines, the total lease time of each machine is divided
into a set of smaller slices L = {l1, l2, ...}, where each slice
lk(sk, ek, ck) has a duration ek−sk = v and price ck based
on the applied price model. Then, all slice prices are summed
for each machine using the following equation:

Ctotal =

|M |∑
j=1

|Lj |∑
k=1

ck (4)

While a number of slices for static pricing policy can
be calculated in a straightforward manner by dividing total
execution time of a process with v and ceiling the result, the
dynamic one requires algorithmic solution as a machine can
be leased and released at any time. More specifically, each
resource requirement that is satisfied by a machine must fall
within a lease period, where lease period is defined by the
pricing model. Therefore, we use the following algorithm
applied on each machine for generating slices.

Algorithm 3: Estimating total lease time

Input: v, c, Rj , where Rj ⊆ R, R = r1, ..., rn, and ri(si, ei, fi)

Output: Lj
1 p = s1

2 foreach ri ∈ Rj do
3 if (si − p) ≥ v then
4 Lj ← Lj ∪ lk(sk ← p, ek ← p+ v, c) ; p← si

5 while (ei − p) > v do
6 Lj ← Lj ∪ lk(sk ← p, ek ← p+ v, c) ; p← t+ v

7 Lj ← Lj ∪ lk(sk = p, ek = p+ v, c)

8 return Lj

The start time s1 of the first resource requirement r1 ∈
Rj satisfied by machine mj is taken as the start time of the
lease; i.e., the start for the first slice, and is taken as current
time p (Line 1). All resource requirements are looped (Line
2) and checked for their start times si and end times ei. If
start time si of ri is after or at the expiration of the current
slice (Line 3), the slice is added to the set Lj , while the
start time of the next slice p is moved to si (Line 4). If end
time ei exceeds the duration of the current slice (Line 5),
the slice is added to Lj (Line 6). Furthermore, start time of
the next slice p is set to the end of the last slice. This is

repeated until ei is within the duration of the slice. The final
slice is added in Line 7, and Lj is returned in Line 8.

Here, we introduce a hybrid approach (Algorithm 4)
where a client, rather than using a single pricing model,
combines all offered models in order to derive a better deal,
i.e., a lower price, while still satisfying all constraints. Lease
time is divided into a set of slices Lj for each machine mj

using Algorithm 3 for the shortest pricing model z1(v1, c1)
and fed into Algorithm 4. Rest of the pricing models Z are
sorted in ascending order by their duration vi in Line 1.
Pricing models are looped in Line 2 in order to consolidate
shorter slices into longer ones if the price of the former is
higher than of the latter.

Algorithm 4: Hybrid pricing with variable slices

Input: Z = {z2, z3...}, where zi(vi, ci),Lj
Output: Lj

1 Sort(Z) by vi in ascending order
2 foreach zi ∈ Z do
3 foreach lk ∈ Lj do
4 empty(B)
5 while duration(B) ≤ vi do
6 B ← B ∪ lk+w++

7 if (price(B) > ci then
8 Lj ← Lj − B
9 Lj ← Lj ∪ lk(sk ← sk, ek ← sk + vi, ci)

10 return Sj

For each slice lk (line 3) buffer B is emptied. Furthermore,
the buffer is filled with slices starting from the slice lk while
its total duration is shorter or equal to the duration vi of the
current pricing model (lines 5 and 6). If the total price of
slices in the buffer is greater than the price ci of the current
pricing model (line 7), the slices in B are removed from Lj

(line 8) and replaced with a new longer slice with duration
vi and price ci of the current pricing model (line 9). Once all
slices are looped, a next longer pricing model is taken and
applied on slices in order to achieve further consolidation.
The final result is a set of variable slices Lj returned for each
machine. The total price for all machines is again calculated
with Equation 4.

VII. EVALUATION

In order to demonstrate the feasibility of our approach by
showing how it can be used for finding the most efficient
allocation strategy and the lowest cost pricing scheme for the
owner, we implement process prediction, resource allocation
and cost estimation phases in Java and apply them on the
use case scenario presented in Section II. We generate 30
different configurations for the scenario with random execu-
tion times of the tasks, and random resource requirements
in order to get more diverse results. We calculate both
optimistic and critical paths for each of the configurations,
and use the process metrics for allocating resources by
applying all three reuse strategies.
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Figure 6: Resource allocation costs for the optimistic path and resource utilization for hybrid pricing scheme

Figure 5 shows average number and type of machines for
each strategy and different paths. Generally, reuse strategy
(3) requires least resources at one moment in time, as it can
reuse already leased machines for satisfying new resource
requirements, while (1) requires most as it always runs new
machines. Additionally, a critical path represents a safer
option as is can support any path. Consequently, it exhibits
lower utilization due to redundant resources compared to the
optimistic path. Due to space constraints, we present only
results for the optimistic path further in the the evaluation.

Flavor 1 hour 1 month 1 year
micro 0.0150 $ 0.0125 $ 0.0100 $
small 0.0300 $ 0.0251 $ 0.0201 $
medium 0.0600 $ 0.0501 $ 0.0402 $
large 0.1660 $ 0.1386 $ 0.1137 $

Table I: Pricing models and prices for different flavors.

Furthermore, we utilize Amazon EC2 pricing models1

(Table I) in order to estimate lease cost, namely we use on-
demand model with duration of 1 hour, and reserved model
with duration of 1 year. Moreover, we derive additional
pricing model with duration of 1 month in order to show
the diversity supported by our approach, and we apply all
of them on resource allocation strategies. Figure 6 shows
that costs for static leasing policy follow the amount of
allocated machines (Figure 5), i.e., the more machines the
higher the cost, as they are leased from the start until the end
of a business process execution. Consequently, the resource
utilization is thus low, namely 20-60% as shown in both
Figures 5 and 6, while dynamic policy is always above 90%.

However, dynamic leasing policy provides lowest costs for
reuse strategy (2), as only the same machines size are reused
for satisfying new resource requirements. On one hand, reuse
strategy (1) fails at sequential tasks, where machines used
for the previous task have not yet expired, but are not reused
for the next task, rather new ones are leased. On the other
hand, reuse strategy (3) fails at reusing these machines as
it reuses large ones (which are commonly more expensive)
for satisfying small resource requirements, which results in
higher total cost. Finally, in all tested settings the hybrid
pricing scheme presented in this paper provides the best
option for the customer, as it is able to combine best of
all pricing models offered by the provider.

VIII. RELATED WORK

In [16], an approach for estimating the minimum num-
ber of computing resources required for the execution of
workflows within a given deadline is proposed. First, the
approach was based on a balanced time scheduling heuristic

1Amazon Web Services: http://aws.amazon.com/

algorithm (BTS), then it was extended using a partitioned
balanced time scheduling algorithm (PBTS) [17]. The latter
determines the best number of computing resources per
time charge unit, while minimizing the total cost during the
entire application lifetime. In comparison to our work, their
approach considers workflows as simple directed graphs
(DAG), and does not take into account the common control
flow patterns; e.g.; choice or loops, and the data flow
between the tasks. Finally, the approach does not consider
the average execution time of tasks, but the deadline instead.

In [18], an empirical prediction model for adaptive re-
source provisioning in the cloud is proposed. The approach
presents a prediction framework, that utilizes statistical mod-
els in order to predict resource requirements. The objective
is to enable a proactive scaling in the cloud. The prediction
is based on historical data through neural network based
models. The approach deals with simple application and
not business processes. In [19], a prediction-based dynamic
resource allocation scheduling is proposed. The approach
presents an online resource prediction and takes the VM
workload variability into account. They consider that the
VM resource demand is time-varying, and therefore use the
ARIMA models [20] based on time series analysis to predict
the CPU and memory usage. The prediction is based on
statistical data collected from the resources and does not
deal with workflow or business processes.

In [21], a forecasting solution for business processes is
presented. The approach is based on two types of prediction:
(i) prediction of metric values that active process instance
will have at the end of their execution and (ii) prediction of
aggregated metric values of future instances. This work is
complementary to our work, and the predicted metrics can
be used to enhance the resources allocation. In [22], only
the challenges of how process metrics can be used for op-
timization, work queue management or resource allocation
are presented. But no particular approaches about how to
solve the challenges are given.
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for hybrid pricing scheme



In [7], a bi-criteria optimization for scheduling business
processes in the cloud, while considering conflicting ob-
jectives was proposed. The approach considers the case
where multiple instances run concurrently, and choses the
optimized matching with the cloud resources. A similar
approach has been proposed in [9], for optimizing resource
provisioning costs, based on automatic leasing and releasing
of cloud resources. In comparison with our approach, these
works consider the actual deployment of resources by the
cloud provider, while we adopt the perspective of the cloud
customer and try to predict the cost of migrating a process
to the cloud before the actual deployment.

IX. CONCLUSION AND FUTURE WORK

In this paper, we presented an approach that helps a
company estimating the migration cost of its business pro-
cess into the cloud. In particular, we showed how process
metrics and execution prediction can be utilized to chose the
appropriate pricing model of a cloud provider. Additionally,
we demonstrated how reusing leased resources can reduce
the resource requirements and consequently the migration
costs. The results proved that combining the pricing models
offered by the same cloud provider leads to a lower costs
for the process owner.

As future work, we plan to consider the dynamic aspects
of business processes. In particular, we want to analyze
the impacts of multiple concurrent instances of the same
process on the resource requirements and accompanying
costs. We also intend to investigate the provider’s perspective
and analyze how process metrics and prediction can be used
for optimizing resource deployment. Finally, including other
cloud attributes such as QoS can widen the feasibility of our
approach.
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