
Architecting for decision making about code evolution
Thomas Haitzer

Software Architecture Group
University of Vienna

Austria
thomas.haitzer@univie.ac.at

Elena Navarro
Department of Computing Systems

University of Castilla-La Mancha
Spain

elena.navarro@uclm.es

Uwe Zdun
Software Architecture Group

University of Vienna
Austria

uwe.zdun@univie.ac.at

ABSTRACT
During software evolution, it is important to evolve not only the
source code, but also its architecture to prevent architecture drift
and architecture erosion. This is a complex activity, especially for
large software projects, with multiple development teams that
might be located in different countries or on different continents.
To ease this kind of evolution, we have developed a domain-
specific language for making decisions about the evolution. It
supports the definition of architectural changes based on multiple
implementation tasks that can have temporal dependencies among
each other. Then, by means of a model-to-model transformation,
we automatically create a constraint model that we use to
generate, by means of the Alloy model analyzer, the possible
alternative decisions for executing the implementation tasks. The
tight integration with architecture abstractions enables architects
to automatically check the changes related to an implementation
task in relation to the architecture description. This helps keeping
architecture and code in sync, avoiding drift and erosion.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures;

D.2.2 [Software Engineering]: Design Tools and Techniques

Keywords
Architecture Evolution, Evolution Planning, Design Rationale,
Architecture Documentation

1. INTRODUCTION
Software Evolution has always been and still is one of the
challenging activities of the software lifecycle. Basically, from
the first steps of a software project onwards, the need of change
starts to arise because new market needs constantly impose new
requirements, supporting technology is updated, decisions about
the software system change, and so on. In this context, the use of
Software Architecture (SA) has been highlighted as an important
asset because, SA can be used as an artifact for the evolution to
guide the planning and restructuring of the software [7,14], but it
is also an artifact of the evolution, because it must be evolved

itself [2]. Moreover, SA evolution is a complex activity,
especially for largo software projects with multiple development
teams that might be located in different countries that work on
different parts of the project in parallel, so there is a clear need to
manage properly who is in charge of each requested change and
how and when it will be carried out.

To support stakeholders with methods and tools to help in the
evolution process, we have developed a DSL for making
decisions about the evolution that provides architects with
expressive power to describe which implementation tasks must be
performed by the development team and which temporal
dependencies among these tasks exist. Once the architect has
specified these implementation tasks with the DSL, by using a
model-to-text transformation that we have implemented in Xtext
[8], they are translated to Alloy [16] to evaluate which are the
possible decisions for realizing the architecture evolution in terms
of the specified implementation tasks. We have integrated this
approach with our architecture abstraction specification language
[13], so that architects and/or developers can automatically update
the specification of the architecture which helps keeping two
important assets of a software project (the SA and the source
code) in sync. This way, our approach does not only allow to
evolve SA and source code in sync, but also requires to define the
architectural changes only once (when defining the
implementation task) and the architecture description is updated
automatically. Furthermore, we can use the Architecture
Abstraction DSL’s benefits which we described in our previous
work [13]. This proposal provides several advantages:

 First, it provides the software architect with facilities to
automatically generate decision alternatives for carrying out
the implementation tasks so that they can be easily
distributed among the teams or team members.

 Second, it releases the software architect from the burden to
manually update the architectural description because the
defined implementation tasks are used to automatically
update the architecture specification. This is very important
as it helps to avoid the architecture drift and architecture
erosion that usually emerge during the evolution.

 Third, the defined implementation tasks serve for the
purpose of creating a documentation of the evolution. This is
a very important question as several studies [5][21] carried
out with subjects from both industry and academia have
concluded that using the architectural documentation the
time necessary to carry out the change-tasks could be
shorten.

This paper is structured as follows. After this introduction, related
works are analyzed and compared to our proposal. Then, in
Section 3, we first present the DSL we have developed, and then

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.

ECSAW '15, September 07 - 11, 2015, Dubrovnik/Cavtat, Croatia

© 2015 ACM. ISBN 978-1-4503-3393-1/15/09…$15.00

DOI: http://dx.doi.org/10.1145/2797433.2797487

we discuss the support for deciding on implementation steps. A
case study that illustrates the feasibility of the approach is shown
in Section 4. Finally, Section 5 concludes this work.

2. RELATED WORK
A number of approaches have been proposed that focus on the
evolution of a software system. While some of these approaches
focus on transforming a legacy system’s architecture [6,15],
others focus on the concept of Evolution styles [11,20,24], which
are specifically defined for a set of architectural styles and
constrain the evolution of the system. Cuesta et al. [7] extend this
notion and propose the use of architectural knowledge-driven
evolution styles to document a system’s evolution.

However, these approaches focus on capturing the knowledge
about the architecture evolution, while our approach, which also
captures the knowledge in the form of described (documented)
tasks that have been executed, has as its main goal to ease the
complexity inherent to architecture evolution and help on
deciding on how to execute the defined implementation tasks.

Garlan et al. [10] propose a tool called Ævol, that supports the
definition and planning of architecture evolution based on
Evolution styles. It allows the specification of evolution paths and
the comparison of alternative evolution paths regarding
correctness conditions and cost-benefit. While their approach has
a similar focus, it requires the architect to specify all possible
evolution paths, whereas our approach only requires the definition
of the necessary evolution tasks and their dependencies, being
generated automatically all possible decisions for executing the
tasks.

Barnes et al. [3] extend Ævol and use existing automatic planning
tools for the generation of possible evolution paths. While their
approach is similar to our approach, as it finds possible evolution
paths to evolve the current architecture to a target architecture,
our approach differs substantially in other aspects. While our
approach provides a user-friendly DSL for defining tasks that are
automatically translated into an Alloy model, they need to
manually represent their evolution steps in the planning domain
definition language (PDDL). Furthermore, the tight integration of
architectural descriptions and implementation tasks in our
approach makes it possible to apply changes to the architecture
description that are specified in the tasks automatically once the
tasks are completed.

Ajila and Alam [1] have proposed a formal language based on the
Object Constraint Language to construct evolution models. Based
on this language, they provide support for automatic dependency
analysis of the model. Our approach, however, focuses on
planning the tasks that need to be completed during the evolution,
while the evolution of the architectural description is not the sole
purpose of our approach.

McVeigh et al. [18] proposed Evolve, a model driven tool that
captures incremental change in the definition of software
architecture. It implements Backbone, an architectural description
language with a graphical (UML2) and a textual representation.
Based on the architecture documentation, backbone directly
constructs initial implementations and extensions to these
implementations. While their approach supports the evolution of a
system’s architecture, our approach focuses on managing the
complexity inherent to evolution and provides valid plans for
executing the tasks that arise during the evolution of a system.

An approach called ADVERT is proposed by Konersmann et al.
[17]. This approach provides support for evolution of an
architectural level by maintaining tracelinks between
requirements, design decisions, and architectural elements and
also including software architecture information into the source
code. However, their approach does not consider planning the
evolution and thus has a focus different from our approach. In
addition, their approach was only partially implemented, being
other elements assumed to work and only described for EJBs.
However, our approach is programming language independent.

Grunske [12] proposes an approach for architectural refactoring
based on a hypergraph-based data structure that allows the
formalization of refactorings as hypergraph transformation rules
that can be applied automatically. However, unlike our approach,
this approach does not support evolution in general but is limited
to behavior preserving architectural refactoring.

A number of different approaches focus on change impact
analysis and utilize models and model conformance checking,
reasoning on ontologies [4,22], or Bayesian Belief Networks [25]
to analyze the impact of changes on systems properties. Others
propose the use of anti-patterns to detect conflicting Architectural
Design Decisions during evolution [19]. But all these approaches
focus on analyzing the changes to a system during the evolution
but none of them focuses on deciding the evolution itself.

Summarizing, most of the approaches discussed in this section
focus on the documentation of the evolution, while our approach
focuses on decisions about the evolution. The approaches that
focus on automatic evolution either lack the support for
automatically changing the architecture description, which
requires the architect to perform this task manually, or are focused
on specific subsets of systems.

3. ARCHITECTING FOR DECIDING
CODE EVOLUTION
Whenever the code is being developed, the coding tasks are
usually carried out in an iterative manner, so that no new
component is developed from its very beginning to its end, but
usually different components can be developed in parallel.
However, the main problem is that there are, usually, internal
dependencies among them that must be identified and considered
whenever a system is being developed. These internal
dependencies impose mainly temporal constraints, in terms of
when the different features supported by each component should
be developed. Let us illustrate this problem with a scenario, which
we will use as a running example in the remainder of this paper.
As shown in Figure 1(a), initially two components ComponentA
and ComponentB communicate with each other directly through a
connector. Now let us assume that, due to new requirements, a
distribution of these two components on different servers is
necessary. This leads to an Architectural Design Decision (ADD)
to implement a version of the broker pattern between these two
components. This architectural change is shown in Figure 1(b).

Component A Component B

Component A Component B

Proxy A Proxy BBroker

(a)

(b)

Figure 1: Architecture changes in the Broker scenario

The broker pattern is a pattern for communication between

distributed objects. This ADD leads to a number of design
decisions and thus a number of different implementation tasks,
whose timing is constrained by internal dependencies, as shown
Figure 2. Specifically, the following tasks need to be implemented
in order to complete the implementation of this ADD.

 For using the Broker itself, a suitable middleware framework
must be set up and configured.

 The above mentioned proxies for the two components need
to be created.

 The proxies need to be wired to the broker. Moreover, the
components need to be changed in order facilitate the new
communication form. The direct connector needs to be
removed and the usage of the proxies needs to be
implemented. If dependency injection (DI) is used, at least
the DI configuration needs to be changed, even if no changes
to the components’ implementation are necessary.

All of these tasks need to be completed in order to fully comply
with the ADD to implement the broker pattern. Even in this small
example, a number of temporal dependencies exist between the
tasks at hand. The implementation of the proxies requires that the
middleware for the Broker is set up and configured, the changes
to Component A require the existence of the proxy for Component
A, and the wiring of Component A with its proxy requires that the
changes to the Component A itself are completed. The same or at
least similar dependencies exist for Component B. These
dependencies impose some order in which these tasks need to be
completed. In a real world scenario with multiple development
teams and more than two components involved in an architectural
decision, this problem’s complexity grows much further.

In our approach, a software architect defines the tasks and the
constraints on the timing of the tasks (e.g. proxy must be
implemented before proxy can be connected and used) in a
domain specific language especially designed for planning code
evolution, called Evolution DSL. This DSL allows the architect to
specify: (i) a textual description of the implementations task,
including any references to relevant ADDs; (ii) the temporal
constraints or dependencies of the task; (iii) as well as the changes
to the system’s architectural description based on the Architecture
Abstraction DSL. We describe the technical details and the
Evolution DSL in Section 3.1.

Based on these task definitions, our approach supports the
architect and the developers during the evolution by automating
the complex task of creating the possible decision alternatives for

executing the given implementation tasks. We utilize the Alloy1
model finder for automatically providing multiple possible
alternatives for the order of the implementation tasks. These
models are provided in graphical and textual form by Alloy.
While the textual form supports an automatic interpretation, the
graphical form shows which tasks do not have any dependencies
to other tasks and thus can be implemented in a parallel fashion
without running into any dependency issues. It also supports easy
identification of crucial tasks that need to be completed early, as
well as sets of implementation tasks that do not have
dependencies outside the given set.

In our running example, two such sets can be identified: The first
contains all tasks related to Component A and the second contains
all tasks related to Component B, while the set up and
configuration of the middleware of the Broker qualifies as a
crucial task that might hinder further work as both identified sets
depend on this task. The sets around Component A and
Component B are good candidates for being developed by the
same development team, because this team then can work
independently from the other team(s) and is not hindered by any
dependencies to tasks that are implemented elsewhere once the set
up and configuration of the middleware of the Broker component
is completed. Furthermore, the automatically generated decision
alternatives ensure that no implementation tasks are started,
before their dependencies are fulfilled. Finally, the defined
implementation tasks are used to automatically update the
architecture description and serve for the purpose of creating a
documentation of the evolution. The technical details of this
support are provided in section 3.2.

3.1 DSL for specifying the code evolution
In this section we describe the concepts and implementation of
our Evolution DSL in detail. An important feature of the
Evolution DSL is the tight integration with the architecture
description itself, which enables to automatically apply the
changes, specified in an implementation task to the architecture
description, once it is completed. This releases the software
architect from the burden to manually update the architectural
description after an implementation task is completed.

This is why we have integrated the Evolution DSL, which was
implemented in Xtext [8], with the Architecture Abstraction DSL
that we developed in a previous work [13]. For space reasons, we
introduce just briefly our Evolution DSL2 in this paper.

In order to facilitate the understanding of this paper, Figure 3
shows an excerpt of the grammar for the definition of
implementation tasks and the temporal rules for implementation
tasks as well as the architectural changes supported. In the rule
definition AddComponentTask, we can see that the Architecture
Abstraction DSL’s rules are reused. This enables the automatic
application of the architectural changes from completed
implementation tasks to the architectural description. This has
been implemented as an Eclipse wizard that enables the architect
to select which implementation tasks have been already
completed and then, using a model-to-model transformation, to
update the architecture description.

1 Alloy [16] is a language to formally describe structures and a

solver that takes the constraints of a model and finds structures
that satisfy them.

2 For a complete specification & source code see:
https://swa.univie.ac.at/DSL_for_planning_the_evolution

Figure 2: Planning an Evolution Step

AddProxyA

ConnectA2ProxyA

(AddBroker or SelectBroker)

AddProxyB

ConnectProxyA2BrokerConnectB2ProxyBConnectProxyB2Broker

depends on

An example of different tasks expressed in the DSL is presented
in Figure 4. In this example, the complex task of adding a Broker
between two Components A and B is divided into multiple
subtasks, which consist of implementing the Broker itself
(AddBrokerFeature), implementing the Proxies for Components A
and B (AddProxyA, AddProxyB) and wiring all the components
together. Some of these tasks have (temporal) dependencies. In
this example, ConnectA2Proxy requires that ProxyA has been
implemented before Component A can be wired to ProxyA. Also,
ConnectA2Proxy is itself a complex task that consists of two
subtasks, which should be carried out in close succession. In
Figure 4 we skipped the tasks regarding Component B as they are
very similar to the tasks regarding Component A.

Other dependencies that stem from organizational requirements
(e.g. that the tasks will be split between independent teams of
developers) can be modelled in the same way as constraints

resulting from implementation itself.

3.2 Generating decision alternatives for
evolution
Once the tasks are defined, we use the features provided by Xtext
to automatically execute a model-to-text transformation that
creates an Alloy model, which is used to generate the possible
decision alternatives. Alloy [16] is a structural modelling
language based on first-order logic for expressing complex
structural constraints and behavior. The Alloy Analyzer is a
constraint solver that provides fully automatic simulation and
checking. It allows us to define the concepts of basic and complex
implementation tasks, the definition of specific implementation
tasks and their constraints based on the abstract concepts, as well
as the following (summarized) constraints that need to hold for all
implementation task models:

 An implementation task is followed by a set of
implementation tasks (next relation).

 A complex implementation task is an implementation task
that consists of a set of implementation tasks (consistsOf
relation).

 All defined implementation tasks need to be acyclic with
respect to the next relation as well as the consistsOf relation.

 All defined implementation tasks need to exist in the solution
and must be reachable. Either they are part of the initial tasks
or they are reachable through an initial task.

 A complex implementation task is immediately followed by
one of its subtasks.

 A complex implementation tasks precedes all its subtasks.

 Each implementation task can only be part of zero or one
complex implementation tasks.

We show an excerpt of the Alloy code that was generated for the
Broker example in Figure 5. In particular, we show the constraints
that ensure that: (i) a task only occurs once, (ii) a task cannot be
part of itself, (iii) the definition of the tasks AddProxyA and

Figure 4: Excerpt from the implementation tasks of the example for adding a Broker.

Task AddBroker:
description: "Tasks necessary for adding
the new broker to the architecture"
consists of:
AddBrokerFeature,
AddProxyA,
AddProxyB,
ConnectA2Proxy,
ConnectProxyA2Broker,
ConnectB2ProxyB,
ConnectProxyB2Broker

Task AddBrokerFeature:
description: "implement the broker functionality"
architecture changes:
add component to Frag
Component Broker consists of
Package("univie.swa.example.broker")

Task UpdateComponentA:
directly precedes ConnectA2Proxy
architecture changes:
replace feature Frag.ComponentA :
Package_univie_swa_example_original_package
with new feature:
Package("univieswa.example.A.usingBroker")
after Frag.ComponentA.Package_univie_swa_example_original_package

Task ConnectA2ProxyA:
description: "implement the conn. between comp. A and proxy A"
precedes ConnectB2ProxyB
succeeds AddProxyA
architecture changes:
add connector to Frag.ComponentA
connector to AddProxyA.ProxyA

Task ConnectProxyA2Broker:
description: "wire the proxy and the broker together"
succeeds AddProxyA,AddBrokerFeature
architecture changes:
add connector to AddProxyA.ProxyA
connector to AddBrokerFeature.Broker

Task AddProxyA:
description:"implement the proxy that hides the broker from comp. a"
architecture changes:
add component to Frag
Component ProxyA consists of
Package("univie.swa.example.proxyA")

Task ConnectA2Proxy:
succeeds AddProxyA
consists of:
UpdateComponentA,
ConnectA2ProxyA

Figure 3: Excerpt of the Xtext grammar for the Evolution
DSL showing the rule for an impl. task, the different types

of tasks and two of the rules for specific tasks

ImplementationTask:
'Task' name=ID ':'
('status:' status=STATUS)?
('description:' description=STRING)?

// temporal rules
('precedes' precedes+=[ImplementationTask] (',' precedes+=[ImplementationTask])*)?
('directly precedes' directlyprecedes+=[ImplementationTask] (',' directlyprecedes+=[ImplementationTask])*)?
('henceforth requires' requires+=LogicRule (',' requires+=LogicRule)*)?
('in parallel with' inParallelWith+=[ImplementationTask] (',' inParallelWith+=[ImplementationTask])*)?
('succeeds' succeeds+=[ImplementationTask] (',' succeeds+=[ImplementationTask])*)?
('directly succeeds' directlysucceeds+=[ImplementationTask] (',' directlysucceeds+=[ImplementationTask])*)?
(optional?='is optional')?
('is incompatible with' prevents+=[ImplementationTask] (',' prevents+=[ImplementationTask])*)?
architectureChange=ArchitectureChange;

ArchitectureChange:
AddFeatureTask | AddConnectorTask | RemoveFeatureTask | RemoveConnectorTask | AddComponentTask |
RemoveComponentTask | ModifyComponentTask | ComplexTask;

ComplexTask:
'consists of:'
tasks+=TaskReference (',' tasks+=TaskReference)*;

AddComponentTask:
'architecture changes:'
'add component to' transformation=[archDSL::Transformation|TASKS_QUALIFIED_NAME]
componentToAdd=ComponentDef;

ConnectA2ProxyA as implementation tasks, (iv) finally,
AddProxyA needs to be executed before the task
ConnectA2ProxyA.

We then use the Alloy tool (version 4.2) to create multiple
possible decision models that adhere to the identified constraints.
These models are provided in a textual and a graphical
representation by the tool. Figure 6 shows a possible order of the
implementation tasks for the Broker example generated by Alloy.

Please note that a limitation of this approach arises through the
use of Alloy, which, as a model finder that uses SAT solving for
finding model instances, requires a suitable scope, as within this
scope, the search for a model is complete, while the search itself
is incomplete. For all our models, we chose a default scope of 5,
because it is enough to find multiple solutions for all our
generated models. Due to the size of architectural component
models and due to the fact that our Alloy models do not have free
variables, our experience shows that for this subset of models a
model instance can be found. If no model instance is found, the
bound can be raised.

It is worth noting that this approach has been designed for
evolving architecture and code in sync. When the code is changed
first, the features of the Abstraction DSL can aid in ensuring
consistency between architecture and code.

4. CASE STUDY
In this section we describe our case study of Soomla, an open
source framework for virtual economy operations in a single,
cross-platform, SDK mainly used for mobile games [23]. In our
case study, we describe the changes that were implemented from
Version 3.2 to Version 3.3. Figure 7 shows an overview of
Soomla’s architecture and the respective changes to the
architecture. In Version 3.2 Soomla’s billing system only
integrated the Billing API for Android provided by Google which
was directly used throughout the system. However, since the need
arose to support other billing providers as well, this was no longer
suitable and the system needed to be evolved.

We described this evolution as a set of implementation tasks
which replace the original provider-dependent GooglePlayBilling
component with a new provider-independent billing component,
and then (re-)implement the provider-specific parts based on the
new billing infrastructure. The detailed implementation tasks and
their architectural changes are shown in Figure 8.

Based on our description of the implementation tasks, an Alloy
model was automatically generated by our model-to-text
transformation implemented in Xtend. We then used the Alloy
model finder to create the decision alternatives for executing the
implementation tasks without violating any constraints. This was
computed by Alloy in 149 ms and resulted in multiple possible
alternatives for executing the implementation tasks at hand. This
order ensures that all constraints are satisfied throughout the
execution of the different implementation tasks

Once the implementation tasks were completed, we automatically
added the architectural changes from the implementation tasks to
the architectural description of Soomla using our wizard (see
Figure 9), which we integrated into the DSL user-interface. This
wizard then uses Xtend [9] to apply the changes to the
architecture description written in the Architecture Abstraction
DSL.

This case study, as well as the running broker example, shows the
applicability of the approach with respect to feasibility. The time
required for finding suitable plans with Alloy was around 150ms
for all presented examples on a Lenovo Thinkpad X240 with i5
Processor and 8 Gb RAM and a Samsung Evo 840 SSD. We think
that in large projects with multiple developer teams, the effort
necessary to use our approach is outweighed by the benefits of
having a plan for executing the given tasks that shows which tasks
can be executed in parallel, as well as which tasks are
prerequisites to other tasks and thus should be prioritized.

Figure 6: Decision alternative generated by Alloy for the
Broker example

Figure 7: Architecture overview of Soomla with changes
between version 3.2 and version 3.3

Figure 5: Excerpt of the Alloy code for the introduce Broker
example

//…
fact AcyclicImplementationTasks {

no task: ImplementationTask| task in task.^next
}
fact AcyclicComplexImplementationTasks {

no task: ComplexImplementationTask | task in task.^consistsOf
}
// …
one sig AddProxyA extends ImplementationTask {}
one sig ConnectA2ProxyA extends ImplementationTask {}
// …
pred show {
//..
all s1: AddProxyA, s2: ConnectA2ProxyA | s2 in s1.^next
}
run show for 5

5. CONCLUSION
In this paper we present an approach for ensuring consistency
between two important assets of a software project, namely
software architecture and source code, during the evolution of a
(large) system by describing an evolution as a set of
implementation tasks. We provide a DSL that supports the
description of implementation tasks based on their effects on a
system’s architecture, as well as the (temporal) constraints that

exist between different implementation tasks. Besides the value of
this DSL for documentation of architecture evolution, our
approach supports tool-based guidance throughout the
implementation tasks necessary for performing evolution. That is,
based on the implementation task descriptions, we use Alloy
models to calculate possible decision alternatives for code
evolution under the given constraints that ensure the consistency
of the evolution or warn the software developer if no viable code
evolution decisions can be found. The integration with the
architecture description helps keeping software architecture and
source code in sync, avoiding drift and erosion. We show the
applicability of the approach in a running example based on the
implementation of the Broker pattern in an application as well as
a real-life scenario for the evolution of the open-source in-app-
purchase framework Soomla. In our future work we will perform
a case study with developers and architects to better determine the
approach’s benefits with respect to its costs.

6. ACKNOWLEDGMENTS
This research has been partly funded by the Spanish Ministry of
Economy and Competitiveness and by the FEDER funds of the
EU under the project Grant insPIre (TIN2012-34003) and by the
Ministry of Education, Culture and Sport under the State Program
to Promote Talent and Employability in I+D+I, National Sub-
Program for Mobility belonging to the Spanish National Plan for
Scientific and Technical Research and Innovation 2013-2016
(CAS14/00020).

7. REFERENCES
[1] Ajila, S. a. and Alam, S. Using a Formal Language

Constructs for Software Model Evolution. 2009 IEEE
International Conference on Semantic Computing, 390–395.
2009.

[2] Barais, O., Le Meur, A.F., Duchien, L., and Lawall, J.
Software Architecture Evolution. In Software Evolution,
Tom Mens and Serge Demeyer (eds.). Springer Berlin
Heidelberg, 233–262. 2008.

[3] Barnes, J.M., Pandey, A., and Garlan, D. Automated
planning for software architecture evolution. 28th
IEEE/ACM International Conference on Automated Software
Engineering (ASE 2013), IEEE, 213–223. 2013.

[4] De Boer, R.C., Lago, P., Telea, A., and van Vliet, H.
Ontology-driven visualization of architectural design
decisions. Joint Working IEEE/IFIP Conference on Software
Architecture & European Conference on Software
Architecture (WICSA/ECSA 2009), IEEE, 51–60. 2009.

[5] Bratthall, L., Johansson, E., and Regnell, B. Is a Design
Rationale Vital when Predicting Change Impact? – A
Controlled Experiment on Software. 2nd International
Conference on Product Focused Software Process
Improvement (PROFES 2000), Springer, 126–139. 2000.

[6] Correia, R., Matos, C., El-Ramly, M., Heckel, R.,
Koutsoukus, G., and Andrade, L. Software Engineering at
the Architectural Level: Transformation of Legacy Systems.
Department of Computer Science, University of Leicester,
UK. 2002.

Figure 9: Wizard integrated into the DSL user-interface
to add the architectural changes

Figure 8: Implementation tasks for Soomla v3.2 to v3.3

Task ProviderIndependentBilling:
consists of:
ImplementBillingComponent,
WireBillingComponent,
SubstituteBillingInStoreController,
ImplementNewGoogleBillingProvider,
RemoveOldGoogleBillingProvider

Task ImplementBillingComponent:
description: "Implement a new abstract billing provider that is independent from any actual billing providers"
architecture changes:
add component to Soomla
Component Billing
consists of Package("root.com.soomla.store.billing",excludeChildren)

Task WireBillingComponent:
succeeds ImplementBillingComponent
architecture changes:
add connector to ImplementBillingComponent.Billing connector to Soomla.CryptDecrypt

Task SubstituteBillingInStoreController:
succeeds ImplementBillingComponent
consists of:
ConnectToAbstractBilling,
RemoveConntectorGooglePlayBilling

Task ConnectToAbstractBilling:
architecture changes:
add connector to Soomla.StoreController connector to ImplementBillingComponent.Billing

Task RemoveConntectorGooglePlayBilling:
precedes RemoveOldGoogleBillingProvider
architecture changes:
remove connector from Soomla.StoreController : connector_GooglePlayBilling

Task ImplementNewGoogleBillingProvider:
succeeds ImplementBillingComponent
architecture changes:
add component to Soomla
Component GoogleBilling
consists of
{

Package("root.com.soomla.store.billing.google")
or {

Package("root.com.soomla.store.billing.google")
and
InstanceOf("root.com.soomla.store.billing.IIabService")

}
}
connector to ImplementBillingComponent.Billing

Task RemoveOldGoogleBillingProvider:
architecture changes:
remove component Soomla.GooglePlayBilling

[7] Cuesta, C.E., Navarro, E., Perry, D.E., and Roda, C.
Evolution styles: using architectural knowledge as an
evolution driver. Journal of Software: Evolution and Process
25, 9, 957–980. 2013.

[8] Eclipse. Xtext. Retrieved April 24, 2015 from
https://eclipse.org/Xtext

[9] Eclipse. Xtend. Retrieved April 24, 2015 from
https://www.eclipse.org/xtend

[10] Garlan, D., Barnes, J.M., Schmerl, B.R., and Celiku, O.
Evolution styles: Foundations and Tool support for Software
Architecture Evolution. Joint Working IEEE/IFIP
Conference on Software Architecture & European
Conference on Software Architecture (WICSA/ECSA 2009),
IEEE, 131–140. 2009.

[11] Le Goaer, O., Tamzalit, D., Oussalah, M.C., and Seriai, A.-
D. Evolution styles to the rescue of architectural evolution
knowledge. 3rd International workshop on SHAring and
Reusing architectural Knowledge (SHARK’08), ACM Press,
31–36. 2008.

[12] Grunske, L. Formalizing architectural refactorings as graph
transformation systems. Proceedings - Sixth Int. Conf. on
Softw. Eng., Artificial Intelligence, Netw. and
Parallel/Distributed Computing and First ACIS Int.
Workshop on Self-Assembling Wireless Netw., SNPD/SAWN
2005, 324–329. 2005.

[13] Haitzer, T. and Zdun, U. Semi-automated architectural
abstraction specifications for supporting software evolution.
Science of Computer Programming 90, 135–160. 2014.

[14] Holt, R. Sofware Architecture as a Shared Mental Model.
Proceedings of the ASERC Workshop on Software
Architecture. 2002.

[15] Hunold, S., Korch, M., Krellner, B., Rauber, T., Reichel, T.,
and Rünger, G. Transformation of Legacy Software into
Client/Server Applications through Pattern-Based
Rearchitecturing. 32nd Annual IEEE International Computer
Software and Applications Conference (COMSAC’08), IEEE,
303–310. 2008.

[16] Jackson, D. Software Abstractions. Logic, Language and
Abstractions. MIT Press. 2011.

[17] Konersmann, M., Durdik, Z., Goedicke, M., and Reussner,
R.H. Towards Architecture-centric Evolution of Long-living
Systems (the ADVERT Approach). Proceedings of the 9th
International ACM Sigsoft Conference on Quality of
Software Architectures, 163–168. 2013.

[18] McVeigh, A., Kramer, J., and Magee, J. Evolve: tool support
for architecture evolution. 2011 33rd International
Conference on Software Engineering (ICSE), 1040–1042.
2011.

[19] Navarro, E., Cuesta, C.E., Perry, D.E., and González, P.
Antipatterns for Architectural Knowledge Management.
International Journal of Information Technology & Decision
Making 12, 3, 547–589. 2013.

[20] Noppen, J. and Tamzalit, D. ETAK: Tailoring Architectural
Evolution by (re-)using Architectural Knowledge. ICSE
Workshop on Sharing and Reusing Architectural Knowledge
(SHARK ’10), ACM Press, 21–28. 2010.

[21] Ozkaya, I., Wallin, P., and Axelsson, J. Architecture
knowledge management during system evolution. 2010 ICSE
Workshop on Sharing and Reusing Architectural Knowledge
(SHARK ’10), ACM Press, 52–59. 2010.

[22] Pahl, C., Giesecke, S., and Hasselbring, W. Ontology-based
modelling of architectural styles. Information and Software
Technology 51, 12, 1739–1749. 2009.

[23] SOOMLA. Open source framework version 3.1. Retrieved
April 24, 2015 from http://soom.la/

[24] Tamzalit, D., Oussalah, M.C., Le Goaer, O., and Seriai, A.-
D. Updating software architectures : A style-based approach.
International Conference on Software Engineering Research
and Practice (SERP 2006), CSREA Press, 313–318. 2006.

[25] Tang, A., Nicholson, A.E., Jin, Y., and Han, J. Using
Bayesian belief networks for change impact analysis in
architecture design. Journal of Systems and Software 80, 1,
127–148. 2007.

