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ABSTRACT 
During software evolution, it is important to evolve not only the 
source code, but also its architecture to prevent architecture drift 
and architecture erosion. This is a complex activity, especially for 
large software projects, with multiple development teams that 
might be located in different countries or on different continents. 
To ease this kind of evolution, we have developed a domain-
specific language for making decisions about the evolution. It 
supports the definition of architectural changes based on multiple 
implementation tasks that can have temporal dependencies among 
each other. Then, by means of a model-to-model transformation, 
we automatically create a constraint model that we use to 
generate, by means of the Alloy model analyzer, the possible 
alternative decisions for executing the implementation tasks. The 
tight integration with architecture abstractions enables architects 
to automatically check the changes related to an implementation 
task in relation to the architecture description. This helps keeping 
architecture and code in sync, avoiding drift and erosion. 

Categories and Subject Descriptors 

D.2.11 [Software Engineering]: Software Architectures; 

D.2.2 [Software Engineering]: Design Tools and Techniques 

Keywords 
Architecture Evolution, Evolution Planning, Design Rationale, 
Architecture Documentation 

1. INTRODUCTION 
Software Evolution has always been and still is one of the 
challenging activities of the software lifecycle. Basically, from 
the first steps of a software project onwards, the need of change 
starts to arise because new market needs constantly impose new 
requirements, supporting technology is updated, decisions about 
the software system change, and so on. In this context, the use of 
Software Architecture (SA) has been highlighted as an important 
asset because, SA can be used as an artifact for the evolution to 
guide the planning and restructuring of the software [7,14], but it 
is also an artifact of the evolution, because it must be evolved 

itself [2]. Moreover, SA evolution is a complex activity, 
especially for largo software projects with multiple development 
teams that might be located in different countries that work on 
different parts of the project in parallel, so there is a clear need to 
manage properly who is in charge of each requested change and 
how and when it will be carried out.  

To support stakeholders with methods and tools to help in the 
evolution process, we have developed a DSL for making 
decisions about the evolution that provides architects with 
expressive power to describe which implementation tasks must be 
performed by the development team and which temporal 
dependencies among these tasks exist. Once the architect has 
specified these implementation tasks with the DSL, by using a 
model-to-text transformation that we have implemented in Xtext 
[8], they are translated to Alloy [16] to evaluate which are the 
possible decisions for realizing the architecture evolution in terms 
of the specified implementation tasks. We have integrated this 
approach with our architecture abstraction specification language 
[13], so that architects and/or developers can automatically update 
the specification of the architecture which helps keeping two 
important assets of a software project (the SA and the source 
code) in sync. This way, our approach does not only allow to 
evolve SA and source code in sync, but also requires to define the 
architectural changes only once (when defining the 
implementation task) and the architecture description is updated 
automatically. Furthermore, we can use the Architecture 
Abstraction DSL’s benefits which we described in our previous 
work [13]. This proposal provides several advantages: 

 First, it provides the software architect with facilities to 
automatically generate decision alternatives for carrying out 
the implementation tasks so that they can be easily 
distributed among the teams or team members.  

 Second, it releases the software architect from the burden to 
manually update the architectural description because the 
defined implementation tasks are used to automatically 
update the architecture specification. This is very important 
as it helps to avoid the architecture drift and architecture 
erosion that usually emerge during the evolution. 

 Third, the defined implementation tasks serve for the 
purpose of creating a documentation of the evolution. This is 
a very important question as several studies [5][21] carried 
out with subjects from both industry and academia have 
concluded that using the architectural documentation the 
time necessary to carry out the change-tasks could be 
shorten.  

This paper is structured as follows. After this introduction, related 
works are analyzed and compared to our proposal. Then, in 
Section 3, we first present the DSL we have developed, and then 
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we discuss the support for deciding on implementation steps. A 
case study that illustrates the feasibility of the approach is shown 
in Section 4. Finally, Section 5 concludes this work. 

2. RELATED WORK 
A number of approaches have been proposed that focus on the 
evolution of a software system. While some of these approaches 
focus on transforming a legacy system’s architecture [6,15], 
others focus on the concept of Evolution styles [11,20,24], which 
are specifically defined for a set of architectural styles and 
constrain the evolution of the system. Cuesta et al. [7] extend this 
notion and propose the use of architectural knowledge-driven 
evolution styles to document a system’s evolution.  

However, these approaches focus on capturing the knowledge 
about the architecture evolution, while our approach, which also 
captures the knowledge in the form of described (documented) 
tasks that have been executed, has as its main goal to ease the 
complexity inherent to architecture evolution and help on 
deciding on how to execute the defined implementation tasks. 

Garlan et al. [10] propose a tool called Ævol, that supports the 
definition and planning of architecture evolution based on 
Evolution styles. It allows the specification of evolution paths and 
the comparison of alternative evolution paths regarding 
correctness conditions and cost-benefit. While their approach has 
a similar focus, it requires the architect to specify all possible 
evolution paths, whereas our approach only requires the definition 
of the necessary evolution tasks and their dependencies, being 
generated automatically all possible decisions for executing the 
tasks.  

Barnes et al. [3] extend Ævol and use existing automatic planning 
tools for the generation of possible evolution paths. While their 
approach is similar to our approach, as it finds possible evolution 
paths to evolve the current architecture to a target architecture, 
our approach differs substantially in other aspects. While our 
approach provides a user-friendly DSL for defining tasks that are 
automatically translated into an Alloy model, they need to 
manually represent their evolution steps in the planning domain 
definition language (PDDL). Furthermore, the tight integration of 
architectural descriptions and implementation tasks in our 
approach makes it possible to apply changes to the architecture 
description that are specified in the tasks automatically once the 
tasks are completed. 

Ajila and Alam [1] have proposed a formal language based on the 
Object Constraint Language to construct evolution models. Based 
on this language, they provide support for automatic dependency 
analysis of the model. Our approach, however, focuses on 
planning the tasks that need to be completed during the evolution, 
while the evolution of the architectural description is not the sole 
purpose of our approach. 

McVeigh et al. [18] proposed Evolve, a model driven tool that 
captures incremental change in the definition of software 
architecture. It implements Backbone, an architectural description 
language with a graphical (UML2) and a textual representation. 
Based on the architecture documentation, backbone directly 
constructs initial implementations and extensions to these 
implementations. While their approach supports the evolution of a 
system’s architecture, our approach focuses on managing the 
complexity inherent to evolution and provides valid plans for 
executing the tasks that arise during the evolution of a system. 

An approach called ADVERT is proposed by Konersmann et al. 
[17]. This approach provides support for evolution of an 
architectural level by maintaining tracelinks between 
requirements, design decisions, and architectural elements and 
also including software architecture information into the source 
code. However, their approach does not consider planning the 
evolution and thus has a focus different from our approach. In 
addition, their approach was only partially implemented, being 
other elements assumed to work and only described for EJBs. 
However, our approach is programming language independent. 

Grunske [12] proposes an approach for architectural refactoring 
based on a hypergraph-based data structure that allows the 
formalization of refactorings as hypergraph transformation rules 
that can be applied automatically. However, unlike our approach, 
this approach does not support evolution in general but is limited 
to behavior preserving architectural refactoring.  

A number of different approaches focus on change impact 
analysis and utilize models and model conformance checking, 
reasoning on ontologies [4,22], or Bayesian Belief Networks [25] 
to analyze the impact of changes on systems properties. Others 
propose the use of anti-patterns to detect conflicting Architectural 
Design Decisions during evolution [19]. But all these approaches 
focus on analyzing the changes to a system during the evolution 
but none of them focuses on deciding the evolution itself. 

Summarizing, most of the approaches discussed in this section 
focus on the documentation of the evolution, while our approach 
focuses on decisions about the evolution. The approaches that 
focus on automatic evolution either lack the support for 
automatically changing the architecture description, which 
requires the architect to perform this task manually, or are focused 
on specific subsets of systems. 

3. ARCHITECTING FOR DECIDING 
CODE EVOLUTION 
Whenever the code is being developed, the coding tasks are 
usually carried out in an iterative manner, so that no new 
component is developed from its very beginning to its end, but 
usually different components can be developed in parallel. 
However, the main problem is that there are, usually, internal 
dependencies among them that must be identified and considered 
whenever a system is being developed. These internal 
dependencies impose mainly temporal constraints, in terms of 
when the different features supported by each component should 
be developed. Let us illustrate this problem with a scenario, which 
we will use as a running example in the remainder of this paper. 
As shown in Figure 1(a), initially two components ComponentA 
and ComponentB communicate with each other directly through a 
connector. Now let us assume that, due to new requirements, a 
distribution of these two components on different servers is 
necessary. This leads to an Architectural Design Decision (ADD) 
to implement a version of the broker pattern between these two 
components. This architectural change is shown in Figure 1(b). 

Component A Component B

Component A Component B

Proxy A Proxy BBroker

(a)

(b)

Figure 1: Architecture changes in the Broker scenario 



The broker pattern is a pattern for communication between 

distributed objects. This ADD leads to a number of design 
decisions and thus a number of different implementation tasks, 
whose timing is constrained by internal dependencies, as shown 
Figure 2. Specifically, the following tasks need to be implemented 
in order to complete the implementation of this ADD. 

 For using the Broker itself, a suitable middleware framework 
must be set up and configured. 

 The above mentioned proxies for the two components need 
to be created. 

 The proxies need to be wired to the broker. Moreover, the 
components need to be changed in order facilitate the new 
communication form. The direct connector needs to be 
removed and the usage of the proxies needs to be 
implemented. If dependency injection (DI) is used, at least 
the DI configuration needs to be changed, even if no changes 
to the components’ implementation are necessary. 

All of these tasks need to be completed in order to fully comply 
with the ADD to implement the broker pattern. Even in this small 
example, a number of temporal dependencies exist between the 
tasks at hand. The implementation of the proxies requires that the 
middleware for the Broker is set up and configured, the changes 
to Component A require the existence of the proxy for Component 
A, and the wiring of Component A with its proxy requires that the 
changes to the Component A itself are completed. The same or at 
least similar dependencies exist for Component B. These 
dependencies impose some order in which these tasks need to be 
completed. In a real world scenario with multiple development 
teams and more than two components involved in an architectural 
decision, this problem’s complexity grows much further. 

In our approach, a software architect defines the tasks and the 
constraints on the timing of the tasks (e.g. proxy must be 
implemented before proxy can be connected and used) in a 
domain specific language especially designed for planning code 
evolution, called Evolution DSL. This DSL allows the architect to 
specify: (i) a textual description of the implementations task, 
including any references to relevant ADDs; (ii) the temporal 
constraints or dependencies of the task; (iii) as well as the changes 
to the system’s architectural description based on the Architecture 
Abstraction DSL. We describe the technical details and the 
Evolution DSL in Section 3.1.  

Based on these task definitions, our approach supports the 
architect and the developers during the evolution by automating 
the complex task of creating the possible decision alternatives for 

executing the given implementation tasks. We utilize the Alloy1 
model finder for automatically providing multiple possible 
alternatives for the order of the implementation tasks. These 
models are provided in graphical and textual form by Alloy. 
While the textual form supports an automatic interpretation, the 
graphical form shows which tasks do not have any dependencies 
to other tasks and thus can be implemented in a parallel fashion 
without running into any dependency issues. It also supports easy 
identification of crucial tasks that need to be completed early, as 
well as sets of implementation tasks that do not have 
dependencies outside the given set.  

In our running example, two such sets can be identified: The first 
contains all tasks related to Component A and the second contains 
all tasks related to Component B, while the set up and 
configuration of the middleware of the Broker qualifies as a 
crucial task that might hinder further work as both identified sets 
depend on this task. The sets around Component A and 
Component B are good candidates for being developed by the 
same development team, because this team then can work 
independently from the other team(s) and is not hindered by any 
dependencies to tasks that are implemented elsewhere once the set 
up and configuration of the middleware of the Broker component 
is completed. Furthermore, the automatically generated decision 
alternatives ensure that no implementation tasks are started, 
before their dependencies are fulfilled. Finally, the defined 
implementation tasks are used to automatically update the 
architecture description and serve for the purpose of creating a 
documentation of the evolution. The technical details of this 
support are provided in section 3.2. 

3.1 DSL for specifying the code evolution 
In this section we describe the concepts and implementation of 
our Evolution DSL in detail. An important feature of the 
Evolution DSL is the tight integration with the architecture 
description itself, which enables to automatically apply the 
changes, specified in an implementation task to the architecture 
description, once it is completed. This releases the software 
architect from the burden to manually update the architectural 
description after an implementation task is completed.  

This is why we have integrated the Evolution DSL, which was 
implemented in Xtext [8], with the Architecture Abstraction DSL 
that we developed in a previous work [13]. For space reasons, we 
introduce just briefly our Evolution DSL2 in this paper. 

In order to facilitate the understanding of this paper, Figure 3 
shows an excerpt of the grammar for the definition of 
implementation tasks and the temporal rules for implementation 
tasks as well as the architectural changes supported. In the rule 
definition AddComponentTask, we can see that the Architecture 
Abstraction DSL’s rules are reused. This enables the automatic 
application of the architectural changes from completed 
implementation tasks to the architectural description. This has 
been implemented as an Eclipse wizard that enables the architect 
to select which implementation tasks have been already 
completed and then, using a model-to-model transformation, to 
update the architecture description.   
                                                                 
1 Alloy [16] is a language to formally describe structures and a 

solver that takes the constraints of a model and finds structures 
that satisfy them. 

2 For a complete specification & source code see: 
https://swa.univie.ac.at/DSL_for_planning_the_evolution 

Figure 2: Planning an Evolution Step 
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An example of different tasks expressed in the DSL is presented 
in Figure 4. In this example, the complex task of adding a Broker 
between two Components A and B is divided into multiple 
subtasks, which consist of implementing the Broker itself 
(AddBrokerFeature), implementing the Proxies for Components A 
and B (AddProxyA, AddProxyB) and wiring all the components 
together. Some of these tasks have (temporal) dependencies. In 
this example, ConnectA2Proxy requires that ProxyA has been 
implemented before Component A can be wired to ProxyA. Also, 
ConnectA2Proxy is itself a complex task that consists of two 
subtasks, which should be carried out in close succession. In 
Figure 4 we skipped the tasks regarding Component B as they are 
very similar to the tasks regarding Component A. 

Other dependencies that stem from organizational requirements 
(e.g. that the tasks will be split between independent teams of 
developers) can be modelled in the same way as constraints 

resulting from implementation itself. 

3.2 Generating decision alternatives for 
evolution 
Once the tasks are defined, we use the features provided by Xtext 
to automatically execute a model-to-text transformation that 
creates an Alloy model, which is used to generate the possible 
decision alternatives. Alloy [16] is a structural modelling 
language based on first-order logic for expressing complex 
structural constraints and behavior. The Alloy Analyzer is a 
constraint solver that provides fully automatic simulation and 
checking. It allows us to define the concepts of basic and complex 
implementation tasks, the definition of specific implementation 
tasks and their constraints based on the abstract concepts, as well 
as the following (summarized) constraints that need to hold for all 
implementation task models: 

 An implementation task is followed by a set of 
implementation tasks (next relation). 

 A complex implementation task is an implementation task 
that consists of a set of implementation tasks (consistsOf 
relation). 

 All defined implementation tasks need to be acyclic with 
respect to the next relation as well as the consistsOf relation. 

 All defined implementation tasks need to exist in the solution 
and must be reachable. Either they are part of the initial tasks 
or they are reachable through an initial task. 

 A complex implementation task is immediately followed by 
one of its subtasks. 

 A complex implementation tasks precedes all its subtasks. 

 Each implementation task can only be part of zero or one 
complex implementation tasks. 

We show an excerpt of the Alloy code that was generated for the 
Broker example in Figure 5. In particular, we show the constraints 
that ensure that: (i) a task only occurs once, (ii) a task cannot be 
part of itself, (iii) the definition of the tasks AddProxyA and 

Figure 4: Excerpt from the implementation tasks of the example for adding a Broker. 

Task AddBroker:
description: "Tasks necessary for adding 
the new broker to the architecture"
consists of:
AddBrokerFeature,
AddProxyA,
AddProxyB,
ConnectA2Proxy,
ConnectProxyA2Broker,
ConnectB2ProxyB,
ConnectProxyB2Broker

Task AddBrokerFeature:
description: "implement the broker functionality"
architecture changes:
add component to Frag
Component Broker consists of
Package("univie.swa.example.broker") 

Task UpdateComponentA:
directly precedes ConnectA2Proxy
architecture changes:
replace feature Frag.ComponentA : 
Package_univie_swa_example_original_package
with new feature:
Package("univieswa.example.A.usingBroker")
after Frag.ComponentA.Package_univie_swa_example_original_package

Task ConnectA2ProxyA:
description: "implement the conn. between comp. A and proxy A"
precedes ConnectB2ProxyB
succeeds AddProxyA
architecture changes:
add connector to Frag.ComponentA
connector to AddProxyA.ProxyA

Task ConnectProxyA2Broker:
description: "wire the proxy and the broker together"
succeeds AddProxyA,AddBrokerFeature
architecture changes:
add connector to AddProxyA.ProxyA
connector to AddBrokerFeature.Broker

Task AddProxyA:
description:"implement the proxy that hides the broker from comp. a"
architecture changes:
add component to Frag
Component ProxyA consists of
Package("univie.swa.example.proxyA")

Task ConnectA2Proxy:
succeeds AddProxyA
consists of:
UpdateComponentA,
ConnectA2ProxyA

Figure 3: Excerpt of the Xtext grammar for the Evolution 
DSL showing the rule for an impl. task, the different types 

of tasks and two of the rules for specific tasks  

ImplementationTask:
'Task' name=ID ':'
('status:' status=STATUS)?
('description:' description=STRING)?

// temporal rules
('precedes' precedes+=[ImplementationTask] (',' precedes+=[ImplementationTask])*)?
('directly precedes' directlyprecedes+=[ImplementationTask] (',' directlyprecedes+=[ImplementationTask])*)?
('henceforth requires' requires+=LogicRule (',' requires+=LogicRule)*)?
('in parallel with' inParallelWith+=[ImplementationTask] (',' inParallelWith+=[ImplementationTask])*)?
('succeeds' succeeds+=[ImplementationTask] (',' succeeds+=[ImplementationTask])*)?
('directly succeeds' directlysucceeds+=[ImplementationTask] (',' directlysucceeds+=[ImplementationTask])*)?
(optional?='is optional')?
('is incompatible with' prevents+=[ImplementationTask] (',' prevents+=[ImplementationTask])*)?
architectureChange=ArchitectureChange;

ArchitectureChange:
AddFeatureTask | AddConnectorTask | RemoveFeatureTask | RemoveConnectorTask | AddComponentTask |
RemoveComponentTask | ModifyComponentTask | ComplexTask;

ComplexTask:
'consists of:'
tasks+=TaskReference (',' tasks+=TaskReference)*;

AddComponentTask:
'architecture changes:'
'add component to' transformation=[archDSL::Transformation|TASKS_QUALIFIED_NAME]
componentToAdd=ComponentDef;



ConnectA2ProxyA as implementation tasks, (iv) finally, 
AddProxyA needs to be executed before the task 
ConnectA2ProxyA. 

We then use the Alloy tool (version 4.2) to create multiple 
possible decision models that adhere to the identified constraints. 
These models are provided in a textual and a graphical 
representation by the tool. Figure 6 shows a possible order of the 
implementation tasks for the Broker example generated by Alloy. 

 
Please note that a limitation of this approach arises through the 
use of Alloy, which, as a model finder that uses SAT solving for 
finding model instances, requires a suitable scope, as within this 
scope, the search for a model is complete, while the search itself 
is incomplete. For all our models, we chose a default scope of 5, 
because it is enough to find multiple solutions for all our 
generated models. Due to the size of architectural component 
models and due to the fact that our Alloy models do not have free 
variables, our experience shows that for this subset of models a 
model instance can be found. If no model instance is found, the 
bound can be raised.  

It is worth noting that this approach has been designed for 
evolving architecture and code in sync. When the code is changed 
first, the features of the Abstraction DSL can aid in ensuring 
consistency between architecture and code. 

4. CASE STUDY 
In this section we describe our case study of Soomla, an open 
source framework for virtual economy operations in a single, 
cross-platform, SDK mainly used for mobile games [23]. In our 
case study, we describe the changes that were implemented from 
Version 3.2 to Version 3.3. Figure 7 shows an overview of 
Soomla’s architecture and the respective changes to the 
architecture. In Version 3.2 Soomla’s billing system only 
integrated the Billing API for Android provided by Google which 
was directly used throughout the system. However, since the need 
arose to support other billing providers as well, this was no longer 
suitable and the system needed to be evolved. 

  

We described this evolution as a set of implementation tasks 
which replace the original provider-dependent GooglePlayBilling 
component with a new provider-independent billing component, 
and then (re-)implement the provider-specific parts based on the 
new billing infrastructure. The detailed implementation tasks and 
their architectural changes are shown in Figure 8.  

Based on our description of the implementation tasks, an Alloy 
model was automatically generated by our model-to-text 
transformation implemented in Xtend. We then used the Alloy 
model finder to create the decision alternatives for executing the 
implementation tasks without violating any constraints. This was 
computed by Alloy in 149 ms and resulted in multiple possible 
alternatives for executing the implementation tasks at hand. This 
order ensures that all constraints are satisfied throughout the 
execution of the different implementation tasks 

Once the implementation tasks were completed, we automatically 
added the architectural changes from the implementation tasks to 
the architectural description of Soomla using our wizard (see 
Figure 9), which we integrated into the DSL user-interface. This 
wizard then uses Xtend [9] to apply the changes to the 
architecture description written in the Architecture Abstraction 
DSL. 

This case study, as well as the running broker example, shows the 
applicability of the approach with respect to feasibility. The time 
required for finding suitable plans with Alloy was around 150ms 
for all presented examples on a Lenovo Thinkpad X240 with i5 
Processor and 8 Gb RAM and a Samsung Evo 840 SSD. We think 
that in large projects with multiple developer teams, the effort 
necessary to use our approach is outweighed by the benefits of 
having a plan for executing the given tasks that shows which tasks 
can be executed in parallel, as well as which tasks are 
prerequisites to other tasks and thus should be prioritized. 

 

Figure 6: Decision alternative generated by Alloy for the 
Broker example 

Figure 7: Architecture overview of Soomla with changes 
between version 3.2 and version 3.3 

Figure 5: Excerpt of the Alloy code for the introduce Broker 
example 

//…
fact AcyclicImplementationTasks {

no task: ImplementationTask| task in task.^next
}
fact AcyclicComplexImplementationTasks {

no task: ComplexImplementationTask | task in task.^consistsOf
}
// …
one sig AddProxyA extends ImplementationTask {}
one sig ConnectA2ProxyA extends ImplementationTask {}
// …
pred show {
//..
all s1: AddProxyA, s2: ConnectA2ProxyA | s2 in s1.^next
}
run show for 5



 

 

5. CONCLUSION 
In this paper we present an approach for ensuring consistency 
between two important assets of a software project, namely 
software architecture and source code, during the evolution of a 
(large) system by describing an evolution as a set of 
implementation tasks. We provide a DSL that supports the 
description of implementation tasks based on their effects on a 
system’s architecture, as well as the (temporal) constraints that 

exist between different implementation tasks. Besides the value of 
this DSL for documentation of architecture evolution, our 
approach supports tool-based guidance throughout the 
implementation tasks necessary for performing evolution. That is, 
based on the implementation task descriptions, we use Alloy 
models to calculate possible decision alternatives for code 
evolution under the given constraints that ensure the consistency 
of the evolution or warn the software developer if no viable code 
evolution decisions can be found. The integration with the 
architecture description helps keeping software architecture and 
source code in sync, avoiding drift and erosion. We show the 
applicability of the approach in a running example based on the 
implementation of the Broker pattern in an application as well as 
a real-life scenario for the evolution of the open-source in-app-
purchase framework Soomla. In our future work we will perform 
a case study with developers and architects to better determine the 
approach’s benefits with respect to its costs. 
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Task ProviderIndependentBilling:
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ImplementBillingComponent,
WireBillingComponent,
SubstituteBillingInStoreController,
ImplementNewGoogleBillingProvider,
RemoveOldGoogleBillingProvider

Task ImplementBillingComponent:
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architecture changes:
add component to Soomla
Component Billing
consists of Package("root.com.soomla.store.billing",excludeChildren)

Task WireBillingComponent:
succeeds ImplementBillingComponent
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add connector to ImplementBillingComponent.Billing connector to Soomla.CryptDecrypt

Task SubstituteBillingInStoreController:
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ConnectToAbstractBilling,
RemoveConntectorGooglePlayBilling
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remove connector from Soomla.StoreController : connector_GooglePlayBilling

Task ImplementNewGoogleBillingProvider:
succeeds ImplementBillingComponent
architecture changes:
add component to Soomla
Component GoogleBilling
consists of
{

Package("root.com.soomla.store.billing.google")
or {

Package("root.com.soomla.store.billing.google")
and
InstanceOf("root.com.soomla.store.billing.IIabService")

}
}
connector to ImplementBillingComponent.Billing

Task RemoveOldGoogleBillingProvider:
architecture changes:
remove component Soomla.GooglePlayBilling



[7] Cuesta, C.E., Navarro, E., Perry, D.E., and Roda, C. 
Evolution styles: using architectural knowledge as an 
evolution driver. Journal of Software: Evolution and Process 
25, 9, 957–980. 2013. 

[8] Eclipse. Xtext. Retrieved April 24, 2015 from 
https://eclipse.org/Xtext 

[9] Eclipse. Xtend. Retrieved April 24, 2015 from 
https://www.eclipse.org/xtend 

[10] Garlan, D., Barnes, J.M., Schmerl, B.R., and Celiku, O. 
Evolution styles: Foundations and Tool support for Software 
Architecture Evolution. Joint Working IEEE/IFIP 
Conference on Software Architecture & European 
Conference on Software Architecture (WICSA/ECSA 2009), 
IEEE, 131–140. 2009. 

[11] Le Goaer, O., Tamzalit, D., Oussalah, M.C., and Seriai, A.-
D. Evolution styles to the rescue of architectural evolution 
knowledge. 3rd International workshop on SHAring and 
Reusing architectural Knowledge (SHARK’08), ACM Press, 
31–36. 2008. 

[12] Grunske, L. Formalizing architectural refactorings as graph 
transformation systems. Proceedings - Sixth Int. Conf. on 
Softw. Eng., Artificial Intelligence, Netw. and 
Parallel/Distributed Computing and First ACIS Int. 
Workshop on Self-Assembling Wireless Netw., SNPD/SAWN 
2005, 324–329. 2005. 

[13] Haitzer, T. and Zdun, U. Semi-automated architectural 
abstraction specifications for supporting software evolution. 
Science of Computer Programming 90, 135–160. 2014. 

[14] Holt, R. Sofware Architecture as a Shared Mental Model. 
Proceedings of the ASERC Workshop on Software 
Architecture. 2002. 

[15] Hunold, S., Korch, M., Krellner, B., Rauber, T., Reichel, T., 
and Rünger, G. Transformation of Legacy Software into 
Client/Server Applications through Pattern-Based 
Rearchitecturing. 32nd Annual IEEE International Computer 
Software and Applications Conference (COMSAC’08), IEEE, 
303–310. 2008. 

[16] Jackson, D. Software Abstractions. Logic, Language and 
Abstractions. MIT Press. 2011. 

[17] Konersmann, M., Durdik, Z., Goedicke, M., and Reussner, 
R.H. Towards Architecture-centric Evolution of Long-living 
Systems (the ADVERT Approach). Proceedings of the 9th 
International ACM Sigsoft Conference on Quality of 
Software Architectures, 163–168. 2013. 

[18] McVeigh, A., Kramer, J., and Magee, J. Evolve: tool support 
for architecture evolution. 2011 33rd International 
Conference on Software Engineering (ICSE), 1040–1042. 
2011. 

[19] Navarro, E., Cuesta, C.E., Perry, D.E., and González, P. 
Antipatterns for Architectural Knowledge Management. 
International Journal of Information Technology & Decision 
Making 12, 3, 547–589. 2013. 

[20] Noppen, J. and Tamzalit, D. ETAK: Tailoring Architectural 
Evolution by (re-)using Architectural Knowledge. ICSE 
Workshop on Sharing and Reusing Architectural Knowledge 
(SHARK ’10), ACM Press, 21–28. 2010. 

[21] Ozkaya, I., Wallin, P., and Axelsson, J. Architecture 
knowledge management during system evolution. 2010 ICSE 
Workshop on Sharing and Reusing Architectural Knowledge 
(SHARK ’10), ACM Press, 52–59. 2010. 

[22] Pahl, C., Giesecke, S., and Hasselbring, W. Ontology-based 
modelling of architectural styles. Information and Software 
Technology 51, 12, 1739–1749. 2009. 

[23] SOOMLA. Open source framework version 3.1. Retrieved 
April 24, 2015 from http://soom.la/ 

[24] Tamzalit, D., Oussalah, M.C., Le Goaer, O., and Seriai, A.-
D. Updating software architectures : A style-based approach. 
International Conference on Software Engineering Research 
and Practice (SERP 2006), CSREA Press, 313–318. 2006. 

[25] Tang, A., Nicholson, A.E., Jin, Y., and Han, J. Using 
Bayesian belief networks for change impact analysis in 
architecture design. Journal of Systems and Software 80, 1, 
127–148. 2007.  

 

 


