
The Impact of Hierarchies on the Architecture-level Software Understandability - A
Controlled Experiment

Srdjan Stevanetic
Software Architecture Research Group

University of Vienna
Vienna, Austria

srdjan.stevanetic@univie.ac.at

Muhammad Atif Javed
Software Architecture Research Group

University of Vienna
Vienna, Austria

muhammad.atif.javed@univie.ac.at

Uwe Zdun
Software Architecture Research Group

University of Vienna
Vienna, Austria

uwe.zdun@univie.ac.at

Abstract—Architectural component models represent high
level designs and are frequently used as a central view of
architectural descriptions of software systems. They play a
crucial role in the whole development process and in achieving
the desired software qualities. This paper presents an em-
pirical study that examines the impact of hierarchies on the
architecture-level software understandability. In particular we
have studied three different architectural representations of
a large-size software system, one with a hierarchical repre-
sentation where architectural components at all abstraction
levels in the hierarchy are shown, and two that do not contain
hierarchical abstractions but concentrate only on the lowest
level or on the highest level components in the hierarchy.
We conducted a controlled experiment in which participants
of three groups received one of the three architecture doc-
umentations plus the source code of the system and had to
answer understandability related questions. Our results show
that using the hierarchical architecture leads to: 1) higher
quantity of correctly retrieved elements, 2) lower quantity of
incorrectly retrieved elements, and 3) higher overall quality
of retrieved elements. The obtained results provide empirical
evidence that hierarchies play an important role in the context
of architectural component models from the viewpoint of the
architecture-level software understandability.

Keywords-software architecture; hierarchies; understand-
ability; controlled experiment

I. INTRODUCTION

The main idea of software architecture is to concen-
trate on the “big picture” of a software system and to
enable architects to abstract away the fine-grained details
of the implementation and other development artefacts [17].
Software architecture deals with a set of design decisions
which, if made incorrectly, may cause a project to be
cancelled [16]. Those design decisions represent system’s
relevant concerns that encompass every aspect of the system
under development including system structural decisions,
decisions related to the system behaviour, decisions related
to the non-functional properties and other decisions related
to the business requirements [16]. According to Garlan [7],
software architecture plays an important role in at least
six aspects of software development: understanding, reuse,
construction, evolution, analysis and management.

Architectural component and connector models (or com-
ponent models for short) are frequently used as a central
view of the architectural descriptions of software systems
[3]. Note that, according to the software architecture com-
munity, an architectural description can comprise multi-
ple views that describe the system concentrating on one

of many system aspects, such as logical, implementation,
deployment, or process views, and from the viewpoint of
different stakeholders, such as end-users, developers, project
managers, and business analysts [12], [3]. We concentrate
on the architectural information captured in the component
models from the perspective of developers and with regard
to their relations to the system implementation (i.e., the
implementation or development view). From the perspective
of the system implementation, component models deal with
the coarse-grained components that represent the units of
run-time computation or data-storage, and the connectors
that are the interaction mechanisms between them [20]. We
focus on this view because it is often used to get an initial
understanding of the architecture and provides a link for
other views, such as the “logical” or “module” views. Since
a component in an architectural component model represents
a high-level abstraction of the entities in the source code
of the software system, it can be broken down into (i.e.,
is refined by) more fine-grained, technical components or
classes that realize the component in the technical design or
implementation of the system.

Understandability of a software system is a crucial aspect
of the software development process [19]. The difficulty
of understanding a software system limits its reuse and
maintenance and therefore can influence cost or reliability of
software evolution. In the context of architectural component
views, understandability is a critical aspect, as one of the
main purposes of software architecture is to “ ... enable
designers to abstract away fine-grained details that obscure
understanding and focus on the “big picture:” system struc-
ture, the interactions between components, ...” [17]. This,
however, is not possible if the given views themselves and/or
the links to other design and code artefacts are hard to
understand.

Architectural design description of the system can be
decomposed into a hierarchy of components that model the
system’s relevant concerns at different abstraction levels. For
instance, according to the guides for software architecture
definition in the series of guides for software engineering
produced by the Board for Software Standardisation and
Control (BSSC) of the European Space Agency [15], ar-
chitectural decomposition should be constructed as a hierar-
chical representation where each level models the system’s
relevant concerns at different levels of abstraction (it starts
from a set of high-level components that model high level
concerns and results in a set of low-level components that

in combination model the high-level concerns) wherein the
decomposition should reach a sufficient level of detail, i.e.
provides all the system’s relevant concerns. To the best of
our knowledge there exist no empirical studies on the impact
of hierarchies on the understandability of architectural com-
ponent models. Existing empirical research into hierarchical
models and their impact on understandability mainly targets
the domain of conceptual process modelling (see [32] for
an overview) such as business process models, ER models,
or UML state chart diagrams, and declarative process mod-
elling [33]. While hierarchical structures are recognized as
an important factor that influence model understandability, it
is not entirely clear whether and when hierarchical structures
are beneficial for model understandability [32], [33].

In this study we investigate the impact of hierarchies
on the architecture-level software understandability. In par-
ticular we have studied three different architectural rep-
resentations of a large-size software system, one with a
hierarchical representation where architectural components
at all abstraction levels in the hierarchy are shown, and two
that do not use hierarchical abstraction and concentrate either
on the lowest level or on the highest level components in
the hierarchy. The subjects of the study were 75 students
of the Software Architecture lecture at the University of
Vienna. They were divided into 3 groups, and each of them
studied one of the 3 architectural representations. Our results
show that the hierarchical architecture leads to: 1) higher
quantity of correctly retrieved elements, 2) lower quantity
of incorrectly retrieved elements, and 3) higher overall
quality of retrieved elements with regard to understandability
related questions, compared to the other 2 architectures.
This provides empirical evidence that hierarchies play an
important role in the context of architectural component
models from the viewpoint of the architecture-level software
understandability.

This study is organized as follows: In Section II, we
briefly discuss the related work. Section III provides a short
overview of the relevant factors for assessing the impact
of hierarchies on model understandability and how they are
related to component models. In Section IV we describe the
study design. Section V describes the statistical methods
we applied to analyse our data. Section VI discusses our
empirical findings and other related challenges in more
detail. In Section VII we discuss the threats to validity of
the study. Finally, in Section VIII we conclude and discuss
future directions of our research.

II. RELATED WORK

As already mentioned above current empirical research
on the impact of hierarchies on model understandability
mainly focus on the domains of conceptual and declarative
process modelling [32], [33]. In [32] the authors defined
a framework for assessing the impact of hierarchies on
model understandability by studying the existing research
on hierarchically structured conceptual models from the
perspective of cognitive psychology. An overview of the
existing research on hierarchical models is also provided. In
[33] the authors refined a bit a cognitive-psychology-based
framework defined in [32] that allows to assess the impact of
hierarchies on the understandability of a declarative process

model. Moreover the authors discussed the semantics and the
application of hierarchies and showed how sub-processes en-
hance the expressiveness of declarative modelling languages.

So far in the software architecture literature we find only
a very few studies that provide empirical evidence regarding
architectural understandability. In particular, one existing
study examines the influence of package coupling on the
understandability of software systems [8], while another
one examines the relationships between some package-level
metrics and package understandability [5]. In our previous
studies [27], [28] we examined the relationships between
the effort required to understand an architectural component,
and a number of component level metrics. Several significant
correlations and well-fitting prediction models are obtained.
In another our study [26] we showed that tangling several
system’s relevant concerns into one component or scatter-
ing them into several components hinders locating those
concerns in the system implementation and significantly
decreases the understandability.

A lot of studies studied the understandability of differ-
ent UML models. Some of them studied the layout or
visualization aspects of UML models. Purchase et al. [21]
revealed that certain visualizations are better than the other
depending on the kind of comprehension tasks. Other studies
on UML model comprehensibility compare the effect of
using different UML diagram types (e.g., sequence and
collaboration diagrams). For example, Otero and Dolado
took different UML diagrams types, namely sequence, col-
laboration, and state diagrams, and evaluated the semantic
comprehension of the diagrams when used for different
application domains [18]. None of these and similar studies
examine the impact of hierarchies on the understandability
of architectural component models.

As already mentioned above the component models
should appropriately encompass all system’s relevant con-
cerns and therefore enable conveying a “big picture” of
the system. In that way they support the understandability
of the whole system and help in creating relationships
or mappings between the low level code design and the
application domain of the system. Many authors emphasised
a mapping between program code and the domain problem
(i.e. business related high-level functions) as a key factor for
understandability [2], [1]. In the sense of mapping between
low-level code design and high-level concerns many authors
discussed the concept of feature location as instrumental
for the understandability purpose [9]. Capturing system’s
relevant concerns can be mapped to the system’s features
modelling in the architecture. A feature is realized functional
requirement in the system, and generally also subsumes non
functional requirements. Periklis et al. [25] introduced the
Feature-Architecture Mapping (FArM) method for feature-
oriented development of software product lines. During the
analysis of the system and its domain all relevant functional
and quality features are extracted. By iteratively refining the
initial feature model (FM), a FM is constructed, containing
exclusively functional features, whose business logic can
be implemented into architectural components (see [25] for
more details). In this context the hierarchical organization of
the feature model is highlighted as important and necessary.

III. THE IMPACT OF HIERARCHIES ON MODEL
UNDERSTANDABILITY

In this section we provide a short overview of the factors
that are relevant for assessing the impact of hierarchies
on model understandability and discuss them in relation
to component models. Those factors are systematically ex-
tracted from the existing empirical research on conceptual
and declarative process modelling (see [32], [33] for more
details).

With respect to a general-purpose problem solving process
two main factors are identified to presumably have an impact
on understandability: abstraction and split-attention effect.
Abstraction enables grouping of a part of a model into
a sub-model that characterizes the group. In that way it
reduces the number of elements that have to be considered
simultaneously, i.e. it can hide irrelevant information and
increase understandability [32]. Besides improving attention
management, abstraction presumably supports the identi-
fication of higher level patterns [33]. By abstracting and
aggregating, information can be easier perceived and an
overall model is easier to grasp. However, the sub-models
can also have their downsides. When the information from
the sub-models needs to be extracted, the reader has to
take into account several sub-models, thereby switching
attention between sub-models. In addition, the reader has
to mentally integrate the sub-process into the parent model,
i.e., interpret constraints in the context of the parent process
[33]. This effect is called split-attention effect, and it leads
to increased mental effort and decreases understandability.
For both effects the authors who systematically extracted
them assumed that sub-models are presented in a separate
window on a computer or printed on a single sheet of paper.

In Section II we emphasised the role of component models
for the understandability of a software system as their main
purpose is to provide a mapping between the low-level code
design and the high-level concerns of the system that many
authors indicated as a key factor for understandability. From
that perspective the previously mentioned abstraction effect
seems to have a significant impact on understandability of
component models. Namely, appropriate hierarchical group-
ing of the system’s relevant concerns at different abstraction
levels should facilitate the location of those concerns by
guiding the attention of the reader to certain parts in the
model. After finding relevant parts in the model, the trace-
ability links that link each component to the source code
classes that realize the components in the system implemen-
tation can further guide the reader to the location of relevant
concerns in the system implementation. Furthermore, the
abstraction effect supports patterns recognition as mentioned
above which strengthens its role in the understanding.

With regard to the influence of the split-attention ef-
fect on architectural understandability of component models
in comparison to the understandability of conceptual and
declarative process models we can say the following. In
conceptual and declarative process models a reader mostly
faces the problem of checking whether execution traces
are supported in the model (i.e. understanding the control
flow between different activities). The factors that mostly
affect the understandability of those models deal with the

execution order, exclusiveness, and concurrent and repeat-
able execution of activities [23]. In order to understand
a given execution trace a reader has to pass over several
model parts including the corresponding sub-models and to
integrate the implicit constraints that exist on the execution
order, exclusiveness, concurrency, and repeatability in the
execution. Therefore a reader has to switch attention several
times (following the given execution trace) between the sub-
models which is further aggravated by the integration of the
execution constraints, leading to the split-attention effect.
Component models have a static nature, i.e. they focus on
a static structure of the system captured by components
and connectors that represent the interaction mechanisms
between them. Connectors capture the dependencies be-
tween components mostly described as a set of required
and provided interfaces or services [3]. Therefore tracking
the relationships between components in component models
seems to be much easier then tracking the relationships
between the activities in the process models since we do not
have to consider several implicit execution constraints (i.e.
execution order, exclusiveness, concurrency, and repeatabil-
ity) that exist between the process models activities. We
simply have to consider the direct relationships between
the components described by the required and provided
interfaces or services. Having this in mind we can say that
the split-attention effect seems to presumably have much
less impact on the understandability of component models
than on the understandability of declarative and conceptual
process models.

Regarding the model size, in order for hierarchies to be
beneficial for model understandability, the model must be
large enough to benefit from the abstraction [32]. However
it is still not clear from the existing empirical research where
the threshold related to the size lies. Besides the size of the
model, the reader’s experience also plays an important role
[32]. Experimental settings should be adjusted so that most
mental effort is used for problem solving instead of learning,
i.e. becoming familiar with the syntax and semantics used
for the hierarchical description of the model.

IV. EMPIRICAL STUDY DESCRIPTION

For the study design we have followed the experimental
process guidelines proposed by Kitchenham et al. [10] and
Wohlin et al. [30]. The former was primarily used in the
planning phase of the study while the later was used for the
analysis and the interpretation of the results.

A. Goal, hypotheses, and variables
As mentioned above this study examines how the

architecture-level software understandability is affected by
a hierarchical representation of the system’s architecture
compared to the architectures where hierarchies are not
used. Namely, we compared the understandability for three
different architectures of the studied system: one where all
the system’s relevant concerns captured by the components
are represented in the architecture by forming a hierarchical
structure with different abstraction levels, one that concen-
trates only on the highest level components in the hierarchy
representing the highest level concerns in the system, and
one that concentrates only on the lowest level components

in the hierarchy representing the lowest level concerns in the
system. With respect to the discussions provided in Section
III we expect that the abstraction effect (that has positive
impact on understandability) dominates the split-attention
effect (that has negative effect on understandability) in the
process of the architectural-level software understandabil-
ity. Therefore we expect that the hierarchical component
model significantly improves architectural understandability
in comparison to the other two component models. The
hierarchical component model was presented on one page
without separately describing sub-components (in a separate
window or a piece of paper). This probably led to further
decreasing the possible impact of the split-attention effect
(see Section III for a detailed discussion about the given
effect). To evaluate our results on the understandability
related questions we estimated the quantity and quality of
retrieved elements using information retrieval measures [13]
(see below for more details). The study goal led to the
following hypotheses:

H1: The hierarchical architecture that groups all system’s
relevant concerns into component hierarchies leads to a
higher quantity of correctly retrieved elements compared to
the architectures that do not use hierarchical abstractions and
provide only the lowest or highest level components in the
hierarchy.

H2: The hierarchical architecture that groups all system’s
relevant concerns into component hierarchies leads to lower
quantity of incorrectly retrieved elements compared to the
architectures that do not use hierarchical abstractions and
provide only the lowest or highest level components in the
hierarchy.

H3: The hierarchical architecture that groups all system’s
relevant concerns into component hierarchies leads to higher
overall quality of retrieved elements compared to the archi-
tectures that do not use hierarchical abstractions and provide
only the lowest or highest level components in the hierarchy.

We differentiate 3 dependent and 5 independent variables
in our study. The dependent variables include: quantity of
correctly retrieved elements, quantity of incorrectly retrieved
elements, and overall quality of retrieved elements. The
dependent variables are accessed by using recall, precision,
and F-measure, respectively, the standard metrics used to
evaluate the performances of information retrieval systems
[13]. The level of scaling for information retrieval measures
falls in the interval [0,1]. Each question about the studied
system requires a set of system elements (source code
classes, packages, and/or architectural components) as an
answer. All the questions in the study are subjective, open-
ended questions. Because answers to the questions consist of
a list of system elements, the following aspects are taken into
consideration to calculate the information retrieval statistics:

• The set of correct elements expected in the solution to
question i (Ci).

• The set of elements mentioned in the solution to
question i by participant p (Mp,i).

Based on the above definition, recall and precision are
computed for every subjective question. Recall is the per-
centage of correct matches retrieved by a study subject,
while precision is the percentage of retrieved matches that

are actually correct.

Recallp,i =
| Mp,i ∩ Ci |

Ci
Precisionp,i =

| Mp,i ∩ Ci |
Mp,i

Because recall and precision measure two different con-
cepts, it can be difficult to balance between them. We used
F-measure, a standard combination of recall and precision,
defined as their harmonic mean, to measure the global
correctness of answers from the study participants.

F −measurep,i = 2 ∗ precisionp,i ∗ recallp,i
precisionp,i + recallp,i

The independent variables used in our study concern the
participants experience (programming experience, commer-
cial programming experience, and experience in program-
ming Java applications), group affiliation (3 different groups
of participants) and time spent in the study. With respect to
the goal of our study 3 different treatments are defined for
the participants. Each treatment (group of participants) is
explicitly told to answer the questions aimed at gaining the
architecture-level understanding of a representative subject
system, and each group is provided with a different archi-
tecture of the studied system. The independent variables
could have an influence on the dependent variable, which
is eliminated by balancing the characteristics between the
given 3 groups of participants.

Description Scale type Unit Range
Quantity of correctly retrieved elements Interval Points [0,1]
Quantity of incorrectly retrieved elements Interval Points [0,1]
Overall quality of retrieved elements Interval Points [0,1]

Table I
DEPENDENT VARIABLES

The dependent variable together with its scale type, unit,
and range is shown in Table I. The independent vari-
ables are shown in Table II. The range for the variable
“Group affiliation” is the following: “Group Alow” corre-
sponds to the participants who have studied the architecture
with the lowest-level components in the hierarchy, “Group
Ahierarchy” corresponds to the participants who have stud-
ied the hierarchical architecture where the components are
appropriately organized into different abstraction levels, and
“Group Ahigh” corresponds to the participants who have
studied the architecture with the highest-level components
in the hierarchy.

B. Study Design

The execution of the study used to test the hypotheses
took place as a part of the Software Architecture lecture at
the University of Vienna, Austria, in the Summer Semester
2014.

1) Subjects: The subjects of the study were 75 students
of the Software Architecture lecture at the University of
Vienna.

Description Scale type Unit Range
Programming experience Ordinal Years 4 categories:

0, [1-3), [3-7), >=7
Commercial programming
experience

Ordinal Years 4 categories:
0, [1-3), [3-7), >=7

Experience in programming
Java applications

Ordinal Years 4 categories:
0, [1-3), [3-7), >=7

Time Ordinal Minutes 90 minutes (max)
Group affiliation Nominal N/A Group Alow, Group Ahierarchy, Group Ahigh

Table II
INDEPENDENT VARIABLES

2) Objects: The software system to be studied by par-
ticipants was WebWork [14], version 2.2, an open source
Java-based web application framework. It is built to improve
developer productivity and simplify code. It provides robust
support for building reusable UI templates, such as form
controls, UI themes, dynamic form parameter mapping to
Java Beans, robust client and server side validation, etc. The
system has around 322K SLOC and can be considered as
relatively large1. As we already mentioned in Section III, in
order that hierarchies are beneficial for model understand-
ability, the model must be large enough to benefit from the
abstraction. Therefore we selected a large-size system to be
studied. The choice of using this particular system is further
motivated by the following factors:

• It is an open source system, which enables us to conduct
the study and disseminate its results.

• It utilizes several design patterns and best practices
which is also in line with the course lectures and with
which the participants were sufficiently familiar.

• It utilizes elegant solutions to overcome the limitations
observed in other web frameworks and better under-
stand a domain problem and a logic behind it.

3) Instrumentation: The following instruments were used
to carry out the study:

Architectural documentation about the WebWork system
version 2.2: The system’s documentation describes the con-
ceptual architecture and lists technologies and frameworks
used in the implementation. Besides textual description, a
UML component diagram is used to illustrate the compo-
nents in the system, and their inter-relationships. Participants
were also provided with a set of traceability links, showing
the relations between architectural components and their
realized source code classes. Those links help in locating
the system’s relevant concerns, captured by the components,
in the system implementation, i.e. source code.

Each of the 3 groups of participants received one ar-
chitectural representation of the system together with the
corresponding traceability links. The first, hierarchical archi-
tecture, appropriately groups all system’s relevant concerns
captured by the components into hierarchy with properly
assigned abstraction levels. This means that first the lowest
level components that should capture all system’s relevant
concerns are identified. The source code classes that imple-
ment the given concerns in the system implementation are
assigned to the corresponding components in which way the

1ISBSG Repositories (The International Software Benchmarking Stan-
dards Group), 2007.

traceability links are formed. The lowest level components
are further grouped into higher level components that repre-
sent higher level concerns and the process is repeated till no
more further grouping is possible. This process requires hu-
man expertise and some guidelines that support the process
can be found in the corresponding literature on the software
architecture definition guides [15] and the system’s feature
location and modelling in the architecture [9], [25], already
mentioned in Sections I and II. The hierarchical architecture
and the corresponding traceability links are created by two
experienced software architects who deeply studied the given
system and its documentation. The other two architectures
are easily derived from the hierarchical architecture.

The hierarchical architecture of the WebWork system
consists of 41 components at the lowest abstraction level.
At the highest level of abstraction 5 composite compo-
nents are modeled containing 37 of those 41 low-level
components. That is, 4 low-level components are not part
of any higher-level component2. The hierarchical architec-
ture provides further structure through 3 composite sub-
components (InversionOfControl, PropertyInterceptors, and
WorkflowInterceptors) which are part of two highest level
components. That is, the hierarchical architecture consists of
3 levels. Figure 1 shows the given hierarchy of components
without relationships between them as well as the detailed
architecture of Component ActionDispatching. As it can be
seen from the figure relationships between the components
in the architectures are established using the required and
provided interfaces as well as the assembly and delegation
connectors (typical notation used in the UML component
diagrams). The components are organized in an appropriate
layout so that the relationships between them can be easily
grasped. With respect to what we mentioned above the
highest-level architecture consists of the following 9 compo-
nents UserInterfaceTags, Views, ActionDispatching, Portle-
tApplications, Helpers, XWorkMainClasses, Configuration,
Interceptors, and ExternalIntegrations, and the relationships
among them where none of the subcomponents of any com-
posite component is shown. The lowest-level architecture
consists of all 41 components that do not have any sub-
component and the relationships among them (none of the
composite components is shown). A part of the lowest-level
architecture with some components and their relationships
is shown in Figure 2.

Browser-based source code access: Browser-based ac-
cess to the source code of the system was provided in a Lab
environment on prepared computers. All source code classes
were grouped into the corresponding components so that the
participants can easily relate the components in the system
to their realized source code classes.

A questionnaire to be filled-in by the participants
during the study execution: On the first page of the ques-
tionnaire, the participants had to rate their experience, i.e.
programming experience, commercial programming expe-
rience, and Java programming experience. The subsequent
pages contain the understanding questions. In the context

2Those components were included in the architecture that concentrates
on the highest level components in order to provide a complete set of
components in the system. That is, the highest-level architecture consists
of 5 composite components + 4 components = 9 components.

WebWork

DataAndContolTags

BaseClasses

TablesAndTemplates

MultipartDispatcher

ResultTypes

JSONDispatcher

ActionMapping

NonFormTags FormTags

UserInterfaceTags

ServletFilters

ActionDispatching

Jasperreports

Freemarker

ViewHelpers

JSP Velocity

Views

StrutsTiles

SitemeshDecorator

XSLTViewAdapters

Interceptors

NoParametersInterceptor

ConversionErrorInterceptor

BooleanInterceptor

FileUploadInterceptor HTTPSpecificDataAccess

PropertyInterceptors

CookiesInterceptor

FlashInterceptor

TokenErrorInterceptor

HTTPSessionInterceptor

ExecuteAndWaitInterceptor

WorkflowInterceptors

DebuggingInterceptor

ExternalIntegrations

Pico PlexusPlexusSpring

InversionOfControl

QuickStart SiteGraph SiteMesh

ConfigBrowser DWR

PortletApplications ConfigurationHelpers XWorkMainClasses

JSONDispatcher

ServletFilters

ActionDispatching

ActionMapping

mapping

request

file
upload

wrapping

redirect

config xwork
save

action

velocity

results

view

ResultTypes

MultipartDispatcher

action
mapping

servlet
context

object
factory

free
marker

Figure 1. WebWork Components Hierarchy and the Detailed Architecture of Component ActionDispatching

DataAndControlTags

TablesAndTamplates

data/control
tags

ResultTypes

Jasperreports

JSP

NonFormTags

SitemeshDecorator

Velocity

Freemarker

HTTPSpecificDataAccess
http
data

sitemesh

result
types

ViewHelpers

StrutsTiles

PortletApplications

ActionMapping

view
helpers

Figure 2. A Part of the Lowest-level Architecture

ID Description Comprehension
activities

Q1 Investigating parts of the system related to automatic adjustments of
different attributes and properties on the actions.

A1, A9, A3

Q2 Investigating parts of the system related to displaying of a web page (user
interface) without those that manage the execution flow and data access.

A1, A9, A3

Q3 Investigating the Model, the View, and the Controller part of the MVC pattern
used in the system.

A7, A1, A8

Q4 Investigating parts of the system integrated from outside of the WebWork
that communicate with the XWork but not with the miscellaneous helper
classes.

A4, A5, A6

Q5 Investigating the impact of changes in the classes that monitor the resource
management activities.

A2, A8, A7

Q6 Investigating the common data flow during the life cycle of a Web Work
request at runtime.

A4, A5, A9

Q7 Investigating parts of the system related to the mapping between the HTTP
requests and the corresponding actions as well as parts that are directly
dependent on them.

A3, A4, A6

Table III
QUESTIONNAIRE FOR THE ARCHITECTURE-LEVEL SOFTWARE

UNDERSTANDING

of the questions, two important criteria are applied: (i) the
questions should be representative for key understanding
contexts, and (ii) they should be imaginatively constructed
to measure the deeper understanding of the participant
groups. With regard to this, nine principal understanding

activities that are typically performed during real-world
software understanding are applied. Those activities are
defined in the work by Pacione et al. [19] (please refer to
[19] for a detailed description). Guided by these activities,
7 representative questions3 (shown in Table III) are defined
that highlight important aspects of the WebWork system at
both a high-level of abstraction (architecture-level) and a
low-level of abstraction (source-code-level). The last column
in the table shows the mapping between the questions and
the aforementioned nine principal understanding activities.

A_low A_hierarchy A_high

0 years
[1,3) years
[3,7)
>=7 years

Programming Exp.

0
5

10
15

20

A_low A_hierarchy A_high

0 years
[1,3) years
[3,7)
>=7 years

Java Programming Exp.

0
5

10
15

20
25

30

A_low A_hierarchy A_high

0 years
[1,3) years
[3,7)
>=7 years

Industry Programming Exp.

0
5

10
15

20
25

30

Figure 3. Experience of the Participants

C. Execution

1) Preparation: As explained in Section IV-B, the study
was conducted in the practical part of the Software Archi-
tecture course at the University of Vienna, Austria. The total
time limit for the whole study was 2 hours. The participants
were randomly assigned to the three groups. From Figure
3 we can see that the experience of the participants in all
three groups is quite well balanced. We also confirmed it
statistically by pursuing the Cliff’s test and concluded that
there is no significant difference in the experience between
the 3 groups (see below for details about the given test).

3The number of questions is estimated in a pre-study, conducted with
our colleagues, to ensure that the participants have fairly enough time to
study all of them.

2) Data collection: The data collection was performed
as planned in the design. The relevant data regarding the
participants’ demographic information are shown in Figure
3.

According to the experience of the participants we can
say that the participants have medium to high programming
experience (most of them have [1,3) and [3,7) years of
programming experience while some of them have more
than 7 years of experience), and medium Java programming
experience. Only a very few participants have industrial
programming experience. The participants who have 0 years
of programming experience are excluded from the consid-
eration for the statistical analysis pursued in Section V.
Additionally, two participants from the first group (“Group
Alow”) and four participants from the third group (“Group
Ahigh”) answered just few questions and they were also
excluded from the analysis because this would just introduce
bias in the results.

Variable Group affiliation Participants Mean Median Std. Dev.

Recall

Group A_low 23 0.4584 0.4673 0.1743
Group A_hierarchy 23 0.6707 0.6610 0.1592

Group A_high 20 0.4204 0.3917 0.1676

Precision
Group A_low 23 0.3488 0.3374 0.1453

Group A_hierarchy 23 0.6309 0.6131 0.1416
Group A_high 20 0.4289 0.4345 0.1570

F-measure

Group A_low 23 0.3658 0.3703 0.1525
Group A_hierarchy 23 0.6316 0.6093 0.1458

Group A_high 20 0.3865 0.3644 0.1573

Table IV
RECALL, PRECISION, AND F-MEASURE – DESCRIPTIVE STATISTICS

Table 4 shows the means of the recall, precision, and
F-measure values per question for each group. We see
that “Group Ahierarchy” has higher scores for most of the
questions. However the other 2 groups scored quite well for
most of the questions. For the questions Q3 and Q6 almost
the same scores can be observed. For the question Q3 related
to the investigation of the MVC pattern used in the system,
the participants probably utilized well the package structure
of the system implementation that can help in recognizing
some high level concerns. When they located some of the
potential classes related to each part of the pattern they
presumably followed the relationships between the classes to
search for the classes with similar functionality. Regarding
the question Q6 that deals with the common data flow
during the life cycle of the WebWork request at runtime, the
hierarchical architecture did not provide significant benefit
since the participants had to locate the low level source code
elements based on their behaviour. Regarding the question
Q7 groups “Group Ahierarchy” and “Group Alow” have
similar scores while group “Group Ahigh” has lower score
compared to them. The reason for that might be that the
first 2 groups both utilized well the architecture since the
required component, that closely determines the location
of the required concern in the source code, is presented
in both architectures (it is the lowest level component in
the system). The only question where the participants from
groups that used non hierarchical architectures scored poorly
is the question Q5. It seems that for those groups it was
really hard to locate the entities that monitor the resource
management (see Q5 in Table III) compared to the group

that used the hierarchical architecture were the participants
presumably recognized the components responsible for that
(like for example the “Inversion of Control” component).

V. ANALYSIS

A. Descriptive Statistics
The mean, the median, and the standard deviation of the

recall, precision, and F-measure values for all three groups
of participants are shown in Table IV. The statistics in the
figure is calculated from the “per participant” results that
describe the scores of each participant. In total, the mean
and median values in “Group Ahierarchy” are higher than
those in the other two groups (“Group Alow” and “Group
Ahigh”).

B. Testing Hypotheses
Based on the data obtained from the questionnaire we

applied the following statistical analyses with our data using
the programming language R [22]:

• The Shapiro-Wilk test [24] for testing the data normal-
ity

• The Cliff’s method in conjunction with the Hochberg’s
method [29] for comparison of a location shift between
more than two variables

Parametric statistical tests are generally more powerful
than the analogous non-parametric tests. In order to apply
parametric tests certain assumptions must be true: data
normally distributed, homogeneity of variance through the
data, at least an interval level of the data, and independence
of scores in the response variable(s) (i.e., what you get from
one subject should be in no way influenced by what you get
from any of the others) [6].

As the first step, we tested the normality of the data by
applying the Shapiro-Wilk normality test in R. As obtained
p-values are lower that 0.05 which means that our data
show significant variation from the normal distribution.
Therefore we decided to apply non-parametric tests to test
our hypotheses. The classic methods is the Kruskal Wallis
test used to examine if there is a significant difference in
the location shift between the 3 groups in the study with
respect to the observed measures (recall, precision, and F-
measure). However, we use the more robust Cliff’s method
in conjunction with the Hochberg’s method (to control
the probability of one or more type I error) that allows
heteroscedasticity (different variances in the tested groups)
and performs well when tied values can occur [29].

The results of the Cliff’s method for all pairs of the 3
groups are shown in Figure V. Particularly, the p-values that
show if there is a significant difference between the groups,
the corresponding critical p-values, and the p-hat values that
measure the effect sizes are shown. If the p-values are lower
than the corresponding critical p-values it means that there
exists a significant difference between the groups [29]. The
effect size indicates how strong is the obtained difference
between the groups. Values around 0.556 indicate small
effect size, around 0.638 medium effect size, and around
0.714 large effect size [11]. From the obtained results we
see that for all observed measures (recall, precision, and F-
measure) there exists a significant difference in the location

0,00
0,20
0,40
0,60
0,80
1,00

Q1 Q2 Q3 Q4 Q5 Q6 Q7

A_hierarchy A_low A_high

Recall

0,00

0,20

0,40

0,60

0,80

1,00

Q1 Q2 Q3 Q4 Q5 Q6 Q7

A_hierarchy A_low A_high

Precision

0,00

0,20

0,40

0,60

0,80

1,00

Q1 Q2 Q3 Q4 Q5 Q6 Q7

A_hierarchy A_low A_high

F-measure

Figure 4. The Means of the Recall, Precision, and F-measure Values for Each Question

shift between “Group Ahierarchy” and “Group Alow” as well
as between “Group Ahierarchy” and “Group Ahigh”, while
the difference between “Group Alow” and “Group Ahigh” is
not significant (the corresponding p-values are greater than
their critical p-values). All calculated effect sizes can be
assumed as large and indicate strong difference in the loca-
tion shift between the groups. Table IV indicates the higher
values for the observed measures for the group that used
the hierarchical architecture (“Group Ahierarchy”) compared
to the other 2 groups in the study. Given the results from
the analysis undertaken, it has been demonstrated that all 3
hypotheses of our study are supported, i.e. the hierarchical
architecture that groups all system’s relevant concerns into a
component hierarchy leads to: 1) higher quantity of correctly
retrieved elements, 2) lower quantity of incorrectly retrieved
elements, and 3) higher overall quality of retrieved elements,
on the understandability related questions compared to the
architectures that do not use hierarchical abstractions and
show only the lowest level or the highest level components
in the hierarchy.

Recall
(PV:p-val, PC:p-crit, PH:p-hat)

Precision
(PV:p-val, PC:p-crit, PH:p-hat)

F-measure
(PV:p-val, PC:p-crit, PH:p-hat)

 A_low A_hier A_low A_hier A_low A_hier

A_hier PV=1e-04
PC=0.025
PH=0.822

-- A_hier PV=1e-04
PC=0.017
PH=0.923

-- A_hier PV=1e-04
PC=0.025
PH=0.902

--

A_high PV=0.46
PC=0.05
PH=0.43

PV=1e-04
PC=0.017
PH=0.856

A_high PV=0.16
PC=0.05
PH=0.63

PV=2e-04
PC=0.025
PH=0.832

A_high PV=0.78
PC=0.05
PH=0.53

PV=1e-04
PC=0.017
PH=0.867

Table V
THE RESULTS OF THE CLIFF’S METHOD

VI. DISCUSSION

In the view of the obtained results we provide empirical
evidence that hierarchies play an important role in the con-
text of architectural component models from the viewpoint
of the architecture-level software understandability. More
concretely we studied a system whose architecture comprises
41 lowest level components in the hierarchy (1st abstraction
level), 3 composite sub-components (2nd abstraction level),
and 5 highest level composite components (3rd abstraction
level). We showed that two of the architectures that do
not use the hierarchical structure of components (i.e. they
concentrate either on the lowest or highest level components
in the hierarchy) lead to lower understandability scores

compared to the hierarchical architecture. The non-captured
components apparently hampered finding the location of the
system’s relevant concerns in the architecture. Consequently
it hampered also finding the location of those concerns in
the system implementation.

Generally speaking it is quite reasonable to expect that
if the number of non-captured components in the sys-
tem’s architecture increases, the understandability of the
system decreases. However examining precisely how the
understandability would be affected when different numbers
of components from different abstraction levels are not
captured in the architecture remains to be a big challenge
that requires several studies and much more resources, i.e.
participants, time, etc. Another challenge is to find the
threshold for the system size starting from which hierarchies
are beneficial. This challenge is also unresolved for other
kinds of models studied in the existing empirical research
mentioned in Section III.

Regarding the two main factors identified to be relevant
for assessing the impact of hierarchies on model under-
standability (see Section III) we showed that the abstraction
effect plays a very important role for the understandability of
component models which is quite expected since one of their
main purposes is to “ ... enable designers to abstract away
fine-grained details that obscure understanding and focus on
the “big picture:” system structure, the interactions between
components, ...” [17]. Regarding the split-attention effect the
case where many sub-components in the system exist and
each is presented in a separate window or on a separate
piece of paper could be further examined. However, in the
light of the discussion provided in Section III, this effect
seems to presumably have a much less significant impact
on component models than on process models.

VII. VALIDITY EVALUATION

In this section we discuss the various threats to validity
of our study and how we tried to minimize them:

1) Conclusion validity: The conclusion validity defines
the extent to which the conclusion is statistically valid.
The statistical validity might be affected by the size of the
sample (23, 23, and 20 students in “Group Alow”, “Group
Ahierarchy”, and “Group Ahigh”, respectively). In a between
subjects-design, 20 participants are recommended to detect
a large effect in the one way ANOVA test with a power of
0.8 and a significance level of 0.05 [4]. In the corresponding

non-parametric test maximum 15 % more participants can
be expected [31] leading to 23. As we obtained that there
is a statistically significant difference between the studied
groups (with a large effect size) for the given sample size
we would be able to detect even tiny differences between
the groups if the sample size increases. Therefore there is a
low threat to conclusion validity of our results.

2) Construct validity: The construct validity is the degree
to which the independent and the dependent variables are
accurately measured by the appropriated instruments. The
interpretation of the answers to the questions might result
in a threat to validity of the dependent variable because the
answers to the questions consist of a list of system elements
(e.g., architectural components, source code classes, pack-
ages). We mitigated this risk by calculating the standard
information retrieval metrics for recovered answers from
all questions. We argue that information retrieval measures
allow objective evaluation of the correctness of questions
rather than intuitive or ad-hoc human measures. We conclude
that this potential threat is mitigated to a large degree.

3) Internal validity: The internal validity is the degree
to which conclusions can be drawn about cause-effect of
independent variables on the dependent variables. We deal
with the following issues:

Differences among subjects: The variation in human
performance might distort the results of the study, and then
the performance differences would not arise from the differ-
ence in treatments. In this particular study, the participants’
experience is quite well balanced among the three groups in
the study and there is no significant difference among the
groups (see Section IV-C1). Thus, this factor is not seen as
a strong threat to validity.

Measuring method: A potential threat to validity might
be that the understanding of the questionnaire could have
been biased towards “Group Ahierarchy”. Answering some
of the questions might be easier for that group because
the architecture for that group reduces the decision space
by pointing to the component or the set of components
related to the examined concern. However, those questions
are based on the established comprehension framework
related to examining the relevant concerns of (a part of)
the system and how those concerns are interrelated [19]. The
established task framework also ensures that many aspects of
typical understanding contexts are covered. Beside the usage
of the common framework the questions are imaginatively
constructed to measure the deeper understanding of the
groups (see Section IV-B3).

4) External validity: The external validity is the degree
to which the results of the study can be generalized to
the broader population under study. The following facts are
identified:

The system that is used: The fact that we used only one
object in the study might introduce the risk of generalizing
the results. Generalization aspects are discussed in more
detail in Section VI.

Subjects: The participants’ population in the study
might not be sufficiently competent. This might influence
the results of the study. In this study, all the participants had
knowledge about software development and software archi-
tecture (UML modelling), as well as of software traceability.

They all studied the previous lectures of at least the software
architecture course and have medium to high programming
experience (see Figure 3). The participants were also familiar
with the technologies, concepts and frameworks used in the
study since they were taught about it in the course the
study took place. However we are aware that more empirical
studies with professionals need to be carried out in order to
generalize the results.

VIII. CONCLUSIONS

This paper presents a controlled experiment on the impact
of hierarchies in component models on the architecture-level
software understandability. We have studied 3 different com-
ponent models of an open source Java-based web application
framework called WebWork. One of the 3 component models
used a hierarchical representation where architectural com-
ponents at all abstraction levels in the hierarchy are shown,
while the other two do not use hierarchical abstractions and
focus only on the lowest or highest level components in the
hierarchy.

Our results show that using the hierarchical architecture
leads to: 1) higher quantity of correctly retrieved elements,
2) lower quantity of incorrectly retrieved elements, and 3)
higher overall quality of retrieved elements with regard
to understandability related questions. The obtained results
provide empirical evidence that hierarchies play an impor-
tant role in the context of the architecture-level software
understandability. The effect of abstraction plays a very
important role since it facilitates the location of the system’s
relevant concerns by guiding the attention of the reader
to certain parts of the architecture and thereafter to the
corresponding part in the system implementation. Having
in mind that the architecture plays a crucial role in the
whole development process, improving our knowledge on
creating an understandable architecture helps us to improve
the overall quality of the software it represents.

In our future work we plan to study the systems with more
abstraction levels and to examine more precisely how the
understandability would be affected when different numbers
of components from different abstraction levels are not
captured in the architecture. Also it would be interesting to
study the case where many sub-components in the system
exist and each is presented on a separate piece of paper
which can potentially cause the so-called split-attention
effect.

ACKNOWLEDGEMENT

This work was supported by the Austrian Science Fund
(FWF), Project: P24345-N23.

REFERENCES

[1] T. J. Biggerstaff, B. G. Mitbander, and D. E. Webster.
Program understanding and the concept assignment problem.
Commun. ACM, 37(5):72–82, May 1994.

[2] R. Brooks. Towards a theory of the comprehension of
computer programs. International Journal of Man-Machine
Studies, 18(6):543 – 554, 1983.

[3] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers,
R. Little, R. Nord, and J. Stafford. Documenting Software
Architectures: Views and Beyond. Addison-Wesley, Boston,
MA, 2003.

[4] J. Cohen. Statistical Power Analysis for the Behavioral
Sciences. L. Erlbaum Associates, 1988.

[5] M. O. Elish. Exploring the relationships between design
metrics and package understandability: A case study. In
ICPC, pages 144–147. IEEE Computer Society, 2010.

[6] A. Field. Discovering Statistics Using SPSS. SAGE Publica-
tions, 2005.

[7] D. Garlan. Software architecture: A roadmap. In Proceedings
of the Conference on The Future of Software Engineering,
ICSE ’00, pages 91–101, New York, NY, USA, 2000. ACM.

[8] V. Gupta and J. K. Chhabra. Package coupling measure-
ment in object-oriented software. J. Comput. Sci. Technol.,
24(2):273–283, Mar. 2009.

[9] H. Kazato, S. Hayashi, T. Kobayashi, T. Oshima, S. Okada,
S. Miyata, T. Hoshino, and M. Saekii. Incremental feature
location and identification in source code. In Software Main-
tenance and Reengineering (CSMR), 2013 17th European
Conference on, pages 371–374, March 2013.

[10] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones,
D. C. Hoaglin, K. El Emam, and J. Rosenberg. Preliminary
guidelines for empirical research in software engineering.
Software Engineering, IEEE Transactions on, 28(8):721–734,
Aug. 2002.

[11] H. C. Kraemer and D. J. Kupfer. Size of treatment effects and
their importance to clinical research and practice. Biological
Psychiatry, 59(11):990 – 996, 2006.

[12] P. Kruchten. The 4+1 view model of architecture. IEEE
Softw., 12(6):42–50, Nov. 1995.

[13] F. Lancaster. Information Retrieval Systems: Characteristics,
Testing, and Evaluation. Information Sciences Series. Jon
Wiley & Sons, 1979.

[14] P. Lightbody and J. Carreira. WebWork in Action. In Action
Series. Manning, 2006.

[15] C. Mazza, J. Fairclough, M. Bryan, P. Daniel, S. Adriaan,
S. Richard, J. Michael, and G. Alvisi. Software Engineering
Guides. Prentice-Hall International (UK), 1996.

[16] N. Medvidovic. Moving architectural description from under
the technology lamppost. In Software Engineering and
Advanced Applications, 2006. SEAA ’06. 32nd EUROMICRO
Conference on, pages 2–3, Aug 2006.

[17] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner,
G. Johnson, N. Medvidovic, A. Quilici, D. S. Rosenblum, and
A. L. Wolf. An architecture-based approach to self-adaptive
software. IEEE Intelligent Systems, 14(3):54–62, May 1999.

[18] M. C. Otero and J. J. Dolado. Evaluation of the compre-
hension of the dynamic modeling in uml. Information and
Software Technology, 46(1):35–53, 2004.

[19] M. J. Pacione, M. Roper, and M. Wood. A novel software
visualisation model to support software comprehension. In
Proceedings of the 11th Working Conference on Reverse
Engineering, WCRE ’04, pages 70–79, Washington, DC,
USA, 2004. IEEE Computer Society.

[20] D. E. Perry and A. L. Wolf. Foundations for the study of
software architecture. SIGSOFT Softw. Eng. Notes, 17(4):40–
52, Oct. 1992.

[21] H. C. Purchase, L. Colpoys, M. McGill, D. Carrington, and
C. Britton. Uml class diagram syntax: An empirical study
of comprehension. In Proceedings of the 2001 Asia-Pacific
Symposium on Information Visualisation - Volume 9, APVis
’01, pages 113–120, Darlinghurst, Australia, Australia, 2001.
Australian Computer Society, Inc.

[22] R Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, 2013.

[23] H. Reijers and J. Mendling. A study into the factors that
influence the understandability of business process models.
Systems, Man and Cybernetics, Part A: Systems and Humans,
IEEE Transactions on, 41(3):449–462, May 2011.

[24] S. S. Shapiro and M. B. Wilk. An analysis of variance test
for normality (complete samples). Biometrika, 3(52), 1965.

[25] P. Sochos, M. Riebisch, and I. Philippow. The feature-
architecture mapping (farm) method for feature-oriented de-
velopment of software product lines. In Engineering of
Computer Based Systems, 2006. ECBS 2006. 13th Annual
IEEE International Symposium and Workshop on, pages 9
pp.–318, March 2006.

[26] S. Stevanetic and U. Zdun. Empirical study on the effect of
a software architecture representation?s abstraction level on
the architecture-level software understanding. In International
Conference on Quality Software 2014 (QSIC), October 2014.

[27] S. Stevanetic and U. Zdun. Exploring the relationships
between the understandability of architectural components
and graph-based component level metrics. In International
Conference on Quality Software 2014, October 2014.

[28] S. Stevanetic and U. Zdun. Exploring the relationships
between the understandability of components in architectural
component models and component level metrics. In 18th
International Conference on Evaluation and Assessment in
Software Engineering (EASE 2014), May 2014.

[29] R. Wilcox. Chapter 7 - one-way and higher designs for
independent groups. In R. Wilcox, editor, Introduction to
Robust Estimation and Hypothesis Testing (Third Edition),
Statistical Modeling and Decision Science, pages 291 – 377.
Academic Press, Boston, third edition edition, 2012.

[30] C. Wohlin. Experimentation in Software Engineering: An
Introduction. The Kluwer International Series in Software
Engineering. Kluwer Academic, 2000.

[31] D. Wolfe. Nonparametrics: Statistical methods based on
ranks and its impact on the field of nonparametric statistics.
In J. Rojo, editor, Selected Works of E. L. Lehmann, Se-
lected Works in Probability and Statistics, pages 1101–1110.
Springer US, 2012.

[32] S. Zugal, J. Pinggera, B. Weber, J. Mendling, and H. Reijers.
Assessing the impact of hierarchy on model understandability
a cognitive perspective. In J. Kienzle, editor, Models in
Software Engineering, volume 7167 of Lecture Notes in Com-
puter Science, pages 123–133. Springer Berlin Heidelberg,
2012.

[33] S. Zugal, P. Soffer, C. Haisjackl, J. Pinggera, M. Reichert, and
B. Weber. Investigating expressiveness and understandability
of hierarchy in declarative business process models. Software
& Systems Modeling, June 2014.

