
Guidelines and Metrics for Configurable and Sustainable
Architectural Knowledge Modelling

ABSTRACT
Architectural Knowledge Management (AKM) has been an active
research area in the last decade; the importance of making the
right architectural decisions – and making these at the right time –
has been recognized by the contemporary software engineering
practices. Several AKM meta-models, templates and tools have
been proposed and applied in practice to capture architectural
design decisions and minimize architectural drift during software
evolution. However, most of these AKM models, and the
architectural decisions captured with them, lack contextual
awareness, flexibility and maintainability over time. In this
position paper, we outline an extended AKM meta-model and a
set of guidelines with the goal to (i) allow AKM tool engineers to
construct more configurable and therefore flexible AKM tools, (ii)
allow knowledge engineers and method coaches to create more
sustainable and therefore maintainable decision logs (AK model
instances). We approach these two goals by way of mapping the
extended AKM meta-model concepts to quality attributes for
architectural knowledge as well as supporting AK metrics.

Categories and Subject Descriptors
D.2.11 [Software Architectures]

General Terms
Management, Documentation, Design.

Keywords
Software architecture, architecture erosion, architecture
knowledge, technical sustainability, technical debt.

1. INTRODUCTION
Architectural drift is a major concern in avoiding architecture
erosion during software evolution, i.e., the problem that changes
are applied in a system, but not reflected in the design [1].
Architectural Knowledge (AK) often vaporizes if architecturally
significant design decisions are not recorded; hence, it is
important to capture such design decision rationale along with the
actual designs. Since 2004, the problem of AK vaporization has
been widely recognized and addressed by the software
architecture community [2] [3].

Preserving AK and capturing architectural decisions explicitly
brings about new problems – this AK has to be maintained and
evolved over time along with the architectures and their
implementations.

There has been significant AKM research in the form of meta-
models, methods, templates and tools [4] to incorporate this
knowledge into already existing views on software architecture
[5]. However, the majority of these approaches suffer from an
inadequate level of rigidity, e.g., if the knowledge is captured in
certain predefined static templates [6]. The AK captured in such
inflexible templates is sometimes difficult to maintain and evolve.
Moreover, as good design decisions endure over time, it becomes
relevant to estimate the longevity of good design decisions and
identify which of them remain more stable over time as a way to
achieve architecture sustainability. Our main contributions of this
paper is a configurable meta-model to achieve AK sustainability
and a set of criteria that suggest ways to estimate the technical
sustainability of AK.

The remainder of this paper is structured as follows. In Section 2
we describe related work. Section 3 sketches the building blocks
for a flexible and configurable AK meta-model, while in Section 4
we outline a set of guidelines (criteria) to achieve architecture
sustainability via AKM and suggest a set of mappings for each
sustainability criterion to quality attributes (QAs) and AKM
metrics. Finally, in Section 5 we draw our conclusions and
identify future work.

2. RELATED WORK
In the past eleven years, a significant body of research has been
produced in the research area of AKM. Many of these efforts are
summarized in [4]. All these initial attempts use rigid templates
for capturing the relevant AK and define a big number of
dependencies between design decisions and other software
artifacts which may complicate maintenance tasks. Only the
Architecture Design Decision Management (ADDM) tool [7]
seems not tied to any particular meta-model, as it offers a
customization mechanism that can be adapted for different users
and personalization of AK. Since 2011, new research efforts have
brought about new models and tools that extend the capabilities of
the first generation of AK tools. Among these efforts we can
highlight the ADDMM model described in [8] as a meta-model
with focus on evolution of design decisions and bidirectional
traceability between decisions and other software artifacts which
the authors use to evaluate the impact in the evolution of design
decisions. The work described in [9] provides fine-grained trace
links between design decisions, constraints, requirements and
other elements of software systems. The authors introduce
“impact-relations” to specify the impact of design decisions over
other software artifacts. Other AK tools and models like ADvISE
[10] and SAW [11] offer support for reusable decisions and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ECSAW '15, September 07 - 11, 2015, Dubrovnik/Cavtat, Croatia
© 2015 ACM. ISBN 978-1-4503-3393-1/15/09…$15.00
DOI: http://dx.doi.org/10.1145/2797433.2797498

 Carlos Carrillo Rafael Capilla Olaf Zimmermann Uwe Zdun
 ETSIST-DTE Faculty of Computer Science University of Applied Sciences Faculty of Computer Science
Universidad Politécnica de Madrid Rey Juan Carlos University of Eastern Switzerland University of Vienna
 Madrid, Spain Madrid, Spain Rapperswil, Switzerland Vienna, Austria

 carlos.carrillo@upm.es rafael.capilla@urjc.es ozimmerm@hsr.ch uwe.zdun@univie.ac.at

collaborative aspects respectively. A set of tags in the SAW tool
allow for configurable models to visualize better the knowledge
captured. Finally, the ADMentor approach [12] suggests a
flexible, template-based decision backlog that can be configured
for knowledge capturing and sharing based on predefined, but
extensible meta-information. This last approach is one of the few
AK models that suggest flexible and configurable ways for AK.
Consequently, there is still a challenge to produce more flexible
and configurable AK models able to yield and manage sustainable
AK, address more explicitly the longevity of the design decisions,
and provide criteria to maintain this AK in a sustainable fashion in
the long term. We address these issues in the following sections.

3. A FLEXIBLE AND CONFIGURABLE AK
META-MODEL
In this position paper we suggest a new flexible and configurable
AK model to address the rigidity of previous approaches. Our
work is based on our background and previous experiences as
creators and users of AK tools (i.e. the ADDSS and ADvISE
AKM tools) and based on a previous work [13] where we build an
AK meta-model with the following extended capabilities: (i) fine
grained links between design decisions and other software
artifacts, (ii) decision history and evolution, and (iii) explicit
support for runtime decisions.

3.1 Drivers for sustainable AK
The notion of sustainability of AK and technical sustainability for
software architecture described in our previous work [14] was the
inspiration to produce a highly configurable and adaptable meta-
model that: (i) promotes the sustainability of the AK captured, (ii)
helps to improve the longevity of good decisions and
corresponding architectures, and (iii) provides extensible and
flexible capabilities for a new generation of AK tools avoiding
rigid templates for capturing AK. These three drivers are the main
reasons for the new AK meta-model that we will sketch in the
following subsection.

3.2 A sustainable AK model
Based on our analysis of previous AK models we synthesize in
this approach our view for a sustainable and configurable new AK
model. The architecture part based on the ISO/IEC/IEEE 42010
standard [3] is illustrated in Figure 1 and comprises a reduced but
enough elements derived from the standard and supporting the
design artifacts, stakeholders, architectural viewpoints, and
requirements that are commonly uses in any design process. Let
us highlight the novel parts of our approach:

A)- Architecture and decision models: Figure 1 describes
the architecture and decision models of our proposed meta-model.
The decision model is represented by the DD Core package, as a
minimalistic approach for capturing design decisions (based on
[14]), as we only capture a reduced set of AK items (Design

Figure 1. A configurable meta-model for architectural knowledge management.

Decision and Rationale classes). In addition, the
rationaleDescription attribute describes the underpinning
reasons of the design decisions while the other three classes are
enumeration lists containing the allowed values for the attributes
relationDD, status and category of the design
decisions.

B)- Extensions to design decisions model: In our
configurable AK meta-model we define now extensions to the
classes supporting the design rationale that in previous models are
all fixed. Hence, we enable AK tool designers to capture a
minimal set of design rationales and provide extensions that can
be captured or not. This makes the meta-model highly
configurable and flexible and hence enables us to achieve more
sustainable AK. Figure 1 depicts the DD Extensions package
which encompasses a set of optional classes that any AKM tool
can implement in a non-mandatory way. We give to AKM tool
builders the freedom to support the optional classes defined in this
part of the model, but we do not prescribe the attributes of these
classes that must be supported by such AKM tools.

We apply the same criterion for the ExtendedRationale
class as the number of AK items may vary from one project to
another. Finally, in order to measure better the longevity of
decisions and the stability of the architecture, we define the
LongevityDD class and a validity attribute to set a date
that indicates when a decision is valid or must be revised, while
the numberOfChanges attribute indicates the number of times
a decision can change.

C)- Sustainability of the decision model: In the figure we
describe the last part of our configurable AK meta-model which
pertains to those classes aimed to measure and provide indicators
about the sustainability of the decision network and to estimate
better the impact analysis of changes.

This package defines a configurable class named
SizeOfDecisionModel where we configure the size of the
decision space. The granularityOfTraces attribute
specifies if the trace links from decisions to other software
artifacts are established for subsystems, packages or classes, while
fine-grained links (e.g., a decision that motivates the creation of
an attributed) are not considered. In addition, the size of the
decision model is limited by the numberAlternativeDD
attribute. The rest of the classes address the sustainability of the
AK and architecture as we provide explicit ways to measure the
ImpactAnalysis class using an external <<component> that
may contain any existing method commonly used to estimate the
impact of changes or the ripple effect of a decision. The
numberOfHops attribute is used to configure the number of
related decisions that will be analyzed during the estimation of the
ripple effect. Finally, the SustainabilityIndicators
class defines attributes and methods to estimate the quality of the
decisions based on anti-patterns or architecture smells identified
that can be measured using technical debt metrics. We use the
proposed configurable meta-model to define in next section a set
of criteria to achieve AK sustainability.

4. CRITERIA FOR AK SUSTAINABILITY
In order to estimate the sustainability of the AK and consequently
the architecture, we need to decide which QAs to measure and
which metrics can be used. Hence, we define first a set of criteria
to achieve this sustainability for the different parts of the AK
meta-model and we suggest some metrics.

4.1 Sustainability criteria
From our experience with Service-oriented Architecture (SOA)
decisions for IT services we derived a number of principles and
quality attributes used in industrial AKM projects [15].
Nevertheless, evaluating the sustainability of the AK require a
renewed set of guidelines able to guide the designer on which
QAs and metrics can be used to achieve AK sustainability. If we
consider the decisions network as a set of interrelated nodes (i.e.,
the decisions) and edges (i.e. the trace links among decisions), we
suggest in the work the following seven criteria able to estimate
the sustainability of AK models.

Criterion 1. Granularity of the design decisions: This criterion
limits the granularity of the decisions to be captured at the level of
classes, and avoids finer-grained decisions as a way to reduce the
size of the decision model and make it more manageable. For
example, if a design decision involves the creation of a UML class
in the logical component architecture, such decision and their
corresponding trace links will be captured. However, those
decisions involved in the creation of a UML attribute or method
for a particular class will not be recorded. In cases where other
cross-cutting concerns may affect lower-level elements, the
designer can configure the granularity to finer-grain levels and
tailor this item to different projects or specific needs. We do not
prescribe or set a specific granularity level, but rather we offer it
as a configurable AK capturing option (within the context of
method tailoring [12]).

Criterion 2. Size of the decision model: With this criterion we
limit the number of design choices. We use the attribute
numberAltenativeDD belonging to the class
SizeOfDecisionModel described in Figure 1. At this stage
of this research we cannot set a specific limit but from our
experience using AK tools, we have observed a range of [1:7/10]
alternative decisions.

Criterion 3. Number of attributes captured: Making the
decision space more manageable implies capturing less amount of
information. Figure 1 provides mechanisms to capture a minimal
set of attributes in the DD Core package that can be extended if
needed using the classes and attributes of the DD Extension
package defined in Figure 1.

Criterion 4. Granularity of the trace links: Similarly to
Criterion 1, we delimit the number of trace links between different
software artifacts, from decisions to requirements and to classes,
and we avoid fine-grained trace links such as those between
decisions and attributes or methods.

Criterion 5. Number of decisions impacted: When a decision
changes there is an impact on the related decisions. With this
criterion we reduce the necessity to evaluate decisions that are less
relevant for a decision that changes. We define such restriction
using the attribute number_of_Hops in the entity Impact
Analysis. A similar argument like in criterion 1 can be said for
the limit of related decisions a ripple effect algorithm must
explore. In many cases this limit is set by the designer but we
need to carry out some experimentation before suggesting a
number of decisions that will be worthy to explore when a
decision changes.

Criterion 6. Number of times a decision changes: We use the
attribute numberOfChanges defined in the LongevityDD
class to measure how many times a decision can change and also
the interval of changes of each decision using the attributes
createdWhen and modifiedWhen.

Thereby we estimate how often a decision is modified and analyze
better the longevity of decisions.

Criterion 7. Validity of decisions: One first attempt to estimate
the lifetime of decisions can be found in [16]. In this previous
approach, the validity attribute defined in the
LongevityDD class is used to set the date until when a
decision is valid and must be reviewed. Hence, obsolete decisions
can be removed from other analyses. Sometimes, long-living
systems suffer from technology obsolesce, and decisions that were
valid at a particular time in the past are no longer valid after a
long period and become obsolete. Therefore, we use this attribute
to allow designers to set a specific date where decisions should be
revisited; if a decision is considered obsolete it can be removed
and possibly replaced by a new decision.

4.2 Relating quality and sustainability
Finally, for each criterion we suggest in this section a list of
potential quality attributes that can be address and metrics that can
be used to estimate each criterion, such as Table 1 shows. As
work in progress, we only select some quality attributes that be
believe meet each criterion.

Table 1. Criteria and quality factors to estimate sustainability
of AK models

Criterion (C) Quality Attributes (QAs) Metrics

C1.Granularity of
the design
decisions

Complexity: The granularity of
the design decisions, viewed as a
graph of nodes, is reduced as we
can limit the number of nodes in
the network.

Cost of the effort capturing the
decisions

NodeCount
[17]

Cost metrics
are not defined
(N/D) yet

C2.Size of the
decision model

Complexity, Cost of the effort
capturing the decisions

Number of
Children [18]
Cost is N/D

C3.Number of
attributes captured

Cost of the effort capturing a
number of variable attributes

Cost is N/D

C4.Granularity of
the trace links

Complexity and Cost to maintain
the trace links

NodeCount

EdgeCount
[17]

C5.Number of
decisions
impacted

Changeability: We can reduce the
amount of effort to change the
decisions impacted by a change
limiting the number of decisions
analyzed.

Change Impact
Analysis [19]

C6.Number of
times a decision
changes

Changeability

Stability: If a decision changes
less number of times it affects to
the stability of the architecture, as
good decisions endure over time.

Decision
Volatility [19]

C7.Validity of the
decisions

Changeability, Stability,
Timeliness

Decision
Volatility [19]

The rationale for this initial selection was based on: (i) the impact
of the QA for each criterion and the items measured, and (ii)
representative metrics available to evaluate such criteria, except
for cost. With regard to the completeness of the table, more
quality attributes can be added, but this will be an outcome of
evaluating more metrics for each criterion. As we can consider
technical sustainability as a combination of maintainability and
evolvability, we didn’t add these attributes in the seven criteria
because we assume they can be computed as a combination of
other QAs defined for each criterion. This is why these two QAs
are factored out of the table. However, in this position paper we
do not provide such formulas to compute both QAs yet as we
leave this for future work.

5. CONCLUSIONS
In the ongoing research presented in this paper, we emphasize the
role of configurable Architectural Knowledge (AK) meta-models
to promote capturing and using AK in a more flexible and
sustainable way than in previous works. As a first attempt towards
this goal, we proposed seven AK sustainability criteria, related
quality attributes and supporting metrics. We still need to
investigate whether additional metrics will be required; other
quality attributes may also have to be analyzed to provide better
estimations about these sustainability indicators. Hence, future
work is twofold: (i) define and evaluate metrics tailored for AK
and as well as estimations of the cost of capturing this AK, and
(ii) build a configurable AK tool supporting this approach. We
plan reengineering one or more of the already existing AKM tools
in order to add the features presented in this paper. We expect to
validate the adequacy and practicality of our approach capturing
relevant design decisions in both agile and non-agile industry
projects against the proposed criteria.

6. REFERENCES
[1] J. van Gurp, J. Bosch, S. Brinkkemper: Design Erosion in

Evolving Software Products, 2006.
[2] J. Bosch, Software Architecture: The Next Step, Proceedings

of the 1st European Workshop on Software Architecture
(EWSA 2004), Springer-Verlag, LNCS 3047, 194-199, 2004.

[3] ISO/IEC/IEEE 42010:2011 Systems and Software
Engineering — Architectural Description, First edition,
IEEE, 2011.

[4] A. Tang, P. Avgeriou, A. Jansen, R. Capilla, M. Ali Babar, A
Comparative Study of Architecture Knowledge Management
Tools, Journal of Systems and Software 83(3), 352-370, 2010.

[5] P. Kruchten, R, Capilla, J.C. Dueñas, The Decision’s View
Role in Software Architecture Practice. IEEE Software,
26(2), 36-42, 2009.

[6] J. Tyree, A. Akerman, Architecture Decisions: Demystifying
Architecture. IEEE Software 22(2), 19-27, 2005.

[7] L. Chen, M. A. Babar, H. Liang, Model-centered
customizable architectural design decisions management, 21st
Australian Software Engineering Conference (ASWEC), 23-
32, 2010.

[8] I. Malavolta, H. Muccini, V. Smrithi Rekha, Supporting
Architectural Design Decisions Evolution through Model
Driven Engineering. Software Engineering for Resilient
Systems (SERENE), 63-77, 2011.

[9] S. Gerdes, S. Lehnert, M. Riebisch, Combining Architectural
Design Decisions and Legacy System Evolution. 8th
European Conference on Software Architecture (ECSA), 50-
57, 2014.

[10] I. Lytra, H. Tran, U. Zdun, Supporting Consistency between
Architectural Design Decisions and Component Models
through Reusable Architectural Knowledge Transformations.
7th European Conference on Software Architecture (ECSA),
224-239, 2013.

[11] M. Nowak, C. Pautasso, Team Situational Awareness and
Architectural Decision Making with the Software
Architecture Warehouse. 7th European Conference on
Software Architecture (ECSA), 146-161, 2013.

[12] O. Zimmermann, L. Wegmann, H. Koziolek, T.
Goldschmidt, Architectural Decision Guidance across
Projects. 11th Working IEEE/IFP Conference on Software
Architecture (WICSA), 2015.

[13] R. Capilla, O. Zimmermann, U. Zdun, P. Avgeriou, J.M.
Küster, An Enhanced Architectural Knowledge Meta-model
Linking Architectural Design Decisions to other Artifacts in
the Software Engineering Lifecycle. 5th European
Conference on Software Architecture (ECSA), 303-318,
2011.

[14] U. Zdun, R. Capilla, H. Tran, O. Zimmermann, Sustainable
Architectural Design Decisions. IEEE Software 30(6), 46-53,
2013.

[15] O. Zimmermann, C. Miksovic, J.M. Küster, Reference
architecture, metamodel, and modeling principles for
architectural knowledge management in information
technology services. Journal of Systems and Software 85(9):
2014-2033 (2012.

[16] R. Capilla, F. Nava, A. Tang, Attributes for Characterizing
the Evolution of Architectural Design Decisions, 3rd
International IEEE Workshop on Software Evolvability,
IEEE CS, 15-22, 2007.

[17] T. Mens, M.Lanza, A Graph-Based Metamodel for Object-
Oriented Software Metrics. Electronic Notes in Theoritical
Computer Science 72(2), 2002.

[18] S. Sarkar, G.M. Rama, A.C. Kak, Api-Based and
Information-Theoretic Metrics for Measuring the Quality of
Software Modularization. IEEE TSE, 33, 14-32, 2007.

[19] K. Sethi, Y. Cai, S. Wong, A. Garcia, C. Sant’Anna, From
Retrospect to Prospect: Assessing Modularity and Stability
from Software Architecture Joint Working IEEE/IFIP
Conference on Software Architecture, 269-272, 2009.

