Tool Support for the Architectural Design Decisions in
Software Ecosystems

Srdjan Stevanetic
Software Architecture
University of Vienna,

Austria
srdjan.stevaneticQunivie.ac.at

Fei Li
Siemens AG
Vienna, Austria
lifei@siemens.com

ABSTRACT

Software architecture entails the making of architectural de-
cisions based on a set of both functional and quality require-
ments, as well as trade-offs between them, which have to be
considered to achieve design goals. Access to accumulated
and documented architectural knowledge facilitates this pro-
cess. In this paper, we present a set of tools that support
creative decision making in the different stages an archi-
tecture specification goes through. These tools are struc-
tured around a central repository, where acquired knowl-
edge is stored for reuse. The approach is motivated by the
challenges arising from the particular needs of the software
ecosystem environment, where the software design process
is characterized by the participation of multiple and diverse
stakeholders and the existence of multiple software appli-
cations built on a common platform. Our aim is to pro-
vide tool support for making quality-driven design decisions
in a flexible and reusable manner, facilitating the system’s
evolvability, as well as enhancing its understandability to
the stakeholders involved.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Computer-aided software
engineering; D.2.11 [Software Engineering]|: Software Ar-
chitectures

General Terms

Design, Documentation, Measurement

1. INTRODUCTION

Software architecture can be considered as the collection
of key decisions on the design of a software system [9]. Such

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

ECSAW 15, September 07 - 11, 2015, Dubrovnik/Cavtat, Croatia

Copyright 2015 ACM 978-1-4503-3393-1/15/09 ...$15.00.
http://dx.doi.org/10.1145/2797433.2797480.

Konstantinos Plakidas
Software Architecture
University of Vienna,
Austria
konstantinos.plakidas@univie.ac.at

Daniel Schall
Siemens AG
Vienna, Austria
daniel.schall@siemens.com

Tudor B. Ionescu
Siemens AG
Vienna, Austria
tudor.ionescu@siemens.com

Uwe Zdun
Software Architecture
University of Vienna,

Austria
uwe.zdun@univie.ac.at

architectural design decisions (ADDs) are driven by vari-
ous influences that converge throughout the development
process, from the target system requirements to unquantifi-
able factors such as the current technical or business en-
vironment, and the architect’s own experience [1]. System
requirements are typically divided into functional and non-
functional requirements (NFRs); the latter reflect specific
quality attributes (QAs) [1]. A decision to implement a
specific functionality may often impact the system’s QAs,
so that trade-offs between functional requirements and QAs
have to be considered.

Architectural knowledge is codified and made available for
reuse through the use of architectural and design patterns
(see for example [6, 4]) or tactics [1], which address specific
QA concerns. A pattern might realize several tactics, and
the implementation of any single tactic will impact other
tactics as well as the pattern it is included in [7]. Implemen-
tation of desired QAs in a software system is complicated by
their often subjective interpretation and different evaluation
by different stakeholders in different contexts.

This is particularly evident in software ecosystems, which
bring together several business partners (stakeholders)
developing different applications for the same platform.
This particular setting poses a series of challenges [3], such
as managing variants of ADDs, facilitating modularity
and reusability, or increasing system understandability
between stakeholders and software architects involved in
the architecture specification (AS) process.

The approach in this paper is motivated by consideration
of an industrial large-scale software ecosystem in the smart
city domain. In particular, we propose to integrate a set
of tools that support reusable quality-driven ADDs. The
tools are combined to support the different stages a soft-
ware AS usually goes through: exploratory architecture, ar-
chitecture specification, and architecture review. The given 3
stages require both logical reasoning based on a systematic
study of existing architectural knowledge, e.g. design pat-
terns, tactics, QAs, etc., and analogical reasoning based on a
comparison of a problem to be solved with similar problems
that have been solved in the past. Therefore, our approach
supports creative decision making and design together with
recurring decisions. Required knowledge related to software
patterns, tactics, QAs and their relationships as well as other

well-documented knowledge is captured in a repository and
can be reused and evolved. In addition, we propose ways to
integrate acquired architectural knowledge on ADDs in our
repository through the domain experts’ feedback or through
the semi-automatic mining of documented ADDs.

This study is organized as follows: Section 2 discusses re-
lated work. In Section 3 we describe a motivating example
for our approach. In Section 4 we describe the evolution-
ary stages of a software AS, and in Section 5 we link these
stages to our tools. In Section 6 an example on how our
approach can be utilized in practice is presented. Finally,
in Section 7 we discuss the implications of our approach in
the process of making ADDs and in Section 8 we draw the
study conclusions.

2. RELATED WORK

Several approaches have been proposed to systematize the
development of software architecture. Some of them are
mainly driven by quality goals, such as the Cost Benefit
Analysis Method [11], the Attribute-Driven Design [2], or
the Architecture Tradeoff Analysis Method [1]. These ap-
proaches however do not support either reusable ADDs or
creative decision making in the different stages an AS goes
through.

Other approaches focus on other aspects, such as reducing
architectural knowledge vaporization [8], knowledge-sharing
decisions [5], etc. However, none of these approaches pro-
vide a comprehensive computer-aided support system with
enough detail to make ADDs and design an architecture.

Drawing from our previous work on the integration of
reusable architectural decision making and QAs [15], this
paper proposes a combination of tools from both industry
(Siemens) and academia (the University of Vienna) for sup-
porting the process of making ADDs in different stages, i.e.
starting from the examination of candidate design elements
like design patterns, tactics, and QAs until the generation
of reusable ADD models and their evaluation.

In the context of software ecosystems, the relationship
between QAs and ADDs as well as ecosystem-specific QAs
like portability and scalability have been studied [10], but to
the best of our knowledge, there exist no similar approaches
in the context of software ecosystems that provide a creative
and systematic process of generating reusable ADDs.

3. MOTIVATING EXAMPLE

The proposed approach is motivated by our experience
in developing an industry-grade service delivery platform
for the smart city ecosystem [14], which aims at enabling
a wide range of stakeholders to collaboratively deliver smart
city services, thus reducing cost and time-to-market in the
service development and delivery process. At the same time,
new business models have started to emerge from the col-
laborations between smart city stakeholders [13], which pose
significant challenges to the traditional approaches to the ar-
chitecting process of large-scale software.

In this context, we have observed in particular the difficul-
ties in achieving three architectural QAs: Understandability,
Reusability, and Acceptability.

Understandability in a software ecosystem goes beyond
the documentation and communication of the usage of soft-
ware. The stakeholders have to understand how the offerings
from a third party are transferred to the chosen services, and
how the changes of a third-party service impact one’s ongo-

ing business. For example, for the end users of an energy
saving service in smart buildings, the choice of OEM de-
vices, such as gateways and sensors, made by application
providers, has strong impact on the scope and capability of
software services offered by the application providers.

Reusability is an internal software quality that indicates
the effort required to adapt and redevelop a software com-
ponent for more use cases. In the architectural design pro-
cess in software ecosystems, reusability means to maximize
the reuse of architectural decisions that are made in differ-
ent contexts with different stakeholders, to effectively doc-
ument such decisions in order for them to be referenced in
the future, and to facilitate the search of relevant decisions
in similar contexts.

Acceptability testing is a test conducted to determine if
the requirements of a specification are met. It marks the
final phase of product delivery and is a well-known concept
in software and other industries. However, acceptability in
the context of the smart city ecosystem implies a dynamic
and iterative process that concerns the views of multiple
stakeholders. For example, for a domain-independent ser-
vice platform, application developers are focused on the plat-
form’s scalability, availability and API usability, while the
government is concerned more about its security and policy
compliance.

4. CREATING ARCHITECTURE SPECIFI-
CATIONS FOR ECOSYSTEMS

Software development processes such as the Rational Uni-
fied Process (RUP) [12] are highly iterative and incremental.
In our approach we focus on creating software AS which can
be coarsely related to the first two phases in the RUP pro-
cess, i.e. the Inception and Elaboration phases, but before
the start of the Construction phase (see [12] for more de-
tails). Please note that our approach does not depend on
any specific development process though.

Focusing on the different stages a software AS usually goes
through, this process can be broadly divided into the follow-
ing three stages, regardless of the external requirements to
the system: exploratory architecture, architecture specifica-
tion, and architecture review [17].

e During the exploratory architecture stage, soft-
ware architects create an initial architectural concept
able to meet the requirements of the system. This con-
cept is often captured in sketches and meeting minutes.
To test its feasibility, a minimalist prototype imple-
mentation often accompanies the architecture concept,
which is not well-described formally (i.e. in a consol-
idated AS document) [17]. Often there exists a solu-
tion concept document focusing on how different use
cases can be implemented using different technologies
(e.g. database, web server, embedded board, etc.) and
high-level architectural patterns (client-server, service-
oriented architecture, etc.). Exploratory architecture
is an intuitive and creative stage, since architects are
faced with a new problem for which they have to come
up with a new solution approach.

e The exploratory architecture flows into the architec-
ture specification stage in the form of architectural
diagrams and draft lists containing architecturally rel-
evant functional and non-functional requirements as

well as key design decisions aimed at meeting these
requirements. If a prototype has been developed, the
key design decisions mainly reflect the technical solu-
tions implemented in the prototype for different de-
sign concerns. Using these preliminary materials, an
AS can be written. The AS contains the artefacts (di-
agrams, key design decisions, architecturally relevant
requirements, etc.) created during the exploratory ar-
chitecture stage, refined into a more precise form, while
focusing on those design concerns which were not ad-
dressed there. These can be, for example, QAs that
must be fulfilled in a deployment scenario different
from the one used for the prototype. The specification
also contains a specification of architectural qualities,
which argues the fulfilment of all QAs by referencing
those key design decisions which endorse a particular
architectural quality, for all qualities being discussed.

e When a consolidated draft of the AS document is re-
leased, it enters the architecture review stage of our
process. The purpose of reviews is to find eventual
design flaws and blind spots in the AS. Architecture
reviews can be formal and informal, depending on the
application context. For example, safety-critical soft-
ware needs to be certified according to domain-specific
standards, such as ISO 26262 for automotive applica-
tions or DO-178C for airborne systems. These stan-
dards require that formal reviews be performed and
review results be provably taken into consideration in
the reviewed architecture. If the software does not
have to be certified, informal reviews may suffice.

The three stages can be distinguished by considering
the organizational interfaces that an AS passes through.
An exploratory architecture usually stays within the group
or department assigned to create the AS. Aspects of the
exploratory architecture are most often only informally
discussed with stakeholders and people from other de-
partments. The AS is usually released for review by
experts from other departments and groups as well as by
stakeholders (i.e. customers). The reviewed architecture
usually represents a deliverable to the customer and/or
certification authority, thus exiting the boundaries of the
organization.

The described process is essentially feed-forward, as the
inputs from a previous stage must be generated anew in or-
der to trigger changes into a later stage. However feedback
from the implementation phase and from stakeholders and
customers must be also be integrated into the architectural
design. To refine the architecture during development time,
the data exchange format between the tools must be ad-
ditive, allowing adding and removing design decisions from
a preliminary or consolidated decision model at any given
time in the software development lifecycle (e.g. JSON ar-
rays). The entry points into the 3-stage process are therefore
flexible.

5. TOOL SUPPORT

The tools supporting the architectural design process
must take into consideration the specificities of each stage.
Tools related to the exploratory architecture stage should
alm at fostering intuition and creativity, whereas tools sup-
porting AS should be rather normative in order to facilitate

INPUTS: Architecture Review Stage

1. Functional requirements
Annotated AS | 4¢—

2. Non-functional requirements 5/

1
1. Set of concrete ADDs |1
describing specific pattern-| :I

tactic-QA combinations il

2. AS stub H

1]

v

1

| .

1

1

1

~; =< CoCo 1

_________________ P | ADVISE, i
f 2 7 H
1

Popup I/ !

Candidate: / :
1

1

1

1

1

1

il

I
I
I
I
1
I
I
1
O< o
1
1
!
!
1
1
i S S

1. Patterns

2. Tactics —II> MO_dEI _’
editor,

3. QAs /
4. Context items; !

[W= —— P AR R AR AR AR AR AR = = S = n
\ Visualisation of the
—— | relationships among candidate

patterns, tactics and QAs

Architecture Specification Stage

= = =P Architectural knowledge dataflow (add/retrieve)
——— Creating architecture specification — tools colaboration dataflow

Figure 1: Tools supporting ADDs in the 3 given stages

a critical and rigorous evaluation of design decisions and
architectural qualities.

Not every project requires passing through all three
architectural stages. At design time, architects can skip
the exploratory architecture stage if the project does not
pose considerable new challenges and decision models can
be reused. This opens up the possibility of creating and
applying reusable architectural models based on rigorous al-
gorithmic reasoning. However, the inputs to these reusable
models must also stem from a human-driven exploratory
process. Conversely, if during the implementation phase a
blocking problem is revealed in the architecture, it must
be possible to return to the exploratory architecture stage
and add, replace, or modify design decisions. The inputs
and outputs of the following architectural stages will adapt
accordingly. Consequently, preliminary and consolidated
design decisions can be inferred from the new requirements
driven by the stakeholders and customers or by practical
implementation problems.

To support the 3-stage model we envision a chain of
loosely coupled web-based tools' (Figure 1). The interac-
tion between these tools is based on a simple JSON-based
data format. While passing information between each
other, different tools may add new items to a JSON record.
This makes the resulting workflow essentially feed-forward.
The interactions between different tools are stage-specific,
which means that not every tool is called into action at
every stage.

The NFR Engineering Repository (NFR Repo) is a wiki-
like repository for design patterns, tactics, and QAs. The
repository currently contains records for over 200 design pat-
terns, over 50 tactics, and about 80 QAs. The records were
added in the course of several months from software archi-
tecture books but also from Internet sources such as MSDN
and Wikipedia. For every pattern, tactic, and QA the repos-
itory contains at least a short definition and a reference.
Relations between patterns, tactics, and QAs are defined as
following: each QA can be related to one/many other QAs
and can be addressed by one/many design tactics. The re-
lations between QAs, tactics, and patterns are of the type

!Only the Model Editor tool (see Figure 1) is for now not
web-based.

“many-to-many” (i.e., there can be several design tactics as-
sociated with one QA and several patterns associated with
one tactic and vice versa). As the relationships between
QAs, tactics, and patterns as well as the reflexive relations
depend on the application domain (e.g., embedded, cloud
computing, automotive, etc.), relationships binding a QA-
tactic-pattern set with a specific domain (decision tuples)
are defined.

All the other tools use the NFR Repo for different purposes
and tasks (see below) depending on which of the 3 stages is
considered. Users of the tool set are encouraged to vote ex-
isting decision tuples up or down, thus creating the premise
for more elaborate decision models based on the input of
experienced software architects.

At any stage of our architecting process, the context
popup form (Popup) can be used to add patterns, tactics,
QAs, domains, context items, and associations between
them to the NFR Repo. This can be done by visiting a
website or opening a local html page and calling Popup from
the bookmarks bar, which will bring up the popup page.
The popup script will automatically parse the content of
the page you are visiting to find matching QAs, tactics, and
patterns from the NFR Repo. Having read the content of
the underlying page, one is able to construct decision tuples
which can be associated with this context item. One can
also select an additional QA, tactic, or pattern from the
drop-down list above the check box lists or add a completely
new QA, tactic, or pattern to the repository. New records
can be previewed before adding them to the database.

This simple way of adding new records to the NFR Repo
enables architects to generate preliminary decision models
“on the fly” without needing an exhaustive NFR repository
during the exploratory architecture stage. The popup also
allows for a community to form around the NFR Repo, with
contributors from all over the organization.

5.1 Exploratory Architecture Stage

The inputs to this stage are the functional and non-
functional requirements of the system. These may exist in
a formally or informally written format or just as common
knowledge shared by a group of developers, including
emails, sketches, etc. Regardless of the format used, in this
phase the requirements to the system serve the purpose of
providing the architect with information about what the
system has to do in a given context and domain. Using this
information, the architect has to make some fundamental
design decisions concerning, for example, the type of the
architecture (e.g., layered, service-oriented, distributed).
The output of this stage is a set of candidate patterns,
tactics, QAs and context items.

The tools involved in this stage are the faceted search
(Facets) and Spider tools (see Figure 1). The Facets tool
provides an interface for the NFR Repo that allows a user
to search the stored knowledge by selecting multiple facets:
Context Types, Domains, QAs, Tactics, Patterns, and Con-
tributor. The tool is shown in Figure 2, with the available
facets on the left and the results of the search on the right.
The article displayed in the frame is a context item for the
decision tuples displayed below. A context item is always
associated with at least one decision tuple. Users can vote
these tuples up and down for the given context item or sim-
ply remove them. Decision tuples thus also contain a link to
a context item (i.e., article, definition, example, etc.) and a

vote count and are stored in the NFR Repo using the JSON
format.

The Spider tool draws upon the NFR Repo to visualize
all possible decision tuples. At the end of the exploratory
architecture stage, it can be used to display the subset of
the candidate patterns etc. selected for the next stage.

5.2 Architecture Specification Stage

Input in the AS stage consists of the set of candidate pat-
terns, tactics, and QAs that has been determined in the
exploratory architecture stage. This provides a defined de-
cision space, wherein specific solutions can be sought de-
pending on desired functional and quality requirements.

A model of the proposed design decision set (ADD model
in Figure 1) is generated using the Model Editor tool.
This is an Eclipse Modelling Framework-based graphical
editor that allows the creation of ADD models by extending
the Questions, Options, and Criteria design space analysis
method [16]. In particular, for each design issue a set of
questions along with potential options related to specific
criteria, answers, and pattern-based solutions is specified.
The information required to specify a concrete ADD model
can be taken directly from the information contained in
the context items of the identified candidate patterns (see
[16] for more details). The generated ADD model is then
used as input to the CoCoADvVISE tool, which produces a
questionnaire for making concrete design decisions. In the
CoCoADVISE model, an individual decision consists of a de-
sign question, options, which lead to possible solutions, and
QAs as decision drivers. The tool models the dependencies
between each decision solution and other decisions, as well
as the impact of a decision solution on QAs[15].

5.3 Architecture Review Stage

The review stage of the architecting process may be just
as important as the previous two stages, depending on the
application context. While in some cases it can be skipped,
in most projects, especially those focused on safety-critical
applications, architecture reviews are essential. For this rea-
son, we envision the tool support for this stage to allow inde-
pendent architects (i.e., reviewers) to assess an AS without
extensive knowledge about the project. This can be accom-
plished by granting reviewers access to all resources used
during the previous architectural stages, including require-
ments, preliminary and consolidated decision models, and
all the tools used.

The Facets tool can be used by reviewers to infer alterna-
tive design decisions based on different patterns and tactics
and to check the conformity of the architecture with respect
to QAs. Using Facets and different visualizations of deci-
sion tuples, reviewers can quickly come up with alternative
design decisions challenging the authors of the architecture.
Once the review results are integrated into the architecture
specification, a text mining tool (Miner in Figure 1) can be
used to extract reusable design decisions and feed them back
into the NFR Repo.

6. EMPLOYING THE TOOLS FOR THE
SMART CITY ECOSYSTEM

In this section we provide a detailed example of our ap-
proach during the process of defining relevant design deci-
sions during the exploratory architecture stage, and creat-
ing a reusable ADD model during the architecture specifica-

Context Types " Domains Contributed by J;nicle: Introducing: Ecosystem Quality Attributes - Inside Architecture - Site Home - MSDN Blogs
e N\

Aticle (41) Abstract (+) lonescu Tudor (44) . .

Decision Model (2) Big Data (+) Attribute Definitions Link to original context item

Wikipedia (1) C++ 84-bit Windows (+)

Embedded Systems (+)
Software E ems (4

Test (+)

In this section, | will outline a relatively useful set of Ecosystem Quality Attributes (EQAs) that an Enterprise Architect can use
to measure their business ecosystem.

™~ selected facet value

Web Senices (+) Note that Ecosystem Quality Attributes measure a business ecosystem, and therefore must include information that is not
available unless you work outside the “boundaries” of IT. In other words, using a system of EQAs to measure a business
ecosystem is a business method, not an IT method.

NFRs Tactics Patterns = =
[Ecosystem Quality Attribute ||Description
Complexity (S) ETL (3) Event Message (12) Operating Model Alignment A measure of how well the ecosystem of processes,
Consistency (€) Isolation (41) Message Bus (11) linformation, systems, and roles align to meet the
Effectiveness (€) Message Federation (9) Ipusiness model and operating model requirements
Efficiency (4) Polling (2) ohhg enterprise. The business model places
Maturity (4) " Process Manager (9) specific requirements on the ecosystem,
Performance (2) Publish Subscribe (1) requirements which may change as extemal
Privacy (4) influences, opportunities, customers, and markets
Reliability (4) ichange. Systems that do a poor job of keeping up Vote tuple up or do
Scalability (1) the the changing requirements of the market incur a and add to preliminary
Traceability (4) ‘tax” on customer loyalty, top line revenue, customer op o ¥
Visibility (4) Iservice costs, and operational efficiency that is decision mode
A\ difficult to address without systemic change |
SN [Federation Consistency A measure of how well the ecosystem supports, N/ .
U defends_and enfores the vertical division of dities V4
Facet Decision tuple Domain: Software Ecosystems, NFR: Complexity, Tactic: Isolation, Pattem: Message Bus 2 @00«
> Domain: Software Ecosystems, NFR: Efficiency, Tactic: Isolation, Pattem: Message Bus 0 @O0«
T O JR - LT VoY

Figure 2: Screenshot of the Facets tool

tion stage, drawn from the data management context in the
smart city software ecosystem [15]. This ecosystem entails
the input of and access to a large volume of data from a wide
variety of stakeholders. This is done at different times, from
different interfaces, and subject to varying policies, security
concerns, etc. This results in a wide range of possible data
management solutions.

The whole process started with collecting relevant use
cases in the data management context. To define a set of
relevant decision points, design alternatives and their solu-
tions (e.g. design patterns, technology-related solutions),
we analysed the collected use cases, investigated the exist-
ing related literature, and pursued discussions with domain
experts.

Will the data | >One >Use point-to-

be sent to|->Multiple point connection . " - : :
one or -Use pub/sub Maintainabilty [%gol;\ziusomplurl;hm;bsmbef
multiple ” Security B Maintainabilty negatively
Data |receivers? e

Routing [How will the [3Based on|> Use content| | Understandability EJE
routing of | the content [based routing

Category | Question Options Design Solutions Quality Attributes @ ®|
|

that data be | >Based on|->Use topic-
decided? published based routing
topics -Use a recipient

->Recipient- | list
based

Figure 3: Data Routing example for a reusable ADD model
with QA evaluation

For example, for the Data Routing decision, we used
Facets to retrieve context items and decision tuples that
can be used in this context, e.g. the publish/subscribe pat-
tern. Based on a collection of context items, we formulated
a reusable ADD model for the given design decision (5.2 for
more details) that is shown in Figure 3. However, the NFR
Repo lacked associations between the publish/subscribe
pattern and QAs which were found by domain experts to
be relevant in the given context. These were subsequently
added to the repository with the Popup tool. During
this process we found that the choice of patterns to be
included in the design solution impacted multiple QAs
to various degrees. For instance, the publish/subscribe
pattern assures loose coupling and thereby increases the
understandability of the system. At the same time it
reduces performance and increases complexity, which in
turn has a negative impact on understandability. Therefore
on some qualities there are positive and negative impacts

at the same time. The final choice of the solution depends
on a trade-off between different NFRs. By selecting options
in the obtained reusable ADD model (shown in Figure
3), the recommended solutions for a concrete decision are
indicated. At the same time, based on the recommended
solutions, the QAs of interest were evaluated based on the
relationships between the solutions and the QAs that can
be found in the NFR repository (shown in Figure 3).

7. DISCUSSION

In this section we discuss the implications of our approach
in the process of making ADDs in a large-scale industrial
ecosystem such as the smart city. A fundamental lesson
learned is that a systematic and creative approach that sup-
ports an architect in the given process is of special interest
since there can exist multiple design situations for different
applications in the ecosystem. Many decisions are repeat-
edly encountered, but new decisions can also appear. The
trade-offs among different QAs and their integration in the
decision-making process need to be supported. With regard
to that a set of tools that support the decision-making pro-
cess in its different stages is presented.

In our view, the tools described facilitate not only the
work of software architects, but are also of great assistance
in enhancing perception of the system for stakeholders.
Thus the inclusion of context items in the NFR Repo
provides stakeholders with practical and intuitive examples,
exemplary problems, explanatory diagrams and variant
use cases, enhancing understandability. Furthermore, the
Facets tool provides a flexible way of attacking a given
problem from different angles (QAs, patterns, tactics, etc.)
and reviewing the architecture design space from different
views, while the Popup tool allows “on the fly” introduction
of new ideas into the repository as they occur. This
enables an iterative and dynamic approach that enhances
acceptability. All these tools aid stakeholders and architects
in consolidating their understanding of the architecture in
question and enables them to make useful contributions to
the overall design process. Last but not least, the generated
final AS decisions can easily be used for technical and
descriptive documentation. By increasing understandability
and acceptability, we consider that our approach will reduce
the necessary number of iterations during the development

process. We expect similar benefits during the architecture
review stage, thereby reducing overall time-to-market and
costs for the design.

In addition, documented decision tuples, preliminary deci-
sion models generated from Facets, and the generated ADD
models and decisions are inherently reusable, and comple-
ment the core element of our approach, the NFR Repo, which
contains accumulated reusable knowledge.

Newly discovered concepts and insights gained during the
design process, as well as expert feedback, can be easily
and directly fed back into the NFR Repo for future reference.
Many different actors from different domains can contribute
new data, new algorithms, and new applications. There-
fore our approach supports the evolution of the captured
knowledge that is driven by a community instead of a single
architecture specification that is updated from time to time.

There exist a variety of remaining challenges in the given
context that require more research. For example, the various
trade-offs among QAs that need to be made during the deci-
sion making process, the different interpretation of QAs from
different stakeholders, the evaluation of some QAs above
others, the different impacts of ADDs on QAs, the more
precise quantifications of the impacts of ADDs on QAs, etc.
The issue of intellectual property rights and potential con-
flicts arising from the collaboration of different stakeholders
also remains to be resolved. We plan to address those in our
future work.

8. CONCLUSION

In this paper we present a set of tools that support
reusable quality-driven architectural design decisions in the
context of software ecosystems. Our approach supports
creative and systematic decision making and design to-
gether with recurring decisions and aims at increasing the
understanding and minimizing the required effort in the
whole process. The presented tools are combined to support
the different stages a software architecture specification
usually goes through: exploratory architecture, architecture
specification, and architecture review. The acquired archi-
tectural knowledge related to software patterns, tactics,
QAs and their relationships as well as the domain experts’
feedback on the documented design decisions and other
well-documented knowledge is captured in a repository and
can be reused and evolved.

9. REFERENCES

[1] L. Bass, P. Clements, and R. Kazman. Software
Architecture in Practice. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2 edition,
2003.

[2] L. J. Bass, M. Klein, and F. Bachmann. Quality
attribute design primitives and the attribute driven
design method. In Revised Papers from the 4th
International Workshop on Software Product-Family
Engineering, PFE ’01, pages 169-186, London, UK,
UK, 2002. Springer-Verlag.

[3] J. Bosch. From software product lines to software
ecosystems. In Proceedings of the 13th International
Software Product Line Conference, SPLC 09, pages
111-119, Pittsburgh, PA, USA, 2009. Carnegie Mellon
University.

[4] F. Buschmann, R. Meunier, H. Rohnert,

P. Sommerlad, and M. Stal. Pattern-Oriented Software

5

(6]

[7]

8]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

Architecture, Volume 1: A System of Patterns. Wiley,
Chichester, UK, 1996.

R. Farenhorst, R. Izaks, P. Lago, and H. Van Vliet. A
just-in-time architectural knowledge sharing portal. In
Software Architecture, 2008. WICSA 2008. Seventh
Working IEEE/IFIP Conference on, pages 125-134,
Feb 2008.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley
Professional, 1 edition, Nov. 1994.

N. B. Harrison and P. Avgeriou. How do architecture
patterns and tactics interact? a model and
annotation. Journal of Systems and Software,
83(10):1735 — 1758, 2010.

N. B. Harrison, P. Avgeriou, and U. Zdun. Using
patterns to capture architectural decisions. IEEFE
Softw., 24(4):38-45, July 2007.

A. Jansen and J. Bosch. Software architecture as a set
of architectural design decisions. In Proceedings of the
5th Working IEEE/IFIP Conference on Software
Architecture, WICSA ’05, pages 109-120, Washington,
DC, USA, 2005. IEEE Computer Society.

S. Jansen. How quality attributes of software platform
architectures influence software ecosystems. In
Proceedings of the 2013 International Workshop on
Ecosystem Architectures, WEA 2013, pages 6-10, New
York, NY, USA, 2013. ACM.

R. Kazman, J. Asundi, and M. Klein. Quantifying the
costs and benefits of architectural decisions. In
Software Engineering, 2001. ICSE 2001. Proceedings
of the 23rd International Conference on, pages
297-306, May 2001.

P. Kroll and P. Kruchten. The Rational Unified
Process Made Easy: A Practitioner’s Guide to the
RUP. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2003.

F. Li, S. Qanbari, M. Voegler, and S. Dustdar.
Constructing green software services: From service
models to cloud-based architecture. In C. Calero and
M. Piattini, editors, Green in Software Engineering,
pages 83—-104. Springer International Publishing, 2015.
F. Li, M. Vogler, S. Sehic, S. Qanbari, S. Nastic, H.-L.
Truong, and S. Dustdar. Web-scale service delivery for
smart cities. Internet Computing, IEEE, 17(4):78-83,
July 2013.

I. Lytra, G. Engelbrecht, D. Schall, and U. Zdun.
Reusable architectural decision models for
quality-driven decision support: A case study from a
smart cities software ecosystem. In 8rd International
Workshop on Software Engineering for
Systems-of-Systems (SES0S), May 2015, May 2015.
A. MacLean, R. M. Young, V. M. E. Bellotti, and

T. P. Moran. Questions, options, and criteria:
Elements of design space analysis. Hum.-Comput.
Interact., 6(3):201-250, Sept. 1991.

C. Mazza, J. Fairclough, M. Bryan, P. Daniel,

S. Adriaan, S. Richard, J. Michael, and G. Alvisi.
Software Engineering Guides. Prentice-Hall
International (UK), 1996.

